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Abstract
In this paper, we propose an accurate numerical means built upon a spectral-Galerkin
method in spatial discretization and an enriched multi-step spectral-collocation
approach in temporal direction, for the transverse magnetic mode of Maxwell equa-
tions in Cole-Cole dispersive media in two-dimensional setting. Our starting point
is to derive a new model involving only one unknown field from the original model
with three unknown fields: electric, magnetic fields, and the induced electric polar-
ization (described by a global temporal convolution of the electric field). This results
in a second-order integral-differential equation with a weakly singular integral kernel
expressed by the Mittag-Lefler (ML) function. The most interesting but challenging
issue resides in how to efficiently deal with the singularity in time induced by the
ML function which is an infinite series of singular power functions with different
nature. With this in mind, we introduce a spectral-Galerkin method using Fourier-
like basis functions for spatial discretization, leading to a sequence of decoupled
temporal integral-differential equations (IDE) with the same weakly singular kernel
involving the ML function as the original two-dimensional problem. With a careful
study of the regularity of IDE, we incorporate several leading singular terms into the
numerical scheme and approximate much regular part of the solution. Then, we solve
the IDE by a multi-step well-conditioned collocation scheme together with mapping
technique to increase the accuracy and enhance the resolution. We show that such an
enriched collocation method is convergent and accurate.
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1 Introduction

In electromagnetism, if the electric permittivity or magnetic permeability depends
on the wave frequency, then the medium is called a dispersive medium. The typical
models that characterize such a dependence include the Drude mode [44, 45] and the
Lorenz model [30, 34]. The Cole-Cole (C-C) dispersive model, distinguishing itself
by the nonlocal feature, has been successfully applied to fit experimental dispersion
and absorption for a considerable number of liquids and dielectrics [9]. Such a model
can be expressed by the empirical formula (cf. [9]):

ε(ω) = ε0

(
ε∞ + εs − ε∞

1 + (iωτ)α

)
, 0 < α ≤ 1, (1.1)

where τ, ε0, εs, ε∞ are all given physics constants. Here, τ is the central relaxation
time of the material model, ε0 is the permittivity of vacuum, and εs and ε∞ are
respectively the zero- and infinite-frequency limits of the relative permittivity satis-
fying εs > ε∞ ≥ 1. In particular, the model with α = 1 leads to the classical Debye
dielectric model, or exponential dielectric relaxation.

Since the C-C relaxation model has many applications in diverse fields, such as
soil characterization [28], permittivity of biological tissue [12], and the transient
nature of electromagnetic radiation in the human body [10, 17], its numerical solution
has attracted much attention. Intensive studies have been devoted to the finite dif-
ference time domain (FDTD) methods (cf. [8, 26, 27, 37, 38]), and the time-domain
finite element methods [2, 15, 20, 23, 39]. Most of them worked on discretization of
the Maxwell system directly where the electric field and the induced electric polar-
ization in the model are interconnected and globally dependent (see (2.2)). Although
this relation can be transformed into a fractional differential equation (see, e.g., [20,
27, 38]), direct discretization of three fields may result in a large degree of freedoms
with a heavy burden of historical dependence in time.

Different from all aforementioned works, we formulate the C-C model as
a second-order partial integral-differential equation (PIDE) involving only one
unknown field, where the integral part has a weakly singular kernel in terms of the
ML function. We then place the emphasis on how to efficiently deal with the temporal
singular integral with the kernel function as a series of singular functions in different
fractional powers. Without loss of generality, we consider the plane wave geometry
of the C-C model and reduce magnetic and electric field vectors to scalar field quan-
tities by polarization, and restrict our attention to the two-dimensional PIDE. We then
employ a spectral-Galerkin method using Fourier-like basis functions in space (cf.
[21, 22, 33]), and the model boils down to a sequence of decoupled temporal IDE
with the same type of singular integrals. As such, unlike the existing methods, we
work with a model with the minimum number of unknowns, so the computational
cost can be enormously reduced.

We propose a well-conditioned multi-step collocation method for solving the tem-
poral IDE, which is enriched by incorporating a few leading singular terms through
a delicate regularity analysis, and integrated with a mapping technique (cf. [41]) for
treating the singular integral and nearly singular integrals in the first subinterval. The
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well-conditioning is achieved by writing the IDE in a first-order damped Hamito-
nian system and using the Birkhoff-Lagrange interpolating basis (cf. [40]), so the
proposed method possesses a long time stability. It is noteworthy that the integral
operator in our setting involving the ML function as the singular kernel. Such a ker-
nel is distinct from the usual weakly singular kernel, such as tα−1, 0 < α < 1, in
terms of the singular behaviors. We notice that many fast algorithms, stemming from
the celebrated fast multipole method, have been recently proposed for the (Riemann-
Liouville/Caputo) fractional differential equations (see, e.g., [16, 19, 24]). However,
it appears that the extension of these algorithms to our case is nontrivial and largely
open due to the completely different nature of the singular kernel.

The rest of the paper is organized as follows. In Section 2, we formulate our new
model and present a semi-discretized scheme for the problem of interest. In Section 3,
we tackle the challenges of the temporal IDE obtained from the previous section and
introduce effective numerical techniques to surmount the obstacles. We also present
various numerical results to illustrate various perspectives of the proposed method.
We then conclude with discussions and some future work regarding the C-C model
in Section 4.

2 Formulation of themodel and a semi-discretized scheme

In this section, we derive a new model from the Maxwell system in Cole-Cole media
involving three vector fields,and introduce a semi-discretized scheme for the problem
of interest.

2.1 Maxwell equations in Cole-Cole media

The time-domain Maxwell’s equations in Cole-Cole media take the form (cf. [20,
38]):

ε0ε∞
∂E

∂t
= ∇ × H − ∂P

∂t
in � × (0, T ], (2.1a)

μ0
∂H

∂t
= −∇ × E in � × (0, T ], (2.1b)

where � is a bounded domain in R
3 with a Lipschitz boundary, and P (x, t) is the

induced electric polarization

P (x, t) =
∫ t

0
ξα(t − s)E(x, s) ds, ξα(t) := L −1

{
ε0(εs − ε∞)

1 + (sτ )α

}
. (2.2)

Here, ξα is the time-domain susceptibility kernel which involves the inverse Laplace
transform L −1. Note that P (x, 0) = 0 is evident from (2.2). Here, we supplement
(2.1)–(2.2) with the initial conditions

E(x, 0) = E0(x), H (x, 0) = H 0(x) in �, (2.3)

and a perfect conducting boundary condition

n × E = 0 at ∂� × (0, T ). (2.4)
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It is seen that the above Maxwell system contains three unknown vector fields. It
is computationally beneficial to eliminate some unknowns. In this paper, we work on
the model with one unknown field, as stated in the following lemma.

Lemma 2.1 Define E := ε0ε∞E + P . Then, a reduced model from (2.1)–(2.4) is⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2E
∂t2

= −a∇ × ∇×E+b

∫ t

0
eα,α(−λ(t − s)α)∇×∇×E ds in �, t ∈ (0,T ],

(2.5a)

n × E|∂� = 0 t ∈ (0, T ], (2.5b)

E(x, 0) = E0(x), E t (x, 0) = E1(x) in �, (2.5c)

where 0 < α < 1,

a = 1

μ0ε0ε∞
, b = εs − ε∞

μ0ταε0ε2∞
, λ = εs

ε∞τα
, (2.6)

and

eα,β(−λtα) = tβ−1Eα,β(−λtα), (2.7)

with Eα,β(t) being the standard Mittag-Leffler (ML) function defined by

Eα,β(z) =
∞∑

k=0

zk

�(kα + β)
. (2.8)

Proof Firstly, taking derivative with respect to t for (2.1a) and ∇× for (2.1b), we
eliminate H and obtain

ε0ε∞
∂2E

∂t2
= − 1

μ0
∇ × ∇ × E − ∂2P

∂t2
. (2.9)

Secondly, taking the Laplace transform on both sides of (2.2) leads to

P̂ (x, s) = ε0(εs − ε∞)

1 + (sτ )α
Ê(x, s), (2.10)

where the notation Ŵ stands for the Laplace transform of the field W . Then, a direct
calculation (2.10) yields

Recall the formula of the inverse Laplace transform [13, p. 84]:

L−1
(

1

sα + λ

)
= tα−1Eα,α(−λtα), if |λ/sα| < 1. (2.12)
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Applying the inverse Laplace transform on both sides of (2.11) and using (2.12), we
obtain

E = 1

ε0ε∞
E − εs − ε∞

ε0ε2∞τα

∫ t

0
(t − s)α−1Eα,α

(
− εs

ε∞τα
(t − s)α

)
E(x, s)ds. (2.13)

Substituting (2.13) and P = E − ε0ε∞E into (2.9) leads to (2.5a).
With the substitution: E = ε0ε∞E+P , we can determine the initial and boundary

conditions of the new known field E as follows. By (2.2) and (2.4), we have n×P = 0
at the boundary, so

n × E = 0 at ∂� × (0, T ). (2.14)

Similarly, we can derive the initial conditions from (2.1a), (2.3), and E = ε0ε∞E+P

as follows

E(x, 0) = ε0ε∞E0(x) := E0(x), E t (x, 0) = ∇ × H 0(x) := E1(x) in �

(2.15)
This ends the derivation.

Remark 2.1 Note that we can recover the electric field from E by (2.13):

E(x, t) = aμ0 E(x, t) − bμ0

∫ t

0
eα,α(−λ(t − s)α)E(x, s)ds. (2.16)

2.2 Two-dimensional Cole-Cole model

It is seen from (2.5a) that the most interesting but challenging issue lies in the
treatment of the singular integral in time. Without loss of generality, we consider
the transverse magnetic polarization with E = (0, 0, e(x, y))′, so we have E =
(0, 0, u(x, y))′. Then, we have the reduced model of (2.5a)–(2.5c):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂2u

∂t2
= a�u − b

∫ t

0
eα,α(−λ(t − s)α)�u(x, s)ds in �, t ∈ (0, T ],

u(x, t)|∂� = 0 for t ∈ (0, T ],
u(x, 0) = u0(x), ut (x, 0) = u1(x) in �.

(2.17)

The existence and uniqueness of a weak solution to (2.17) has been investigated in
[18] by a semi-group approach and further explored in [29] using the classic energy
argument. However, both studies require u0 ∈ H 1(�). In what follows, we shall
show L2—a priori stability with a minimum requirement of the regularity—that is,
u0 ∈ L2(�), which is accomplished by following the spirit of [1].

Theorem 2.1 Let u be the solution of (2.17). If u0, u1 ∈ L2(�), and a − b/λ ≥ 0,
then we have u ∈ L∞(0, T ; L2(�)) and the following estimate

‖u‖L∞(0,T ;L2(�)) ≤ √
2‖u0‖L2(�) + 2T ‖u1‖L2(�). (2.18)
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Proof Setting

φ(x, t) =
∫ ξ

t

u(x, θ)dθ, ξ ∈ [0, T ], (2.19)

one verifies easily that

φ(x, ξ) = 0,
∂φ

∂t
(x, t) = −u(x, t).

Multiplying both sides of the first equation in (2.17) by φ(x, t) and integrating in
space over �, we have

(utt , φ) = −a(∇u,∇φ) + b

∫ t

0
eα,α(−λ(t − s)α)(∇u,∇φ)ds. (2.20)

Further integrating both sides with respect to t over (0, ξ) leads to∫ ξ

0
(utt , φ)dt = −a

∫ ξ

0
(∇u,∇φ)dt + b

∫ ξ

0

∫ t

0
eα,α(−λ(t − s)α)(∇u,∇φ)dsdt .

(2.21)
Next, using integration by parts and the explicit form of φ in (2.19), we find∫ ξ

0
(utt , φ)dt =

∫
�

(
(utφ)

∣∣∣ξ
0

−
∫ ξ

0
utdφ

)
dxdy

= 1

2
‖u(·, ξ)‖2

L2(�)
− 1

2
‖u0‖2L2(�)

−
∫

�

u1(x)φ(x, 0)dxdy,

(2.22)

and∫ ξ

0
(∇u,∇φ)dt =

∫ ξ

0

∫ ξ

t

(∇u(·, t),∇u(·, θ))dθdt =
∫ ξ

0

∫ θ

0
(∇u(·, t),∇u(·, θ))dtdθ

= 1

2

∫
�

∣∣∣∣
∫ ξ

0
∇u(x, t)dt

∣∣∣∣
2

dxdy, (2.23)

where in the last step, we used the property:∫ ξ

0

∫ θ

0
g(t)g(θ)dtdθ =

∫ ξ

0

∫ ξ

t

g(t)g(θ)dθdt =
∫ ξ

0

∫ ξ

θ

g(t)g(θ)dtdθ, (2.24)

implying
∫ ξ

0

∫ θ

0
g(t)g(θ)dtdθ = 1

2

∫ ξ

0

∫ ξ

0
g(t)g(θ)dθdt = 1

2

∣∣∣∣
∫ ξ

0
g(t)dt

∣∣∣∣
2

. (2.25)

Now, we deal with the singular integral term in (2.21). It is straightforward to
verify from the definition (2.8) that

1

λ

d

dt
Eα,1(−λ(t − s)α) = 1

λ

d

dt

∞∑
k=0

(−λ)k(t−s)kα

�(kα + 1)
= 1

λ

∞∑
k=0

(−λ)k+1(t −s)kα+α−1

�(kα + α)

= −(t − s)α−1Eα,α(−λ(t − s)α) = −eα,α(−λ(t − s)α).

(2.26)
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Using the above property and integration by parts, we derive

∫ ξ

0

∫ t

0
eα,α(−λ(t − s)α) (∇u(·, s), ∇φ(·, t)) dsdt

=
∫ ξ

0

∫ ξ

s

eα,α(−λ(t − s)α) (∇u(·, s), ∇φ(·, t)) dtds

=
(

− 1

λ

) ∫ ξ

0

∫ ξ

s

(∇u(·, s), ∇φ(·, t)) dEα,1(−λ(t − s)α)ds

= 1

λ

∫ ξ

0
(∇u(·,s),∇φ(·,s))ds − 1

λ

∫ ξ

0

∫ t

0
Eα,1(−λ(t−s)α)(∇u(·,s),∇u(·,t))dsdt . (2.27)

Note that the kernel Eα,1(−λtα) is positive definite (cf. [18, 29]), i.e.,

∫ ξ

0

∫ t

0
Eα,1(−λ(t − s)α) (∇u(·, s), ∇u(·, t)) dsdt ≥ 0.

Hence, we obtain from the above inequalities that

1

2
‖u(·, ξ)‖2

L2(�)
+

(
a

2
− b

2λ

)∫
�

∣∣∣∣
∫ ξ

0
∇u(x, t)dt

∣∣∣∣
2

dxdy

≤ 1

2
‖u0‖2L2(�)

+
∫

�

u1(x)φ(x, 0)dxdy. (2.28)

Therefore, by (2.19), (2.28) and the Cauchy-Schwarz inequality,

1

2
‖u(·, ξ)‖2

L2(�)
+

(
a

2
− b

2λ

)∫
�

∣∣∣∣
∫ ξ

0
∇u(x, t)dt

∣∣∣∣
2

dxdy

≤ 1

2
‖u0‖2L2(�)

+
∫

�

u1(x)φ(x,0)dxdy = 1

2
‖u0‖2L2(�)

+
∫ ξ

0

∫
�

u1(x)u(x, θ)dxdydθ

≤ 1

2
‖u0‖2L2(�)

+ ‖u1‖L2(�)

∫ ξ

0
‖u(·, θ)‖L2(�)dθ ≤ 1

2
‖u0‖2L2(�)

+T ‖u1‖L2(�)‖u‖L∞(0,T ;L2(�)).
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Therefore, if a − b/λ ≥ 0, then by the Cauchy-Schwarz inequality,

1

2
‖u‖2

L∞(0,T ;L2(�))
≤ 1

2
‖u0‖2L2(�)

+ T ‖u1‖L2(�)‖u‖L∞(0,T ;L2(�))

≤ 1

2
‖u0‖2L2(�)

+ 1

4
‖u‖2

L∞(0,T ;L2(�))
+ T 2‖u1‖2L2(�)

,

which immediately implies (2.18).

Remark 2.2 Using a standard energy argument, we can follow [5] to derive the
estimate:

‖ut‖2L∞(0,T ;L2(�))
+ (a − b/λ)‖∇u‖2

L∞(0,T ;L2(�))

≤ ‖u1‖2L2(�)
+

(
a + b

λ
+ 2b2

(aλ − b)λ

)
‖∇u0‖2L2(�)

,

(2.29)

under the condition: a − b/λ ≥ 0.

2.3 Spectral-Galerkin discretization using Fourier-like basis in space

As we are mostly interested in dealing with the singular fractional integrals, we con-
sider � = (−1, 1) or � = (−1, 1)2. Let PN be the set of all polynomials of degree
at most N, and let P0

N = {φ ∈ PN : φ = 0 on ∂�}. The spectral-Galerkin approx-
imation of (2.17) in space is to find uN(·, t) ∈ P

0
N such that for any vN, wN, zN ∈

P
0
N,

⎧⎨
⎩

(∂2t uN , vN)� + a(∇uN, ∇vN)� = b

∫ t

0
eα,α(−λ(t − s)α)(∇uN, ∇vN)� ds,

(uN(·, 0), wN)� = (u0, wN)�, (∂tuN(·, 0), wN)� = (u1, zN)�.
(2.30)

We next employ the matrix diagonalization technique (cf. [32, Ch. 8]) to reduce
(2.30) to a sequence of integral-differential equations in time.

We first look at the one-dimensional case. Define

φk(x) = 1√
4k + 6

(Lk(x) − Lk+2(x)), k ≥ 0, (2.31)

where Lk(x) is the Legendre polynomial of degree k. Then, we have

P
0
N = span{φk : 0 ≤ k ≤ N − 2}. (2.32)

It is known that under this basis, the stiffness matrix is identify as (φ′
k, φ

′
j ) = δkj ,

and the mass matrix B with entries bkj = (φk, φj )� is symmetric and pentadiagonal.
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Moreover, we have bk,k±1 = 0, so with a separation of even and odd modes, we
actually deal with symmetric tridiagonal matrices (cf. [31]). Thus, writing

uN(x, t) =
N−2∑
k=0

ûk(t)φk(x), û(t) = (û0(t), û1(t), · · · , ûN−2(t))
′, (2.33)

the scheme (2.30) becomes
⎧⎨
⎩

Bû
′′
(t) + aû(t) = b

∫ t

0
eα,α(−λ(t − s)α)û(s)ds, t ∈ (0, T ],

Bû(0) = û0, Bû
′
(0) = û1,

(2.34)

where ûi = ((ui, φ0)�, · · · , (ui, φN−2)�)′ for i = 0, 1. Let {λi}N−2
i=0 be the eigen-

values of B, and let E be the corresponding eigenvectors of B. Note that E is an
orthonormal matrix, so E′E = IN−1. Introducing the change of variables: û = Ev

with v = (v0, v1, · · · , vN−2)
′, we can decouple the system (2.34) into

⎧⎨
⎩

v′′
i (t) + aλ−1

i vi(t) = bλ−1
i

∫ t

0
eα,α(−λ(t − s)α)vi(s)ds, t ∈ (0, T ],

vi(0) = λ−1
i v0i , v′

i (0) = λ−1
i v1i ,

(2.35)

for i = 0, · · · , N − 1, where ûj = Evj with vj = (vj0, vj1, · · · , vj (N−2))
′ for

j = 0, 1.
Similarly, in the two-dimensional case, we have

P
0
N = span

{
φi(x)φj (y) : 0 ≤ i, j ≤ N − 2

}
. (2.36)

We write

uN(x, t) =
N−2∑
i,j=0

ûij (t)φi(x)φj (y), Û(t) = (ûij (t))i,j=0,··· ,N−2, (2.37)

Then, the counterpart of (2.34) becomes
⎧⎨
⎩

BÛ ′′B + a(ÛB + BÛ) = b

∫ t

0
eα,α(−λ(t − s)α)(ÛB + BÛ)ds, t ∈ (0, T ],

BÛB|t=0 = Û0, BÛ ′B|t=0 = Û1,

(2.38)
Using the full matrix diagonalization technique and setting Û = EWE′ with W =
(wij )i,j=0··· ,N−2 (cf. [32, Ch. 8]), we have⎧⎪⎨
⎪⎩

w′′
ij (t) + a

(
λ−1

i + λ−1
j

)
wij (t) = b

(
λ−1

i + λ−1
j

) ∫ t

0
eα,α(−λ(t − s)α)wij (s)ds,

wij (0) = (λiλj )
−1w0

ij , v′
i (0) = (λiλj )

−1w1
ij ,

(2.39)

for all t ∈ (0, T ], where Ûk = EWkE′ and Wk =
(
wk

ij

)
i,j=0,··· ,N−2

for k = 0, 1.
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3 Algorithm development for the integral-differential equation

3.1 Prototype problem

Consider the prototype integral-differential equation:⎧⎨
⎩

u′′(t) + cu(t) = d

∫ t

0
eα,α(−λ(t − s)α)u(s)ds, t ∈ (0, T ], 0 < α < 1,

u(0) = u0, u′(0) = u1,

(3.1)
where the constants c, d > 0, and the singular kernel eα,α(·) is defined as in (2.7).

To alleviate ill-conditioning of the following multi-step collocation method, we
adopt an ingredient of numerical treatment for Hamiltonian systems (cf. [11]) and
rewrite (3.1) into the first-order system:⎧⎨

⎩
p′(t) + cq(t) = d

∫ t

0
eα,α(−λ(t − s)α)q(s)ds; q ′(t) = p(t), t ∈ (0, T ],

q(0) = u0, p(0) = u1,

(3.2)
by setting q = u and p = u′.

Similar to Theorem 2.1, we have the following stability of (3.2).

Theorem 3.1 Assume u0 = 0 and a − b/λ ≥ 0 in (3.2). Then, we have the bound

p2(t) + (a − b/λ)q2(t) ≤ u21, ∀t ∈ [0, T ]. (3.3)

Proof The proof is the same as that of Theorem 2.1, and hence is omitted.

Remark 3.1 If a − b/λ ≥ 0, one can define a Hamiltonian

H(t) = (u′(t))2 + (a − b/λ)u2(t), (3.4)

for (3.1) and obtain a damped Hamiltonian system.
The assumption u0 = 0 seems restrictive; however, it is indispensable for this

bound. Our numerical experiments show that the Hamiltonian may increase or even
outweigh the initial Hamiltonian without the condition (see Fig. 3 below).

3.2 Amulti-step collocationmethod

For simplicity, we partition the interval [0, T ] into K subintervals of equal length,
that is,

Ik = (tk−1, tk), tk = kT /K, k = 1, · · · , K; t0 = 0.

Let {xj }Nj=0 ⊆ [−1, 1] be a set of Jacobi-Gauss-Lobatto (JGL) points arranged in
ascending order and denote the grids

tkj = tk−1 + tk

2
+ tk − tk−1

2
xj , 0 ≤ j ≤ N; 1 ≤ k ≤ K . (3.5)
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Let PN, QN ∈ C0(0, T ) be the multi-step spectral-collocation approximations of
p, q, respectively, and each consists of K pieces:

PN |I1 = p1
N = p∗ + p̂1

N, QN |I1 = q1
N = q∗ + q̂1

N, p̂1
N, q̂1

N ∈ PN ;
PN |Ik

= pk
N ∈ PN, QN |Ik

= qk
N ∈ PN, k = 2, 3 · · · , K, (3.6)

where p∗, q∗ are two pre-defined functions to capture leading singular terms (see
Section 3.2.1).

We find these K pieces in sequence as follows.

• For k = 1, we find {p1
N, q1

N } via the collocation scheme:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ṗ1
N(t1j ) + cq1

N(t1j ) = d

∫ t1j

0
eα,α(−λ(t1j − s)α)q1

N(s)ds, 1 ≤ j ≤ N;
q̇1
N(t1j ) = pN,1(t

1
j ), 1 ≤ j ≤ N;

q1
N(0) = u0, p1

N(0) = u1,

(3.7)
• For any k ∈ {2, · · · , K}, using the computed values {pl

N , ql
N }k−1

l=1 , we find
{pk

N, qk
N } via the collocation scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗk
N (tkj ) + cqk

N(tkj ) = d

k−1∑
l=1

∫
Il

eα,α(−λ(tkj − s)α)ql
N (s)ds

+d

∫ tkj

tk−1

eα,α(−λ(tkj − s)α)qk
N(s)ds, 1 ≤ j ≤ N;

q̇k
N (tkj ) = pk

N(tkj ), 1 ≤ j ≤ N;
qk
N(tk−1) = qk−1

N (tk−1), pk
N(tk−1) = pk−1

N (tk−1).
(3.8)

At this point, some important issues need to be addressed.

(i) It is known that the solution of (3.1) (or (3.2)) has a singular behavior at t = 0.
We therefore subtract p∗, q∗ from p, q, so that p −p∗, q −q∗ have higher reg-
ularity, leading to globally higher order accuracy. We show below that p∗, q∗
can be determined analytically by following the argument in [4, 7].

(ii) How to accurately compute the integrals involving the singular kernel eα,α(·).
In what follows, we shall resolve these issues (see Sections 3.2.1–3.2.3).

To fix the idea, we restrict our attentions to the Chebyshev approximation. Let
Tn(x) = cos(n arccosx) be the Chebyshev polynomial of degree n, and denote the
scaled Chebyshev polynomial by

T k
n (t) = Tn(x), x = t − tk−1

tk − tk−1
+ t − tk

tk − tk−1
, t ∈ Ik . (3.9)

Hereafter, {xj }Nj=0 are the Chebyshev-Gauss-Lobatto (CGL) points.
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3.2.1 Ansatz and the formulation of p∗, q∗

Our starting point is to reformulate (3.1) into the following integral form. This allows
us to justify the well-posedness of the problem and derive the desired p∗, q∗ that can
capture the leading singularities.

Lemma 3.1 Letting z(t) = u′′(t), we can rewrite (3.1) as

z(t) =
∫ t

0

{
deα,α+2(−λ(t − s)α) − c(t − s)

}
z(s)ds + f (t), (3.10)

where

f (t) = du0eα,α+1(−λtα) + du1eα,α+2(−λtα) − cu1t − cu0. (3.11)

Then, the problem (3.1) has a unique solution u ∈ C(�).

Proof Solving u′′(t) = z(t) with u(0) = u0 and u′(0) = u1, we find

u(t) = u0 + u1t +
∫ t

0
(t − s)z(s)ds.

Therefore, we can rewrite (3.1) as

z(t) + c

(
u0 + u1t +

∫ t

0
(t − s)z(s)ds

)
= d

∫ t

0
eα,α(−λ(t − s)α)

(
u0 + u1s +

∫ s

0
(s − θ)z(θ)dθ

)
ds. (3.12)

Using the identity (cf. [25]): for t > a, α, β > 0 and r > −1,∫ t

a

eρ,ρ(−z(t − s)ρ)(s − a)rds = �(r + 1)eρ,ρ+r+1(−z(t − a)ρ), (3.13)

one verifies readily that∫ t

0
eα,α(−λ(t−s)α)ds = eα,α+1(−λtα),

∫ t

0
s eα,α(−λ(t−s)α)ds = eα,α+2(−λtα),

(3.14)
and also by the definition (2.16),∫ t

0

∫ s

0
eα,α(−λ(t−s)α)(s−θ)z(θ)dθds =

∫ t

0

∫ t

θ

eα,α(−λ(t−s)α)(s−θ)dsz(θ)dθ

=
∫ t

0

{ ∞∑
k=0

(−λ)k

�(kα + α)

∫ t

θ

(t − s)α−1+kα(s − θ)ds

}
z(θ)dθ

=
∫ t

0

∞∑
k=0

(−λ)k(t − θ)α+1+kα

�(kα + α + 2)
z(θ) dθ =

∫ t

0
eα,α+2(−λ(t − θ)α)z(θ) dθ . (3.15)

Substituting (3.14)–(3.15) into (3.12) leads to (3.10)–(3.11).
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Note that the operator

Tα[z] :=
∫ t

0

{
deα,α+2(−λ(t − s)α) − c(t − s)

}
z(s)ds

is continuous, so it is a Hilbert-Schimit operator. It also implies Tα is compact from
C(�) to C(�) [43, p. 277]. The existence and uniqueness of the solution to (3.10)
immediately follows from the Fredholm alternative.

It is important to point out that Brunner (cf. [4, Thm 6.1.6]) studied a class of
integral equations with the weakly singular kernel (t − s)−μK(s, t), where 0 <

μ < 1 and K is smooth, and formally characterized the singular behavior of the
solutions. Although the result therein cannot be directly applied to (3.10), we can use
the formulation of the singularity as an ansatz to extract the most singular part of the
solution of (3.10).

Theorem 3.2 For small t > 0, the solution of (3.1) has the form

u(t) =
∑
i,j

i+jα≥2

γij t
i+jα + u1t + u0, (3.16)

where {γij } are real coefficients. Here, the first several most singular terms of u(t)

can be worked out as follows:

u(t) = u∗(t) + φ(t)

:=
∑
j

{
du1

(−λ)j−3/α−1

�(jα + 1)
1{3/α∈N,4/α>j>3/α}

+ du0
(−λ)j−2/α−1

�(jα + 1)
1{2/α∈N,4/α>j>2/α}

}
tjα

+
∑
j

{
du1

(−λ)j−2/α−1

�(jα + 2)
1{2/α∈N,3/α>j>2/α}

+ du0
(−λ)j−1/α−1

�(jα+2)
1{1/α∈N,3/α>j>1/α}

}
t1+jα

+
∑

0<j<2/α

{
du0

(−λ)j−1

�(jα + 3)
+ du1

(−λ)j−1/α−1

�(jα + 3)
1{1/α∈N, j>1/α}

}
t2+jα

+
∑

0<j<1/α

{
du1

(−λ)j−1

�(jα + 4)
+ du0

(−λ)j+1/α−1

�(jα + 4)
1{1/α∈N}

}
t3+jα + φ(t),

(3.17)

where 1S is the indicator function of the set S andφ(t) ∈ C4(�) and u1, u0, d are
the same as in (3.1). With this, we take q∗, p∗ in (3.6) to be

q∗(t) = u∗(t), p∗(t) = u′∗(t). (3.18)
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Proof Suppose that there exists a term of the form tθ , θ < 2 in the ansatz. Sub-
stituting the term into (3.1) and letting t approach 0, one easily concludes that the
left-hand side of (3.1) blows up, contradicting the right-hand side, which is 0. As a
result, non-integer powers of the form tθ , θ < 2 are expelled in the ansatz of u(t).

On the other hand, it is impossible for us to extract the explicit expression of γij

for all t i+jα as it is extremely tedious and complicated. Hence, we can restrict our
attention to exploiting the coefficients γij of term t i+jα, 2 < i + jα < 4.

Substituting (3.16) into (3.2) and using (3.13) yield

∑
i,j

i+jα≥2

γij (i + jα)(i − 1 + jα)ti−2+jα + c

⎧⎪⎨
⎪⎩

∑
i,j

i+jα≥2

γij t
i+jα + u1t + u0

⎫⎪⎬
⎪⎭

= du1

∞∑
k=0

(−λ)k

�(kα + α + 2)
t(k+1)α+1 + du0

∞∑
k=0

(−λ)k

�(kα + α + 1)
t(k+1)α

+d
∑
i,j

i+jα>2

�(i + 1 + jα)γij

∞∑
k=0

(−λ)k

�(kα + α + i + 1 + jα)
t(k+1+j)α+i . (3.19)

Now, we equate powers of lower order terms t1+jα, tjα, tjα−1 and tjα−2 for the
following four cases respectively. It is noteworthy to point out that monomials are
excluded out of our consideration for these cases.

Case 1: {j : 3 + jα < 4, j ∈ N}
We consider similar terms of the form t1+jα . Note that the candidates in the right-

hand side of (3.19) which could have the form are t (k+1)α+1 and t (k+1)α . Let
{
1 + jα = (k + 1)α + 1 ⇒ k = j − 1,
1 + jα = (k + 1)α ⇒ k = j − 1 + 1/α, if 1/α ∈ N.

Hence, equating coefficients of t1+jα on both sides of (3.19) yields

γ3j (3 + jα)(2 + jα) = du1
(−λ)j−1

�(jα + 2)
+ du0

(−λ)j+1/α−1

�(jα + 2)
1{1/α∈N},

γ3j = du1
(−λ)j−1

�(jα + 4)
+ du0

(−λ)j+1/α−1

�(jα + 4)
1{1/α∈N}. (3.20)

Case 2: {j : 2 + jα < 4, j ∈ N}
Now, we consider similar terms of the form tjα . Similar as the previous case by

considering two candidates t (k+1)α+1 and t (k+1)α of the right-hand side of (3.19), we
have{

jα = (k + 1)α ⇒ k = j − 1,
jα = (k + 1)α + 1 ⇒ k = j − 1 − 1/α, if 1/α ∈ N and j > 1/α.
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Equating coefficients for tjα on both sides of (3.19) implies

γ2j (2 + jα)(1 + jα) = du0
(−λ)j−1

�(jα + 1)
+ du1

(−λ)j−1/α−1

�(jα + 1)
1{1/α∈N,j>1/α},

γ2j = du0
(−λ)j−1

�(jα + 3)
+ du1

(−λ)j−1/α−1

�(jα + 3)
1{1/α∈N,j>1/α}.

(3.21)

Case 3: {j : 1 + jα < 4, j ∈ N}
For the term tjα−1, we follow the same fashion to have{
jα − 1 = (k + 1)α + 1 ⇒ k = j − 2/α − 1, if 2/α ∈ N and j > 2/α
jα − 1 = (k + 1)α ⇒ k = j − 1/α − 1, if 1/α ∈ N and j > 1/α.

Equating coefficients for tjα−1 yields

γ1j (1 + jα)(jα) = du1
(−λ)j−2/α−1

�(jα)
1{2/α∈N,3/α>j>2/α}

+du0
(−λ)j−1/α−1

�(jα)
1{1/α∈N,3/α>j>1/α},

γ1j = du1
(−λ)j−2/α−1

�(jα + 2)
1{2/α∈N,3/α>j>2/α}

+du0
(−λ)j−1/α−1

�(jα + 2)
1{1/α∈N,3/α>j>1/α}. (3.22)

Case 4: {j : jα < 4, j ∈ N}
Finally, we consider the term tjα−2,

{
jα − 2 = (k + 1)α + 1 ⇒ k = j − 3/α − 1, if 3/α ∈ N and j > 3/α,

jα − 2 = (k + 1)α ⇒ k = j − 2/α − 1, if 2/α ∈ N and j > 2/α.

Equating coefficients for tjα−2 leads to

γ0j (jα)(jα − 1)

= du1
(−λ)j−3/α−1

�(jα − 1)
1{3/α∈N,4/α>j>3/α} + du0

(−λ)j−2α−1

�(jα − 1)
1{2/α∈N,4/α>j>2/α},

γ1j = du1
(−λ)j−3/α−1

�(jα + 1)
1{3/α∈N,4/α>j>3/α}+ du0

(−λ)j−2/α−1

�(jα + 1)
1{2/α∈N,4/α>j>2/α}.

Once lower order terms (i.e., t i+jα with i+jα < 4) are determined, the remainder
is wrapped up into φ(t) ∈ C4(�).

Remark 3.2 We exclude the cases i + jα ∈ N in that polynomials can be absorbed
into φ(t).
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3.2.2 Mapping techniques for evaluating weakly singular integrals

In the implementation of the scheme (3.7)–(3.8), we have to deal with singular
integrals of type I:

II
α(t) =

∫ t

tk−1

eα,α(−λ(t − s)α)g(s) ds,

for g(s) = sβ, t = t1j ∈ (t0, t1], k = 1,

or g(s) = T k
n (s), t = tkj ∈ (tk−1, tk], k = 1, 2, · · · , K, (3.23)

and the nearly singular integers of type II:

III
α(t) =

∫ tk

tk−1

eα,α(−λ(t − s)α)g(s) ds,

for g(s) = sβ, t > t1, t ≈ t1, k = 1;
or g(s) = T k

n (s), t > tk, t ≈ tk; k = 1, 2, · · · , K, (3.24)

where β ∈ R relates to the aforementioned ansatz p∗, q∗ in the first subinterval
[0, t1].

The difficulty of approximating both types resides in the fact that the kernel eα,α(·)
has infinitely many terms of singular powers with different singular behaviors (cf.
(2.8) and (2.7)). As a result, a numerical quadrature, e.g., Jacobi-Gauss quadrature,
involving a single weight function cannot provide the satisfactory accuracy. Indeed,
we depict in Fig. 1 the integrands with several parameters, and observe that the
integrands exhibit heavy boundary layers at one end of the interval.

To surmount this obstacle, we resort to the mapping technique that can redistribute
the quadrature points to the end of the interval where they are mostly needed to
resolve the boundary layer. Following the idea of [41], we introduce the one-sided
singular mapping:

t = h(y; r) = tr + (tl − tr )

(
1 − y

2

)1+r

, y ∈ [−1, 1], t ∈ [tl , tr ], r ∈ N.

(3.25)
Let {yi, ωi}Ni=0 be the Gauss-Legendre quadrature points and weights on [−1, 1], and
define the mapped points {ti = h(yi; r)}Ni=0. Denote by f (t) a generic integrand on
(tl, tr ) with a singular layer near t = tr . Basically, we have

∫ tr

tl

f (t)dt = cr

∫ 1

−1
f (h(y; r))

(
1 − y

2

)r

dy ≈ cr

N∑
i=0

f (ti)

(
1 − yi

2

)r

ωi,

(3.26)
where cr = (r + 1) tr−tl

2 . We see that with the factor (1 − y)r , the integrand much
better behaved in y. On the other hand, more and more points are clustered near
t = tr as r increases. To demonstrate the gain of the mapping technique, we consider
two examples of different types: (i) f (t) = e0.6,0.6(−(0.7− t)0.6)T 1

n (t), t ∈ (0, 0.7),
and (ii) f (t) = e0.6,0.6(−(1.01 − t)0.6)T 1

n (t), t ∈ (0, 1). Note that we can calculate
the exact values of two integrals by using the property of ML functions.

Author's personal copy



An accurate spectral method for the transverse magnetic model... 723

0 0.2 0.4 0.6 0.7
−10

−8

−6

−4

−2

0

2

4

6
Type−I

s

T
1
1(s)

T
2
1(s)

0 0.2 0.4 0.6 0.8 1 1.1
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

s

Type−II

T
1
1(s)

T
2
1(s)

Fig. 1 (Left): A plot of e0.6,0.6(−(0.7 − s)0.6)T 1
n (s), n = 1 or 2, s ∈ [0, 0.7]. (Right): A plot of

e0.6,0.6(−(1.01 − s)0.6)T 1
n (s), n = 1 or 2, s ∈ [0, 1]

In Fig. 2, we depict the error curves of the usual quadrature and the mapped
approaches (i.e., r = 0 and r = 3) against various N . We observe a much faster
decay of the errors from the mapped approach. Therefore, with the mapping, we can
compute the singular/nearly singular integrals much more accurately.

3.2.3 Well-conditioned collocation matrix

The third issue of marching collocation scheme is that the condition number of
standard collocation matrix D associated with the second-order term utt grows like
O(N4), where N is the number of collocation points. To circumvent the difficulty,
we first rewrite (3.1) into a damped Hamiltonian system with only first-order deriva-
tives and then construct the explicit inverse matrixB for first-order collocation matrix
through Birkhoff interpolation.

Here, we only list the explicit form of B = Bj (xi), 1 ≤ i, j ≤ N . On the standard
interval [−1, 1] and given Chebyshev collocation points and its associated weights
{xi, wi}Ni=0 with increasing order, Bj (x) has the following form.

Bj (x) =
N−1∑
k=0

wj [Tk(xj ) − TN(xj )(−1)N+k]∂−1
x Tk(x), (3.27)
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Fig. 2 Errors of Gauss-Legendre quadrature (G-L) and mapped G-L quadrature (with r = 3). Left: case
(i); right: case (ii)

where ∂−1
x Tk(x) = ∫ x

−1 Tk(y)dy, and

∂−1
x T0(x) = 1 + x, ∂−1

x T1(x) = x2 − 1

2
,

∂−1
x Tk(x) = Tk+1(x)

2(k + 1)
− Tk−1(x)

2(k − 1)
− (−1)k

k2 − 1
, k ≥ 2. (3.28)

The readers are referred to [40] for the details, where the computation of B is stable
even for thousands of collocation points.

3.3 Numerical experiments

Example 3.1 Consider the equation⎧⎨
⎩

u′′(t) + 4u(t) = 3
∫ t

0
eα,α(−1.5(t − s)0.6)u(s)ds, t ∈ [0, 20],

u(0) = 0, u′(0) = 2.
(3.29)

We partition the domain into 20 equidistant subintervals. Since the solution is
singular near t = 0, we take advantage of the ansatz (3.17) for the first subinterval
and use the approximation (3.7). For other intervals, we apply standard polynomial
approximation (3.8). Clearly, we can define the Hamiltonian H(t) = p2(t)+2q2(t).

Indeed, as we observe from Fig. 3, the Hamiltonian decreases as time increases.
The system stays at the origin when it reaches the steady state.
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Fig. 3 (Left): A phase plot for (3.29) with u(0) = 0, ut (0) = 2 by using 20 collocation points on each
time interval. (Right): A plot of Hamiltonian decay with respect to time

To validate the necessity of condition u0 = 0 in Theorem 3.1, we switch the initial
condition of (3.29) to u(0) = 2, ut (0) = 0 and obtain Fig. 4. One can easily observe
that as time proceeds, the Hamiltonian may exceed the initial one, which contracts
Theorem 3.1.

Example 3.2 To validate the special treatment of our algorithm in the first subinter-
val, we consider the equation

⎧⎨
⎩

ü(t) + cu(t) = d

∫ t

0
eα,α(−λ(t − s)α)u(s)ds + g(t),

u(0) = u0, u̇(0) = u1,

(3.30)

where initial conditions and source term g(t) are chosen such that

u(t) = t2+α + t3+2α +
{

(t − 1)5, t ∈ [0, 1],
−(t − 1)5, t ∈ (1, 2]. (3.31)

Here, we aim to mimic the ansatz in Proposition 3.2. From our algorithm, τ = 2
implies direct polynomial approximation for u(t), τ = 3 leads to polynomial
approximation for the last two terms of u(t), and τ = 5 indicates polynomial approx-
imation for the last term. Numerical results are shown in Fig. 5. The number in the
parentheses means the slope of associated reference line.

Author's personal copy



726 C. Huang, L.-L. Wang

−2 −1 0 1 2
−4

−3

−2

−1

0

1

2

3

q

p

0 5 10 15 20
0

2

4

6

8

10

12

t

H
am

ilt
on

ia
n

Fig. 4 (Left): A phase plot for (3.29) with u(0) = 2, ut (0) = 0 by using 20 collocation points on each time
interval. (Right): A plot of Hamiltonian decay with respect to time. Note that under this initial condition,
the decay is not strict
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Fig. 5 (Left): Numerical error for interval refinement with nine frozen collocation points. (Right): Numer-
ical error of approximation with two equal-length subintervals, on which various collocation points are
applied
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Remark 3.3 Note that our scheme equations (3.7)–(3.8) with N = 2 and j = 2
(but without using the techniques described in Sections 3.2.1–3.2.3) turn out to be
a second-order finite difference (FD) scheme. We carry out the following test for
our collocation scheme and FD scheme for this example. We first divide the interval
[0, 2] into two subintervals and collocate 10 points on each subinterval. An accuracy
of 5.2158 × 10−8 in L∞-norm is achieved for the proposed scheme within 0.64 s.
Next, we divide the interval [0, 2] into 20 subintervals and apply the finite difference
method for the equation. It takes 7.5 s on the same machine to produce the accuracy
0.0091. This shows the remarkable advantages of the new technique.

3.4 Error analysis

To begin with, we present an important result on Chebyshev-Gauss-Lobatto inter-
polation of the singular function: h(t) = (t + 1)θ , t ∈ [−1, 1] and real
θ > 0.

Lemma 3.2 Let IN be the interpolation operator on the Chebyshev-Lobatto points
{ti}Ni=0. Then

‖h − INh‖∞ ≤ 2N−2θ . (3.32)

Proof Let an denote the exact Chebyshev expansion coefficient of h(t), i.e., an =∫ 1
−1 h(t)Tn(t)w(t)dt , where w(t) = (1 − t2)−1/2. Then, a careful computation (cf.
[14, Lemma 4] implies

an = O(n−1−2θ ). (3.33)

Furthermore, denote INh(t) =
N∑

n=0
′′ bnTn(x), where double prime means the first and

the last terms are to be taken by a factor of 1/2. Apply [3, Theorem 21] to get

‖u − INu‖∞ ≤ 2
∞∑

n=N+1

|an| = 2N−2θ . (3.34)

This ends the proof.

Remark 3.4 We note that [32, Theorem 3.40] provides a convergence rate for Cheby-
shev interpolation for rather general functions. However, by taking advantage of the
concrete form of h(t), we can get significantly better convergence rates.

For the sake of analysis, we define the operatorsAj ,Bj : C(Ij ) → C(Ij ) on each
Ij by

(Aj u)(t) =
∫

Ij

eα,α(−λ(t − s)α)u(s)ds, t > tj , (3.35)

and

(Bj u)(t) =
∫ t

tj−1

eα,α(−λ(t − s)α)u(s)ds, t ∈ Ij . (3.36)
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Then, there exists a best polynomial πN(Bj u) of order N such that (cf. [14, Lemma
7])

‖Kj u − πN(Bj u)‖∞ ≤ CN−α‖u‖∞. (3.37)

Theorem 3.3 Assume the ansatz (3.16) for u when t → 0 and u ∈ Hm(0, T ] for
some m > 5/2, and c − d/λ ≥ 0, τ = 4. Then, for our marching scheme on the
whole time span [0, T ], there holds

‖p − pN‖∞ + (c − d/λ)‖q − qN‖∞ ≤ CN−min{4,m−5/2}, (3.38)

where C depends on u, T but is independent of N .

Proof Define the error function on Ij by

ep,j (t) = pj (t) − p
j
N(t), eq,j (t) = qj (t) − q

j
N(t), t ∈ Ij .

Recall from (3.17) that on the interval I1, we denote

q1(t) = q∗(t) + φ(t), p1(t) = p∗(t) + φ′(t). (3.39)

Hence, we have

ep,1(t) = p1(t) − p1
N(t) = φ′(t) − p̂1

N(t), eq,1(t) = q1(t) − q1
N(t) = φ(t) − q̂1

N(t).

Then, on each Ij , substituting (3.7) or (3.8) into (3.2), and subtracting the resulted
equation from (3.2), we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṗj (ξi) − ṗ
j
N (ξi) = −cqj (ξi) + cq

j
N(ξi) + d

j−1∑
k=1

∫
Ik

eα,α(−λ(ξi − s)α)eq,k(s)ds

+d

∫ ξi

tj−1

eα,α(−λ(ξi − s)α)eq,j (s)ds,

q̇j (ξi) − q̇
j
N (ξi) = pj (ξi) − p

j
N(ξi),

ep,j (tj−1) = ep,j−1(tj−1), eq,j (tj−1) = eq,j−1(tj−1),

(3.40)
where {ξi}Ni=0 is the Chebyshev-Lobatto collocation points on Ij . Multiply both sides
of (3.40) by li (t) and sum over i, where li (t) is the Lagrange interpolation basis
associated with ξi to obtain⎧⎪⎨

⎪⎩
IN ṗj − ṗ

j
N = −aINqj + aq

j
N + bIN

j−1∑
k=1

Akeq,k + bINBj eq,j ,

IN q̇j − q̇
j
N = INpj − p

j
N .

(3.41)

Since ep,j = pj − INpj + INpj − p
j
N and eq,j = qj − INqj + INqj − q

j
N , we

therefore have the error function⎧⎨
⎩

ėp,j (t) = −aeq,j (t) + b
∫ t

tj−1
eα,α(−λ(t − s)α)eq,j (s)ds + F(t),

ėq,j (t) = ep,j (t) + G(t),

ep,j (tj−1) = ep,j−1(tj−1), eq,j (tj−1) = eq,j−1(tj−1),

(3.42)
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where

F(t) = ṗj − IN ṗj︸ ︷︷ ︸
F1

+ a(qj − INqj )︸ ︷︷ ︸
F2

+ bIN

j−1∑
k=1

Akeq,k

︸ ︷︷ ︸
F3

+ b(IN − I )Bj eq,j (s)︸ ︷︷ ︸
F4

, (3.43)

G(t) = q̇j − IN q̇j︸ ︷︷ ︸
G1

+ INpj − pj︸ ︷︷ ︸
G2

. (3.44)

Integrating both sides of (3.42) from 0 to ξ and following the proof of Theorem 2.1,
we obtain

e2p,j (ξ) + (a − b/λ)e2q,j (ξ)

≤ e2p,j (tj−1) + (a − b/λ)e2q,j (tj−1) − 2beq,j (tj−1)

λ

∫ ξ

tj−1

ėq,j (t)Eα,1(−λtα)dt

+
∫ ξ

tj−1

F(t)ep,j (t)dt + a

∫ ξ

tj−1

G(t)eq,j (t)dt . (3.45)

Again, the second mean value theorem implies there exists a ξ0 ∈ (tj−1, ξ) such that

−2beq,j (tj−1)

λ

∫ ξ

tj−1

ėq,j (t)Eα,1(−λtα)dt = −2beq,j (tj−1)Eα,1(−λtαj−1)

λ

∫ ξ0

tj−1

ėq,j (t)dt

= 2beq,j (tj−1)Eα,1(−λtαj−1)

λ
(eq,j (tj−1) − eq,j (ξ0))

≤
(
2b

λ
+ b

λε

)
e2q,j (tj−1) + bε

λ
‖eq,j‖2∞, (3.46)

where ε is an arbitrarily small positive number. Hence,

e2p,j (ξ) + (a − b/λ)e2q,j (ξ) ≤ e2p,j (tj−1) + (a + b/λ + b/λε)e2q,j (tj−1) + bε/λ‖eq,j‖2∞
+1

2
‖F‖2∞ + 1

2
‖ep,j‖2∞ + (a − b/λ)

2
‖eq,j‖2∞ + a2

2(a − b/λ)
‖G‖2∞. (3.47)

Since the inequality holds for all ξ ∈ Ij , we clearly have for ε → 0

‖ep,j‖2∞+(a−b/λ)‖eq,j‖2∞ ≤ C(e2p,j (tj−1)+e2q,j (tj−1)+‖F‖2∞+‖G‖2∞), (3.48)

where

C = max

{
2, 2a + 2b

λ
+ 2b

λε
,

a2

a − b/λ

}
.

With the stability inequality at our disposal, we next prove the convergence rate
on Ij by induction.

When j = 1, it is obvious that ep,1(0) = 0 = eq,1(0). Next, let us bound
‖F‖∞ and ‖G‖∞. Note that in this case, F3 = 0, and then, Lemma 3.2 immediately
indicates

‖F1‖∞ = ‖φ′′ − INφ′′‖∞ ≤ CN−4. (3.49)
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Similarly, we have ‖F2‖∞ ≤ CN−8, ‖G1‖∞ ≤ CN−6, and ‖G2‖∞ ≤ CN−6.
Moreover,

‖F4‖∞ = b‖(I − IN)Beq,1(s)‖∞ ≤ C‖(I − IN)(Beq,1 − BNBeq,1)‖∞
≤ C(1 + logN)‖Beq,1 − BNBeq,1‖∞ ≤ C(1 + logN)N−α‖eq,1‖∞,

(3.50)

where logN is the Lebesgue constant of the operator IN .
Combining (3.49)–(3.50), we have

‖ep,1‖2∞ + (a − b/λ)‖eq,1‖2∞ ≤ CN−8 + C(1 + logN)N−2α‖eq,1‖2∞. (3.51)

For sufficiently large N , we can always have (1 + logN)2N−2α ≤ (a − b/λ)/2C.
Therefore,

‖ep,1‖∞ ≤ CN−4, and ‖eq,1‖∞ ≤ CN−4. (3.52)

Hence, (3.38) is true for j = 1.
Suppose our estimate is true for all j = 1, · · · , k, let us consider the case j =

k + 1. From (3.48), the argument is similar to the case j = 1, except for the use of
[6, (5.5.28)]:

‖F1‖∞ = ‖ṗj − IN ṗj‖∞ ≤ CN5/2−m, ‖F2‖∞ = ‖qj −INqj‖∞ ≤ CN1/2−m,

‖G1‖∞ = ‖q̇j − IN q̇j‖∞ ≤ CN3/2−m, ‖G2‖∞ = ‖p − INp‖∞ ≤ CN3/2−m.

(3.53)

Since Eα,1(−λ(t − s)α) is increasing on s, we conclude eα,α(−λ(t − s)α) ≥ 0.
Thus,

‖F3‖∞ =
∥∥∥∥∥

k∑
n=1

∫ tn

tn−1

eα,α(−λ(t − s)α)eq,n(s)ds

∥∥∥∥∥
∞

≤ max
1≤n≤k

‖eq,n‖∞
∫ tk

0
eα,α(−λ(t − s)α)ds

= max
1≤n≤k

‖eq,n‖∞[Eα,1(−λ(t − tn)
α) − Eα,1(−λtα)]

≤ max
1≤n≤k

‖eq,n‖∞ ≤ CN−min{4,m−5/2}. (3.54)

Therefore,

‖ep,k+1‖2∞ + (a − b/λ)‖eq,k+1‖2∞ ≤ CN−min{8,2m−5}, (3.55)

whereC depends on u, a, b, λ, and T , but independent ofN . This ends the proof.

Remark 3.5 If u(t) satisfies the condition that it has an absolutely continuous (m −
1)st derivative u(m−1) on [0, T ] for some m > 2 with u(m−1)(t) = m(m−1)(0) +∫ T

0 g(y)dy, where g is absolutely integrable and of bounded variation V ar(g) < ∞
on [0, T ], we can easily improve the result (3.38) to

‖p − pN‖∞ + (a − b/λ)‖q − qN‖∞ ≤ CN−min{4,m−2}

by using [42, Theorem 4.5].
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Fig. 6 Left: initial profile. Middle: evolution of E(x, t) at time points t = 0 (blue), t = 0.375 (green),
t = 0.75 (black), and t = 1.275 (red). Right: 3D solution illustration of E(x, t)

3.5 Numerical experiments

Example 3.3 Consider the one-dimensional Cole-Cole model (2.17) with x ∈ [0, 2].
At t = 0, we choose an initial square impulse on x ∈ [0.9, 1.1] and ut (x, 0) = 0.

To be consistent with the parameters used in numerical experiments of [8, p. 61],
we take c = 1 and d = 74/75. Clearly, we observe that the electric field propagate E

evolves in a similar fashion as solution of classical wave equation in a finite interval
domain (cf. [36, p. 63]), which is, a wave bounces back and forth many times. Unlike
the classical problem, the magnitude of E in our example damps along with time
because of energy loss. The time evolution of electric field E of (2.16) for α =
0.6, T = 1.5 is presented in Fig. 6. In the experiment, we use a polynomial degree of
order 200 in spatial approximation and collocation points of number 20 on each time
subinterval of length 0.3.

Example 3.4 We consider the two-dimensional Cole-Cole model (2.17) for (x, y) ∈
[0, 2]2 with smooth initial pulse u(x, y, 0) = sin(2πx) sin(πy/2).

In Fig. 7, we depict the numerical solutions at different time and record the evo-
lution of numerical energy. Observe that the numerical solutions at different times
have very similar shapes, but the magnitude seems to decrease as time increases.
Although the numerical energy does not decay monotonically, it is bounded by the
initial energy (cf. Theorem 3.1 and Remark 3.1).
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Fig. 7 Numerical solution of (2.17) with 20 collocation points on each time interval for time T =
0, 5, 10, 15, and 20, respectively. The last figure is for numerical energy evolution with respect to time

4 Discussion and conclusion

In this paper, we have shown that the high-dimensional Cole-Cole model can be
transformed into a temporal PIDE with weakly singular kernel through the adoption
of a new auxiliary variable and electric polarization. Furthermore, by taking advan-
tage of the special feature of the PIDE, we apply a domain separation technique to
convert the equation into a set of ordinary integro-differential equations, so the model
can be solved more efficiently. Moreover, we have carefully exploited the singular
behavior of solution of a typical ordinary integro-differential equation and designed
a catered numerical algorithm for it. It is noteworthy that to combat the singular inte-
gral in our algorithm, some technical mapped Gauss-Jacobi numerical quadrature
seems indispensable.

Another aspect of our algorithm that needs investigation is its fast algorithm coun-
terpart. Similar to the fast algorithm for weakly singular kernel integration [19] or
Caputo fractional derivative [16], a promising way is to apply the fast multipole
method to find an accurate approximation for the Laplace transform of the kernel
eα,α(−λtα), 0 < α < 1, λ > 0, or the function 1/(λ + sα). Runge’s approximation
theorem (cf. [35, p. 61]) assures the existence of such an approximation. We hope to
report this in a forthcoming research paper.
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