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A Direct Approach Toward Global Minimization for
Multiphase Labeling and Segmentation Problems

Ying Gu, Li-Lian Wang, and Xue-Cheng Tai

Abstract—This paper intends to extend the minimization algo-
rithm developed by Bae, Yuan and Tai [IJCV, 2011] in several di-
rections. First, we propose a new primal-dual approach for global
minimization of the continuous Potts model with applications
to the piecewise constant Mumford—-Shah model for multiphase
image segmentation. Different from the existing methods, we work
directly with the binary setting without using convex relaxation,
which is thereby termed as a direct approach. Second, we provide
the sufficient and necessary conditions to guarantee a global
optimum. Moreover, we provide efficient algorithms based on
a reduction in the intermediate unknowns from the augmented
Lagrangian formulation. As a result, the underlying algorithms
involve significantly fewer parameters and unknowns than the
naive use of augmented Lagrangian-based methods; hence, they
are fast and easy to implement. Furthermore, they can produce
global optimums under mild conditions.

Index Terms—Augmented Lagrangian method (ALM), Cham-
bolle’s algorithm, continuous Potts model, global optimum, multi-
class labeling, multiphase segmentation, Mumford-Shah model,
primal-dual formulation.

I. INTRODUCTION

HE MULTICLASS labeling and multiphase segmentation
T problems share some similarity in nature, as typically,
both of them aim to find a partition of an image into m disjoint
regions (phases or classes) according to some optimization rule.
As a matter of fact, the former term is commonly used in com-
puter vision, whereas the latter one often appears in the vari-
ational and partial differential equation community. A typical
model for piecewise constant multiphase image segmentation
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that minimizes the total interface of edge sets is the piecewise
constant Mumford—-Shah model (PCMSM) [25]. Thus,

min
{ci, }m

Epcuns ({ei}iz,, T —)\Z/|CL—I| dz
L_IQ

+]09| A>0 (1)

where T : Q@ — R is the input image, {c;} are the optimal mean
values, and the subregions {2, } form a nonoverlapping partition
of O (with I' = Ui* ,09;). With an appropriate numerical im-
plementation, this model has many applications in segmenting
images with nearly piecewise constant intensities or in finding a
simplified “cartoon” approximation of a given image (see, e.g.,
[5], [12], and [21] and the references therein). The development
of fast and robust methods for multiphase segmentation has at-
tracted many recent attentions and been yet challenging. Indeed,
even the intensity values {c; } are known a prior, minimizing the
PCMSM is a hard task. In this situation, it turns out to be a spe-
cial case of the (continuous) Potts model [32] for multiclass la-
beling without favoring ordering

i FE z)d. o,
i, {Fre0= 23, [ 3 o,
subjectto U, Q; =Qwith QN =0,Yk#£1 (2)

where the parameter A > 0, and { f;}7, can be viewed as in-
trinsic forces to enforce the criterion of classification and la-
beling. In general, the multiclass labeling problem is to assign
each pixel £ € 2 a unique label / from a set of mn labels (or
classes) {ly,...,l,}. It is known that it is NP-hard when it is
approached in a “discrete” manner, as the number of unknowns
exponentially grows with the size of the problem. Accordingly,
many recent attempts have tackled this problem from a contin-
uous point of view by minimizing the continuous Potts model
(2) (see, e.g., [2], [6], [16], [29], and [31] and the references
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therein). An important issue in solving (2) is to find a convex
approximation of the nonconvex problem

min
{u y

E({u}my) =23 / fi(@)ui(@)da

=16
+> TV(ui) p  (3)
=1

subject to u; € {0,1} and >_;"  u; = 1 on €2, where {u;} are
the labeling functions, and the total variation (TV) is defined by

TV(u) = /|Du| = sgg/udivpdﬂ: 4)
. pES .
Q Q

with

S:={p=(p1.p2) € C{UR?*) :|p| <1, VzeQ} (5

where |p| = \/p? + p3. The optimum u; is expected to be the
indictor function 1, of {2;, i.e., a binary value.

Indeed, a major class of methods is based on the convex relax-
ation of the admissible set by allowing for the labeling functions
to take “intermediate” values from the unit simplex. Thus,

and Y wui=1Vze Q} (6)

i=1

Here, we just mention a few contributions along this line.
Zach et al. [42] minimized the energy in (3) over (6) by in-
troducing additional variables to decouple the TV term and
the data term, whereas Lellmann et al. [16] replaced the TV
term by nonisotropic TV: [, (3>, [Vu;|?)!/2dz and applied a
Douglas—Rachford splitting algorithm for solving the modified
model (also refer to [17] for an up-to-date review). Pock et
al. [31] proposed a primal-dual projected gradient algorithm
for minimizing an energy functional different from (3) that
produced a tighter bound on the energy and often (compu-
tationally) led to the global minimizer. Li and Ng [19], [20]
applied the same labeling technique to the piecewise constant
Mumford-Shah-type model with data fidelity involving fuzzy
membership functions and minimized the resulting model
by using alternative minimization methods as in [5]. More
recently, Bae et al. [2] have proposed a dual-type method for
the approximate model

m

min E. (@) := Z

e, —
i

TV(u;) + /()\f,u, + eu; logu; )dz
Q

)
where € > 0 is sufficiently small. The additional log-sum term
can be essentially viewed as a penalization of the constraint
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u; = 0, 1. Sufficient conditions for the existence of a global op-
timum solution of the primal-dual model were derived. More-
over, the comprehensive comparison conducted in [2] demon-
strated the dual-type approach outperformed most of the afore-
mentioned existing approaches and could achieve global mini-
mizers at least computationally. In [23], the TV term in (3) was
replaced by another term that approximates the length term. Af-
terward, a special linearization technique was used to derive an
algorithm that was shown to be fast without solving any equa-
tions (since all subproblems admitted explicit solutions, and cer-
tain narrowband technique could be applied to accelerate the
algorithm).

Another family of methods based on convex formulation via
functional lifting and embedding in a higher dimensional space
has also attracted much recent attention (see, e.g., [6], [7], [26],
[30], and [31]).

This paper is motivated by [2], and the main features and
contributions can be summarized as follows.

 Different from most of the previous works, we stick with

the binary setting [i.e., without relaxing the admissible set
as in (6)] by seeking the minimizer from

and conduct a direct analysis for the primal-dual formula-
tion of (3), i.e.,

min max
ueA peS

B@H) =Y. [wldie+ Ay ©)
=1

Q

where p = (py,Ps,---,P,,) and § = S™ [see (5) for the
definition of S]. We provide the sufficient and necessary
conditions for finding the global optimum of the primal-
dual model (9). Although some results have been derived
earlier in [2], the arguments and means are quite different.

* Based on the augmented Lagrangian method (ALM), we
obtain an explicit expression of the primal variables in
terms of the dual variables, where the primal variables take
the binary values in most of the situations. As a result, the
thresholding is not necessary in this case. Moreover, the
iterative algorithm contains almost the minimum number
of parameters and is easy to initialize. The essential step is
very analogous to the Chambolle’s algorithm [8] for image
denoising; hence, the method is expected to be fast and
robust.

* The approach can be also interpreted as a multiphase level
set method based on piecewise constant interpolation of the
phases (or classes); thus, it is anticipated to be stabler than
the classical level set method [38] and the piecewise con-
stant level set method (PCLSM) [21] (a global polynomial
interpolation).

The rest of this paper is organized as follows. We formu-
late and analyze the algorithm in the forthcoming section. More
precisely, we derive the sufficient and necessary conditions for
finding the global optimum of the primal-dual model (9) without
using convex relaxation. We develop the algorithm that can of-
tentimes achieve the global optimum. We conduct a comparison
study and provide ample numerical results to show the strengths
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and performance of the proposed method for multiclass labeling
and multiphase image segmentation in Section III.

II. ANALYSIS OF THE PRIMAL-DUAL MODEL
AND THE ALGORITHM

In this section, we conduct analysis of the global optimum of
the primal-dual model (9) and introduce the fast algorithms. Due
to the similar nature of the labeling and segmentation problems,
we shall not distinguish the words “class” and “phase” and, like-
wise, “multiclass” and “multiphase” throughout the paper.

A. Two-Phase Case

To provide some insights of the algorithms for multiphase
problems, we first discuss the two-phase case. In this situation,
the admissible set (8) can be characterized by a single labeling
function u; as us = 1 — wu;. For convenience, we define u =
2uyq — 1; hence, we have ug = (1 4+ u)/2 and us = (1 — u)/2.
Accordingly, the constraint on %1 and us becomes u? =1, and
by (3)

min
u2=1

A/<f11;u+f21;u>dx+TV(u)
o

fit fo
/\/gudz-i-TV(u)-i-/\Q/ 5

Q

dz % (10)

= min
u2=1

where ¢ = (f1 — f2)/2. Thus, by dropping the last term, we
obtain from the definition (4) that

min max {L(u,p) := (u,divp + A\g)}
u?2=1 peS

(11)

where (u,v) = [, uv dz, and S is the same as in (5).

The global optimal « is the binary value £+ 1. The fol-
lowing characterization is essential for the development of the
algorithm.

Theorem 2.1: Let

p* = arg min/ |divp + Ag|dz. (12)
pES
Q

Then, the pair (u*,p*) is the optimum of the primal-dual
problem (11), if and only if (u*, p*) satisfies
[u*| =1, (divp*+Ag)+]|divp* +Ag|u* = 0ae. onQ. (13)
Proof: Notice that
L(u,p) > —||ul| L= (o [|divp + AgllL1(0)

where || - || z» () is the usual LP-norm. Therefore, for any w in
the admissible set, we have

L(u,p) > —||divp + A
max L(u,p) 2 max (~|[divp + Agllzie)

— — min||di Ml
glelgll ivp + Mgl (o)

Therefore, the optimum is attained if and only if the equality
holds, that is, the second identity of (13) is true. |
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Remark 2.1: Tt is worthwhile to point out that the solution
of (11) is not unique. Indeed, the primal-dual problem (11) is
equivalent to

min max {L(u,p) := (u,divp+ Ag)} (14)

u?=1 pe§
where S is a subset of S in (5) defined by

S = {p=(p1.p2) € CHLR?) : |p| < 1
and divp+ g #0, VzeQ}.

Therefore, u* is expressed by p* € S via

divp* + A\g
r—  CVP TAJ 15
“ divp* + Ag| (15)

which indicates that u* takes the sign of —(divp* + Ag). =
Remark 2.2: The situation is reminiscent to the Chambolle’s
dual algorithm [8] for the Rudin—Osher—Fatemi (ROF) model
[34]. Thus,
min {TV(u) + Gllu—flE) . #>0  (6)
where f is a given noisy image. In this case, the primal-dual
problem takes the form

min max/ (udivp—l— E|u - f|2) dz.
u peS | 2
Q

7)

The dual algorithm in [8] is essentially based on minimizing the
dual problem

min/ |divp — puf|*dx (18)
peS
Q
by solving the nonlinear equation
=V(divp — pf) + |V(divp — pf)|p = 0. (19)

For clarity, we sketch the derivation of (19) from (18). Following
[8] (also see [11]), we take the Lagrangian L[p, a] of the dual
problem (18) with the Lagrange multiplier « = «(z). Thus,

Llp,a] = / (/Lfdiv — %(divp)2 + % (1- |p|2)> dz.
Q
(20
By the optimality condition with respect to p
—V(divp — uf) + ap = 0. (21)
The complementary condition of the Lagrange multiplier im-
plies that if [p| = 1 at the optimum, then o > 0, whereas if
|p| < 1, then oo = 0. In any case, we have o = |V (divp — pf)|.
This gives (19).

It is important to notice the difference between (12) and (18),
that is, L!-minimization [due to the presence of the constraint
u? = 1in (11)] versus L?-minimization.

In [39], a different principle (cf. [5]) was adopted to derive
a Chambolle-type algorithm for two-phase segmentation. How-
ever, the current approach appears more natural. ]
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Now, we follow the procedure as above to solve the dual
problem (12). Similar to (20), we define

Lip.A] = / (|divp+ Ag| + % (Ipl? - 1)) dz.
Q

This leads to the counterpart of (21), i.e.,

( divp + Ag

_ 22
[divp + Ag| 22)

>+w=0-

By the same argument [see the description below (21)], we ob-
tain vy = |V ((divp + Ag)/(|divp + Ag|))|. Inserting it into (22)
yields the nonlinear equation analogous to (19), i.e.,

divp+ A\g ) ‘ < divp + A\g >‘
_ " F T I — T I =0 23
(ldivp gl [divp + agl )| @9

which can be solved by a gradient descent approach. More pre-
cisely, we consider the gradient decent flow of (23). Thus,

divp + Ag
|divp + Ag|

5}
0_115) =—Vu—|Vulp with uv=-

(24)
where the last identity is due to (13), and with a little abuse of
notation, we still use p and u to denote the unknowns although
they depend on the artificial variable £. Let 7 be the time step size
and p" be the approximation of p at ¢ = n7. To avoid division

by zero, we adopt the conventional regularization (cf. [28]) and
define

divp™ + A
= 1T 5)
|divp™ + Aglg
where |divp™ + Ag|g = |divp™ + Ag| + S for some sufficiently
small 3 > 0. Then, we resort to the semi-implicit discretization
in time as in [8], to solve (24). Thus,

n+l _ n
p p - _ Vun _ |Vun |pn+1
T
p* — Vu"
= = 26
A N (26)

It is seen that the L'-minimization (12) induces additional non-
linearity, compared with the L?-minimization (17).

In view of Remark 2.1, we adopt the Mer-
riman-Brence—Osher-type  projection (see, e.g., [24]
and [36])

1, if k>0
P (k) '_{—1, if k<0 @7

to obtain the binary value .
We summarize the algorithm as follows, where the involved
differential operators can be discretized as in [8].
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Algorithm 1

1. Initialization: set p° = 0 and choose 3, 7, A > 0;
2. Forn =0,1,...
(i) Compute

" divp” + A\g

T |divp™ + Aglg
(i) Update p by the Chambolle-type algorithm

it P —TVU"

L e

3. Endfor until some stopping rule meets;
4. Set

u=Pp(u).

B. Multiphase Case

With the insights from the two-phase model, we now consider
the full primal-dual model (9). Observe that, for any @ € A, we
have

; wi(divp; + Afi) > 1I£I£i§nm{divpi +Af) ; u;
- lgignm{di"?i +Afi}, VreQ
(28)
which implies
B> [ min (vt \Me @)

Q

for all (%,p) € A x S, where the energy functional E(-,-) is
given in (9). Hence, we deduce from (29) that

max E (i, p)
peS

> max

ma Ep(p) := / 121gnm{d1vpi + Mfitdz 3 Vi € A.

Q
(30)

Accordingly, the global optimum (i@*,p") of the primal-dual
model (9) is a pair in A x S such that the identity of (29) holds,
and the global minimizer @* of the original model (3) is in A

such that the identity (30) holds.
Similar to Theorem 1 in [2], we have the following result on
the characterization of the global optimum (@*,5").

Theorem 2.2: Let
P = argmax Ep(p). (31)

peS
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* Suppose that min; <;<.m {divp} + Af;} has a unique min-
imum value for all z € €. Then, &* must take the form

* 17
“ = o,

forl <k <mandz € Q.

* Suppose that min; <;<,, {divp} + Af;} has more than one
minimum values at some & € €2, say, k values: divp’; +Afj,
J € {j1,72,---,Jx}. Then, @* must satisfy

k = argmini<;<,, {divp] + \f;},

otherwise, (32)

and u; =0,

i, .. (33)

Ik}

Proof: Since the first statement is a special case of the
second one, it suffices to prove the second statement. By (29),
we have E(i,p") > Ep(p") for any @ € A. Thus, it is enough
to show that E(@*,p") = Ep(p"). It is clear that, if ii* is de-
fined by (33), then

k

= Z uh (divpl + Af,)
=1
k

Z; wj, min {divp} +Afi}

> ul (dive; + Afi)

i=1

= min {divp] +Afi},
for z €  and the corresponding 1 < k < m. Integrating the
above identities over  leads to E(i*,p") = Ep(p").

Next, we prove that (33) is necessary. If there is a u} with
l € {j1,72,---,Jr}, which does not correspond to a minimum
value, i.e., divpf + A\fi > mini<i<m{divp} + Af;}, then

Z ui (divp; + Afi)

k

Zuh divp;, + A f;,)

i=1
(1= f) min {divg! + A} + uf (divpf +Afo)

ér%nm {divp] + \fi}

+ uf (divp;‘ + A\ — 1£I}i<n {divp] + )\f1}> .

Therefore, the optimum value can be obtained if and only if
uy = 0. [ |

Remark 2.3: It is worthwhile to point out that the necessity
of (32) and (33) is under the distributional sense. Indeed, we are
free to change the value of 4* at a measure zero set of {2 without
affecting the integral value. ]

Remark 2.4: A similar analysis was conducted in [2] (see
[2, Th. 1]) based on convex relaxation. Here, we provided a di-
rect concise proof, which did not require switching the min-max
using Karush—Kuhn-Tucher conditions [15] and thresholding
techniques. On the other hand, we could show that (33) is also
necessary. [ |

We find from (31) that it is essential to solve the dual problem
defined in (28). However, it is nonsmooth; hence, it appears very
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challenging to directly work on this dual model. The following
smoothed-dual model was used in [2]:

Ep.(p) = — /IOgZexp( lepZ Afi ) dx

(34)
where 0 < € < 1. It is important to note that (34) turns out to
be the dual model of (7).

Hereafter, we shall take a different approach and derive the
algorithm based on the ALM. It is worthwhile to point out that
the ALM has been recently widely used for solving minimiza-
tion problems in image processing (see, e.g., [37], [40], and [41]
and the references therein). Here, we use it as a tool to derive the
relation between the primal and dual variables via eliminating
all the intermediate parameters and unknowns. This leads to an
algorithm that involves the minimum number of parameters and
can be implemented as efficiently as the Chambolle’s algorithm
in [8].

max
peS

C. Description of the Algorithm

We start with (3) and rewrite it as

/|Vul|da:+)\Z/f7u dx

LIQ 1IQ

HllIl

As with the ALM for the ROF model (see, e.g., [37] and [40]),
an essential step for dealing with the TV term is to introduce an
intermediate variable and reformulate the above problem into
the following constrained problem:

/|q |dz+/\z (fi,u;)

nnn

subjectto  q; = Vu,, u? = u;, Zu, =1

Note that the gradient operator on functions of bounded varia-
tion should be understood in the weak sense (cf. [14]). Using
the notion of ALM yields the unconstrained problem

mm max

{[’(ﬁ7 67 X17X27)‘3) :
g X;, X3

-y (<17 lgal) + Afi i)

=1
+ (A1i,q; — V) + —( Vg, q; — V)
+ (Mo uf —ui) + 22 (uf —ug,uf —ub>>

(35)

where 71, 72, 73 >, 0 are penalization constants, and the vector-
valued functions /\1 = (M1,--, Am), )\2 = (A21,- -+, Aom)
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(with A\o; > 0) and the scalar function A3 are Lagrange multi-
pliers. The optimality conditions lead to the system

g—i =\fi + divAg; + midiv(g; — Vaug) + Ao (2u; — 1)

+ 7o (uf —u;) (2u; — 1)+ A3+r3 <§m: u; — 1) =0

- (36a)

gf = Mg - Tu) =0 (36b)

e = Vi =0 (360)

ai‘i =u? —u; =0 (36d)

g—i:gui—le (36e)
Thus, it follows from (36b) and (36¢) that

,\u:—;—:ﬁi', 1<i<m. (37)

In fact, X1 turns out to be the vector of dual variables. To de-
velop an efficient algorithm, it is essential to express the primal
variable 7 in terms of A;. Using (36¢)—(36¢), we can simplify
(36a) into

Aoi(2u; — 1) = —(Afi + divAs; + A3), (38)
which implies
A3 (4uf — du; + 1) = (Mf; + divAg; + A3)2
Then, by (36d) (note: \y; > 0)
Ao = |Afi + divAy + A3| = |hs + As]
where h; := divAy; + Afi. Plugging it into (38) leads to
(2u; — Dfh; + A3 + (hi + A3) = 0. (39

It is seen that the use of the ALM allows us to derive the (re-
duced) primal-dual system (37) and (39) with a free variable
As. In contrast with the usual Uzawa algorithm for (35), our al-
gorithm based on (37) and (39) involves the minimum number
of parameters and variables; hence, the iterative solver is easy
to initialize, as to be shown shortly.

An essential step is to choose A3 and express the primal vari-
ables {u;} in terms of {Ay;}. For this purpose, let hj (resp.
h;) be (one of) the smallest (resp. the second smallest) value
of {h;}, (note: if all {h;}", are equal, then h; = hy). By
choosing

}Lj — }Lk

—A3 = hy + 5

(40)

we find from (39) that u;, = 1 and w; = O for all the 2’s such that
h; > hj. It is worthwhile to point out that (39) cannot identify
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u; when h; + A3 = 0, i.e., h; = hy. In the computation, we
regularize (39) and find

1 hi + As

Lol Rt 41
" 2|h; + Aslp 1)

T2
where A3 is defined in (40), and |h; + A3|g = |divAy; + Af; +
As| + 0 for sufficiently small 8 > 0 as in (25).
Next, for fixed i, (37) can be solved by applying the iterative
algorithm in [8] to
Vu; + |Vuildi; =0, 1<i<m, 42)
with X; € S, as described in (23) (24) (25) (26). Note that X; is
the “approximation” of p in Section II-B. .
Remark 2.5: As predicted by Theorem 2.2, if A; solves (31),
then by defining @* as

o — 1, k= min {arg minj<;<m {div/\;i + /\f,i}}
k710, otherwise

forall1 < k < mandz € 2, we have the following properties.
(i) u* satisfies the optimality equation (39) with
A3 = —(leATk + Afk)

(i) Under the  assumption of (32), that is,
miny <;<m{divAj; + Afi} has a unique minimum
value for all z € Q, we find from Theorem 2.2 that @* is
expected to be the unique global minimizer.

(iii) Only one component of #* takes the value 1, whereas
the other m — 1 components are all zero. According to
Theorem 2.2, the so-defined @™ is expected to be a global
minimizer, since #* satisfies (33). |

Now, we are ready to present the full algorithm as follows.

Algorithm 2

=0
1. Initialization: set A; = 0 and choose &, 7, A > 0[;
2. Forn =0,1,...

(i) Compute A3 by (40);
(i) Compute 4" bly (41);

(iii)) Compute /_\:L by the Chambolle-type algorithm

,\?;ﬂ:M, 1<i<m;
147 |Vu?|
3. Endfor until some stopping rule meets;
% —-n-+
4. Set\; = A; and define

k = min {arg mini<;<m {diV/\L + /\fi}}
otherwise

" 1,
uk - 0

foralll < k < m.

III. COMPARISON STUDY AND NUMERICAL RESULTS

In this section, we demonstrate the performance of the pro-
posed algorithm by testing it on some typical images and com-
paring it with some relevant methods.
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A. Comparison Study

To provide more insights, we compare the algorithm with the
global smoothed-dual (GSD) algorithm in [2] and examine the
approach from the perspective of the level set methodology.

GSD Algorithm: The dual approach in [2] is essentially based
on the model (7), which approximates the original nonconvex
problem (3) when 0 < € < 1. The optimum of the dual vari-
able is obtained by solving the model (34), which is a smoothed
version of the nonsmooth dual problem (31). This leads to the
representation of the primal variables {u;} in terms of the dual
variables {p,}, i.e.,

divp, +Afi
) G
T divp. +Af;
Z;’nzl exXp (_ Je - )
1

- Zm exp (_ (divpj—l—)\f]-)—((iivpl-—l—)\fi)) (43)
Jj=1 €

for 1 <47 < mand x € Q. Apparently, the vector 4° with com-
ponents {us} is in the convex simplex A in (6). Suppose that
divp; + Af; is the unique minimum value of {divp; + Af;}72;
Then, we observe from (43) that u; — 1 and uf — 0 (for all
j # 1) as e — 0F. Under this assumption, it is expected to ob-
tain the global minimizer in the limiting process. Note that the
expression (43) can be viewed as the counterpart of (39) (40)
(41).

For comparison purposes, we recall the GSD algorithm in [2],
where we remain the notation in [2], and p plays the same role
as A; in Algorithm 2.

GSD Algorithm

1. Initialization: set f)’o = 0 and choose ¢, §, A\ > 0;
2. Forn =0,1,...
(i) Compute 4™ by (43) with p* in place of p;;
(ii) Compute p" + by the projection method

n+1l _
p;

= Projg (p} +6Vu}), 1<i<m
where Projg is the projection operator upon the
convex set S;

3. Endfor until some stopping rule meets;

4. Setp* —p ! and define

1
* ?
U = {07

foralll < k < m.

k = min {arg mini<;j<,, {divp} + Afi}},
otherwise

Perspective From the Level Set Method: 1t is interesting to
interpret (3) from the perspective of the level set method, where
{u;} can be regarded as a piecewise constant interpolation of
the phases (or subregions {€2;}), that is, u, takes binary values,
ie.,u; = 1,if 2 € Q;, and u; = 0 elsewhere. This should be
in contrast to the level set method [28] and its important variant
[21] for image segmentation.
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The multiphase level set framework in [38] labels the phases
by the combinations of the signs of the level set functions (usu-
ally taken as the signed distance functions). Therefore, n level
set functions {u;}"_; can label m = 2" phases, and the corre-
sponding indicator functions can be expressed as the Heaviside
functions H (u;). Notice that the level set functions should sat-
isfy the Ekiron equation: |Vu,;| = 1, and this constraint should
be taken into account in the implementation. To avoid such a
reinitialization, one may penalize this constraint as in [18] and
[22]. For the purpose of comparison, we briefly review the new
level set method in [18] for (3) with m = 2. Let u be the signed
distance function such that v > 0 (resp. v < 0) if z € Q4 (resp.
z € (23). Then, u should satisfy |Vu| = 1, and the character-
istic function of Q (resp. Q) is H(u) (resp. 1 — H(u)). The
essential idea in [18] is to minimize the penalized energy

muin Er;i(u) ::)\/gH(u)d:E+/5(u)|Vu|d:B

+%/ Vu| = 1)2dz S 0 >0 (44)
Q
where ¢ is the Dirac delta function, and g = (f1 — f2)/2. Asin

[18], we can minimize Ey; by evolving the gradient flow [see
(51) below].

The PCLSM proposed in [21] uses one level set function to
label multiple phases. It can be viewed as a global polynomial
interpolation of the phases, as opposed to the piecewise constant
interpolation in (3). More precisely, it labels the phases by

u=1 if £€§;, 1<i<m (45)
and express the indicator function of €2; by the Lagrange basis
polynomial

Ko (u)
K, (1) (w — i)’

ie., (i) = 1 and p;(j) = 0 fori # j, where K,,(u) =
H;.nzl (u — 7). Under this setting, the model (3) is translated to

AZ/LL

1lQ

u—7j
i—j

I1

1<j<miji

wi(u) = (46)

)z STV (i)
i=1
(47)
By imposing the constraint K, (u) = 0, we obtain the primal-
dual model (cf. [6])

Ms

K,=0 peS

min max {FP u,P) u), divp; + )\ft)} . (48)

=1

We see the resemblance between the primal-dual models (9) and
(48). Notice that ¢; is a polynomial of u of degree m. As a re-
sult, the reduction using the ALM similar to the procedure in
Section II-C leads to the coupled system, where it is not pos-
sible to derive the expression of w in terms of the dual variables.
Hence, the algorithm becomes extremely complicated.

For the sake of comparison, we present the counterpart of
(44) for the two-phase case. As described in Section II-A, we
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L 2K

(b) Level Set (¢) PCLSM

(d) GSD

(g) Input (h) Level Set (i) PCLSM () GSD (k) Alg. 1 (1) Alg.2

(a) Input

(&) Alg. 1 (D) Alg.2

Fig. 1. Comparison of five algorithms. Here, we take A = 5 x 105, 7 = 0.1,
6 = 0.05,Ts = Tpetsm = 107°, e =1, p =1, = 10% ¢ = 0.1, and
fi =|I—c¢;i|*(i =1,2).Row 1 (a)~(f): noise level d = 0.001 and 3 = 0.01;
Row 2 (g)—(1): noise level d = 0.1 and 3 = 0.1. (a) Input. (b) Level Set.
(c) PCLSM. (d) GSD. (e) Alg. 1. (f) Alg. 2. (g) Input. (h) Level Set. (i) PCLSM.
(G) GSD. (k) Alg. 1. (1) Alg. 2.

label € (resp. 22) by uw = 1 (resp. w = —1), and then, we can
formulate (3) with m = 2 into (10). By penalizing the constraint
u? = 1, we have the counterpart of (44), i.e.,

min ¢ Epc(u) := /\/gudz'+/|Vu|dz
Q Q

+% /(u2 —1)%dzx 4>0 (49)

Q

where ¢ = (f1 — f2)/2. One can evolve the gradient flow to
minimize (49). Thus,

ou . Vu . 9
E_dlv<|Vu)+u(l u’)u — Ag,

(50)
which is closely related to the Allen—Cahn model for phase tran-
sitions [1] but with a nonlinear TV diffusion operator rather than
a linear Laplace diffusion. It was named as the TV Allen—Cahn
model in [33] and [39].

Next, we compare the performance of five algorithms: the
level set method in [18] [cf. (44)], the PCLSM [cf. (49)], GSD
Algorithm, and our proposed Algorithms 1-2. Here, we mini-
mize (44) based on the code on the “ http://www.engr.uconn.
edu/cmli/research/” for [18] and also test the algorithms on the
image (but with noise) from this site [see Fig. 1(a) and (g)]. More
precisely, the work [18] minimized (44) by evolving the gradient
flow

L <div (;—Z”)

7 n . Vun
+—5E(u") <Au —div <—|Vu"|)> - Ag) (&29)]

where 715 is the time step size, and the smoothed Delta function
0. is defined as in the code for [18]. For ease of comparison, we
evolve (50) as (51). Thus,

" =" + T lom (div <VL> +i (1= (u")?) un_)‘g> :

[Vur]
(32)
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TABLE I
COMPARISON OF FIVE ALGORITHMS

Figure 1(a) iterations | time (second) energy
Level Set [18] 306 2.0 0.331 x 10°
PCLSM (49) 415 2.3 0.407 x 10°

GSD 17 0.4 0.313 x 10°
Alg. 1 11 0.3 0.306 x 10°
Alg. 2 14 0.3 0.309 x 10°

Figure 1(g) iterations time (second) energy
Level Set [18] 1000 5.6 2.32 x 10°
PCLSM (49) 1000 48 1.31 x 10°

GSD 72 1.4 0.827 x 10°
Alg. 1 40 0.9 0.833 x 10°
Alg. 2 53 1.0 0.832 x 10°

Here, spatial differential operators are discretized, and initial
conditions are taken as in [18].

We compare the numerical energy corresponding to the orig-
inal model (2) defined by

E@w™) = [ |Vu"|de+ X | gu™dz with g=(f1 — f2)/2
[

where u" is respectively computed by (51), (52), GSD, Algo-
rithm 1, and Algorithm 2 for the same A. Correspondingly, we
use the stopping rule: |E(u"1) — E(u")| < . We tabulate in
Table I the iteration number, computational time, and numer-
ical energy F/(u™) obtained by five algorithms (terminated with
¢ = 1072, and we refer to the caption of Fig. 1 for the com-
putational setup) for two images with different noise levels in
Fig. 1(a) and (g). We present in Fig. 1 the final segmented im-
ages. We find that, at low noise level, all five algorithms produce
satisfactory segmentation results with similar numerical energy,
but the latter three algorithms converge much faster. However,
when we increase the level of noise from 0.001 to 0.1, the former
two algorithms fail to converge, whereas GSD and our proposed
algorithms lead to acceptable results, and are quite robust to
large noise.

B. More Numerical Tests

The previous comparison study demonstrated the advantages
of GSD [2] and Algorithms 1-2. Indeed, the recent work [2]
conducted a comprehensive comparison of GSD with several
popular methods including the Alpha expansion and Alpha-Beta
swap [3], [4], the method of Pock et al. [31], and the algorithm
in Lellmann et al. [16]. The GSD has exhibited the strength over
these algorithms in most comparison tests. In what follows, we
put our emphasis on the comparison with GSD and examine the
performance of Algorithms 1-2 over the methods in [3], [4], and
[16].

To set up a relatively sound criterion for comparison, we
choose some typical images used in the aforementioned papers
for testing the algorithms, unify the choice of the parameters of
the model, and compare the numerical energy associated with
the original model (3). Moreover, we use the relative dynamic
error

— 5"
5"

—n+1
Bt 5 = |

?

<n (53)

lli2
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where [|B||;x = max; (> |p;|) (with X1 in place of § for Al-
gorithm 2), and the summation is over all the pixels, for a pre-
scribed tolerance n > 0 as the stopping rule, for all the compar-
isons below.

Two-Class/Phase Case: As opposed to the GSD algorithm
and Algorithm 2 (with m = 2), Algorithm 1 only requires
evolving one pair of primal and dual variables. Accordingly,
the computational cost can be halved, and the algorithm is ex-
pected to be more stable. Moreover, it can be viewed as very
analogous to the Chambolle’s dual algorithm [8] (cf. Remark
2.2). Indeed, we shall demonstrate that, for the time step size
7 < 1/8 (the theoretical prediction by [8]), the method works
well, whereas the GSD algorithm is relatively restrictive to the
time step size, as one will see from all the numerical results
below. This is mainly due to the way of computing the primal
variable [cf. (41) against (43)] and updating the dual variables,
which is quite different between the two approaches. We further
remark that Algorithms 1-2 are expected to have a performance
similar to the Chambolle’s method, but the convergence anal-
ysis is much more involved due to the strong nonlinearity (cf.
Remark 2.2), which we wish to report in a future work.

Assume that the intensity values c; and co are given and
fi = lei = I>( = 1,2), where I is the intensity of the input
image as before. The parameters, time step sizes, and noise
levels for three sets of tests are listed as follows. Recall that ) is
the parameter in the continuous Potts model (3), and 7, (3 (resp.
0, ) are involved in the Algorithms 1-2 (resp. the GSD algo-
rithm). We first test the input “UOL” image of size 256 x 256
with a noise level from low to high. Notice that, in all tests, the
noise is of “Gaussian” type with zero mean and different vari-
ance d. We adopt the following setup.

Set 1. Take A = 1074, 7 = § = 1071, 3 = 1077,
¢ = 1072, and noise level: d = 0.05.

Set2. Take A\ =7 x 107, 7=0.1,§ = 0.05, 8 = 1072,
¢ = 1072, and noise level: d = 0.3.

Set3. Take A =5x 1072, 7=0.1,§ = 0.01, 5 = 1072,
e = 0.05, and noise level: d = 0.5.

We present in Fig. 2 the input images with noise and seg-
mentation results by three algorithms at the iteration terminated
by (53) with n = 1072, We observe from Fig. 2(a)—(d) that,
when the noise level is low, three algorithms exhibit a sim-
ilar performance and converge quite fast. However, when we
increase the noise level, Algorithm 1 yields better segmenta-
tion [or classification, see the magnified portion of the letter
U in Fig. 2(m)—(p)] and converges relatively faster. However,
the time step size 0 in the GSD algorithm should be chosen
much smaller than 7 in Algorithms 1 and 2. We also point out
that the algorithm is not sensitive to the parameter § (refer to
Section III-B4 below for a discussion). We plot the decay of nu-
merical energy corresponding to the original energy functional
(3),1i.e., E(@™) in Fig. 3 for the comparison tests: Sets 1-3. Ob-
serve that Algorithms 1-2 enjoy a faster decay of energy.

Multiphase Case: We now turn to the comparison of Algo-
rithm 2 and the GSD algorithm for multiphase images. In this
case, we take f; = |¢; — I| with 1 <4 < 4 for a given {¢;} and
test the four-phase image [cf. Fig. 4(a)] of size 90 x 90 with
three typical geometric objects and different noise levels. We
consider two sets of tests with the following setup.

Set 4. Take A = 0.20, 3 = 1075, 7 = 0.1, § = 0.05, and
e = 0.1, and noise level: d = 0.005.
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(b) GSD:n =56 (c) Alg.1: n =30 (d) Alg.2: n=44
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(f) GSD: n =119 (g) Alg. 1: n =52 (h) Alg.2:n =155
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() GSD: n =124 (k) Alg.1in=105 (I) Alg.2:n =116
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i ;

(o) Alg. 1 (p) Alg. 2

Vol

(a) Input image

(e) Input image

(i) Input image

)

(m) Original

(n) GSD

Fig. 2. Comparison of Algorithms 1-2 and the GSD method for the two-phase
case. Row 1 (a)—(d) for Set 1, Row 2 (e)—(h) for Set 2, Row 3 (i)—(1) for Set 3,
and Row 4 (m)—(p) the magnified portion of the images in Row 2. The iteration
is stopped by (53) with 7 = 10~2. The Algorithms 1-2 converge faster, allow
use of larger time step size, and are not sensitive to the choice of the parameter
3. (a) Input image. (b) GSD: n. = 56. (c) Alg. 1: n = 30.(d) Alg. 2: n = 44.
(e) Input image. (f) GSD: n = 119. (g) Alg. I: n = 52. (h) Alg. 2: n = 55.
(i) Input image. (j) GSD: n = 124. (k) Alg. 1: n = 105. (1) Alg. 2: n = 116.
(m) Original. (n) GSD. (o) Alg. 1. (p) Alg. 2.
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Fig. 3. Comparison of decay of numerical energy for Sets 1-3. (a) Energy
decay ( Set 1). (b) Energy decay ( Set 2). (c) Energy decay ( Set 3).

R

Set 5. Take A = 0.05, 8 = 0.01, 7 = 0.1, 6 = 0.05, and
e = 0.1, and noise level: d = 0.05.

In Fig. 4, we plot the segmentation results by two algorithms
with stopping rule n = 5 x 1073, Once again, we observe the
advantages of Algorithm 2. The comparison of numerical en-
ergy decay is depicted in Fig. 5, and we see a faster decay rate
for the proposed algorithm. Indeed, we find that Algorithm 2 is
robust for noise (in general, we choose the parameter 3 bigger
if the noise level is high) and works for large time step size as
the Chambolle’s algorithm. In Table II, we tabulate the number
of iterations (to meet the stopping rule (53) withn = 5 x 10~3),
the computational time, and numerical energy at the last step of
iteration, for two algorithms. In fact, the cost for per iteration of
two algorithms is almost the same, but Algorithm 2 allows use
of a large time step size; hence, it saves some computational
time.
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(d) Input image

(b) GSD: n =72

(c) Alg. 2: n =55

Ow

O

() GSD: n =103

) Alg. 2: n =175

Fig. 4. Comparison of Algorithm 2 and the GSD algorithm for the four-phase
case. Row 1 (a)—(c) for Set 4 and Row 2 (d)—(f) for Set 5. The iteration is termi-
nated by (53) with » = 5 x 10~2. Both algorithms work for large noise level.
As before, Algorithm 2 converges faster and produces slightly better results with
larger time step. (a) Inputimage. (b) GSD: n = 72.(c) Alg. 2: n = 55.(d) Input

image. () GSD: n = 103. (f) Alg. 2: n = 75.
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Fig. 5. Comparison of decay of numerical energy for test Set 4 and Set 5.
(a) Decay of energy (Set 4). (b) Decay of energy ( Set 5).

TABLE II
COMPARISON OF ALGORITHM 2 AND GSD
iterations time (second) energy
GSD | Alg. 2 | GSD | Alg. 2 GSD Alg. 2
Set 4 72 55 2.3 1.8 1.093 x 10* | 1.094 x 10
Set 5 103 75 3.6 2.6 7.177 x 10° | 7.163 x 103

We next test more multiphase images taken from the afore-
mentioned papers and compare the quality of segmentation with
the Alpha expansion and Alpha-Beta swap [3], [4] and the algo-
rithm in Lellmann et al. [16]. Alpha expansion and Alpha-Beta
swap have been regarded as the state of the art for approximately
minimizing the discrete version of (2) with the anisotropic TV
term. Indeed, due to the different nature of algorithmes, it is hard
to give a very quantified criterion for comparison; hence, we just
depict the segmentation results in Fig. 6. We find from the first
row in Fig. 6 that the Alpha method and our algorithm give better
results than the other three. We also observe from the second
row in Fig. 6 that the first three algorithms give similar results,
whereas our algorithm produces the best segmentation. From
the last row in Fig. 6, we see that our algorithms and GSD out-
perform the other methods.

Triple-Junction Experiments: Next, we test a very typical ex-
ample relative to triple-junctions, which has been considered
by many authors (see, e.g., [2], [9], [16], [23], [29], and [42]).
The task is to inpaint the edges (or boundaries) of the subre-
gion covered by the disk in Fig. 7(a) and (d). It is expected to
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(a) (b) (©) (@

Fig. 6. Comparison of the Alpha, Alpha-Beta (Alp-Be), Lellmann’s method
(Lellm), GSD, and Algorithm 2. (a) Original. (b) Input. (c) Alpha. (d) Alp-Be.
(e) Lellm. (f) GSD. (g) Alg. 2. (h) Original. (i) Input. (j) Alpha. (k) Alp-Be.
(1) Lellm. (m) GSD. (n) Alg. 2. (o) Original. (p) Input. (q) Alpha. (r) Alp-Be.
(s) GSD. (t) Alg. 2.

(2) () © (d (®)

Fig. 7. Completion of edges. This shows the proposed algorithm can produce
the global optimum. (a) Input. (b) Alg. 2: n = 300. (c) Result in [23]. (d) Input.
(e) Alg. 2: n = 600.

generate a triple junction, that is, the completed three edges sup-
pose to form three 120 ° angles at the junction. In the compu-
tation, the data terms f; inside the disk are taken to be zero,
and f; = |¢; — I|? outside the disk, and the parameters in Al-
gorithm 2 are chosen as A = 104, B = 0.5,and 7 = 0.1.
It is important to point out that, in this case, the nonsmooth
problem min; <;<., {divp} + Af;} may not have a unique min-
imum value (see the second case of Theorem 2.2) in the cov-
ered subregion; hence, in theory, the algorithm may fail to find
the global optimum. However, by slightly increasing the diffu-
sion effect tuned by the parameter (3, we are able to obtain a
very satisfactory completion of the edges inside the disk. This
also indicates that the TV of the labeling functions (or level set
functions) provides a good characterization of the edge set, and
the algorithm produces very accurate approximation, even with
a large portion of incomplete (or missing) edges [see Fig. 7(e)],
namely, achieve the global optimum. We also quote the result in
[23] (obtained by other means) and visualize a good agreement.

Selection of the Parameters and Fidelity Terms: Hereafter,
we provide some insights into the selection of parameters [ and
A, and the fidelity terms f;. It is seen from the previous numer-
ical tests that the parameter 3 in Algorithms 1-2 plays an im-
portant part for smoothing and regularizing the output images.
A natural question is: what is the range of § for which the algo-
rithms perform well? From our experiments, we have found that
for two-phase cases, it can be chosen quite flexibly. In principle,
the algorithms perform better if we choose larger 3 for a higher
level of noise, particularly for multiphase cases. To further il-
lustrate this, we test Algorithm 2 with different § on the images
with two levels of noise in Fig. 8(a) and (g) and fix 7 and other
parameters. In all cases, the algorithm is terminated by (53) with
n =5 x 1073, We record in Fig. 9 the history of decay of the
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(b)n—58 (c)n—42 (d)n—62 (e)n—98 (f)n—168
—3) (10=%

(h)n—60 (1)n—47 (])n—58 (k)n—151(l)n—303

(a) Input

(g) Input

Fig. 8. Results obtained by Algorithm 2 with different 3. In the computation,
wetake 7 = 0.1 and f; = |¢; — I|(¢ = 1,...,4). Row 1 (a)—(f): noise level
d = 0.01 and A = 0.2; Row 2 (g)—(1): noise level d = 0.02 and A = 0.1.
The iteration is terminated by (53) with n = 5 x 10~2, and we indicate the
number of iterations and the values of 3 (in the parentheses). (a) Input. (b) n =
58 (107 1).(c)n = 42 (1072). () n = 62 (1073). (e) n = 98 (10~%).
) n = 168 (10~°). (g) Input. (h) » = 60 (1071). ) n = 47 (1072).
(Gn=58(10"2). kn =151(10"").(Hn =303 (10~°).

10'

~e-p=0.1

Fig. 9. Decay of numerical energy for different 3. (a) Energy for Fig. 8(b)—(f).
(b) Energy for Fig. 8(h)—(1).

energy and plot in Fig. 8 the segmentation results. We see that,
for 8 = 10~ % with &k = 1, 2, 3, the algorithm produces sim-
ilar results with a similar amount of iterations, whereas if (3 is
too small, the convergence rate and quality of segmentation de-
grade.

We next discuss the sensitivity to the parameter A\, which is
born with the model (3) with f; = |¢; — I|. In Fig. 10(a)—(f),
we fix the noise level d and the parameters 7, (3 but choose dif-
ferent A ranging from 0.01 to 0.2, whereas in Fig. 10(g)-(1), we
vary the noise level but fix A = 0.1 in Algorithm 2. We see
that Algorithm 2 enjoys a very similar performance in all tests.
Indeed, the choice of A is relatively flexible from our various
experimental experiences. Some delicate analysis and adaptive
determination of A for the ROF-type model can be found in, e.g.,
[13] and [27], where X is known as a scale variable. However,
this requires significant computational cost to adapt A.

Finally, we give some observations on the choice of the fi-
delity terms f; = |¢; — I|P(p = 1,2). We remark that some
in-depth analysis for the TV-regularized L” model can be found
in, e.g., [5], [10], and [35]. In general, the quadratic case (p =
2) is computationally easier to handle and more desirable for
Gaussian noise removal, whereas the /;-norm (p = 1) is more
capable of preserving contrast. In this context, {¢;} are preas-
signed, and we realize that the use of p = 1 or 2 largely affects
the choice of the parameter \. Observe that

)\2/ |Ci — I|2uidz ~ /\2|Ci — I”EeQ/ |Ci — I|uidz,
Q Q
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Fig. 10. Results obtained by Algorithm 2 with fixed 7 = 0.1, 3 = 0.01. Row
1: noise level d = 0.1 for all tests, but different A. Row 2: A = 0.1 for all
tests, but noise level d = 0.005, 0.1, and 0.2 from left to right. The iteration
is terminated by (53) with 7 = 5 X 1072, (a) Input. (b) n = 42 (A = 0.2).
©n=41(A=0.1).(dn =43 (X = 0.05).(e) » = 40 (A = 0.02).
(f) n = 38 (A = 0.01). (g) Input. (h) » = 39. (i) Input. (j) n = 41. (k) Input.

On = 47.

(@) Input (b)n =42 (c)n =48 (d) Input (e) n =47 (f) n=>55
(d=0.1) (LY (L?) =0.2) (Y (L?)
Fig. 11. Results obtained by Algorithm 2 with different f; = |¢; —1I|,|c; —I|?,

and A; = 200A;. Here, 7 = 0.1, 3 = 0.01. (a)—(c): A1 = 0.2; (d)-(f): A\; =
0.1. The iteration is terminated by (53) withnp = 5 x 1072, (a) Input (d = 0.1).
(by n = 42 (LY). (¢c) n = 48 (L?). (d) Input (d = 0.2). (&) n = 47 (L1).
(f)n = 55 (L?).

where, for clarity, we set A = A, for p = 1, 2. For piecewise
constant image I, we can empirically choose A1 = max;; |¢;—
¢jlA2. In Fig. 11, we set A1 = 2002 and see that Algorithm 2
for two models work almost equally well.

Applications to Image Segmentation: Finally, we apply the
methods to the PCMSM (1), for which {¢; } are unknowns com-
puted from the mean values

fQI’U,id{L‘ X
a="2"" 1<i<m.
fQ ’U,id.’ll

(54)
For fixed ¢;, the model (1) is a special case of (2) with f; = |¢; —
1 | 2 Therefore, with a slight modification of Algorithm 2, we
can obtain the following algorithm for the multiphase piecewise
constant image segmentation.

Algorithm 3

-0
1. Initialization: set A; = 0 and choose (3, 7, A > 0, and o
2. Forn =0,1,...

(i) Compute A} by (40) with f* = |c' — I|* in
place of fl,

(i) Compute @™ by (41) with h; = divA]; + Af
and \3 = A\};

-n+1
(iii) Compute A; by

AL — TVl .
e VR S 1<i<m;

An+1 ,
1+ 7|Vul|



2410

(b) GSD-Seg: n = 115

(c) Alg. 3: n =87

(a) Input image

Fig. 12. Comparison of Algorithm 3 and GSD-Seg, where 7 = 0.1, 6 = 0.02,
and f; = |¢; — I|? and other parameters: (a)—(c) (three phases of size 205 X
255): XA =5x107%, 3 = 10~2,and ¢ = 0.1. Given this noise input image, it is
challenging to segment the faces of the objects. The iteration of both algorithms
is terminated by (53) with n = 5 x 103, Algorithm 3 slightly outperforms
GSD-Seg. (a) Input image. (b) GSD-Seg: n = 115.(c) Alg. 3: n = 87.

TABLE IIT
COMPARISON OF ALGORITHM 3 AND GSD-SEG
iterations time (second)
GSD-Seg [ Alg. 3 | GSD-Seg | Alg. 3
115 | 87 15 | 11

energy
GSD-Seg | Alg. 3
1.320 x 10% [ 1.314 x 10%

(iv) Compute &"*! by

n
el fQ Tu}dz

= 1 <2< m;
¢ fQu?dm7 - =

3. Endfor until some stopping rule meets;
—k —-n+
4. SetA; = A; ,c =t and define

uj = 1, k= mi'n {arg mini<ij<p, {divA}; + Aff}},
0, otherwise,

7

forall 1 < k < m, where ff = |cf — I|%.

Similarly, the GSD algorithm can be modified for the seg-
mentation problem (see [2, Algorithm 2]), and for clarity, we
term it as GSD-Seg in short.

We first compare Algorithm 3 with GSD-Seg for segmenting
the “desk” image in Fig. 12(a) of size 205 x 255 containing
three typical geometric objects with three phases. For this ex-
ample, it is not an easy task to segment the faces of the objects,
for instance, the two faces of the tetrahedron. In the test, both
algorithms are terminated by (53) with p = 5 x 1072 (refer to
the caption of Fig. 12 for the selection of parameters and time
step size). As before, both algorithms produce quite satisfactory
and accurate segmentation, whereas Algorithm 3 converges rel-
atively faster. We also tabulate in Table III the number of iter-
ations (to meet the stopping rule (53) with 7 = 5 x 1073), the
computational time, and numerical energy at the last step of iter-
ation, for two algorithms. Once again, the cost for per iteration
of two algorithms is almost the same, but Algorithm 3 allows
use of a large time step size.

We next test some more images that are used as examples in
most of the papers that we mentioned before. We refer to the
caption of Fig. 13 for the choice of the parameters in Algorithm
3. In all cases, the algorithm is terminated by (53) with n =
5 x 1073, We see that, in all tests, Algorithm 3 provides quite
satisfactory segmentation and converges fast.

IV. CONCLUDING REMARKS

In this paper, we proposed a direct primal-dual approach to-
ward global minimization of the continuous Potts model for

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 5, MAY 2012

P

ut image (d) Alg. 3: n =91

(i) Input image

Fig. 13. More tests on Algorithm 3, where 7 = 0.1, f; = |¢; — I|? and
other parameters: (a)-(b) (five phases): A = 104, 3 = 1073, size: 150 X
150; (¢)—(d) (five phases): A = 1072, 3 = 1072, size: 90 x 90; (e)—(f) (four
phases): A = 103, 3 = 1075, size: 90 x 90; (g)-(h) (three phases): A =
1073, 3 = 1072, size: 321 x 481; (i)—(j) (three phases): A = 1072, 3 =
1072, size: 167 x 250; and (k)—(1) (five phases): A = 1073, 3 = 1072, size:
512 x 512. The iteration is terminated by (53) with = 5 x 1073. (a) Input
image. (b) Alg. 3: n = 79. (c) Input image. (d) Alg. 3: » = 91. (e) Input image.
(f) Alg. 3: n. = 88. (g) Input image. (h) Alg. 3: n = 90. (i) Input image. (j) Alg.
3:n = 76. (k) Input image. (1) Alg. 3: n = 89.

multiclass labeling problems with applications to multiphase
image segmentation. Different from the existing works, the un-
derlying analysis and algorithms were based on a binary set-
ting that did not require convex relaxation. Using the augmented
Lagrangian technique, we were able to find the relations be-
tween the primal and dual variables that involve almost the min-
imum number of parameters. The proposed algorithms could be
viewed as the counterparts of the Chambolle’s algorithm in the
context of labeling and segmentation. Indeed, the time step size
could be taken as large as that of the Chambolle’s algorithm,
and the computational cost turned out to be almost of the same
amount. Moreover, the smoothing parameter involved in the al-
gorithm was quite flexible to choose. Various numerical results
demonstrated the advantages of the methods over the existing
approaches.
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