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Abstract We propose in this note a spectral method on triangles based on a new
rectangle-to-triangle mapping, which leads to more reasonable grid distributions
and efficient implementations than the usual approaches based on the collapsed
transform. We present the detailed implementation for spectral approximations
on a triangle and discuss the extension to spectral-element methods and three
dimensions.

1 Introduction

Spectral element methods, which are capable of extending the standard spec-
tral methods to complex geometries, have become an important tool for sim-
ulations of fluid dynamics, atmospheric modeling and many other phenomena.
Since the seminal work [1], a large body of literature has been devoted to the
tensor-based quadrilateral/hexahedral element methods (QSEM) (see, e.g., [2]).
Recently, some progress has also been made in the triangular/tetrahedral spec-
tral/hp element methods (TSEM), and the current approaches are mainly based on
(1) the Koornwinder-Dubiner polynomials [3, 4]; (2) non-polynomial on triangular
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Fig. 1 (a) Illustration of the mapping (1) from the square Q onto the triangle f.x; y/ W �1 �
x; yI x C y � 0g; (b) tensorial Legendre–Gauss–Lobatto (LGL) grids on Q; (c) mapped LGL
grids on T using the mapping (3); (d) mapped LGL grids on T using Duffy’s transform in [4]

elements [5,6]; or (3) special nodal points [7,8]. In the first approach, the collapsed
mapping (i.e., the Duffy’s transform) is used to generate warped tensorial orthogonal
polynomials on triangles/tetrahedra from the tensorial polynomial bases on rectan-
gles/hexahedra. The second technique is also based on such a mapping to generate
rational basis functions rather than polynomials. It is known that the Duffy’s trans-
form collapses one edge/face of the reference rectangle/hexahedron into a vertex of
the triangle/tetrahedron, so the computational grids are severely clustered near the
singular vertex.

This note aims to introduce a new rectangle-to-triangle mapping, which pulls one
edge (at the middle point) of the triangle to two edges of the reference rectangle (cf.
Fig. 1a). In contrast with the collapsed mapping, such a mapping is one-to-one, and
leads to a more reasonable distribution on the triangle (cf. Fig. 1c, d). Most impor-
tantly, with a slight modification of the nodal Lagrange polynomial basis on the
reference rectangle, we can derive a nodal basis (formed by irrational functions) on
the triangles, which allows for an efficient implementation as with the QSEM. In a
nutshell, we can view a triangular element as a deformed rectangular element, and
demonstrate that the numerical issues induced by the deformation can be handled
effectively. Significantly, this provides a great flexibility for the mesh generation and
improves the performance of QSEM. Typically, allowing the elements being trian-
gles along the boundaries, one can handle more complex computational domains
with more regular meshes.

In this note, we first introduce the mapping and the nodal basis, then consider the
implementation on a triangle, followed by the extensions to three dimensions and
spectral-element methods.

2 Rectangle-to-Triangle Mapping and Nodal Basis

Hereafter, .x; y/ is the Cartesian coordinate of a generic point in a triangle, while
.�; �/ represents the Cartesian coordinate of a point in the reference square: Q D
.�1; 1/2. Given the vertex coordinates

˚
.xA; yA/; .xB ; yB /; .xD ; yD/

�
of a triangle

4
ABD

, we can one-to-one map the square Q to the triangle region through

.x; y/ D �
xA; yA

� .1� �/.1� �/

4
C �

xB; yB
� .1C �/.3� �/

8
C �

xD; yD
� .3� �/.1C �/

8
:

(1)
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Under this mapping, the vertices .�1;�1/; .1;�1/ and .�1; 1/ of Q correspond to
the vertices A;B;D of 4

ABD
, respectively, while the middle point C of the edge

BD is the image of the vertex .1; 1/ of Q. Hence, this mapping deforms two edges
(� D 1 and � D 1) of Q into one single edge (BD) of4

ABD
. An illustration of such

a one-to-one correspondence is depicted in Fig. 1.
To be more specific, we confine ourselves to the special triangle:

T WD ˚.x; y/ W 0 < x; y < 1; 0 < x C y < 1�; (2)

and in this case, the mapping (1) (with BD being the hypotenuse) takes the form:

x D 1

8
.1C �/.3 � �/; y D 1

8
.3 � �/.1C �/; 8 .�; �/ 2 Q; (3)

with the inversion
8<
:
� D 1C x � y �p.x � y/2 C 4.1� x � y/;
� D 1 � x C y �p.x � y/2 C 4.1� x � y/;

8 .x; y/ 2 T: (4)

Under this mapping, we have

@x

@�
D 3 � �

8
;

@x

@�
D �1C �

8
;

@y

@�
D �1C �

8
;

@y

@�
D 3 � �

8
; (5)

so the Jacobian determinant is given by

J D det

�
@.x; y/

@.�; �/

�
D 2 � � � �

16
: (6)

In the sequel, we always associate a function u in T with a unction Qu in Q via the
mapping (3): Qu.�; �/ D u.x; y/ and likewise for Qv etc. One verifies that

ru D �
@xu; @yu

� D 2

2� � � �

�
.3��/@� QuC.1C�/@�Qu; .1C�/@� QuC.3��/@�Qu

�
WDerQu; (7)

and
ZZ

T
ru � rv dxdy D

ZZ

Q

�erQu � erQv� J d�d�

D
ZZ

Q

�
G1.�/@� Qu@� QvCG2.�; �/

�
@� Qu@� QvC @� Qu@� Qv

�CG1.�/@� Qu@� Qv
� 1
J
d�d�;

(8)

where G1 and G2 are given by

G1.z/ D 1

64

�
.1C z/2 C .3 � z/2

�
; G2.�; �/ D 1

8
� 1

32
.1 � �/.1 � �/: (9)



240 Y. Li et al.

Consequently, the space H 1.T/ is mapped to the weighted space over Q:

eH 1
!.Q/ WD

n
Qu 2 L2!.Q/ W erQu 2 L2!.Q/

o
with ! D J; (10)

and vice verse. We observe from (7) and (8) that if ru is well-defined at the middle
point .1

2
; 1
2
/ of the hypotenuse of T, then we have

�@Qu
@�
C @Qu
@�

�ˇ̌
ˇ
.1;1/
D 0: (11)

This condition induced by the rectangle-to-triangle deformation can be viewed as
an analogy of the pole condition in the polar and spherical coordinates. An essential
point here is how to treat this condition effectively without loss of accuracy and
implementation efficiency. For this purpose, we next construct a nodal basis for the
finite-dimensional approximation space over QW

eXN WD eH 1
!.Q/\ ŒPN �

2 D
n
� 2 ŒPN �

2 W �@�� C @��
�ˇ̌
.1;1/
D 0

o
; (12)

where PN is the set of all algebraic polynomials of degree � N in .�1; 1/: Let
fzj gNjD0 (with z0 D �1 and zN D 1) be the Legendre–Gauss–Lobatto points, i.e.,
the zeros of the polynomial .1�z2/L0

N .z/;whereLN is the Legendre polynomial of

degree N: Let
˚
hj
�N
jD0 be the Lagrange polynomial basis associated with fzj gNjD0,

and denote djk D h0
k
.zj /: Define

Qhj .z/ WD hj .z/ � dNj

2dNN
hN .z/; 0 � j � N � 1: (13)

It is clear that hj .z/ 2PN and

Qhj .zk/ D ıkj ; Qhj .1/ D � dNj

2dNN
; Qh0

j .1/ D
dNj

2
; 0 � k; j � N � 1: (14)

Setting

 ij .�; �/ D

8̂
ˆ̂<
ˆ̂̂
:

hi.�/hj .�/; 0 � i; j � N � 1;
Qhi.�/hN .�/; 0 � i � N � 1I j D N .edge W � D 1/;
hN .�/ Qhj .�/; i D N; 0 � j � N � 1 .edge W � D 1/;

(15)

and
�N WD

˚
.i; j / W 0 � i; j � N but .i; j / 6D .N;N /�;

we find from (14) that all the  ij satisfy (11) and
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eXN D span
˚
 ij W .i; j / 2 �N

� ) dim
�eXN

� D .N C 1/2 � 1: (16)

It is seen that we modified the usual tensorial nodal basis
˚
hi .�/hj .�/

�N
i;jD0 along

the edges: � D 1 and � D 1 of Q so as to meet the condition (11) at the singular
point. In view of (14),

˚
 ij

�
i;j2�N

forms a nodal basis of eXN : More precisely, we
have

 ij .�p ; �q/ D ıpiıqj ; 8 .i; j /; .p; q/ 2 �N ; (17)

where
˚
�k D �k D zk

�N
kD0 are the LGL points as before.

The above nodal basis is complete in eH 1
!.Q/; but in order to enforce continuity

across the elements, we need to define a nodal basis function at the singular vertex
.1; 1/: Define

 NN .�; �/ D QhN .�/ QhN .�/; (18)

where QhN .z/ D .1C dNN � zdNN
�
hN .z/: Observe that  NN 62 eXN and satisfies

�@ NN
@�
C @ NN

@�

�ˇ̌
ˇ
.1;1/
D 0;  NN .�p ; �q/ D ıpN ıqN ; 0 � p; q � N: (19)

Hence,  NN must be linearly independent with the basis functions defined in (15).
Hereafter, we update eXN by adding  NN with dimensionality .N C 1/2:

Another important property of this basis is that the singularity induced by the
transform is removable in the following sense.

Lemma 1. For any Qu; Qv 2 eXN ;
˚�erQu � erQv�J �

ˇ̌
ˇ
.1;1/
D 0; (20)

where J and er are defined in (6) and (7), respectively.

Proof. For any Qu 2 eXN ; define

w.�; �/ WD .3 � �/@� QuC .1C �/@� Qu;

and we have �
@� QuC @� Qu

�ˇ̌
.1;1/
D 0 ) w.1; 1/ D 0:

Using Taylor expansion yields

w.�; �/ D �.1� �/@�w.1; 1/� .1� �/@�w.1; 1/CO
�
.1� �/2 C .1� �/.1� �/C .1� �/2

�
:

It is obvious that

0 � 1 � �
.1 � �/C .1 � �/ � 1; 0 � .1 � �/2

.1 � �/C .1 � �/ � 1 � �; 8 .�; �/ 2 Q;
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and likewise for 1 � � and other terms in big “O ,” so we have

w.�; �/

2 � � � �
ˇ̌
ˇ
.1;1/
D constant:

Consequently,erQu is well-defined at .1; 1/; so is erQv: As the determinant Jacobian J
vanishes at .1; 1/; (20) holds.

3 Implementations and Numerical Results

To test the approximation property of the foregoing nodal basis, we now implement
the spectral methods for the elliptic equation in T:

� div
�
a grad u

�C b u D f in TI u D 0 on �1I @u

@n
D g on �2; (21)

where a; b and f are given functions satisfying

a 2 L1.T/; a.x; y/ � a0 > 0; b.x; y/ � 0; 8 .x; y/ 2 T; (22)

for certain constant a0; �1 (resp. �2) consists of the edges x D 0 and y D 0 (resp.
x C y D 1), and n is the unit outer normal vector along �2. The weak formulation
of (21) is to find u 2 H 1

�1
.T/ WD ˚u 2 H 1.T/ W uj�1

D 0� such that

B.u; v/ D �aru;rv
�

T C
�
bu; v

�
T D .f; v/T C .ag; v/�2

; 8 v 2 H 1
�1
.T/; (23)

where .g; v/�2
D R

�2
gvd�:

We view T as a deformed triangle as a deformed quadrilateral element, and
perform the numerical integration and differentiation on the reference element Q:
Define the discrete inner product associated with the usual tensorial LGL quadrature
rule:

hu; viN;T D
X

0�p;q�N

�Qu Qv J �ˇ̌
.�p;�q/

!p!q WD
˝Qu; QvJ ˛

N;Q; 8 u; v 2 C.T/; (24)

where f!kg are the LGL quadrature weights associated with LGL points f�k D �kg:
Similarly, we can define the discrete rule, denoted by h�; �iN;�2

; along �2; which
sums the contributions from two edges � D 1 and � D 1:

The Galerkin approximation with numerical integration (GaNI) of (23) is to find
uN 2 VN WD span

˚
�ij .x; y/ D  ij .�; �/ 2 eXN W 1 � i; j � N

�
such that

BN .uN ; vN / D
˝
aruN ;rvN

˛
N;T C

˝
buN ; vN

˛
N;T

D hf; vN iN;T C hag; vN iN;�2
; 8vN 2 VN : (25)
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Table 1 L2-error, Max-error and the error at the middle point .1=2; 1=2/ for Example 1

Without (18) With (18)
N L2 Max .1=2; 1=2/ L2 Max .1=2; 1=2/

4 2.186e–3 5.624e–3 2.782e–4 2.186e–3 5.624e–3 3.538e–3
8 4.784e–7 3.693e–6 1.733e–6 4.784e–7 4.781e–6 4.781e–6
12 1.180e–10 1.486e–9 1.614e–10 1.180e–10 1.486e–9 2.070e–10
16 3.422e–14 3.457e–13 6.006e–14 3.422e–14 3.457e–13 1.267e–13
20 2.075e–14 9.892e–14 2.231e–14 2.075e–14 9.892e–14 2.120e–14
24 1.344e–13 6.971e–13 3.363e–14 1.344e–13 6.971e–13 3.386e–14
28 2.109e–13 1.000e–12 1.841e–13 2.109e–13 1.000e–12 1.874e–13
32 8.701e–14 3.211e–13 1.387e–13 8.701e–14 3.211e–13 1.371e–13

Some remarks are in order. Firstly, we could remove the extra basis function (18) at
the singular point from VN for a single triangle. Moreover, in view of Lemma 1, the
physical values of the terms at the singular point vanish. The well-posedness of (23)
and (25) can be proved by a standard argument.

We next present some examples to illustrate the approximability of the nodal
basis.

Example 1. We consider (21) with a.x; y/ D xC2; b.x; y/ D xCy and a smooth
exact solution:

u.x; y/ D exCy�1 sin
�
3y
�
y �
p
3

2
x C
p
3

4

��
: (26)

We tabulate in Table 1 the maximum pointwise and discreteL2 errors on T for vari-
ousN: Particularly, we single out the errors at the singular middle point .1=2; 1=2/;
and list the numerical errors for the scheme (25) with or without the extra basis
function (18). We observe an exponential decay of the errors with a convergence
behavior similar to that of the quadrilateral element case using tensorial Lagrange
polynomial basis (see, e.g., Fig. 2.17 in [9]). Moreover, the presence of the basis
function (18) essentially does not affect the performance of the scheme (25).

Example 2. We consider (21) with a D b D 1 and test the exact solution with a
finite regularity

u.x; y/ D .1 � x � y/ 5
2 .exy � 1/ 2 H 3��.T/; 	 > 0: (27)

We list in Table 2 the errors for various N; which indicates an algebraic decay of
the errors with a convergence rate around O.N�3/. It is known that for a tensor-
based spectral approximation on a rectangle, the theoretical order of convergence
is O.N�3C"/: Although we have not provided the analysis, the proposed scheme
really enjoys a similar convergence behavior.
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Table 2 L2-error, Max-error and the error at the middle point .1=2; 1=2/ for Example 2

Without (18) With (18)
N

L2 Max .1=2; 1=2/ L2 Max .1=2; 1=2/

15 2.866e–6 1.018e–5 5.895e–6 2.866e–6 1.018e–5 5.895e–6
30 3.410e–7 1.203e–6 7.045e–7 3.410e–7 1.203e–6 7.045e–7
45 9.940e–8 3.513e–7 2.054e–7 9.940e–8 3.513e–7 2.054e–7
60 4.158e–8 1.469e–7 8.600e–8 4.159e–8 1.468e–7 8.598e–8
75 2.101e–8 7.599e–8 4.757e–8 2.118e–8 7.486e–8 4.375e–8
90 1.221e–8 4.318e–8 2.533e–8 1.222e–8 4.316e–8 2.528e–8
105 7.669e–9 2.723e–8 1.620e–8 7.683e–9 2.706e–8 1.553e–8
120 1.075e–8 3.472e–8 2.632e–8 5.279e–9 1.942e–8 1.817e–8

4 Extensions and Discussions

A key point in the previous discussion is to one-to-one map a triangular element
to the reference rectangle, and to view it as a deformed quadrilateral element.
This provides some flexibility for mesh generation of QSEM. Typically, a hybrid
spectral-element method can be constructed by using the triangular elements along
the boundaries (with the singular edges facing the boundaries) and quadrilateral
elements in the interior of the computational domains. This might lead to a more
regular mesh and enhance the capability of QSEM for more complex geometries.
On the other hand, the number of points on the singular edge is double of the points
on the other two edges, so the singular edge should adjoin two quadrilateral ele-
ments and/or triangular elements (but share two nonsingular edges), or a triangular
element (but share the singular edge). The availability of the aforementioned nodal
basis makes the implementation of the hybrid spectral-element method almost as
efficient as the usual QSEM.

We now discuss the extensions to tetrahedral elements. Let T be a tetrahedron
with verticesA;B;C andD. Denote by Q the reference cube f.�; �; 
/ W �1 < �; �;

 < 1g. The counterpart of (1) reads

.x; y; z/ D .xA; yA; zA/
.1� �/.1� �/.1� 
/

8
C .xB ; yB ; zB/

.1C �/.7� 2�� 2
 C �
/

24

C .xC ; yC ; zC /
.1C �/.7� 2� � 2
 C �
/

24
C .xD; yD; zD/

.1C 
/.7� 2� � 2�C ��/

24
;

which is one-to-one and maps the vertices .�1;�1;�1/; .1;�1;�1/; .�1; 1;�1/
and .�1;�1; 1/ of Q to the vertices of A;B;C and D of the tetrahedron T, respec-
tively, while the images of vertices .�1; 1; 1/; .1;�1; 1/; .1; 1;�1/ and .1; 1; 1/ of
Q are the middle points of the sides CD;DB;BC and the barycenter of the face
4BCD, respectively. An illustration of this mapping is depicted in Fig. 2a.

In particular, for the specific tetrahedron

T D f.x; y; z/ W 0 � x; y; zI x C y C z � 1g ;
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(1, 0, 0)
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Fig. 2 (a) Illustration of the mapping from the cube Q D .�1; 1/3 and the tetrahedron f.x; y; z/ W
�1 < x; y; zI x C y C z < �1g; (b) mapped tensorial Legendre–Gauss–Lobatto (LGL) grids on
T based on the Duffy’s mapping in [4]; (c) mapped LGL grids on T using the mapping (28); (d)
distribution of the grids on the singular face x C y C z D 1 of T

the mapping takes the form

8̂
<̂
ˆ̂:

x D 1
24
.1C �/.7 � 2�� 2
 C �
/;

y D 1
24
.1C �/.7 � 2� � 2
 C �
/;

z D 1
24
.1C 
/.7 � 2� � 2�C ��/:

(28)

We plot in Fig. 2b, c the distributions of the mapped tensorial Legendre–Gauss–
Lobatto grids on T based on the Duffy’s mapping and the mapping (28). The Duffy’s
mapping collapses one face of Q into a vertex of T; so many collocation points
cluster near the singular vertex, which turn out to be wasted. In contrast, the use
of (28) leads to a more reasonable grid distribution. Like (11), similar conditions
induced by the mapping should be imposed along the three lines that connect the
barycenter and the middle points of three side of the singular face of T: Hence, the
construction of the nodal basis is much more involved.

We shall report the numerical analysis and the applications of such spectral-
element methods in a forthcoming paper.

Acknowledgements The work of the author Youyun Li was supported by Scientific Research
Foundation for Returned Scholars, Ministry of Education of China. The work of the author Li-
Lian Wang was supported by Singapore AcRF Tier 1 Grant RG58/08, Singapore MOE Grant
T207B2202, Singapore NRF2007IDM-IDM002-010, and Leading Academic Discipline Project
of Shanghai Municipal Education Commission Grant J50101. The work of the author Huiyuan
Li was supported by National Natural Science Foundation of China (NSFC) Grants 10601056
and 10971212. The work of the author Heping Ma was supported by National Natural Science
Foundation of China (NSFC) Grant 60874039.

References

1. Rønquist, M., Patera T.: A Legendre spectral element method for the incompressible Navier–
Stokes equations. Brunswick, pp. 318–326. Friedrich Vieweg und Sohn, Germany (1988)

2. Deville, M.O., Fischer, P.F, Mund, E.H.: High-order methods for incompressible fluid flow.
Cambridge University Press, London (2002)



246 Y. Li et al.

3. Dubiner, M.: Spectral methods on triangles and other domains. J. Sci. Comput., 6, 345–390
(1991)

4. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp element methods for computational fluid dynam-
ics. Oxford University Press, New York (2005)

5. Heinrichs, W., Loch, B.I., Spectral schemes on triangular elements. J. Comput. Phys., 173,
279–301 (2001)

6. Shen J., Wang, L.L., Li H.Y.: A triangular spectral element method using fully tensorial rational
basis functions. SIAM. J. Numer. Anal., 47, 1619–1650 (2009)

7. Hesthaven, J.S.: From electrostatics to almost optimal nodal sets for polynomial interpolation
in a simplex. SIAM J. Numer. Anal., 35, 655–676 (1998)

8. Taylor, M.A., Wingate, B.A., Vincent, R.E.: An algorithm for computing Fekete points in the
triangle. SIAM J. Numer. Anal., 38, 1707–1720 (2000)

9. Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A.: Spectral methods: Fundamentals
in single domains. Scientific Computation. Springer, Berlin, 2006


