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Abstract

This paper is concerned with a multi-domain spectral method, based on an interior

penalty discontinuous Galerkin (IPDG) formulation, for the exterior Helmholtz problem

truncated via an exact circular or spherical Dirichlet-to-Neumann (DtN) boundary con-

dition. An effective iterative approach is proposed to localize the global DtN boundary

condition, which facilitates the implementation of multi-domain methods, and the treat-

ment for complex geometry of the scatterers. Under a discontinuous Galerkin formulation,

the proposed method allows to use polynomial basis functions of different degree on dif-

ferent subdomains, and more importantly, explicit wave number dependence estimates of

the spectral scheme can be derived, which is somehow implausible for a multi-domain

continuous Galerkin formulation.

Mathematics subject classification: 65N35, 65E05, 65M70, 41A05, 41A10, 41A25.

Key words: Helmholtz equation, high wavenumber, global DtN boundary condition, IPDG,

multli-domain spectral method.

1. Introduction

Time harmonic wave propagations appear in many applications, and a variety of situations

requires to solve the Helmholtz equation exterior to a bounded obstacle (or scatterer):















−∆u− k2u = f, in Ωe := R
d \B,

u = g, on ΓB := ∂B,

∂ru− iku = o
(

r
1−d
2

)

, as r → ∞,

(1.1)

where k > 0 is the wave number, B ⊂ R
d, d = 2, 3 is a scatterer with Lipschitz boundary ΓB,

and the far-field boundary condition is known as the Sommerfeld radiation condition. On the

surface of the obstacle B, the Dirichlet boundary condition corresponding to sound soft surface

of B is imposed, while the Neumann or Robin boundary condition relative to sound hard or

impedance surface, respectively, may also be prescribed in practice. In fact, the method to be

proposed in this paper works for these possible boundary conditions.
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Apparent challenges in solving the exterior Helmholtz equation lie in (i) the domain is

unbounded, (ii) the problem is indefinite, and (iii) the solution is highly oscillatory (when the

wave number is large) and decays slowly. There is a vast literature devoted to its numerical

solutions such as boundary element methods [9], infinite element methods [17], Dirichlet-to-

Neumann (DtN) methods [23], perfectly matched layers (PML) [6], among others. In many of

these approaches, it is essential to truncate the unbounded domain to a bounded domain by

imposing an exact or approximate non-reflecting boundary condition at the outer boundary.

Formally, the problem (1.1) reduces to















−∆u− k2u = f, in Ω := ΩR \ B̄,
u = g, on ΓB,

∂ru+Gu = 0, on ΓR,

(1.2)

where ΩR is an artificial domain that encloses the bounded scatterer B and contains the support

of f, and the Robin boundary involving the operator G describes a typical transparent or non-

reflecting boundary condition on the outer boundary ΓR of ΩR. For instance, G can be the

Dirichlet-to-Neumann operator, which has a series expansion when ΩR is a separable domain,

e.g., disk, ball, ellipse and ellipsoid.

In the past two decades, there has been an intensive research on the finite element discretiza-

tion of (1.2) in various situations (see, e.g., [3, 4, 5, 20, 21, 22] and the references therein). It

is known that when the wave number k becomes large, the mesh size h should be adapted to

k so as to resolve the waves. In two or higher dimensions, under the “rule of thumb” mesh

constraints kh . 1, the pollution effect exits for all degrees of approximation and deteriorate

the error estimates [20]. Thus, it is important to appreciate how the numerical errors depending

on the wave numbers. Babus̆ka et al. [20, 21, 22] conducted a rigorous analysis using the (dis-

crete) Green’s functions, and Douglas et al. [13] used a different argument due to Schatz [32].

However, these approaches may not be applicable to (1.2) with a slightly complicated setting of

boundary conditions or scatterers. Recently, some methodology was developed in [11, 24] (also

see [7, 19, 25, 34]) for the a prior estimates of the solution of (1.2) in a star-shaped domain Ω.

The spectral method, which is vitally free of dispersive errors, is well-suited for wave sim-

ulations. With a proper boundary perturbation technique (or the so-called transformed field

expansion) [28], the Helmholtz equation (1.2) with exact DtN boundary condition can be re-

duced to a sequence of Helmholtz equations in a separable domain, e.g., an annulus and a

spherical shell (cf. [14, 29, 30, 33]). Shen and Wang [35] provided a rigorous analysis of the

spectral-Galerkin method with explicit dependence of the errors on the wave number for the

Helmholtz equation in an annulus or spherical shell with exact DtN boundary condition. The

analysis for full coupled spectral-Galerkin and boundary perturbation was conducted in [30].

Indeed, within the domain of applicability of the boundary perturbation method, this approach

has proven to be fast and accurate. However, an element method is more desirable, when the

scatterer is complex with a large deviation from a “simple” domain.

The purpose of this paper is to propose and analyze a multi-domain spectral interior penalty

discontinuous Galerkin (in short, p-IPDG) method, for (1.2) with an exact DtN boundary

condition. We advocate a DG formulation for two reasons:

(i) flexibility for general scatters and benefit of p-adaptivity (different orders of polynomials

might be used for different elements) by using the discontinuous Galerkin formulation

(see, e.g., [1, 2, 10, 31] and the references therein).
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(ii) appreciation of the IPDG methods for indefinite Helmholtz problems with large wave

number and global DtN boundary condition. Indeed, the available argument in [24, 11]

does not work for the element method based on a continuous Galerkin formulation (cf.

[15]), but it is plausible for the IPDG approach.

It is important to mention the recent work of Feng and Wu [15], where an interior penalty

DG piecewise linear finite-element method was analyzed for (1.2) with G = ik (a first-order

approximation of the Sommerfeld boundary condition). Our method distinguishes itself from

the existing ones in several aspects. Firstly, to achieve high-order accuracy, we consider the

exact non-reflecting boundary condition with G being the DtN map, and introduce an efficient

iterative approach to treat this global boundary conditions to fully decouple the unknowns in

an element method. Secondly, we find that the penalty along the normal direction is sufficient

in our method, rather than additional penalty in the tangential direction in [15], which is more

convenient for implementation and analysis. Moreover, we characterize the dependence of the

penalty parameter on the edge length of each element (or subdomain), so the penalization could

be very flexible and non-isotropic along each edge.

The rest of the paper is organized as follows. In Section 2, we propose an effective iterative

approach to localize the global DtN boundary condition, and provide sufficient conditions for

its convergence together with some numerical justifications. In Section 3, we formulate the

p-IPDG scheme and analyze its stability. Then, we estimate the convergence of the iterative

multi-domain spectral-IPDG scheme in Section 4. The final section is for some numerical

results.

2. Localization of the DtN map: an iterative approach

Consider the truncated Helmholtz equation (1.2) with g = 0,

ΩR being a disk or ball, and G being the exact DtN operator.

More precisely, the problem of interest takes the form:















−∆u− k2u = f, in Ω = ΩR \ B̄,
u = 0, on ΓB,

∂ru+ Tu = 0, on ΓR,

(2.1)

where T is the DtN map to be specified below, and we refer to

Figure 2.1 the underlying setup. We first review the expression

of the DtN map, and then introduce an iterative approach to

localize this global boundary condition.

R

B

Ω
ext Ω Γ

B
Γ

R

DtN

Fig. 2.1. Truncation via DtN.

2.1. Dirichlet-to-Neumann map

The exact circular or spherical DtN nonreflecting boundary condition can be obtained by

solving the Helmholtz equation exterior to Ω with f = 0 and given Dirichlet data u|ΓR
(see,

e.g., [27]). Recall that

• for d = 2,

Tu = −∂u
∂r

∣

∣

∣

r=R
= −

∞
∑

l=−∞

k
∂zH

(1)
l (kR)

H
(1)
l (kR)

ûle
ilθ, (2.2)
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where θ ∈ [0, 2π), H
(1)
l is the Hankel function of the first kind of order l (cf. [26]), and

{ûl} are the Fourier expansion coefficients of u|r=R;

• for d = 3,

Tu = −
∞
∑

l=0

k
∂zh

(1)
l (kR)

h
(1)
l (kR)

l
∑

m=−l

ûlmY
m
l (θ, φ), (2.3)

where h
(1)
l (z) is the spherical Hankel function of the first kind of order l, and {Y m

l }
are the spherical harmonic function (cf. [26, 27]), and {ûlm} are the spherical harmonic

expansion coefficients of u|r=R.

For notational convenience, we use Tm,κ with κ = kR to denote the DtN kernel:

Tm,κ =
H

(1)′

m (κ)

H
(1)
m (κ)

, if d = 2; Tm,κ =
h

(1)′

m (κ)

h
(1)
m (κ)

, if d = 3. (2.4)

We summarize some basic properties of Tm,κ (cf. [27, 35]) to be used in the forthcoming

analysis.

(i) For the 2-D kernel Tm,κ, we have Tm,κ = T−m,κ, and

0 < Im(Tm,κ) < 1, −m
κ

≤ Re(Tm,κ) ≤ − 1

2κ
, m ≥ 1, (2.5)

Im(T0,κ) > 1, κ > 0; − 1

2κ
≤ Re(T0,κ) < 0. (2.6)

(ii) For the 3-D kernel Tm,κ, we have

− m+ 1

κ
≤ Re(Tm,κ) ≤ − 1

κ
, 0 < Im(Tm,κ) ≤ 1, m ≥ 1, (2.7)

Re(T0,κ) = − 1

κ
, Im(T0,κ) = 1. (2.8)

(iii) The monotonic properties hold for both 2-D and 3-D kernels: (a) for fixedm ≥ 1, Im(Tm,κ)

is strictly increasing with respect to κ; and (b) for fixed κ > 0, we have Im(Tm,κ) >

Im(Tm+1,κ),m ≥ 0.

The Dirichlet-to-Neumann map given in the previous section is global in character, so the

naive implementation of a local element method would result in the coupling of unknowns (at

least of those elements along the outer boundary). The crux of the effective method is how to

localize the DtN boundary condition without losing the accuracy.

2.2. The iterative scheme and its convergence

Hereafter, let Dk be a local operator, which only depends on the wave number k and the

radius R. We propose the following iterative scheme to solve (2.1):















−∆un+1 − k2un+1 = f, in Ω,

un+1 = 0, on ΓB,

∂ru
n+1 + kDku

n+1 = (kDk − T )un, on ΓR,

(2.9)
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for n ≥ 0 with given u0. In contrast to (2.1), the Robin boundary condition in (2.9) at the

outer boundary becomes local. Now, the important issue is how to choose Dk so that (i) (2.9)

is well-posed, and (ii) the sequence {un} converges fast to the solution u of (2.1).

With regard to the first issue, it suffices to require (cf. [12, 18]) that

Re
(

Dk

)

≥ 0, Im
(

Dk

)

< 0, for d = 2, 3, (2.10)

to ensure the well-posedness of (2.9) as with the original problem (2.1).

Now, we turn to the second issue. Since the analysis for d = 2, 3 is very similar, we restrict

our attention to the 2-D analysis for the sake of clarity.

We first introduce some notation. Let L2(Ω) be the Hilbert space of complex-valued func-

tions with inner product and norm, denoted by (·, ·) and ‖u‖L2(Ω), respectively. In particular,

〈·, ·〉∂Ω is the L2-inner product on complex-valued L2(∂Ω) spaces. Then the Sobolev spaces

Hs(Ω) (s ≥ 1) can be defined as usual with norms, and seminorms denoted by ‖ · ‖Hs(Ω), and

| · |s, Ω, respectively. We also use the wave number dependent H1-norm:

|‖u‖|1,Ω :=
(

|u|21,Ω + k2‖u‖2
L2(Ω)

)1/2

. (2.11)

The following assumptions and conventions are assumed in the analysis:

(a) the scatterer B is star-shaped, i.e., there exist xB ∈ B and a constant CB such that

(x− xB) · n
ΓB

≥ CB ≥ 0, ∀x ∈ ΓB, (2.12)

where n
ΓB

is the unit vector outer normal to B.

(b) the wave number satisfies k ≥ k0 > 0.

(c) the radius R of the artificial disk or ball satisfies R > R0 > 0, for some constant R0.

For notational convenience, we denote

δm,kR := Dk + Tm,kR, δR
m,kR := Re(δm,kR), δI

m,kR := Im(δm,kR), (2.13)

where Tm,kR is defined in (2.4).

Now, we are ready to present the main result on the convergence of the iterative scheme

(2.9), which provides the sufficient conditions for the choice of Dk.

Theorem 2.1. Let u and un+1 be the solutions of (2.1) and (2.9), respectively, and let en+1 :=

u−un+1. Assuming that Dk satisfies (2.10) and the assumptions (a)-(c) (with xB = 0 in (2.12))

hold, we have for d = 2,

|‖en+1‖|21,Ω +
(

Rk2Im(Dk)2 + kRe(Dk)
)

‖en+1‖2
L2(ΓR) +R‖∇T e

n+1‖2
L2(ΓR)+CB

∥

∥∂µe
n+1

∥

∥

2

L2(ΓB)

≤ S1(k)
(

Rk2Im(Dk)2 + kRe(Dk)
)

‖en‖2
L2(ΓR) + S2(k)R‖∇T e

n‖2
L2(ΓR), (2.14)

where

S1(k) =
k2W (k)

Rk2Im(Dk)2 + kRe(Dk)
|δ0,kR|2,

S2(k) =
k2W (k)

R
max
|m|6=0

{

(|m|−1δm,kR)2
}

,

(2.15)
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with

W (k) :=
3R

2
+
R(Re(Dk)2 + 1))

Im(Dk)2
+

(1 − 2kRRe(Dk))2

2k2RIm(Dk)2
. (2.16)

Therefore, by choosing Dk such that

Si(k) < 1, i = 1, 2, (2.17)

we have the convergence

|‖u− un‖|1,Ω → 0 as n→ ∞. (2.18)

Proof. We find from (2.1) and (2.9) that en+1 satisfies














−∆en+1 − k2en+1 = 0, in Ω,

en+1 = 0, on ΓB,

∂re
n+1 + kDke

n+1 = δke
n, on ΓR,

(2.19)

where δk := kDk − T (cf. (2.9)) and e0 = u− u0.

Suppose that G ⊂ R
d is a bounded Lipschitz domain with a boundary ∂G and that v ∈

H2(G). Then for every k ≥ 0, set g := ∆v + k2v and let µ be the unit normal vector pointing

out of G. Let ∇T v̄ be the tangential derivative on ∂Ω. Similar to Lemma 2.3 in [7], we have
∫

G

(|∇v|2 − k2|v|2 + gv̄)dx =

∫

∂G

v̄
∂v

∂µ
ds,

and
∫

G

((2 − d)|∇v|2 + dk2|v|2 + 2Re(gx · ∇v̄))dx

=

∫

∂G

(

x · µ
(

k2|v|2 +
∣

∣

∣

∂v

∂µ

∣

∣

∣

2

− |∇T v|2
)

+ 2Re
(

x · ∇T v̄
∂v

∂µ

))

ds.

Applying the above identities to (2.19), we find that

∫

Ω

(

|∇en+1|2 − k2|en+1|2
)

dx =

∫

∂Ω

∂en+1

∂µ
en+1ds, (2.20)

and
∫

Ω

(

(2 − d)|∇en+1|2 + dk2|en+1|2
)

dx

=

∫

∂Ω

{

x · µ
(

k2|en+1|2 +
∣

∣

∣

∂en+1

∂µ

∣

∣

∣

2

− |∇T e
n+1|2

)

+ 2Re
(

x · ∇T en+1
∂en+1

∂µ

)}

ds.

(2.21)

Using the homogeneous Dirichlet boundary condition on ΓB, and adding (d− 1) times the real

part of (2.20) to (2.21), we obtain

∫

Ω

(

|∇en+1|2 + k2|en+1|2
)

dx = −
∫

ΓB

x · n
ΓB

∣

∣

∣

∂en+1

∂n
ΓB

∣

∣

∣

2

ds

+

∫

ΓR

{

x · µ
(

k2|en+1|2 +
∣

∣

∣

∂en+1

∂µ

∣

∣

∣

2

− |∇T e
n+1|2

)

+ Re
(

(d− 1)
∂en+1

∂µ
en+1

)}

ds,

(2.22)

where we have used the facts

∇T e
n+1 = 0, on ΓB; x · ∇T en+1 = 0, on ΓR. (2.23)
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Since B is a star-shaped scatter (cf. (2.12) with xB = 0), we obtain from (2.22) that

∫

Ω

(

∇en+1|2 + k2|en+1|2
)

dx+ CB

∥

∥

∥

∂en+1

∂µ

∥

∥

∥

2

L2(ΓB)
+R‖∇T e

n+1‖2
L2(ΓR)

≤
∫

ΓR

R
(

k2|en+1|2 +
∣

∣

∣

∂en+1

∂µ

∣

∣

∣

2)

+ Re
(

(d− 1)en+1
∂en+1

∂µ

)

ds.

(2.24)

Thus, it is enough to bound the term on the right hand side of (2.24). Notice that by the Robin

boundary condition, the right hand side of (2.24) becomes

RHS of (2.24)

=

∫

ΓR

R
(

k2|en+1|2 + |δken − kDke
n+1|2

)

+ (d− 1)Re
(

(

δke
n − kDke

n+1
)

en+1
)

ds

=

∫

ΓR

(

R
(

k2|en+1|2 + |δken − kDke
n+1|2

)

+ (d− 1)Re
(

δke
nen+1

)

− (d− 1)kRe(Dk)|en+1|2
)

ds.

(2.25)

Multiplying the first equation of (2.19) by en+1, integrating the resulted equation over Ω, and

using the Green’s formula and the boundary conditions, we find that the imaginary part of the

resulted equation is

Im
(

∫

ΓR

(

δke
n − kDke

n+1
)

en+1ds
)

= 0, (2.26)

which implies

k|Im(Dk)|‖en+1‖2
L2(ΓR) =

∣

∣Im〈δken, en+1〉ΓR

∣

∣.

Thus, by the Cauchy-Schwarz inequality,

‖en+1‖2
L2(ΓR) ≤

1

k2|Im(Dk)|2 ‖δke
n‖2

L2(ΓR). (2.27)

Notice that
∫

ΓR

R|δken − kDke
n+1|2ds =

∫

ΓR

{

R|δken|2 +Rk2|Dk|2|en+1|2

− 2kR
(

Re(Dke
n+1)Re(δke

n) + Im(Dke
n+1)Im(δke

n)
)

}

ds.

(2.28)

By splitting the second term in the above identity intoRk2Im(Dk)2|en+1|2 andRk2Re(Dk)2|en+1|2,
and using (2.26), we derive

∫

ΓR

{

Rk2Im(Dk)2|en+1|2 − 2kR
(

Re(Dke
n+1)Re(δke

n) + Im(Dke
n+1)Im(δke

n)
)}

ds

=

∫

ΓR

{

RkIm(Dk)
(

− Im(en+1)Re(δke
n) + Re(en+1)Im(δke

n)
)

+ 2kR
(

− Re(Dk)Re(en+1)Re(δke
n) + Im(Dk)Im(en+1)Re(δke

n)

− Im(Dk)Re(en+1)Im(δke
n) − Re(Dk)Im(en+1)Im(δke

n)
)}

ds

=

∫

ΓR

{

−Rk2Im(Dk)2|en+1|2 − 2kRRe(Dk)Re(en+1δken)
}

ds,

(2.29)
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where we have used the facts due to (2.26) as follows

∫

ΓR

Rk2Im(Dk)2|en+1|2ds

=

∫

ΓR

{

−RkIm(Dk)Im(en+1)Re(δke
n) +RkIm(Dk)Re(en+1)Im(δke

n)
}

ds.

Inserting (2.29) into (2.28) leads to

∫

ΓR

R|δken − kDke
n+1|2ds (2.30)

=

∫

ΓR

{

R|δken|2 +Rk2Re(Dk)2|en+1|2 −Rk2Im(Dk)2|en+1|2 − 2kRRe(Dk)Re(en+1δken)
}

ds.

So it follows from (2.25) and (2.30) that

RHS of (2.24)

=

∫

ΓR

R|δken|2 +
(

Rk2(Re(Dk)2 + 1) − (d− 1)kRe(Dk) −Rk2Im(Dk)2
)

|en+1|2

+ (d− 1)Re(δke
nen+1) − 2kRRe(Dk)Re(en+1δken)ds.

(2.31)

For the last two terms on the right hand side of (2.31), noting that Re(δke
nen+1) = Re(en+1δken),

we derive from the Cauchy-Schwarz inequality that

∫

ΓR

(d− 1)Re(δke
nen+1) − 2kRRe(Dk)Re(en+1δken)ds

= (d− 1 − 2kRRe(Dk))

∫

ΓR

Re(δke
nen+1)ds

≤ R

2

∫

ΓR

|δken|2ds+
(d− 1 − 2kRRe(Dk))2

2R

∫

ΓR

|en+1|2ds.

Then a combination of (2.24), (2.27), and (2.31) leads to

|‖en+1‖|21,Ω + CB

∥

∥

∥

∂en+1

∂µ

∥

∥

∥

2

L2(ΓB)
+R‖∇T e

n+1‖2
L2(ΓR)

+
(

Rk2Im(Dk)2 + (d− 1)kRe(Dk)
)

‖en+1‖2
L2(ΓR) ≤W (k)‖δken‖2

L2(ΓR),

(2.32)

where W (k) is defined in (2.16).

It remains to bound ‖δken‖L2(ΓR). Recall that δke
n = (kDk − T )en, and by (2.2) and (2.4),

(δke
n)(r, θ) =

∞
∑

|m|=0

k(Dk + Tm,kR)ên
m(r)eimθ, θ ∈ [0, 2π], (2.33)

where {ên
m} are the Fourier coefficients. Thus, using the notation in (2.13), we have from the
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Parseval’s identity that

∫

ΓR

|δken|2ds = 2πRk2
∞
∑

|m|=0

(δR
m,kR)2

∣

∣ên
m(R)

∣

∣

2
+ 2πRk2

∞
∑

|m|=0

(δI
m,kR)2

∣

∣ên
m(R)

∣

∣

2

≤ 2πRk2|δ0,kR|2
∣

∣ên
0 (R)

∣

∣

2
+ 2πRk2 max

|m|6=0

{

(|m|−1δR
m,kR)2

}

∞
∑

|m|6=0

m2
∣

∣ên
m(R)

∣

∣

2

+ 2πRk2 max
|m|6=0

{

(|m|−1δI
m,kR)2

}

∞
∑

|m|6=0

m2
∣

∣ên
m(R)

∣

∣

2

≤ k2|δ0,kR|2‖en‖2
L2(ΓR) + k2 max

|m|6=0

{

(|m|−1δm,kR)2
}

‖∇T e
n‖2

L2(ΓR).

(2.34)

Therefore, the desired estimate (2.14) follows from (2.32) and (2.34).

Finally, by choosing a suitable Dk satisfying (2.17), we get

‖∇T e
n‖L2(ΓR) → 0, ‖en‖L2(ΓR) → 0,

∥

∥∂µe
n+1

∥

∥

L2(ΓB)
→ 0, as n→ ∞.

By (2.14), we also have |‖en+1‖|1,Ω → 0 (n→ ∞).

Remark 2.1. The main argument is essentially the same as in [24, 11, 25]. Though we just

stated the convergence result for d = 2, the analysis for d = 3 is very similar by using spherical

harmonics in (2.33) and (2.34). Indeed, the situation is reminiscent to the proof of [35, Lemma

3.1], where the case with d = 3 is slightly easier to handle than the case d = 2.

For a better appreciation of the sufficient conditions on Dk in Theorem 2.1, we provide some

sample selections of Dk :

2.2.1. Case I

Choose Dk = −T0,kR, defined by (2.4) with d = 2. We find from (2.6) that Dk meets (2.10).

Moreover, we have δ0,kR = 0, and S1(k) = 0 < 1.

To justify this claim, using the facts Im(T0,kR) > 1 and − 1
2kR ≤ Re(T0,kR) < 0, leads to

W (k) ≤ 5

2
R+

9

4k2R
. (2.35)

Note that

Im(T0,κ) =
2

πκ

1

J2
0 (κ) + Y 2

0 (κ)
=

2

πκ|H(1)
0 (κ)|2

. (2.36)

Since the term κ(J2
0 (κ) + Y 2

0 (κ)) is an increasing function of κ (cf. [36, Page 446]), then we

have

1 < Im(T0,κ) ≤ 2

πk0R0|H(1)
0 (k0R0)|2

, (2.37)

where we used the assumption kR ≥ k0R0.



10

We estimate the bound of max(|m|−1δI
m,kR)2 for |m| 6= 0. We will use the facts that

0 < Im(Tm,kR) < 1 (m 6= 0) and an accurate approximation for Im(Tm,kR) is (cf. [35, Page

1962])

Em,κ :=







√

1 − m2

κ2 , if κ > m ≥ 1,

c0m
− 1

3 , if κ = m,
(2.38)

where c0 ≈ 0.7954.

For κ > m ≥ 1, by (2.37) and (2.38), we get

(m−1δI
m,kR)2 ≤

(

m−1
( 2

πk0R0|H(1)
0 (k0R0)|2

−
√

1 − m2

κ2

))2

≤
(

m−1
( 2

πk0R0|H(1)
0 (k0R0)|2

− 1 +
m2

κ2

))2

=
(

m−1
(

c∗ +
m2

κ2

))2

≤ 4c∗

κ2
,

where

c∗ =
2

πk0R0|H(1)
0 (k0R0)|2

− 1.

For κ ≤ m, we derive

(m−1δI
m,kR)2 < (m−1Im(T0,κ))2 ≤

(

m−1
( 2

πk0R0|H(1)
0 (k0R0)|2

))2

≤ (c∗ + 1)2

κ2
.

Consequently, we have

max
|m|6=0

(|m|−1δI
m,kR)2 ≤ (c∗ + 1)2

k2R2
. (2.39)

For |m| 6= 0, by (2.5)-(2.6), we arrive at

(|m|−1δR
m,kR)2 <

(

|m|−1 |m|
kR

)2

=
1

k2R2
,

Then we estimate the bound of S2(k)

S2(k) ≤
k2

R

(5

2
R+

9

4k2R

)(c∗ + 1)2 + 1

k2R2
≤

(5

2
+

9

4k2
0R

2
0

)(c∗ + 1)2 + 1

R2
.

Consequently, if

R > max
{((5

2
+

9

4k2
0R

2
0

)

(

(c∗ + 1)2 + 1
)

)
1
2

, R0

}

,

then S2(k) < 1.

Here, we provide some reference values of c∗ :

(k0R0, c
∗) = (0.1, 0.90098), (0.2, 0.48124), (0.3, 0.32015), (0.5, 0.18076), (1, 0.07298). (2.40)

Note that c∗ decreases as k0R0 increases.
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2.2.2. Case II

Choose Dk such that Re(Dk) = 0 and Im(Dk) = −1, i.e., the first-order approximation of T .

It follows from (2.37) that

|δ0,kR|2 = |Re(T0,k)|2 + |Im(T0,k) − 1|2 ≤ 1

4k2R2
+ c∗2.

We have W (k) = 5
2R + 1

2k2R , and

S1(k) =
W (k)|δ0,kR|2

R
≤

(5

2
+

1

2k2R2

)( 1

4k2R2
+ c∗2

)

≤
(5

2
+

1

2k2R2

)( 1

4k2R2
+ c∗2

)

.

By direct computation, we see that S1(k) < 1 holds if the condition

kR > max

{

(

√

2 +
(

5 − 4c∗2
)2

+ 5 + 4c∗2
)/

2
(

8 − 20c∗2
)

, k0R0

}

(2.41)

is satisfied with c∗ < 0.63246 (e.g., k0R0 ≥ 0.2, inferred from (2.40)). Therefore, S1(k) < 1 if

(2.41) holds.

For m 6= 0, we have

(|m|−1δR
m,kR)2 ≤

(

|m|−1 |m|
kR

)2

=
1

k2R2
, (2.42)

and

(|m|−1δI
m,kR)2 = |m|−2

(

1 − Im(Tm,kR)
)2
.

We estimate the bound of max(|m|−1δI
m,kR)2. For κ > m ≥ 1, by (2.38), we get

(

m−1(1 − Im(Tm,kR))
)2 ≤

(

m−1
(

1 −
√

1 − m2

κ2

))2

≤
(

m−1
(

1 − 1 +
m2

κ2

))2

<
1

κ2
.

For κ ≤ m, it holds that

(

m−1(1 − Im(Tm,kR))
)2 ≤ m−2 <

1

κ2
.

Consequently, we have

max
|m|6=0

(|m|−1δI
m,kR)2 <

1

k2R2
. (2.43)

Then

S2(k) ≤
k2

R

(5

2
R +

1

2k2R

) 2

k2R2
<

1

R2

(

5 +
1

k2
0R

2
0

)

.

Therefore, if R > max
{(

5 + 1
k2
0
R2

0

)1/2

, R0

}

, then S2(k) < 1.
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2.2.3. Case III

Choose Dk such that Re(Dk) = 0 and Im(Dk) = −Im(T0,kR). Similarly, we have

|δ0,kR|2 = |Re(T0,kR)|2 ≤ 1

4k2R2
,

W (k) =
3

2
R+

R

(Im(T0,kR))2
+

1

2k2R(Im(T0,kR))2
<

5

2
R+

1

2k2R
.

This leads to

S1(k) ≤
(5

2
+

1

2k2R2

) 1

4k2R2
.

Hence, as k2R2 > 1, then S1(k) < 1.

For m 6= 0, it follows from (2.39) and (2.42) that

(|m|−1δR
m,kR)2 <

(

|m|−1 |m|
kR

)2

=
1

k2R2
, (|m|−1δI

m,kR)2 ≤ (c∗ + 1)2

k2R2
,

so we have

S2(k) ≤
k2

R

(5

2
R+

1

2k2R

)(c∗ + 1)2 + 1

k2R2
=

(5

2
+

1

2k2
0R

2
0

)(c∗ + 1)2 + 1

R2
.

Finally, if

R > max
{((5

2
+

1

2k2
0R

2
0

)

(

(c∗ + 1)2 + 1
)

)
1
2

, R0

}

,

then S2(k) < 1.

2.3. Numerical results

We feel compelled to provide some numerical results to illustrate the convergence of the

proposed iterative scheme. To mimic the continuous setting, we discretize (2.9) with d = 2 and

with the scatterer B being a disk, by a very accurate spectral solver in [35]. More specifically,

we consider the following problem:














−∆un+1 − k2un+1 = 0, in Ω :=
{

(x, y) : a2 < x2 + y2 < R2
}

,

un+1|r=a = g,

(∂r + kDk)un+1|r=R = (kDk − T )un|r=R,

(2.44)

where R > a > 0 and g, u0 are given.

Under the polar coordinates (r, θ), we expand the data and solution in Fourier series as

{

un+1(r, θ), g(θ)
}

=

∞
∑

|m|=0

{

ûn+1
m (r), ĝm

}

eimθ.

Notice that T is given by (2.2). Then, the problem (2.44) reduces to a sequence of 1-D equations:























− 1

r

d

dr

(

r
d

dr
ûn+1

m

)

+m2 û
n+1
m

r2
− k2ûn+1

m = 0, r ∈ (a,R), |m| ≥ 0,

ûn+1
m (a) = ĝm,

( d

dr
+ kDk

)

ûn+1
m (R) = k(Dk + Tm,kR)ûn

m(R).

(2.45)
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Thus, at each iteration, we use the spectral-Galerkin solver (cf. [35]) to update un+1 from un.

Using the method of separation of variables, we find that (2.1) admits the solution:

u(r, θ) =

∞
∑

|m|=0

H
(1)
m (kr)

H
(1)
m (ka)

ĝme
imθ, r ≥ a, θ ∈ [0, 2π], (2.46)

which implies

ûm(r) =
H

(1)
m (kr)

H
(1)
m (ka)

ĝm, a < r < R,

satisfies the reduced one-dimensional problem.

In the following computations, we measure the errors: En
N = max|m|≤50 ‖ûn

m − ûn
m,N‖∞,

where ûn
m,N is the numerical solution obtained by the spectral-Galerkin scheme in [35] (with

N + 1 modes). We truncate up to |m| ≤ 50 in θ direction, so that the truncation error is

negligible. We take g(θ) = exp(sin(θ)), and test two examples with the following setup:

• Example 1. Take a = 1.4, R = 3,Re(Dk) = 0 and Im(Dk) = −Im(T0,kR).

• Example 2. Take a = 2.5, R = 4 and Dk = −T0,kR.

In Table 2.1 (resp. 2.2), we tabulate En
N and the number of iterations for various choices of k

and N for Example 1 (resp. Example 2). The iteration is terminated when max|m|≤50 ‖ûn+1
m,N −

ûn
m,N‖∞ ≤ 10−12. We observe a fast convergence of the iterative scheme and spectral accuracy

as N increases.

Table 2.1: Convergence of the iterative scheme (2.44) for Example 1.

k = 100 k = 150 k = 200

N n En
N N n En

N N n En
N

20 14 3.63e− 02 40 17 1.01e− 02 50 18 1.88e− 02

30 15 4.37e− 08 50 16 8.48e− 07 60 12 6.25e− 06

50 14 1.87e− 12 60 14 3.48e− 12 90 13 3.51e− 12

Table 2.2: Convergence of the iterative scheme (2.44) for Example 2.

k = 40 k = 90 k = 140

N n En
N N n En

N N n En
N

20 20 3.86e− 04 30 16 4.30e− 02 45 17 1.76e− 02

30 21 1.69e− 10 40 20 2.55e− 06 55 18 2.64e− 06

50 17 1.71e− 12 60 24 8.67e− 13 70 14 4.40e− 12

In Figure 2.2, we plot the log10 of L2-errors versus N for a wide range of k, and the stopping

criterion is the same as before. We visualize a spectral accuracy even for large wave numbers.

Indeed, these results verify the effectiveness of the localization technique.

3. The multi-domain spectral IPDG method

In this section, we describe the multi-domain spectral interior penalty discontinuous Galerkin

method for solving (2.9) with a general scatterer.
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Fig. 2.2. Convergence of of the iterative scheme (2.44): L2-errors against N . Left: Example 1 with

k = 100, 150, 200. Right: Example 2 with k = 40, 90, 140.

3.1. Notation and setup

We start with introducing the conventional notation and setup (see, e.g., [8, 31, 15]) for the

discontinuous Galerkin method.

• Define the broken Sobolev space

Sq :=
∏

k∈Qh

Hq+1(K), q ≥ 1, (3.1)

where Qh is a partition of the computational domain Ω, and h is the discretization pa-

rameter for the mesh. In this context, each element K ∈ Qh is a quadrilateral. For each

edge/face e of an element K ∈ Qh, we denote |e| := diam(e) and hK := diam(K). It is

clear that

|e| ≤ hK . (3.2)

• We also use the following notation:

EI
h := set of all interior edges/faces of Qh,

ER
h (EB

h ) := set of all boundary edges/faces of Qh on ΓR(ΓB),

EIB
h := EI

h ∪ EB
h set of all edges/faces of Qh except those on ΓR.

• Define the jump [v] and average {v} of v on an interior edges/face e = ∂Ki ∩ ∂Kj as

[v]|e =







v|Ki
− v|Kj

, if the global label i > j,

v|Kj
− v|Ki

, otherwise.
(3.3)

If e ∈ EB
h , we set [v]|e = v|e. The average is defined as follows

{v}|e =
1

2

(

v|Ki
+ v|Kj

)

, if e = ∂Ki ∩ ∂Kj. (3.4)
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If e ∈ EB
h or e ∈ ER

h , set {v}|e = v|e. For every e = ∂Ki ∩ ∂Kj ∈ EI
h, let ne be the unit

normal on edge/face e pointing from Ki to Kj if i > j and from Kj to Ki otherwise. For

every e ∈ ER
h ∪ EB

h , let ne = nΩ be the unit outer normal of ∂Ω.

• Define the sesquilinear form

a(w, v) = b(w, v) − i
(

J0(w, v) +

q
∑

j=1

Jj(w, v)
)

, ∀w, v ∈ Sq, (3.5)

where

b(w, v) =
∑

K∈Qh

(∇w,∇v)K −
∑

e∈EIB
h

(〈{ ∂w

∂ne

}

, [v]
〉

e
+ σ

〈{ ∂v

∂ne

}

, [w]
〉

e

)

,

J0(w, v) =
∑

e∈EIB
h

γ0,eNe

|e| 〈[w], [v]〉e,

Jj(w, v) =
∑

e∈EI
h

γj,e

( |e|
Ne

)2j−1〈[∂jw

∂n
j
e

]

,
[ ∂jv

∂n
j
e

]〉

e
,

where σ is a real number; γ0,e, γ1,e, · · · , γq,e are numbers to be defined later, ∂jw
∂n

j
e

denotes

the jth order normal derivative of w on e, and Ne is the largest degree of polynomial on

the elements associated with e.

• Introduce the semi-norms on the space Sq :

|v|1,Qh
:=

(

∑

K∈Qh

‖∇v‖2
L2(K)

)
1
2

, (3.6)

‖v‖1,N,q :=
(

|v|21,Qh
+

∑

e∈EIB
h

γ0,eNe

|e| ‖[v]‖2
L2(e) +

q
∑

j=1

∑

e∈EI
h

γj,e

( |e|
Ne

)2j−1∥
∥

∥

[ ∂jv

∂n
j
e

]∥

∥

∥

2

L2(e)

)
1
2

,

(3.7)

‖|v‖|1,N,q :=
(

‖v‖2
1,N,q +

∑

e∈EIB
h

|e|
γ0,eNe

∥

∥

∥

{ ∂v

∂ne

}∥

∥

∥

2

L2(e)

)
1
2

. (3.8)

It is easy to check that for any v ∈ Sq,

Re
(

a(v, v)
)

= |v|21,Qh
− 2Re

∑

e∈EIB
h

〈{ ∂v

∂ne

}

, [v]
〉

, (3.9)

Im
(

a(v, v)
)

= −(J0(v, v) + J1(v, v) + · · · + Jq(v, v)). (3.10)

The IPDG weak formulation for (2.9) is to find un+1 ∈ Sq such that

a(un+1, v) − k2(un+1, v) + kDk〈un+1, v〉ΓR
= (f, v) + 〈δkun, v〉ΓR

, ∀ v ∈ Sq, (3.11)

where δk = kDk − T as before. The parameter σ in a(·, ·) may take the value −1, 0 or

1. Correspondingly, the formulation (3.11) is referred to as the symmetric interior penalty

Galerkin (SIPG) scheme if σ = 1; the nonsymmetric interior penalty Galerkin scheme (NIPG)

if σ = −1; or the incomplete interior penalty Galerkin scheme (IIPG) if σ = 0, see [31]. Here,

we restrict our attention to the SIPG case, i.e., σ = 1.
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For any K ∈ Qh, let Pp(K) be the set of all polynomials of degree at most p on K. We

introduce the (IPDG) approximation space VN as

VN :=
{

v ∈ L2(Ω) : v|Ki
∈ Ppi

(Ki)
}

, (3.12)

where N = max{pi ≥ 1 : 1 ≤ i ≤ Nh} and Nh is the element number of the partition Qh.

Suppose that the p-quasi-uniformity assumption holds, that is, the degree pi on any element

Ki satisfies
max pi

min pi
≤ CQ, 1 ≤ i ≤ Nh,

where the positive constant CQ is independent of |e| and N .

The multi-domain spectral IPDG method is to find un+1
N ∈ VN such that

aN (un+1
N , vN ) − k2(un+1

N , vN ) + kDk〈un+1
N , vN 〉ΓR

= 〈f, vN 〉 + 〈δkun
N , vN 〉ΓR

, ∀ vN ∈ VN ,

(3.13)

where aN (un+1
N , vN ) = a(un+1

N , vN ) and the choice of Dk and R is strictly satisfying the con-

vergence of the iterative scheme (2.9).

We state the following continuity and coercivity properties for the sesquilinear form a(·, ·),
which follows from (3.5)-(3.10). For any w, v ∈ Sq, the sesquilinear form a(·, ·) satisfies

|a(v, w)|, |a(w, v)| . ‖v‖1,N,q‖|w‖|1,N,q. (3.14)

Here and in the remainder of this work A . B and A & B is used instead of A ≤ CB and

A ≥ CB, respectively, for some positive generic constant C independent of N and q. And

A ≃ B is a shorthand notation for the statement A . B and B . A.

For any 0 < ǫ < 1, there exists a positive constant Cǫ depending on ǫ and independent of

k, N and the penalty parameters such that ∀ vN ∈ VN ,

Re
(

aN(vN , vN )
)

−
(

1 − ǫ+
CǫN

γ0

)

Im
(

aN (vN , vN )
)

& (1 − ǫ)‖vN‖2
1,N,q, (3.15)

where γ0 = min
e∈EIB

h

{γ0,e}. Indeed, one just needs to prove

ǫ|vN |21,Qh
− 2Re

(

∑

e∈EIB
h

〈{∂vN

∂ne

}

, [vN ]
〉

e

)

+
CǫN

γ0

q
∑

j=0

Jj(vN , vN ) ≥ 0,

which follows from the Cauchy-Schwarz inequality applied to the second term of the above

inequality.

Taking vn = un+1
N in (3.13), and taking real part and imaginary part of the resulted equation,

we obtain the following lemma.

Lemma 3.1. Let un+1
N ∈ VN be a solution to (3.13). Then we have

∣

∣un+1
N

∣

∣

2

1,Qh
− 2Re

(

∑

e∈EIB
h

〈{∂un+1
N

∂ne

}

, [un+1
N ]

〉

e

)

− k2
∥

∥un+1
N

∥

∥

2

L2(Ω)

+ kRe(Dk)
∥

∥un+1
N

∥

∥

2

L2(ΓR)
≤

∣

∣

∣
Re

(

(f, un+1
N ) + 〈δkun

N , u
n+1
N 〉ΓR

)∣

∣

∣
,

(3.16)
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and
∑

e∈EIB
h

γ0,eN

|e|
∥

∥[un+1
N ]

∥

∥

2

L2(e)
+ k|Im(Dk)|

∥

∥un+1
N

∥

∥

2

L2(ΓR)

+

q
∑

j=1

∑

e∈EI
h

γj,e

( |e|
N

)2j−1∥
∥

∥

[∂jun+1
N

∂n
j
e

]
∥

∥

∥

2

L2(e)
≤

∣

∣

∣
Im

(

(f, un+1
N ) + 〈δkun

N , u
n+1
N 〉ΓR

)
∣

∣

∣
.

(3.17)

The following local Rellich lemma in [15] will be used in our analysis.

Lemma 3.2. Let α(x) := x− xB , v ∈ S1,K,K ′ ∈ Qh and e ∈ EIB
h . Then there hold

d‖v‖2
L2(K) + 2Re(v, α · ∇v)K =

∫

∂K

α · n
∂K

|v|2ds, (3.18)

(d− 2)‖∇v‖2
L2(K) + 2Re(∇v,∇(α · ∇v))K =

∫

∂K

α · n
∂K

|∇v|2ds, (3.19)

〈{ ∂v

∂ne

}

, [α · ∇v]
〉

e
−

〈

α · ne{∇v}, [∇v]
〉

e
=

d−1
∑

l=1

∫

e

(

α · τ l
e

{ ∂v

∂ne

}

− α · ne

{ ∂v

∂τ l
e

})[ ∂v̄

∂τ l
e

]

ds,

(3.20)

where d = 2, 3, {τ l
e}d−1

l=1 is an orthogonal coordinate frame on the edge/face e ∈ Eh; and ∂v̄
∂τ l

e
:=

∇v · τ l
e is tangential derivative of v in the direction τ l

e.

We will also use the following discrete trace and inverse inequalities. In view of (3.2), for any

K ∈ Qh and z ∈ Pp(K), the following results hold:

‖z‖L2(∂K) . ph
−1/2
K ‖z‖L2(K) . p|e|−1/2‖z‖L2(K), (3.21)

‖∇z‖L2(K) . p2h−1
K ‖z‖L2(K) . p2|e|−1‖z‖L2(K). (3.22)

4. Stability analysis and error estimates

This section is devoted to the stability analysis of the IPDG scheme (3.13) at each iteration,

and error estimates of the full scheme.

Theorem 4.1. Let un+1
N ∈ VN solve (3.13) and suppose the penalty parameters γi,e > 0, for

any 0 ≤ i ≤ q. Then

∥

∥un+1
N

∥

∥

L2(Ω)
+

1

k

∣

∣un+1
N

∣

∣

1,Qh
+

1

k

(

CΩR

∑

e∈ER
h

∥

∥∇un+1
N

∥

∥

2

L2(e)

)1/2

+
(Re(Dk)

k

∑

e∈ER
h

∥

∥un+1
N

∥

∥

2

L2(e)

)1/2

+
1

k

(

CB

∑

e∈EB
h

(

k2
∥

∥un+1
N

∥

∥

2

L2(e)
+

1

2

∥

∥∇un+1
N

∥

∥

2

L2(e)

))1/2

. CstabM(f, δku
n
N ),

(4.1)

where M(f, δku
n
N) := ‖f‖L2(Ω) + ‖δkun

N‖L2(ΓR) , and

Cstab :=
1

k|Im(Dk)| +
1

k2
max

1≤j≤q

(

1 +
N

γ0,e
+ γ0,eN +

√
γ0,eN +N2 +

N5

γ0,e

)

+











1
k2 max

1≤j≤q

(
√

γj,e

γj+1,e
N +N2 + γq,eN

2q+3
)

, if q < N,

N
k2 max

1≤j≤q

(
√

γj,e

γj+1,e
+N

)

, if q ≥ N.
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Proof. Following the argument used in Theorem 3.1 in [16] and Lemma 3.1 in [35], we sketch

the derivation of this estimate in Appendix A.

Remark 4.1. Under the assumption of quasi-uniformity of the mesh, we can write γj,e ⋍

γj , 0 ≤ j ≤ q on all edges. Based on the estimates, we may analyze the choice of penalty

parameters. To minimize the stability constant Cstab, we may choose γ0 ⋍ N2, γj ⋍ N−1−2j,

for 1 ≤ j ≤ q, so that

Cstab ∼
1

k|Im(Dk)| +
N3

k2
+
N2

k2
. (4.2)

With the aid of a priori error estimates, we analyze the convergence of the full scheme.

Define the error function en+1
N := un+1 − un+1

N , where un+1 and un+1
N are the solutions of (2.9)

and (3.13), respectively. Assuming that un+1 ∈ Hs(Ω) with s ≥ q + 1, the variational formula

(3.11) holds for vN ∈ VN . Subtracting (3.13) from (3.11) yields the error equation:

aN (en+1
N , vN ) − k2(en+1

N , vN ) + kDk〈en+1
N , vN 〉ΓR

= 〈δken
N , vN 〉ΓR

, ∀vN ∈ VN . (4.3)

We also suppose that the following Poisson problem is H2-regular in the sense that for any

ψ ∈ L2(Ω) there is a unique φ ∈ H2(Ω) such that















−∆φ = ψ, in Ω,

φ = 0, on ΓB,

φr + kDkφ = 0, on ΓR

(4.4)

and

|φ|H2(Ω) . k‖ψ‖L2(Ω). (4.5)

Theorem 4.2. Suppose that γ0 ⋍ N2, γj ⋍ N−1−2j, for 1 ≤ j ≤ q < µ := min{N + 1, s}.
Assume that the problem (2.9) is Hs-regular and um ∈ Hs(Ω) for 0 ≤ m ≤ n + 1. Let un+1

and un+1
N be the solutions of (2.9) and (3.13), respectively. Then the following error estimate

holds

∥

∥en+1
N

∥

∥

L2(Ω)
+

1

k

∣

∣en+1
N

∣

∣

1,Qh
+
C

1
2

ΩR

k

∥

∥∇en+1
N

∥

∥

L2(ΓR)
+

(Re(DK)

k

)
1
2 ∥

∥en+1
N

∥

∥

L2(ΓR)
. Bk,NN

1
2
−s,

(4.6)

where

Bk,N :=
(

k
5
2 + k

3
2N3 + k

3
2N2 + 1 + k

3
2 + C

1
2

ΩR
k−

1
2 N

)

n+1
∑

m=0

‖um‖Hs(Ω) .

Proof. Let ũn+1
N be the elliptic projection of un+1 such that

aN(un+1, vN ) + kDk〈un+1, vN 〉ΓR
= aN (ũn+1

N , vN ) + kDk〈ũn+1
N , vN 〉ΓR

, ∀ vN ∈ VN . (4.7)

We write en+1
N = χn+1 − ξn+1 with

χn+1 := un+1 − ũn+1
N , ξn+1 := un+1

N − ũn+1
N .
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Without loss of generality, we assume that ξ0 = 0 and ∇ξ0 = 0 on ΓR. It follows from (4.3)

and (4.7) that

aN (ξn+1, vN ) − k2(ξn+1, vN ) + kDk〈ξn+1, vN 〉ΓR
= −k2(χn+1, vN ) − 〈δken

N , vN 〉ΓR
, (4.8)

which implies that ξn+1 ∈ VN is the solution of the IPDG scheme (3.13) with f = −k2χn+1

and δku
n
N replaced by −δken

N . Under the assumptions (4.4)-(4.5), analogously to Lemma 4.4 in

[16], we have

∥

∥χn+1
∥

∥

1,N,q
+

√

k|Dk|
∥

∥χn+1
∥

∥

L2(ΓR)
. C1,q

( 1

N

)s−1
∥

∥un+1
∥

∥

Hs(Ω)
, (4.9)

∥

∥∇χn+1
∥

∥

1,N,q
+

√

k|Dk|
∥

∥∇χn+1
∥

∥

L2(ΓR)
. C1,q

( 1

N

)s−2
∥

∥un+1
∥

∥

Hs(Ω)
, (4.10)

‖χn+1‖L2(Ω) . C2,q

( 1

N

)s−1

‖un+1‖Hs(Ω), (4.11)

where

C1,q = k1/2
((

1 +
N

γ0

)2(

1 +
N

γ0
+

q
∑

j=1

N2j−1γj

)

+
(

1 +
N

γ0

)k|Dk|
N

)1/2

,

C2,q = k1/2
(

1 +
1

γ0N
+
γ1

N
+ k|Dk|

)1/2

C1,q.

Then applying Theorem 4.1 and (4.11) to (4.8) yields

∥

∥ξn+1
∥

∥

L2(Ω)
+

1

k

∣

∣ξn+1
∣

∣

1,Qh
+
C

1
2

ΩR

k

∥

∥∇ξn+1
∥

∥

L2(ΓR)
+

(Re(DK)

k

)
1
2 ∥

∥ξn+1
∥

∥

L2(ΓR)

. Cstab

(

C2,qk
2
( 1

N

)s−1
∥

∥un+1
∥

∥

Hs(Ω)
+ ‖δken

N‖L2(ΓR)

)

.

(4.12)

We now estimate ‖δken
N‖L2(ΓR). Similar to the estimate (2.34), ‖δken

N‖L2(ΓR) can be bounded

by

‖δken
N‖L2(ΓR) ≤ k|δ0,kR| ‖en

N‖L2(ΓR) + k max
|m|6=0

{

|m|−1δm,kR

}

‖∇T e
n
N‖L2(ΓR)

≤ k|δ0,kR|
(

‖ξn‖L2(ΓR) + ‖χn‖L2(ΓR)

)

+ k max
|m|6=0

{

|m|−1δm,kR

}(

‖∇ξn‖L2(ΓR) + ‖∇χn‖L2(ΓR)

)

. k|δ0,kR| ‖ξn‖L2(ΓR) + k max
|m|6=0

{

|m|−1δm,kR

}

‖∇ξn‖L2(ΓR)

+ |δ0,kR|k
1
2 |Dk|−

1
2C1,qN

1−s ‖un‖Hs(Ω)

+ k
1
2 |Dk|−

1
2 max
|m|6=0

{

|m|−1δm,kR

}

C1,qN
2−s ‖un‖Hs(Ω) .

(4.13)

where in the last step, we used the estimates (4.9)-(4.10).

On the one hand, by (4.12) and (4.13), it holds that

∥

∥ξn+1
∥

∥

L2(Ω)
+

1

k

∣

∣ξn+1
∣

∣

1,Qh
+
C

1
2

ΩR

k

∥

∥∇ξn+1
∥

∥

L2(ΓR)
+

(Re(DK)

k

)
1
2 ∥

∥ξn+1
∥

∥

L2(ΓR)

. Cstabk|δ0,kR| ‖ξn‖L2(ΓR) + Cstabk max
|m|6=0

{

|m|−1δm,kR

}

‖∇ξn‖L2(ΓR)

+ CstabC2,qk
2N1−s

∥

∥un+1
∥

∥

Hs(Ω)
+ Cstab|δ0,kR|k

1
2 |Dk|−

1
2C1,qN

1−s ‖un‖Hs(Ω)

+ Cstabk
1
2 |Dk|−

1
2 max
|m|6=0

{

|m|−1δm,kR

}

C1,qN
2−s ‖un‖Hs(Ω) .

(4.14)
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Note that

C1,q . kN− 1
2 , C2,q . k

3
2N− 1

2 , Cstab . k−1 +N3k−2 +N2k−2.

It follows from the previous three cases of Dk that

|δ0,kR| .
1

kR
, max

|m|6=0

{

|m|−1δm,kR

}

.
1

kR
.

We give a preasymptotic error estimate for a fixed Dk with an appropriate choice of R

∥

∥ξn+1
∥

∥

L2(Ω)
+

1

k

∣

∣ξn+1
∣

∣

1,Qh
+
C

1
2

ΩR

k

∥

∥∇ξn+1
∥

∥

L2(ΓR)
+

(Re(DK)

k

)
1
2 ∥

∥ξn+1
∥

∥

L2(ΓR)

.
C

1
2

ΩR

k
‖∇ξn‖L2(ΓR) +

(Re(DK)

k

)
1
2 ‖ξn‖L2(ΓR) + Cstabk

7
2N

1
2
−s

∥

∥un+1
∥

∥

Hs(Ω)

+N
1
2
−s ‖un‖Hs(Ω) + C

1
2

ΩR
k−

1
2N

3
2
−s ‖un‖Hs(Ω) .

(4.15)

By deduction and the assumption of ξ0 and ∇ξ0 on ΓR, (4.15) becomes

‖ξn+1‖L2(Ω) +
1

k

∣

∣ξn+1
∣

∣

1,Qh
+
C

1
2

ΩR

k
‖∇ξn+1‖L2(ΓR) +

(Re(DK)

k

)
1
2 ‖ξn+1‖L2(ΓR)

. (k−1 + k−2N3 +N2k−2)k
7
2N

1
2
−s

n+1
∑

m=1

‖um‖Hs(Ω)

+
(

1 + C
1
2

ΩR
k−

1
2N

)

N
1
2
−s

n
∑

m=0

‖um‖Hs(Ω).

(4.16)

On the other hand, combining (4.11) with (4.10) leads to

∥

∥χn+1
∥

∥

L2(Ω)
+

1

k

∥

∥χn+1
∥

∥

1,N,q
+
C

1
2

ΩR

k

∥

∥∇χn+1
∥

∥

L2(ΓR)
+

(Re(DK)

k

)
1
2 ∥

∥χn+1
∥

∥

L2(ΓR)

.
(

k−1C1,qN
1−s + C2,qN

1−s + C
1
2

ΩR
k−

3
2C1,qN

2−s
)

∥

∥un+1
∥

∥

Hs(Ω)

.
(

1 + k
3
2 + C

1
2

ΩR
k−

1
2N

)

N
1
2
−s

∥

∥un+1
∥

∥

Hs(Ω)
.

(4.17)

Notice that
∣

∣χn+1
∣

∣

1,Qh
≤

∥

∥χn+1
∥

∥

1,N,q
. Adding (4.16)-(4.17) results in (4.6).

Remark 4.2. Notice that the first three terms in Bk,N indicate the “pollution errors” of the

full DG iterative scheme.

Finally, by recalling Theorems 2.14 and 4.2, we have the DG approximation error bounds

in the wave number dependent H1-norm for the multi-domain spectral IPDG scheme (3.13) as

a numerical approximation to the original problem (2.1).

Theorem 4.3. Under the conditions of Theorems 2.14 and 4.2, we have the estimate

|‖u− un
N‖|21,Ω + kRe(Dk)‖u− un

N‖2
L2(ΓR) + min{CΩR

, R}‖∇T (u− un
N)‖2

L2(ΓR)

. (S1(k))
n
(

Rk2Im(Dk)2 + kRe(Dk)
)

‖e0‖2
L2(ΓR) + (S2(k))

nR‖∇T e
0‖2

L2(ΓR) +B2
k,Nk

2N1−2s,
(4.18)

where Dk is appropriately chosen such that Si(k) < 1, i = 1, 2.
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5. Numerical results

We now present numerical results to demonstrate the convergence of the scheme (3.13). Let

the scatterer B be an octagon with the length of each side being 2r sin(π/8) (cf. Figure 5.1 (b)

for the definition of r). We plot in Figure 5.1 (b) the partition of the computational domain Ω,

and depict the grids on one element in Figure 5.1(a).















































x =
x1

4
(1 − ξ)(1 − η) +

x2

4
(1 + ξ)(1 − η)

+
Rc(ξ, x3, x4)

2
√

c2(ξ, x3, x4) + d2(ξ, x3, x4)
(1 + η),

y =
y1
4

(1 − ξ)(1 − η) +
y2
4

(1 + ξ)(1 − η)

+
Rd(ξ, y3, y4)

2
√

c2(ξ, y3, y4) + d2(ξ, y3, y4)
(1 + η),

(5.1)

where

c(ξ, x3, x4) =
x3

2
(1 − ξ) +

x4

2
(1 + ξ), d(ξ, y3, y4) =

y3
2

(1 − ξ) +
y4
2

(1 + ξ).
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−1

−0.5
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3
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)

(a)

∂B
∂ Ω

Ω

r

R

P
i

(b)

Fig. 5.1. (a): grids on the reference square (left), and the curved element (right); (b): partition of the

computational domain.

We first test the iterative p-IPDG solver (3.13) on a problem with exact solution. More

precisely, we consider










− ∆u− k2u = f, in Ω,

u = g, on ΓB,

(∂r + kDk)u = (kDk − T )u+ h, on ΓR,

(5.2)

with the exact solution

u = cos(
√

x2 + y2) + i sin(
√

x2 + y2),

where Dk and T are the same as before, and f, g and h are determined by exact solution.

In the computation, we evaluate the DtN operator T by a suitable truncation:

TMu := −
M
∑

l=−M

k
∂zH

(1)
l (kR)

H
(1)
l (kR)

ûl(R)eilθ, (5.3)
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and adopt the stopping rule for the iteration: ‖un+1
N −un

N‖∞ ≤ 10−10. We chooseM = 50, Dk =

−T0,kR and the penalization parameters are γ0 = N2 and γ1 = 1/N.

In Table 5.1, we tabulate the number of iterations n, which is taken to meet the stopping

rule, and the numerical errors: EN,n = ‖u− un
N‖∞ for various k and N , and two pairs of r and

R. We see that as N increases, the errors decay very fast with a small amount of iterations.

Table 5.1: Convergence of the p-IPDG scheme

r = 0.3, R = 3 r = 0.2, R = 5

k N n EN,n k N n EN,n

100 7 44 2.82E − 04 70 7 18 1.87E − 02

120 9 54 1.25E − 05 100 9 21 4.32E − 04

200 12 57 8.08E − 07 120 12 34 1.20E − 06

300 16 45 8.48E − 09 200 16 33 4.98E − 09

To examine the history of convergence of the iterative scheme, we fix N and k, and record

in Figure 5.2 (left) log10(EN,n) against n for the following two cases:
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Fig. 5.2. Convergence of the p-IPDG scheme. Left: log
10

(EN,n) against n for cases 1-2. Right:

log
10

(EN,n) against N , where r = 0.2, R = 0.5, k = 200.

• Case 1. r = 0.3, R = 3, k = 300, N = 16, γ0 = N2 and γ1 = 1/N .

• Case 2. r = 0.2, R = 5, k = 200, N = 18, γ0 = N2 and γ1 = 1/N.

To check the convergence with respect to N , we plot in Figure 5.2 (right) the error log10(EN,n),

at the iterative step n such that ‖un+1
N − un

N‖∞ ≤ 10−10, against various N.

We observe from Figure 5.2 that the iterative scheme converges fast in both n and N, and

the scheme produces spectral accurate numerical results.

Finally, we consider the algorithm to solve the scattering problem (2.1) with the compu-

tational domain as in Figure 5.1 (b), and with g = 1/2. Here, we choose the local operator

Dk = −T0,kR and evaluate the DtN operator in the same way as before. In this case we don’t

have an exact solution.

In Figure 5.3, we plot numerical solutions for the following setup:
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Fig. 5.3. Numerical solutions of the Helmholtz equation. Left: Case 3. Right: Case 4.

• Case 3. r = 0.3, R = 4, k = 240, N = 12, γ0 = N2 and γ1 = 1/N .

• Case 4. r = 0.2, R = 5, k = 200, N = 16, γ0 = N2 and γ1 = 1/N.

We visualize from Figure 5.3 that the waves (of ring-pattern in radial direction) propagate

smoothly through the truncated boundary. We also compare the solution with the ”reference

solution” obtained by very fine mesh, and find that the accuracy is as expected.

A. Proof of Theorem 4.1

Proof. For clarity, we separate the proof into several steps.

Step1: Derivation for
∥

∥un+1
N

∥

∥

L2(Ω)
. On the one hand, taking vN = un+1

N in (3.13), we get the

real part of the resulted equation as follows:

−k2
∥

∥un+1
N

∥

∥

2

L2(Ω)
= Re

(

(f, un+1
N ) + 〈δkun

N , u
n
N 〉ΓR

− aN (un+1
N , un+1

N ) − kDk〈un+1
N , un+1

N 〉ΓR

)

.

(A.1)

On the other hand, we first define vN by vN |K = α · ∇un+1
N |K = (x− xB) · ∇un+1

N |K on every

element K ∈ Qh, where xB ∈ B. It is obvious that vN ∈ VN . Using vN as a test function in

(3.13) and taking the real part of the resulted equation, we get

−2k2Re(un+1
N , vN ) = 2Re

(

(f, vN ) + 〈δkun
N , vN 〉ΓR

− aN (un+1
N , vN ) − kDk〈un+1

N , vN 〉ΓR

)

.

(A.2)

By adding k2 times (3.18) with vN |K = α · ∇un+1
N |K to (A.2) we have

2k2
∥

∥un+1
N

∥

∥

2

L2(Ω)
=k2

∑

K∈Qh

∫

∂K

α · n
∂K

∣

∣un+1
N

∣

∣

2
ds+ 2Re

(

(f, vN )

+ 〈δkun
N , vN 〉ΓR

− aN (un+1
N , vN ) − kDk〈un+1

N , vN 〉ΓR

)

.

(A.3)
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Therefore, adding 1
8 times (A.1) to (A.3) gives

15

8
k2

∥

∥un+1
N

∥

∥

2

L2(Ω)
=k2

∑

K∈Qh

∫

∂K

α · n
∂K

∣

∣un+1
N

∣

∣

2
ds− 1

8
kRe(Dk)〈un+1

N , un+1
N 〉ΓR

+
1

8
Re

(

(f, un+1
N ) + 〈δkun

N , u
n+1
N 〉ΓR

− aN (un+1
N , un+1

N )
)

+ 2Re
(

(f, vN ) + 〈δkun
N , vN 〉ΓR

− aN (un+1
N , vN ) − kDk〈un+1

N , vN 〉ΓR

)

.

By (3.13), we get

15

8
k2

∥

∥un+1
N

∥

∥

2

L2(Ω)

= k2
∑

K∈Qh

∫

∂K

α · n
∂K

|un+1
N |2ds+

1

8
Re

(

(f, un+1
N ) + 〈δkun

N , u
n+1
N 〉ΓR

− kDk〈un+1
N , un+1

N 〉ΓR

)

+ 2Re
(

(f, vN ) + 〈δkun
N , vN 〉ΓR

)

− 2kRe
(

Dk〈un+1
N , vN 〉ΓR

)

−
∑

K∈Qh

(1

8

∥

∥∇un+1
N

∥

∥

2

L2(K)
+ 2Re(∇un+1

N ,∇vN )
)

+ 2
∑

e∈EIB
h

(1

8
Re

〈{∂un+1
N

∂ne

}

, [un+1
N ]

〉

e

+ Re
〈{∂un+1

N

∂ne

}

, [vN ]
〉

e
+ Re

〈{∂vN

∂ne

}

, [un+1
N ]

〉

e

)

− 2Im
(

J0(u
n+1
N , vN ) +

q
∑

j=1

Jj(u
n+1
N , vN )

)

.

(A.4)

Using the identity |a|2 − |b|2 = Re(a+ b)(ā− b̄), we have

∑

K∈Qh

∫

∂K

α · n
∂K

|un+1
N |2ds = 2

∑

e∈EI
h

Re〈α · ne{un+1
N }, [un+1

N ]〉e + 〈α · ne, |un+1
N |2〉∂Ω. (A.5)

Note that

n
∂K

=

{

n
ΓB
, on ΓB,

n
ΓR
, on ΓR,

{

n
ΓB

= −ne, for any e ∈ ΓB,

n
ΓR

= ne, for any e ∈ ΓR.

From (3.19) and (A.5), we get

∑

K∈Qh

2Re(∇un+1
N ,∇vN )K =

∑

K∈Qh

∫

∂K

α · n
∂K

∣

∣∇un+1
N

∣

∣

2
ds

= 2
∑

e∈EIB
h

Re〈α · ne{∇un+1
N }, [∇un+1

N ]〉e +
∑

e∈ER
h

〈α · ne, |∇un+1
N |2〉e −

∑

e∈EB
h

〈α · ne, |∇un+1
N |2〉e.

(A.6)
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Plugging (A.5) and (A.6) into (A.4) gives

15

8
k2

∥

∥un+1
N

∥

∥

2

L2(Ω)
=

1

8
Re

(

(f, vn+1
N ) + 〈δkun

N , u
n+1
N 〉ΓR

− kRe(Dk)〈un+1
N , un+1

N 〉ΓR

)

+ 2Re
(

(f, vN ) + 〈δkun
N , vN 〉ΓR

)

+ 2k2
∑

e∈EI
h

Re〈α · ne

{

un+1
N

}

, [un+1
N ]}〉e + k2〈α · ne,

∣

∣un+1
N

∣

∣

2〉∂Ω

− 1

8

∑

K∈Qh

∥

∥∇un+1
N

∥

∥

2

L2(k)
+

∑

e∈EB
h

〈α · ne,
∣

∣∇un+1
N

∣

∣

2〉e +A1 +A2

− 2
∑

e∈EIB
h

Re
〈{∂un+1

N

∂ne

}

, [un+1
N ]

〉

e
+

9

4

∑

e∈EIB
h

〈{∂un+1
N

∂ne

}

, [un+1
N ]

〉

e

+ 2
∑

e∈EIB
h

Re
〈{∂vN

∂ne

}

, [un+1
N ]

〉

e
− 2Im

(

J0(u
n+1
N , vN ) +

q
∑

j=1

Jj(u
n+1
N , vN )

)

,

(A.7)

where

A1 = −2kRe(Dk〈un+1
N , vN 〉ΓR

) −
∑

e∈ER
h

〈α · ne, |∇un+1
N |2〉e,

A2 = 2
∑

e∈EIB
h

Re
(

−
〈

α · ne{∇un+1
N }, [∇un+1

N ]
〉

e
+

〈{∂un+1
N

∂ne

}

, [vN ]
〉

e

)

.

Step 2: Let us estimate each term on the right-hand side of (A.7). Setting M(f, δku
n
N) =

‖f‖L2(Ω) + ‖δkun
N‖L2(ΓR) , we derive the following estimates:

A1 ≤ Ck2‖un+1
N ‖2

L2(ΓR) −
CΩR

2

∑

e∈ER
h

‖∇un+1
N ‖2

L2(e),

2Re
(

(f, vN ) + 〈δkun
N , vN 〉ΓR

)

≤ CM(f, δku
n
N )2 +

1

8

∣

∣un+1
N

∣

∣

2

1,Qh
+
CΩR

4

∑

e∈ER
h

∥

∥∇un+1
N

∥

∥

2

L2(e)
,

2k2
∑

e∈EI
h

Re〈α · ne{un+1
N }, [un+1

N ]〉e ≤ Ck2
∑

e∈EI
h

N
∥

∥un+1
N

∥

∥

L2(Ke∪Ke′)

∥

∥[un+1
N ]

∥

∥

L2(e)
(A.8)

≤ k2

8

∥

∥un+1
N

∥

∥

2

L2(Ω)
+ C

∑

e∈EI
h

Nk2|e|
γ0,e

γ0,eN

|e|
∥

∥[un+1
N ]

∥

∥

2

L2(e)
, (A.9)

k2〈α · ne,
∣

∣un+1
N

∣

∣

2〉∂Ω ≤ Ck2
∥

∥un+1
N

∥

∥

2

L2(ΓR)
+

∑

e∈EB
h

k2〈α · ne,
∣

∣un+1
N

∣

∣

2〉e.

For any e ∈ EIB
h , let Ωe be the set of elements in Γh containing e. Then by (3.20),

A2 = 2
∑

e∈EIB
h

d−1
∑

l=1

Re

∫

e

(

α · τ l
e

{∂un+1
N

∂ne

}

− α · ne

{∂un+1
N

∂τ l
e

})[∂ūn+1
N

∂τ l
e

]

ds

.
∑

e∈EIB
h

d−1
∑

l=1

N |e|−1/2
∑

K∈Ωe

∥

∥∇un+1
N

∥

∥

L2(K)

∥

∥

∥

[∂ūn+1
N

∂τ l
e

]∥

∥

∥

L2(e)
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.
∑

e∈EIB
h

N3|e|−3/2
∑

K∈Ωe

∥

∥∇un+1
N

∥

∥

L2(K)

∥

∥[un+1
N ]

∥

∥

L2(e)

≤ 1

8

∣

∣un+1
N

∣

∣

2

1,Ω
+ C

∑

e∈EIB
h

N5

γ0,e|e|2
γ0,eN

|e|
∥

∥[un+1
N ]

∥

∥

2

L2(e)
.

Thanks to the trace and inverse inequalities (3.21)-(3.22), we have

2
∑

e∈EIB
h

Re
(〈{∂vN

∂ne

}

, [un+1
N ]

〉

e

)

.
∑

e∈EIB
h

N |e|−1/2
∥

∥[un+1
N ]

∥

∥

L2(e)

∑

K∈Qh

‖∇vN‖L2(K)

.
∑

e∈EIB
h

N3|e|−3/2
∥

∥[un+1
N ]

∥

∥

L2(e)

∑

K∈Qh

∥

∥∇un+1
N

∥

∥

L2(K)

≤ 1

8

∣

∣un+1
N

∣

∣

2

1,Ω
+ C

∑

e∈EIB
h

N5

γ0,e|e|2
γ0,eN

|e|
∥

∥[un+1
N ]

∥

∥

2

L2(e)
,

9

4

∑

e∈EIB
h

Re
(〈{∂un+1

N

∂ne

}

, [un+1
N ]

〉

e

)

≤ 1

8

∣

∣un+1
N

∣

∣

2

1,Ω
+ C

∑

e∈EIB
h

N

γ0,e

γ0,eN

|e|
∥

∥[un+1
N ]

∥

∥

2

L2(e)
.

Recall that vN |K = α · ∇un+1
N |K with α = x− xB for each K ∈ Qh. Noting that

∂vN

∂τ l
e

=
∂un+1

N

∂τ l
e

+ α · ∇∂un+1
N

∂τ l
e

=
∂un+1

N

∂τ l
e

+ α · ne
∂

∂τ l
e

(∂un+1
N

∂ne

)

+

d−1
∑

m=1

α · τm
e

∂

∂τm
e

(∂un+1
N

∂τm
e

)

, 1 ≤ l ≤ d− 1.

By direct calculations we get that on each edge/face e of K ∈ Qh, taking vN = α · ∇un+1
N ,

∂vN

∂ne
=
∂un+1

N

∂ne
+ α · ∇∂un+1

N

∂ne

=
∂un+1

N

∂ne
+ α · ne

∂2un+1
N

∂n
2
e

+

d−1
∑

m=1

α · τm
e

∂

∂τm
e

(∂2un+1
N

∂n
2
e

)

,

∂2vN

∂n
2
e

= 2
∂2un+1

N

∂n
2
e

+ α · ne
∂3un+1

N

∂n
3
e

+

d−1
∑

m=1

α · τm
e

∂

∂τm
e

(∂2un+1
N

∂n
2
e

)

,

By induction, it follows that

∂jvN

∂n
j
e

= j
∂jun+1

N

∂n
j
e

+ α · ne
∂j+1un+1

N

∂n
j+1
e

+

d−1
∑

m=1

α · τm
e

∂

∂τm
e

(∂jun+1
N

∂n
j
e

)

, 1 ≤ j ≤ N − 1. (A.10)

Specially, if j = N , then we have

∂NvN

∂n
N
e

= N
∂Nun+1

N

∂n
N
e

. (A.11)
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For j = 1, 2, · · · , q − 1, in view of (A.10), we get

−2Im
(

Jj(u
n+1
N , vN )

)

= − 2Im
∑

e∈EI
h

γj,e

( |e|
N

)2j−1(

α · ne

〈[∂jun+1
N

∂n
j
e

]

,
[∂j+1un+1

N

∂n
j+1
e

]〉

e

+

d−1
∑

m=1

α · τm
e

〈[∂jun+1
N

∂n
j
e

]

,
[ ∂

∂τm
e

(∂jun+1
N

∂n
j
e

)]〉

e

)

.
∑

e∈EI
h

γj,e

( |e|
N

)2j−1∥
∥

∥

[∂jun+1
N

∂n
j
e

]∥

∥

∥

L2(e)

(∥

∥

∥

[∂j+1un+1
N

∂n
j+1
e

]∥

∥

∥

L2(e)
+
N2

|e|
∥

∥

∥

[∂jun+1
N

∂n
j
e

]∥

∥

∥

L2(e)

)

.
∑

e∈EI
h

N

|e|

√

γj,e

γj+1,e

(

γj,e

( |e|
N

)2j−1∥
∥

∥

[∂jun+1
N

∂n
j
e

]
∥

∥

∥

2

L2(e)

+ γj+1,e

( |e|
N

)2j+1∥
∥

∥

[∂j+1un+1
N

∂n
j+1
e

]
∥

∥

∥

2

L2(e)

)

+
∑

e∈EI
h

N2

|e| γj,e

( |e|
N

)2j−1∥
∥

∥

[∂jun+1
N

∂n
j
e

]
∥

∥

∥

2

L2(e)
.

(A.12)

If q < N , then from the inverse inequality it follows

−2Im
(

Jq(u
n+1
N , vN )

)

= −2Im
(

∑

e∈EI
h

γq,e

( |e|
N

)2q−1〈[∂qun+1
N

∂n
q
e

]

,
[∂qvN

∂n
q
e

]〉

e

)

≤1

8

∣

∣un+1
N

∣

∣

2

1,Qh
+ C

∑

e∈EI
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γq,eN
2q+3

|e|2 γq,e
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∥

∥

[∂qun+1
N
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]
∥

∥

∥

2

L2(e)
.

If q ≥ N , (A.11) and the definition of Jq(·, ·) immediately imply that 2Im
(

Jq(u
n+1
N , vN )

)

= 0.

The term −2Im
(

J0(u
n+1
N , vN )

)

can be treated as

−2Im
(

J0(u
n+1
N , vN )

)

= −2Im
∑

e∈EIB
h

γ0,eN

|e|
〈
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∂un+1
N

∂ne
+

d−1
∑
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α · τ j
e

∂un+1
N

∂τ j
e

]
〉

e

≤− 2Im
∑
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h

γ0,eN
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〈
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N ,

∂un+1
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∂ne

〉

e
+ C

∑

e∈EIB
h

N2

|e|
γ0,eN
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∥

∥[un+1
N ]

∥

∥

2

L2(e)

+ C
∑

e∈EI
h

N

|e|

√

γ0,e

γ1,e

(γ0,eN

|e|
∥

∥[un+1
N ]

∥

∥

2

L2(e)
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γ1,e|e|
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∥

∥

[∂un+1
N

∂ne
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∥

∥

2

L2(e)

)

.

We also need the following estimate

∑

e∈EB
h

(

〈α · ne,
∣

∣∇un+1
N

∣

∣

2〉e + k2〈α · ne,
∣

∣un+1
N

∣

∣
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α · neu
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∂un+1
N

∂ne

〉

e

)

≤ −CB

∑

e∈EB
h

(

k2
∥

∥un+1
N

∥

∥

2

L2(e)
+

1

2

∥

∥∇un+1
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∥

∥

2
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+ C
∑

e∈EB
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(γ0,eN

|e|
)2

∥
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∥

∥

2

L2(e)
,

(A.13)

where we have used the inverse inequality and the assumption that D is a star-shape domain.
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Step 3: Substituting (A.8)-(A.13) into (A.7), and using (A.13) we obtain

15

8
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∥un+1
N

∥

∥

2

L2(Ω)
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8
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2
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.

Therefore, it follows from Lemma 3.1, the bound (3.16) of the real part of aN (un+1
N , un+1

N ), and

definition of Cstab that

15
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CΩR

4

∑
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+ Ck2Cstab

∣

∣(f, un+1
N ) + 〈δkun

N , u
n+1
N 〉ΓR

∣

∣ ,

(A.14)

where we derive the inequality by also using a consequence of (3.17):

Ck2
∥

∥un+1
N

∥

∥

2

L2(ΓR)
≤ C

k

|Im(Dk)|
∣

∣(f, un+1
N ) + 〈δkun

N , u
n+1
N 〉ΓR

∣

∣ .

From Lemma 3.1, it follows

Ck2Cstab

∣

∣(f, un+1
N ) + 〈δkun

N , u
n+1
N 〉ΓR

∣

∣ ≤ Ck2C2
stabM

2(f, δku
n
N) +

k2

8

∥

∥un+1
N

∥

∥

2

L2(Ω)
,
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then (A.14) can be written as

5

8
k2

∥

∥un+1
N

∥

∥

2

L2(Ω)
+

1

2

∣

∣un+1
N

∣

∣

2

1,Qh
+
CΩR

4

∑

e∈ER
h

∥

∥∇un+1
N

∥

∥

2

L2(e)
+

9

8
kRe(Dk)

∑

e∈ER
h

∥

∥un+1
N

∥

∥

2

L2(e)

+ CB

∑

e∈EB
h

(

k2
∥

∥un+1
N

∥

∥

2

L2(e)
+

1

2

∥

∥∇un+1
N

∥

∥

2

L2(e)

)

≤ Ck2C2
stabM

2(f, δku
n
N),

which completes the proof.

Acknowledgments. The work of the first author was partially supported by the National

Natural Science Foundation of China (11026065 and 11101196). This work was largely done

when this author worked as a Research Fellow in Nanyang Technological University. The work

of the second author was supported by the National Natural Science Foundation of China

(11201166). The work of the third author was supported by Singapore AcRF Tier 1 Grant

RG58/08.

References

[1] D.N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J.

Numer. Anal., 19:4 (1982), 742-760.

[2] D.N. Arnold, F. Brezzi, B. Cockburn, and L.D. Marini, Unified analysis of discontinuous Galerkin

methods for elliptic problems, SIAM J. Numer. Anal., 39:5 (2002), 1749-1779.

[3] A.K. Aziz and A. Werschulz, On the numerical solution of Helmholtz’s equation by the finite

element method, SIAM J. Numer. Anal., 17:5 (1980), 681-686.
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