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Abstract

We derive in this paper the asymptotic estimates of the nodes and weights of the Gauss–Lobatto–
Legendre–Birkhoff (GLLB) quadrature formula, and obtain optimal error estimates for the associated GLLB
interpolation in Jacobi weighted Sobolev spaces. We also present a user-oriented implementation of the
pseudospectral methods based on the GLLB quadrature nodes for Neumann problems. This approach allows
an exact imposition of Neumann boundary conditions, and is as efficient as the pseudospectral methods
based on Gauss–Lobatto quadrature for PDEs with Dirichlet boundary conditions.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In a recent work, Ezzirani and Guessab [8] proposed a fast algorithm for computing
the nodes and weights of some Gauss–Birkhoff type quadrature formulae (cf. [19,20])
with mixed boundary conditions. One special rule of particular importance, termed as the
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Gauss–Lobatto–Legendre–Birkhoff (GLLB) quadrature, takes the form∫ 1

−1
φ(x)dx ∼ φ′(−1)ω− +

N−1∑
j=1

φ(x j )ω j + φ
′(1)ω+, (1.1)

which is exact for all polynomials of degree 2N − 1, and whose interior nodes are zeros of the
quasi-orthogonal polynomial (cf. [25]) formed by a linear combination of the Jacobi polynomials
J (2,2)N−1 (x) and J (2,2)N−3 (x). Motivated by [8], our first intention is to study the asymptotic behaviors
of the nodes and weights of (1.1). Two important results are

x j ∼= cos
(2 j + 1/2)π

2N + 1
, 1 ≤ j ≤ N − 1, (1.2)

and

ω j ∼=
π

N
sin θ j , θ j = arccos x j , 1 ≤ j ≤ N − 1. (1.3)

With the aid of these estimates, we are able to analyze the GLLB interpolation errors:

‖I N u − u‖L2(I ) + N−1
‖(1− x2)1/2(I N u − u)′‖L2(I )

≤ cN−m
‖(1− x2)(m−2)/2u(m)‖L2(I ), (1.4)

where I = (−1, 1) and I N is the Gauss–Birkhoff interpolation operator associated with the
GLLB points. Similar to the approximation results on the Legendre–Gauss–Lobatto interpolation
obtained in [15,16], the estimate (1.4) is optimal.

The GLLB quadrature formula involves derivative values φ′(±1) at the endpoints. Hence
its nodes can be a natural choice of the preassigned interpolation points for many important
problems, such as numerical integration and integral equations with the data of derivatives at the
endpoints, etc. In particular, it plays an important role in spectral approximations of second-order
elliptic problems with Neumann boundary conditions [8]. As we know, the numerical solutions
of such problems given by the commonly used Galerkin method with any fixed mode N , do
not fulfill the Neumann boundary conditions exactly. Thereby, we prefer to collocation methods
oftentimes, whose solutions satisfy the physical boundary conditions. Whereas, in a collocation
method, a proper choice of the collocation points is crucial in terms of accuracy, stability and ease
of treating the boundary conditions (BCs), especially, the treatment of BCs is even more critical
due to the global feature of spectral method [18,21]. The GLLB collocation approximation takes
the boundary conditions into account in such a way that the resulting collocation systems have
diagonal mass matrices, and therefore leads to explicit time discretization for time-dependent
problems [8]. However, like the collocation method based on Gauss–Lobatto points [17,5,2,13,
3,24,9], the GLLB differentiation matrices are ill-conditioned. Thus a suitable preconditioned
iteration solver is preferable in actual computations. We construct in this paper an efficient finite-
difference preconditioning for one-dimensional second-order elliptic equations. We also present
a user-oriented implementation and an error analysis of the GLLB pseudospectral methods based
on variational formulations.

The rest of the paper is organized as follows. In Section 2, we introduce the GLLB quadrature
formula, and then investigate the asymptotic behaviors of its nodes and weights in Section 3.
With the aid of asymptotic estimates and some other approximation results, we are able to
analyze the GLLB interpolation errors in Section 4. We give a user-oriented description of the
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implementation of the GLLB collocation method, and present some illustrative numerical results
in Section 5. The final section is for some concluding remarks.

2. The GLLB quadrature formula

In this section, we introduce the Gauss–Lobatto–Legendre–Birkhoff quadrature formula.

2.1. Preliminaries

We start with some notations to be used in the subsequent sections.

2.1.1. Notations
• Let I := (−1, 1), and χ(x) ∈ L1(I ) be a generic positive weight function defined in I .

For any integer r ≥ 0, the weighted Sobolev space H r
χ (I ) is defined as usual with the

inner product, semi-norm and norm denoted by (u, v)r,χ , |v|r,χ and ‖v‖r,χ , respectively.
In particular, L2

χ (I ) = H0
χ (I ), (u, v)χ = (u, v)0,χ and ‖v‖χ = ‖v‖0,χ . For any real

r > 0, H r
χ (I ) and its norm are defined by space interpolation as in Admas [1]. In cases

where no confusion would arise, χ may be dropped from the notations, whenever χ ≡ 1.
• Let ωα(x) = (1−x2)α, x ∈ I with α > −1 be the Gegenbauer weight function. In particular,

denote ω(x) = 1− x2.

• Let N be the set of all non-negative integers. For any N ∈ N, let PN be the set of all
algebraic polynomials of degree at most N . Without loss of generality, we assume that N ≥ 4
throughout this paper.
• Denote by c a generic positive constant, which is independent of any function and N (mode

in series expansion).
• For two sequences {zn} and {wn} with wn 6= 0, the expression zn ∼ wn means |zn|/|wn| →

c(6= 0) as n → ∞. In particular, zn ∼= wn means zn/wn ≈ 1 for n � 1, or zn/wn → 1 for
n→∞.
• For simplicity, we sometimes denote ∂ l

xv =
dlv
dx l = v

(l), for any integer l ≥ 1.

2.1.2. Jacobi polynomials

We recall some relevant properties of the Jacobi polynomials, denoted by J (α,β)n (x), x ∈ I
with α, β > −1 and n ≥ 0, which are mutually orthogonal with respect to the Jacobi weight
ωα,β(x) = (1− x)α(1+ x)β :∫ 1

−1
J (α,β)n (x)J (α,β)m (x)ωα,β(x)dx = γ (α,β)n δmn, (2.1)

where δmn is the Knonecker symbol, and

γ (α,β)n =
2α+β+1Γ (n + α + 1)Γ (n + β + 1)

(2n + α + β + 1)Γ (n + 1)Γ (n + α + β + 1)
. (2.2)

In the subsequent discussions, we will mainly use two special types of Jacobi polynomials. The
first one is J (2,2)n (x), defined by the three-term recursive relation (see, e.g., Szegö [23]):

n(n + 4)J (2,2)n (x) = (n + 2)(2n + 3)x J (2,2)n−1 (x)− (n + 1)(n + 2)J (2,2)n−2 (x),

J (2,2)0 (x) = 1, J (2,2)1 (x) = 3x, x ∈ [−1, 1].
(2.3)
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The coefficient of leading term of J (2,2)n (x) is

K (2,2)
n =

(2n + 4)!
2nn!(n + 4)!

. (2.4)

Moreover, we have

J (2,2)n (−x) = (−1)n J (2,2)n (x), J (2,2)n (1) =
(n + 1)(n + 2)

2
. (2.5)

The corresponding monic polynomial is defined by dividing the leading coefficient in (2.4):

Pn(x) := λn J (2,2)n (x) with λn =

(
K (2,2)

n

)−1
. (2.6)

As a direct consequence of (2.3) and (2.6),

Pn+1(x) = x Pn(x)− an Pn−1(x) with an =
n(n + 4)

(2n + 3)(2n + 5)
, (2.7)

where P−1 = 0 and P0 = 1. By (2.1)–(2.2), the normalized Jacobi polynomials

P̃n(x) := λ̃n J (2,2)n (x) with λ̃n =

(
γ (2,2)n

)−1/2
, (2.8)

satisfy ‖P̃n‖
2
ω2 = 1.

We will also utilize the Legendre polynomials, denoted by Ln(x), which are mutually
orthogonal with respect to the unit weight ω = 1. Note that the constant of orthogonality and
leading coefficient respectively are

γ (0,0)n = ‖Ln‖
2
=

2
2n + 1

, K (0,0)
n =

(2n)!

2n(n!)2
. (2.9)

Recall that Ln(±1) = (±1)n and L ′n(±1) = 1
2 (−1)n−1n(n + 1).

2.2. GLLB quadrature formula

The GLLB quadrature formula can be derived from Theorem 4.2 of Ezzirani and Guessab [8],
which belongs to a Birkhoff type rule (see, e.g., [19,20]).

Theorem 2.1. Let {Pn} be the monic Jacobi polynomials defined in (2.6). Consider the quasi-
orthogonal polynomial:

QN−1(x) = PN−1(x)+ bN PN−3(x), N ≥ 2, (2.10)

where

bN = −
(N − 1)(N + 2)(2N 2

+ 2N + 3)

(2N − 1)(2N + 1)(2N 2 − 2N − 3)
+

√
12(N − 1)(N + 2)(N 2 + N − 3)

(2N − 1)(2N 2 − 2N − 3)

:= −bI
N + bIN . (2.11)

Then we have that
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¬ For N ≥ 4,

1
4
−

1
N
< −bN <

(N + 2)(N + 3)
(2N − 1)(2N + 1)

. (2.12)

 The N−1 zeros of QN−1(x), denoted by
{

x j
}N−1

j=1 , are distinct, real and all located in (−1, 1).

® There exists a unique set of weights
{
ω j
}N

j=0 such that∫ 1

−1
φ(x)dx = φ′(−1)ω0 +

N−1∑
j=1

φ(x j )ω j + φ
′(1)ωN := S N [φ], ∀φ ∈ P2N−1.(2.13)

¯ The interior weights are all positive and explicitly expressed by

ω j =
AN

PN−2(x j )Q′N−1(x j )

1

(1− x2
j )

2
, 1 ≤ j ≤ N − 1, (2.14)

with

AN =

(
1−

bN

aN−2

)
λ2

N−2

λ̃2
N−2

, (2.15)

where the constants aN−2, bN , λN−2 and λ̃N−2 are defined in (2.7), (2.11), (2.6) and (2.8),
respectively.

Proof. The proof is based on a reassembly and extension of some relevant results in [8]. For
clarity, we first present a one-to-one correspondence between the notations of [8] and those of
this paper:

ln � N − 1, dσ̂ � (1− x2)2dx, π̂k � Pk, π̃k � P̃k, qn,2 � QN−1,

βk � ak, ŝN−1 � bN , βn−1 � aN−2 − bN , J ∗n (σ̂ ) � JN−1.
(2.16)

We next derive the expression of bN . By Theorem 4.2 and 4.3 of [8], we find that

aN−2 − bN = βN−2

=
−

√
12(N − 1)(N + 2)(N 2 + N − 3)+ (N + 2)(2N 2

− 4N + 3)

(2N − 1)(2N 2 − 2N − 3)
.

Hence, a direct computation leads to

bN = aN−2 − βN−2
(2.7)
= RHS of (2.11).

¬ The special values b j ( j = 1, 2, 3) can be computed directly via (2.11). To obtain the
bounds for bN with N ≥ 4, we first prove that

− bN <
(N + 2)(N + 3)
(2N − 1)(2N + 1)

. (2.17)

Since −bN = bI
N − bIN < bI

N , it suffices to verify

W1 := (N + 2)(N + 3)(2N 2
− 2N − 3)− (N − 1)(N + 2)(2N 2

+ 2N + 3) > 0.

A direct calculation yields

W1 = 2(N − 3)(N + 2)(2N + 1).
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Hence (2.17) is valid for N ≥ 4, and it remains to prove

− bN >
1
N
−

1
4
. (2.18)

Clearly, −
√

N 2 + N − 3 > −
√

N 2 + N − 2 = −
√
(N − 1)(N + 2) and 2N (N − 1) >

2N 2
− 2N − 3. Therefore,

−bN >
(N − 1)(N + 2)(2N 2

+ 2N + 3)− (2N + 1)
√

12(N − 1)(N + 2)

(2N − 1)(2N + 1)(2N 2 − 2N − 3)

>
(N − 1)(N + 2)

[
(2N 2

+ 2N + 3)− 4(2N + 1)
]

(2N − 1)(2N + 1)(2N 2 − 2N − 3)

>
(N − 1)(N + 2)(2N 2

− 6N − 8)
2N (N − 1)(2N − 1)(2N + 1)

>
(N + 2)(N − 4)(N + 1)
2N (2N − 1)(2N + 1)

>
(N + 2)(N − 4)

2N (2N − 1)
>

N − 4
4N

=
1
4
−

1
N
.

Thus, a combination of (2.17) and (2.18) leads to (2.12).
 Observe from (2.12) that for N ≥ 3,−bN > 0. Therefore, by Theorem 4.1 of [8], the

quasi-orthogonal polynomial can be expressed as a determinant

QN−1(x) = PN−1(x)+ bN PN−3(x) = det (xIN−1 − JN−1) , (2.19)

where IN−1 is an identity matrix, and JN−1 is a symmetric tri-diagonal matrix of order N − 1,

JN−1 =


0
√

a1√
a1 0

√
a2

. . .
. . .

. . .
√

aN−3 0
√

aN−2 − bN√
aN−2 − bN 0

 (2.20)

with an and bN given in (2.7) and (2.11), respectively. Therefore, all the zeros of QN−1 are real
and distinct.

® Theorem 4.2 of [8] reveals that with such a choice of bN , all the zeros of QN−1 are
distributed in (−1, 1), and the quadrature formula (2.13) is unique. Moreover, the interior weights
{ω j }

N−1
j=1 are all positive.

¯ We now consider the expressions of the weights. By Formula (38) of [8],

(1− x2
j )

2ω j =
A∗N

K ∗N (x j )
, 1 ≤ j ≤ N − 1, (2.21)

where A∗N = 1− bN/aN−2, and

K ∗N (x j ) = A∗N

N−3∑
k=0

P̃2
k (x j )+ P̃2

N−2(x j ). (2.22)



148 L.-L. Wang, B.-y. Guo / Journal of Approximation Theory 161 (2009) 142–173

To simplify K ∗N (x j ), we recall the Christoffel–Darboux formula (see, e.g., Szegö [23]):

P̃ ′n+1(x)P̃n(x)− P̃ ′n(x)P̃n+1(x) =
dn+1

dn

n∑
k=0

P̃2
k (x) > 0, ∀x ∈ [−1, 1], (2.23)

where dk is the leading coefficient P̃k(x), and by (2.6) and (2.8),

dk =
λ̃k

λk
, P̃k(x) = dk Pk(x). (2.24)

Hence,

Q′N−1(x)P̃N−2(x) −P̃ ′N−2(x)QN−1(x)
(2.10)
=

[
P ′N−1(x)P̃N−2(x)− P̃ ′N−2(x)PN−1(x)

]
− bN

[
P̃ ′N−2(x)PN−3(x)− P ′N−3(x)P̃N−2(x)

]
(2.24)
=

1
dN−1

[
P̃ ′N−1(x)P̃N−2(x)− P̃ ′N−2(x)P̃N−1(x)

]
−

bN

dN−3

[
P̃ ′N−2(x)P̃N−3(x)− P̃ ′N−3(x)P̃N−2(x)

]
(2.23)
=

1
dN−2

N−2∑
k=0

P̃2
k (x)−

bN dN−2

d2
N−3

N−3∑
k=0

P̃2
k (x)

=
1

dN−2

{[
1−

bN d2
N−2

d2
N−3

]
N−3∑
k=0

P̃2
k (x)+ P̃2

N−2(x)

}
(2.26)
=

1
dN−2

{[
1−

bN

aN−2

] N−3∑
k=0

P̃2
k (x)+ P̃2

N−2(x)

}
.

(2.25)

In the last step, we used the identity

aN−2 =
λ̃2

N−3

λ̃2
N−2

λ2
N−2

λ2
N−3

=
d2

N−3

d2
N−2

, (2.26)

which can be verified directly by the definition of the constants. Thus, taking x = x j in (2.25)
and using the fact: QN−1(x j ) = 0, 1 ≤ j ≤ N − 1, gives

Q′N−1(x j )P̃N−2(x j )
(2.25)
=

1
dN−2

{
A∗N

N−3∑
k=0

P̃2
k (x j )+ P̃2

N−2(x j )

}
=

1
dN−2

K ∗N (x j ), (2.27)

which implies that

K ∗N (x j )
(2.24)
= d2

N−2 Q′N−1(x j )PN−2(x j )
(2.24)
=

λ̃2
N−2

λ2
N−2

Q′N−1(x j )PN−2(x j ).

Plugging it into (2.21) leads to (2.14)–(2.15). �

Remark 2.1. ¬ The choice of bN so that all zeros of QN−1(x) are in (−1, 1), is unique, and
thereby uniquely determines the quadrature rule. It is seen from (2.12) that bN is uniformly
bounded with −bN ∼= 1/4, whose behavior is depicted in Fig. 3.1 (left).

 The formulae (2.19)–(2.20) indicate that the quadrature nodes {x j }
N−1
j=1 are eigenvalues of the

symmetric tridiagonal matrix JN−1, and therefore, can be evaluated by using some standard
methods (e.g., the QR-algorithm) as with the classical Gauss quadrature (see, e.g., [11]).
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Fig. 3.1. Left: the constant −bN and its bounds (cf. (2.10)–(2.11)) against N . Right: asymptotic behavior of ∆min
N and

∆max
N against N (right).

Making use of Formula (41) of [8], the weights {ω j }
N−1
j=1 can be computed from the first

component of the orthonormal eigenvectors of JN−1.

® Alternative to the eigen-method, the nodes {x j }
N−1
j=1 can be located by a root-finding method,

say Newton–Raphson iteration, which turns out to be more efficient for a quadrature rule of
higher order. A good initial approximation might be {x (0)j }

N−1
j=1 given in (3.24). Accordingly,

the weights {ω j }
N−1
j=1 can be computed via the compact formulae (2.14)–(2.15).

¯ It is worthwhile to point out that the quadrature nodes and weights are symmetric

x j + xN− j = 0, ω j = ωN− j , j = 1, 2, . . . , N − 1. (2.28)

Therefore, the computational cost can be halved.
° Let h0 and hN be the Lagrangian polynomials given in (5.6) of this paper. The boundary

weights

ω0 =

∫ 1

−1
h0(x)dx, ωN =

∫ 1

−1
hN (x)dx .

One verifies that ω0 = −ωN , and an explicit evaluation of the above integrals by using the
relevant properties of Jacobi polynomials leads to the formula for ω0 in Theorem 4.2 of [8].

The GLLB quadrature formula (2.13) enjoys the same degree of exactness as the
Gauss–Legendre–Lobatto (GLL) quadrature (with N + 1 nodes), but in contrast to GLL, GLLB
includes the boundary derivative values φ′(±1), which is thereby suitable for exactly imposing
Neumman boundary conditions (see Section 5).

3. Asymptotic properties of the nodes and weights

In this section, we make a quantitative asymptotic estimate of the nodes and weights in the
GLLB quadrature formula (2.13). These properties will play an essential role in our subsequent
analysis of the GLLB interpolation errors.

3.1. Asymptotic property of the nodes

We start with the interlacing property. Theorem 4.1 of [20] reveals that the zeros of QN−1
interlace with those of QN−2. The following theorem indicates that the zeros of QN−1 also
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interlace with those of P̃N−2, which can be proved in a fashion similar to that in [20]. For
integrity, we provide the proof below.

Theorem 3.1. Let {x j }
N−1
j=1 and {yk}

N−2
k=1 be the zeros of QN−1(x) and P̃N−2(x), respectively.

Then we have

− 1 = y0 < x1 < y1 < x2 < y2 < · · · < yN−2 < xN−1 < 1 = yN−1. (3.1)

Proof. We take three steps to complete the proof.
Step I: Show that

QN−1(y j )QN−1(y j+1) < 0, j = 1, 2, . . . N − 3, (3.2)

equivalently to say, between two consecutive zeros of P̃N−2(x), there exists at least one zero of
QN−1(x). To justify this, we first deduce that

Q′N−1(x)P̃N−2(x)− P̃ ′N−2(x)QN−1(x) > 0, ∀x ∈ [−1, 1], (3.3)

which is a consequence of (2.7), (2.25) and (2.12), since

dN−2 > 0, 1−
bN

aN−2
> 1+

(
1
4
−

1
N

)
1

aN−2
≥ 1, ∀N ≥ 4.

Thanks to P̃N−2(yk) = 0, taking x = y j , y j+1 in (3.3) yields

P̃ ′N−2(y j )QN−1(y j ) < 0, P̃ ′N−2(y j+1)QN−1(y j+1) < 0, (3.4)

which certainly implies

P̃ ′N−2(y j )P̃
′

N−2(y j+1) · QN−1(y j )QN−1(y j+1) > 0.

Therefore, to prove (3.2), it suffices to check that

P̃ ′N−2(y j )P̃
′

N−2(y j+1) < 0. (3.5)

Notice that

P̃N−2(x) = dN−2

N−2∏
k=1

(x − yk) ,

and consequently,

P̃ ′N−2(y j ) = dN−2

j−1∏
k=1

(
y j − yk

)
·

N−2∏
k= j+1

(
y j − yk

)
= (−1)N− j−2dN−2 · C1,

P̃ ′N−2(y j+1) = (−1)N− j−3dN−2 · C2,

(3.6)

where C1 and C2 are two positive constants. Hence

P̃ ′N−2(y j )P̃
′

N−2(y j+1) = (−1)2N−2 j−5
· d2

N−2C1C2 < 0, 1 ≤ j ≤ N − 3. (3.7)

This validates (3.5) and thereby (3.2) follows.
Step II: At this point, it remains to consider the possibility of possessing zeros of QN−1(x) in
subintervals (yN−2, 1) and (−1, y1). Clearly, by the first identity of (3.6), the largest zero yN−2
satisfies P̃ ′N−2(yN−2) > 0. Thus, by (3.4),

QN−1(yN−2) < 0. (3.8)
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On the other hand, we have

QN−1(1) = PN−1(1)+ bN PN−3(1) > 0, (3.9)

which is due to a direct calculation using (2.5)–(2.6) and (2.12):

PN−1(1)
PN−3(1)

+ bN =
(N + 2)(N + 3)
(2N − 1)(2N + 1)

+ bN > 0,

and PN−3(1) > 0. The sign of (3.8)–(3.9) indicates that there is at least one zero of QN−1(x) in
the interval (yN−2, 1). Using the symmetry of the zeros (see [8,23]):

x j = −xN− j , j = 1, . . . , N − 1; yk = −yN−1−k, k = 1, . . . , N − 2, (3.10)

we deduce that the interval (−1, y1) also contains at least one zero of QN−1(x).

Final step: A combination of the previous statements reaches the conclusion: each of the N − 1
subintervals

{
(y j , y j+1)

}N−2
j=0 (y0 = −1, yN−1 = 1) contains at least one of the N − 1 zeros of

QN−1(x), and therefore there can only be a unique one in each subinterval. �

To visualize the above interlacing property, we denote

∆min
N = min

1≤ j≤N−1
(y j − x j ), ∆max

N = max
1≤ j≤N−1

(y j − x j ), ∀N ≥ 4. (3.11)

According to Theorem 3.1, we expect to see that

∆max
N > ∆min

N > 0, ∀N ≥ 4, lim
N→∞

∆min
N = lim

N→∞
∆max

N = 0, (3.12)

which is illustrated by Fig. 3.1(right).
In the analysis of interpolation error, we need more precise asymptotic estimates of the GLLB

quadrature nodes. For this purpose, hereafter, we assume that the zeros {x j }
N−1
j=1 of QN−1(x) are

arranged in descending order. We make the change of variables

x = cos θ, θ ∈ [0, π], θ j = cos−1 x j , j = 1, 2, . . . , N − 1. (3.13)

The main result is stated in the following theorem.

Theorem 3.2. Let
{
θ j
}N−1

j=1 be the same as in (3.13). Then

θ j ∈ I j := (θ̃ j−1, θ̃ j ) ⊂ (0, π), 1 ≤ j ≤ N − 1, (3.14)

where

θ̃ j =
2 j + 3

2

2N + 1
π, 0 ≤ j ≤ N − 1. (3.15)

In other words,

0 < θ̃0 < θ1 < θ̃1 < θ2 < θ̃2 < · · · < θ̃N−2 < θN−1 < θ̃N−1 < π. (3.16)

Proof. By the intermediate mean-value theorem, (3.14) is equivalent to

QN−1(cos θ̃ j−1)QN−1(cos θ̃ j ) < 0, j = 1, 2, . . . , N − 1. (3.17)
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To prove this result, we first recall Formula (8.21.10) of Szegö [23]:

J (2,2)n (cos θ) = n−
1
2 G(θ) cos

((
n +

5
2

)
θ + γ

)
+ O(n−

3
2 ), θ ∈ (0, π), (3.18)

where

G(θ) = π−
1
2

(
sin

θ

2

)− 5
2
(

cos
θ

2

)− 5
2

= 4

√
2
π
(sin θ)−

5
2 , γ = −

5
4
π. (3.19)

Hence, using (2.6), (2.10) and (3.18) gives

QN−1(cos θ)
(2.10)
= PN−1(cos θ)+ bN PN−3(cos θ)

(2.6)
= λN−1 J (2,2)N−1 (cos θ)+ bNλN−3 J (2,2)N−3 (cos θ)

(3.18)
= G(θ)

{
(N − 1)−

1
2 λN−1 cos

((
N +

3
2

)
θ + γ

)
+ (N − 3)−

1
2 bNλN−3 cos

((
N −

1
2

)
θ + γ

)}
+

{
λN−1 O((N − 1)−

3
2 )+ bNλN−3 O((N − 3)−

3
2 )
}

:= HN (θ)+ RN . (3.20)

Notice that θ̃ j in (3.15) solves the equation(
N +

1
2

)
θ̃ j + γ =

(
j −

1
2

)
π, 0 ≤ j ≤ N − 1,

which implies(
N +

3
2

)
θ̃ j + γ =

(
j −

1
2

)
π + θ̃ j ,

(
N −

1
2

)
θ̃ j + γ =

(
j −

1
2

)
π − θ̃ j .

Therefore, taking θ = θ̃ j in (3.20) and using trigonometric identities, gives

HN (θ̃ j ) = G(θ̃ j )

{
(N − 1)−

1
2 λN−1 cos

((
j −

1
2

)
π + θ̃ j

)
+ (N − 3)−

1
2 bNλN−3 cos

((
j −

1
2

)
π − θ̃ j

)}
= (−1) j (sin θ̃ j

)
G(θ̃ j )

{
(N − 1)−

1
2 λN−1 − (N − 3)−

1
2 bNλN−3

}
:= (−1) j SN (θ̃ j ). (3.21)

Since −bN > 0, λk > 0 and θ j ∈ (0, π), we have that SN (θ̃ j ) > 0, and thereby

sgn
(
HN (θ̃ j )

)
= (−1) j , 0 ≤ j ≤ N − 1. (3.22)

Moreover, by (2.12), (3.19) and (3.21),

|HN (θ̃ j )| ≥ 2
5
2π−

1
2
(
sin θ̃ j

)− 3
2

{
(N − 1)−

1
2 λN−1 +

(
1
4
−

1
N

)
(N − 3)−

1
2 λN−3

}
≥ cN−

1
2 (λN−1 + λN−3),
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Fig. 3.2. Left: the error ∆̃N (solid line) and N−1.9 (“◦”) against N . Right: asymptotic behavior of δ(1)N (solid line) and

δ
(2)
N (“◦”) (cf. (3.43)) against N .

which, together with the fact −bN ∼=
1
4 , implies

|RN | ≤ cN−
3
2 (λN−1 + λN−3) ≤ cN−1

|HN (θ̃ j )|. (3.23)

Hence, a combination of (3.20)- (3.23) leads to that

sgn
(
QN−1(cos θ̃ j )

)
= sgn

(
HN (θ̃ j )

)
= (−1) j , 0 ≤ j ≤ N − 1, ∀N � 1,

which implies (3.17) and therefore, there exists at least one zero of QN−1(cos θ) in each
subinterval I j = (θ̃ j−1, θ̃ j ), 1 ≤ j ≤ N − 1. Because the number of zeros equals to the number
of subintervals, there exists exactly one zero in I j . �

As a consequence of Theorem 3.2, a good asymptotic approximation to the zeros {x j }
N−1
j=0

might be

x j = cos θ j ∼= x (0)j := cos

(
θ̃ j−1 + θ̃ j

2

)
= cos

(2 j + 1/2)π
2N + 1

, 1 ≤ j ≤ N − 1. (3.24)

To illustrate this property numerically, we denote

∆̃N = max
1≤ j≤N−1

∣∣∣x j − x (0)j

∣∣∣ .
We plot in Fig. 3.2 (left) the error ∆̃N (solid line) and the reference value N−1.9 (“◦”) against N ,
which indicates that ∆̃N decays algebraically at a rate of N−1.9, and predicts that

x j = cos
(2 j + 1/2)π

2N + 1
+ O(N−1.9), 1 ≤ j ≤ N − 1. (3.25)

3.2. Asymptotic properties of the weights

We establish below an important result concerning the asymptotic behaviors of the interior
quadrature weights {ω j }

N−1
j=1 in (2.13).
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Theorem 3.3. Let
{
θ j
}N−1

j=1 be the zeros of the quadrature (trigonometric) polynomial
QN−1(cos θ). Then for any N � 1,

ω j ∼=
π

N
sin θ j , j = 1, 2, . . . , N − 1. (3.26)

Proof. We rewrite the weights as

ω j
(2.14)
=

AN

(1− x2
j )

2

1
PN−2(x j )Q′N−1(x j )

(2.6)
=

(2.10)

AN

λN−2λN−3

1

(1− x2
j )

2

1

J (2,2)N−2 (x j )W ′N (x j )
, (3.27)

where

WN (x) :=
λN−1

λN−3
J (2,2)N−1 (x)+ bN J (2,2)N−3 (x) = λ

−1
N−3 QN−1(x). (3.28)

To prove (3.26), it suffices to study the asymptotic behaviors of the constant, J (2,2)N−2 (x j ) and
W ′N (x j ) in (3.27). For clarity, we split the rest of the proof into three steps.
Step I: Let us first estimate the constants in (3.27)–(3.28). A direct calculation using (2.6)–(2.7)
and (2.12) leads to

aN−2 ∼=
1
4
, −bN ∼=

1
4
,

1

λ̃2
N−2

∼=
16
N
,

λN−2

λN−3
=
(N − 2)(N + 2)

N (2N − 1)
∼=

1
2
,

(3.29)

which, together with (2.15), implies

AN

λN−2λN−3
=

(
1−

bN

aN−2

)
λN−2

λN−3̃λ
2
N−2

∼=
16
N
. (3.30)

Step II: Let

ΘN , j =

(
N +

1
2

)
θ j −

5
4
π. (3.31)

We next show that

sin ΘN , j ∼= 0, ∀N � 1. (3.32)

Since QN−1(x j ) = 0, we have

WN (cos θ j )
(3.28)
= λ−1

N−3 QN−1(cos θ j ) = λ
−1
N−3 QN−1(x j ) = 0.

Hence, by (3.18),

0 = WN (cos θ j ) =
λN−1

λN−3
J (2,2)N−1 (cos θ j )+ bN J (2,2)N−3 (cos θ j )

(3.18)
= (N − 3)−

1
2 G(θ j )

{
cN cos

(
ΘN , j + θ j

)
+ bN cos

(
ΘN , j − θ j

)}
+ O(N−

3
2 )

= (N − 3)−
1
2 G(θ j )

{
(bN − cN ) sin θ j sin ΘN , j

+ (bN + cN ) cos θ j cos ΘN , j
}
+ O(N−

3
2 ),
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where G(θ j ) is given in (3.19), and by (3.29),

cN =
λN−1

λN−3

(
N − 3
N − 1

) 1
2
∼=
λN−1

λN−2

λN−2

λN−3

∼=
1
4
. (3.33)

Consequently,

0 = (bN − cN ) sin θ j sin ΘN , j + (bN + cN ) cos θ j cos ΘN , j + O(N−1 sin5/2 θ j ). (3.34)

On the other hand, using (3.29) and (3.33) leads to

bN + cN ∼= 0, bN − cN ∼= −
1
2
, for N � 1. (3.35)

Since sin θ j 6= 0(> 0), the desired result (3.32) follows from (3.34).
Step III: Applying Formula (8.8.1) of [23] (note: this formula may be derived by differentiating
(3.18) and using (3.28)) to W ′N (x), and using trigonometric identities, yields

dWN

dθ
(cos θ j )

= (N − 3)
1
2 G(θ j )

{
−cN sin(ΘN , j + θ j )− bN sin(ΘN , j − θ j )+ (N sin θ j )

−1 O(1)
}

= (N − 3)
1
2 G(θ j )

{
(bN − cN ) sin θ j cos ΘN , j − (bN + cN ) cos θ j sin ΘN , j

+ (N sin θ j )
−1 O(1)

}
. (3.36)

Hence, by (3.32) and (3.35),

dWN

dθ
(cos θ j ) ∼= −

1
2

√
N G(θ j ) sin θ j cos ΘN , j , 1 ≤ j ≤ N − 1, (3.37)

which implies

W ′N (x j ) =
dWN

dθ
(cos θ j )

dθ
dx

∣∣∣∣
θ=θ j

= −
dWN

dθ
(cos θ j )

1
sin θ j

=

√
N

2
G(θ j ) cos ΘN , j . (3.38)

On the other hand, by (3.18),

J (2,2)N−2 (cos θ j ) ∼= N−
1
2 G(θ j ) cos ΘN , j , 1 ≤ j ≤ N − 1. (3.39)

Multiplying (3.38) by (3.39) yields

J (2,2)N−2 (x j )W
′

N (x j ) ∼=
1
2

G2(θ j ) cos2 ΘN , j ∼=
1
2

G2(θ j ), (3.40)

where in the last step, we used the fact:

cos2 ΘN , j

(3.32)
∼= 1, ∀N � 1. (3.41)

Finally, thanks to

1

(1− x2
j )

2

(3.13)
=

1

sin4 θ j
, G2(θ j )

(3.19)
=

25

π

1

sin5 θ j
,

the desired result (3.26) follows from (3.27), (3.30) and (3.40). �
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As a direct consequence of (3.24) and (3.26), we derive the following explicit asymptotic
expression:

ω j ∼= ω
(0)
j :=

π

N
sin

(2 j + 1/2)π
2N + 1

, 1 ≤ j ≤ N − 1. (3.42)

To examine how good it is, we set

δ
(1)
N =

π

N
max

1≤ j≤N−1

{
sin θ j

ω j

}
, δ

(2)
N =

π

N
max

1≤ j≤N−1

{
ω
(0)
j

ω j

}
.

By Theorem 3.3, we expect to see that

δ
(i)
N
∼= 1, i = 1, 2, ∀N � 1, (3.43)

which indeed can be visualized from Fig. 3.2(right).
So far, we have derived two asymptotic estimates for the GLLB nodes and weights (cf.

(3.24) and (3.42)), which will be useful for the analysis of the GLLB interpolation error in the
forthcoming section.

4. GLLB interpolation error estimates

This section is devoted to the analysis of the GLLB interpolation errors in Sobolev norms,
which will be used for the error analysis of GLLB pseudospectral methods. We first state the main
result, and then present the ingredients for the proof including some inequalities and orthogonal
projections. Finally, we give the proof of the interpolation errors.

4.1. The main result

We begin with the definition of the GLLB interpolation operator associated with the GLLB
quadrature formula. The GLLB interpolant I N u ∈ PN , satisfies

(I N u)′(±1) = u′(±1), (I N u)(x j ) = u(x j ), 1 ≤ j ≤ N − 1. (4.1)

Denote the weight functions by ω(x) = 1 − x2 and ωα(x) = (1 − x2)α. Let ᾱ =
max {0,−[α] − 1} with [α] being the largest integer ≤ α. To describe the error, we introduce
the weighted Sobolev space

Bm
α (I ) :=

{
u ∈ L2(I ) : ∂k

x u ∈ L2
ωα+k (I ), ᾱ + 1 ≤ k ≤ m

}
∩ H ᾱ(I ), m ≥ 0,

with the norm

‖u‖Bm
α (I ) =

(
‖u‖2H ᾱ(I ) +

m∑
k=ᾱ+1

‖∂k
x u‖2

ωα+k

) 1
2

.

The main result on the GLLB interpolation error is stated as follows.

Theorem 4.1. For any u ∈ Bm
−2(I ) and m ≥ 2,

N‖I N u − u‖ + ‖∂x (I N u − u)‖ω ≤ cN 1−m
‖∂m

x u‖ωm−2 . (4.2)



L.-L. Wang, B.-y. Guo / Journal of Approximation Theory 161 (2009) 142–173 157

4.2. Preparations for the proof

The main ingredients for the proof Theorem 4.1 consist of the asymptotic estimates (cf.
Theorem 3.2 and 3.3), several inequalities and the approximation property of one specific
orthogonal projection to be stated below.

4.2.1. Some inequalities
For notational convenience, we define the discrete inner product and discrete norm associated

with the GLLB quadrature formula as

〈u, v〉N = S N [u · v], ‖v‖N = 〈v, v〉
1
2
N ,

where S N [·] represents the finite sum in (2.13). Clearly, the exactness (2.13) implies that

〈φ,ψ〉N = (φ, ψ), ∀φ · ψ ∈ P2N−1. (4.3)

We have the following equivalence between the continuous and discrete norms over the
polynomial space PN , which will be useful in the analysis of interpolation error, and the GLLB
pseudospectral methods for nonlinear problems.

Lemma 4.1. For any integer N ≥ 4,

‖φ‖ ≤ ‖φ‖N ≤
√

1+ CN‖φ‖ ≤ 3‖φ‖, ∀φ ∈ PN , (4.4)

where

CN =

(
1+

3
N − 2

)(
1+

3
N − 1

)(
1+

3
N

)
.

Proof. We first prove that (4.4) holds for the Legendre polynomial L N . That is

γ
(0,0)
N = ‖L N‖

2
≤ 〈L N , L N 〉N ≤ (1+ CN ) ‖L N‖

2
= (1+ CN )γ

(0,0)
N . (4.5)

For this purpose, set

ψ(x) = L2
N (x)−

(
K (0,0)

N

)2
(1− x2)2 QN−1(x)PN−3(x).

Since the leading coefficient of QN−1 · PN−3 is one, we deduce from (2.9) that ψ ∈ P2N−1.

Hence, using the fact QN−1(x j ) = 0 and the orthogonality, gives

〈L N , L N 〉N = 〈1, ψ〉N
(4.3)
= (1, ψ) =

∫ 1

−1
ψ(x)dx

(2.10)
=

(2.1)

∫ 1

−1
L2

N (x)dx − bN

(
K (0,0)

N

)2
∫ 1

−1
P2

N−3(x)(1− x2)2dx

= γ
(0,0)
N − bN

(
λN−3 K (0,0)

N

)2
γ
(2,2)
N−3

=

(
1− bN

(
λN−3 K (0,0)

N

)2
γ
(2,2)
N−3

(
γ
(0,0)
N

)−1
)
γ
(0,0)
N . (4.6)

Using (2.2)–(2.6) and (2.9) to work out the constants, yields(
λN−3 K (0,0)

N

)2
γ
(2,2)
N−3

(
γ
(0,0)
N

)−1
=
(N + 1)(2N − 1)(2N + 1)

N (N − 1)(N − 2)
.
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Furthermore, by (2.12), we have that for N ≥ 4,

0 < −bN

(
λN−3 K (0,0)

N

)2
γ
(2,2)
N−3

(
γ
(0,0)
N

)−1
<
(N + 1)(N + 2)(N + 3)
(N − 2)(N − 1)N

= CN . (4.7)

Accordingly, a combination of (4.6)–(4.7) leads to (4.5).
Next, for any φ ∈ PN , we write

φ(x) =
N∑

n=0

φ̂n Ln(x) =
N−1∑
n=0

φ̂n Ln(x)+ φ̂N L N (x) := Φ(x)+ φ̂N L N (x),

and therefore

‖φ‖2 =

N∑
n=0

φ̂2
nγ

(0,0)
n = ‖Φ‖2 + φ̂2

Nγ
(0,0)
N .

It is clear that Φ2(x) ∈ P2N−2, and so by (4.3) and the orthogonality of Legendre polynomials,

〈Φ, L N 〉N = (Φ, L N ) = 0,

which implies

‖φ‖2N = 〈Φ,Φ〉N + 2φ̂N 〈Φ, L N 〉N + φ̂
2
N 〈L N , L N 〉N = ‖Φ‖

2
+ φ̂2

N 〈L N , L N 〉N

=

N−1∑
n=0

φ̂2
nγ

(0,0)
n + φ̂2

N 〈L N , L N 〉N .

Finally, applying (4.5) leads to the desired result. �

The following Bernstein–Markov type inequality holds for polynomials in the finite-
dimensional space:

X N =
{
φ ∈ PN : φ

′(±1) = 0
}
. (4.8)

Lemma 4.2. For any φ ∈ X N ,

‖φ′‖ω ≤
√

N (N + 1)‖φ‖ ≤ (N + 1)‖φ‖. (4.9)

Proof. Let

ψn(x) = Ln(x)+ en Ln+2(x), en = −
n(n + 1)

(n + 2)(n + 3)
. (4.10)

Since L ′n(±1) = 1
2 (−1)n−1n(n+1), we have that {ψn}

N−2
n=0 forms a basis for X N . Consequently,

for any φ ∈ X N ,

φ(x) =
N−2∑
n=0

φ̃nψn(x) =
N−2∑
n=0

φ̃n Ln(x)+
N∑

n=2

en−2φ̃n−2Ln(x)

= φ̃0L0(x)+ φ̃1L1(x)+
N−2∑
n=2

(φ̃n + en−2φ̃n−2)Ln(x)

+ eN−3φ̃N−3L N−1(x)+ eN−2φ̃N−2L N (x). (4.11)
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By the recursive relation

L ′k(x) =
1
2
(k + 1)J (1,1)k−1 (x), k ≥ 1,

and (4.10),

φ′(x) =
N−2∑
n=0

φ̃nψ
′
n(x) =

1
2

N−3∑
n=0

(n + 2)φ̃n+1 J (1,1)n (x)+
1
2

N−1∑
n=1

(n + 2)en−1φ̃n−1 J (1,1)n (x)

= φ̃1 J (1,1)0 (x)+
1
2

N−3∑
n=1

(n + 2)(φ̃n+1 + en−1φ̃n−1)J
(1,1)
n (x)

+
1
2

NeN−3φ̃N−3 J (1,1)N−2 (x)+
1
2
(N + 1)eN−2φ̃N−2 J (1,1)N−1 (x).

Using the orthogonality (2.1)–(2.2) gives

‖φ‖2 = φ̃2
0γ

(0,0)
0 + φ̃2

1γ
(0,0)
1 +

N−2∑
n=2

(φ̃n + en−2φ̃n−2)
2γ (0,0)n

+ e2
N−3φ̃

2
N−3γ

(0,0)
N−1 + e2

N−2φ̃
2
N−2γ

(0,0)
N ,

and

‖φ′‖2ω = φ̃
2
1γ

(1,1)
0 +

1
4

N−3∑
n=1

(n + 2)2(φ̃n+1 + en−1φ̃n−1)
2γ (1,1)n

+
1
4

N 2e2
N−3φ̃

2
N−3γ

(1,1)
N−2 +

1
4
(N + 1)2e2

N−2φ̃
2
N−2γ

(1,1)
N−1

= φ̃2
1γ

(1,1)
0 +

1
4

N−2∑
n=2

(n + 1)2(φ̃n + en−2φ̃n−2)
2γ

(1,1)
n−1

+
1
4

N 2e2
N−3φ̃

2
N−3γ

(1,1)
N−2 +

1
4
(N + 1)2e2

N−2φ̃
2
N−2γ

(1,1)
N−1 .

In view of the above facts, we deduce from (2.2) that

‖φ′‖2ω ≤
1
4

max
1≤n≤N

{
(n + 1)2γ (1,1)n−1 (γ

(0,0)
n )−1

}
‖φ‖2 = N (N + 1)‖φ‖2.

This implies the desired result. �

In the preceding analysis, we will also use the following Poincaré inequality (see, e.g., [5]).

Lemma 4.3. For any u ∈ H1(I ),

‖u‖ ≤ c(‖u′‖ + |ū|), where ū =
∫ 1

−1
u(x)dx . (4.12)

4.2.2. Orthogonal projections
We first consider the orthogonal projection πN : L2(I )→ PN such that for any u ∈ L2(I ),

(πN u − u, φ) = 0, ∀φ ∈ PN . (4.13)

The following result can be found in [10,14].
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Lemma 4.4. For any u ∈ Bm
0 (I ) and m ≥ 0,

‖πN u − u‖ ≤ cN−m
‖∂m

x u‖ωm . (4.14)

We now turn to the second orthogonal projection. For simplicity, we denote

∂−1
x v(x) =

∫ x

−1
v(y)dy, ∂̄−1

x v(x) = −
∫ 1

x
v(y)dy, v̄ =

∫ 1

−1
v(x)dx .

Define the space

X :=
{
v : v ∈ H2(I ), v′(±1) = 0

}
, X0

:= {v ∈ X : v̄ = 0} , X0
N := PN ∩ X0.

Consider the orthogonal projection π1,0
N : X0

→ X0
N , defined by

a(π1,0
N v − v, φ) = 0, ∀φ ∈ X0

N , (4.15)

where the bilinear form a(u, v) := (∂x u, ∂xv). Recall that for real µ ≥ 0, the Sobolev space
Hµ(I ) and its norm ‖ · ‖µ are defined by space interpolation as in [1].

Lemma 4.5. For any v ∈ X0
∩ Bm
−2(I ) with m ≥ 2,

‖π
1,0
N v − v‖µ ≤ cNµ−m

‖∂m
x v‖ωm−2 , 0 ≤ µ ≤ 1. (4.16)

Proof. We first consider the case µ = 1. Let

v∗(x) = ξ + ∂xv(1)x + ∂−1
x ∂̄−1

x (πN−2∂
2
x v)(x) (4.17)

where the constant ξ is chosen such that v∗ = v̄. Clearly, ∂xv
∗(1) = ∂xv(1) and by (4.13) with

φ = 1,

∂xv
∗(−1) = ∂xv(1)−

∫
I
πN−2∂

2
x v(x)dx = ∂xv(1)−

∫
I
∂2

x v(x)dx = ∂xv(−1). (4.18)

For clarity, let us denote g = v∗ − v. Thanks to the above facts, we have from (4.13) and (4.14)
that

|v∗ − v|21 = (∂x (v
∗
− v), ∂x g) = −(∂2

x (v
∗
− v), g)

= −(πN−2∂
2
x v − ∂

2
x v, g) = (πN−2∂

2
x v − ∂

2
x v, πN−2g − g)

≤ ‖πN−2∂
2
x v − ∂

2
x v‖‖πN−2g − g‖ ≤ cN 1−m

‖∂m
x v‖ωm−2‖∂x g‖ω

≤ cN 1−m
‖∂m

x v‖ωm−2 |v
∗
− v|1. (4.19)

Moreover, by the Poincaré inequality (4.12) and (4.15),

‖π
1,0
N v − v‖21 ≤ c|π1,0

N v − v|21 = ca(π1,0
N v − v, π

1,0
N v − v)

= ca(π1,0
N v − v, v∗ − v) ≤ c|π1,0

N v − v|1|v
∗
− v|1.

In view of this fact, we have from (4.19) that

‖π
1,0
N v − v‖1 ≤ c|v∗ − v|1 ≤ cN 1−m

‖∂m
x v‖ωm−2 . (4.20)
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We next prove the case µ = 0 by using a duality argument (see, e.g., [6]). For any f ∈ L2(I ),
we consider an auxiliary problem. It is to find w ∈ X0 such that

a(w, z) = ( f, z), ∀z ∈ X0. (4.21)

By the Poincaré inequality (cf. (4.12)) and Lax–Milgram Lemma, the problem (4.21) has a
unique solution with the regularity

‖w‖2 ≤ c‖ f ‖. (4.22)

Taking z = π1,0
N v − v in (4.21), we deduce from (4.15), (4.20) and (4.22) that

|(π
1,0
N v − v, f )| = |a(π1,0

N v − v,w)| = |a(π1,0
N v − v, π

1,0
N w − w)|

≤ |π
1,0
N v − v|1|π

1,0
N w − w|1 ≤ cN−m

‖∂m
x v‖ωm−2‖∂

2
xw‖

≤ cN−m
‖∂m

x v‖ωm−2‖ f ‖.

Consequently

‖π
1,0
N v − v‖ = sup

f ∈L2(I )
f 6=0

|(π
1,0
N v − v, f )|

‖ f ‖
≤ cN−m

‖∂m
x v‖ωm−2 . (4.23)

Finally, we get the desired result by (4.20), (4.23) and space interpolation. �

With the aid of the previous preparations, we are able to derive the following important result.

Theorem 4.2. There exists an operator π1
N : X → X N , such that π1

Nv = v̄, and

a(π1
Nv − v, φ) = 0, ∀φ ∈ X N . (4.24)

Moreover, for any v ∈ X ∩ Bm
−2(I ) with m ≥ 2,

‖π1
Nv − v‖µ ≤ cNµ−m

‖∂m
x v‖ωm−2 , 0 ≤ µ ≤ 1. (4.25)

Proof. For any v ∈ X , since v − v̄/2 ∈ X0, we define

π1
Nv(x) = π

1,0
N (v(x)− v̄/2)+ v̄/2.

One verifies readily that π1
Nv ∈ X N and π1

Nv = v̄. Moreover, by (4.15),

a(π1
Nv − v, φ) = a(π1,0

N (v − v̄/2)− (v − v̄/2), φ − φ̄/2) = 0, ∀φ ∈ X N .

Moreover, by (4.16) and the fact r ≥ 2,

‖π1
Nv − v‖µ = ‖π

1,0
N (v − v̄/2)− (v − v̄/2)‖µ ≤ cNµ−m

‖∂m
x (v − v̄/2)‖ωm−2

≤ cNµ−m
‖∂m

x v‖ωm−2 .

This leads to (4.25). �

4.3. Continuity of the GLLB interpolation operator

In order to prove Theorem 4.1, it is essential to show that I N is a continuous operator from X
to L2(I ), as stated below.
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Lemma 4.6. For any v ∈ X,

‖I Nv‖ ≤ c(‖v‖ + N−1
‖∂xv‖ω), (4.26)

where the weight function ω(x) = 1− x2.

Proof. In this proof, we mainly use Theorems 3.2 and 3.3. Let x = cos θ and v̂(θ) = v(cos θ).
Then by (2.13) and (4.4) and Theorem 3.3,

‖I Nv‖
2
≤ ‖I Nv‖

2
N =

N−1∑
j=1

v2(x j )ω j ≤ cN−1
N−1∑
j=1

v̂2(θ j ) sin θ j . (4.27)

By using an inequality of space interpolation (see formula (13.7) of [2]), we know that for any
f ∈ H1(a, b),

max
a≤x≤b

| f (x)| ≤ c

(
1

√
b − a

‖ f ‖L2(a,b) +
√

b − a‖∂x f ‖L2(a,b)

)
. (4.28)

Now, let θ̃0, θ̃N−1 and I j be the same as in Theorem 3.2. Denote a0 = θ̃0 and a1 = θ̃N−1. Then
by (4.27) and (4.28),

‖I Nv‖
2 (4.27)
≤ cN−1

N−1∑
j=1

sup
θ∈ Ī j

∣∣∣v̂(θ)√sin θ
∣∣∣2

(4.28)
≤ c

N−1∑
j=1

(∥∥∥v̂(θ)√sin θ
∥∥∥2

L2( Ī j )
+ N−2

∥∥∥∂θ (v̂(θ)√sin θ
)∥∥∥2

L2( Ī j )

)

≤ c

(∥∥∥v̂(θ)√sin θ
∥∥∥2

L2(0,π)
+ N−2

∥∥∥∂θ (v̂(θ)√sin θ
)∥∥∥2

L2([a0,a1])

)

≤ c

(∥∥∥v̂(θ)√sin θ
∥∥∥2

L2(0,π)
+ N−2

∥∥∥v̂(θ)(sin θ)−1/2
∥∥∥2

L2([a0,a1])

+ N−2
∥∥∥∂θ v̂(θ)√sin θ

∥∥∥2

L2(0,π)

)

≤ c

(∥∥∥v̂(θ)√sin θ
∥∥∥2

L2(0,π)
+ sup

a0≤θ≤a1

1

N 2 sin2 θ
·

∥∥∥v̂(θ)√sin θ
∥∥∥2

L2([a0.a1])

+ N−2
∥∥∥∂θ v̂(θ)√sin θ

∥∥∥2

L2(0,π)

)
.

Since Theorem 3.2 implies supa0≤θ≤a1
1

N 2 sin2 θ
≤ c, we transform θ back to x , and obtain

‖I Nv‖
2
≤ c

(
‖v‖2 + N−2

‖∂xv‖
2
ω

)
,

which ends the proof. �
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4.4. Proof of Theorem 4.1

Let

v∗N (x) = v(−1)+ (1+ x)∂xv(1)+ ∂−1
x ∂̄−1

x (πN−2∂
2
x v)(x) ∈ PN .

Like (4.18), we have v∗N (−1) = v(−1) and ∂xv
∗

N (±1) = ∂xv(±1). Thus, by (4.13),

(v∗N − v, φ) = (∂
2
x (v
∗

N − v), ∂
−1
x ∂̄−1

x φ)

= (πN−2∂
2
x v − ∂

2
x v, ∂

−1
x ∂̄−1

x φ) = 0, ∀φ ∈ PN−4. (4.29)

A similar argument as in the derivation of (4.19) leads to

|v∗N − v|1 ≤ cN 1−m
‖∂m

x v‖ωm−2 . (4.30)

Denote g = v∗N − v. Then by (4.14), (4.29) and (4.30),

‖v∗N − v‖
2
= (v∗N − v, g) = (v∗N − v, ∂x ∂̄

−1
x g) = (v∗N − v, ∂x ∂̄

−1
x g − ∂xπN−3∂̄

−1
x g)

= (∂x (v
∗

N − v), πN−3∂̄
−1
x g − ∂̄−1

x g) ≤ |v∗N − v|1‖πN−3∂̄
−1
x g − ∂̄−1

x g‖

≤ cN−m
‖∂m

x v‖ωm−2‖g‖ω ≤ cN−m
‖∂m

x v‖ωm−2‖v
∗

N − v‖,

which implies

‖v∗N − v‖ ≤ cN−m
‖∂m

x v‖ωm−2 . (4.31)

Since I Nv
∗

N = v
∗

N and v − v∗N ∈ X, we have from Lemma 4.6, (4.30) and (4.31) that

‖I Nv − v
∗

N‖ = ‖I N (v
∗

N − v)‖ ≤ c(‖v∗N − v‖ + N−1
‖∂x (v

∗

N − v)‖ω)

≤ c(‖v∗N − v‖ + N−1
|v∗N − v|1) ≤ cN−m

‖∂m
x v‖ωm−2 . (4.32)

By the above and Lemma 4.2,

‖∂x (I Nv − v
∗

N )‖ω ≤ cN‖I Nv − v
∗

N‖ ≤ cN 1−m
‖∂m

x v‖ωm−2 . (4.33)

Finally, a combination of (4.30)–(4.33) leads to that

N‖I Nv − v‖ + ‖∂x (I Nv − v)‖ω ≤ N‖I Nv − v
∗

N‖ + ‖∂x (I Nv − v
∗

N )‖ω

+ N‖v∗N − v‖ + ‖∂x (v
∗

N − v)‖ω ≤ cN 1−m
‖∂m

x v‖ωm−2 .

This ends the proof.

4.5. Corollaries

We present below two mathematical consequences.

Corollary 4.1. For any φ ∈ X M and ψ ∈ X L , we have

‖I Nφ‖N ≤ c(1+ M N−1)‖φ‖, (4.34)

| 〈φ,ψ〉N | ≤ c(1+ M N−1)(1+ L N−1)‖φ‖‖ψ‖. (4.35)
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Proof. Using (4.4) and Lemmas 4.2 and 4.6 gives

‖I Nφ‖N ≤ c‖I Nφ‖ ≤ c(‖φ‖ + N−1
‖∂xφ‖ω) ≤ c(1+ M N−1)‖φ‖,

and

| 〈φ,ψ〉N | = | 〈I Nφ, I Nψ〉N | ≤ ‖I Nφ‖N‖I Nψ‖N

≤ c(1+ M N−1)(1+ L N−1)‖φ‖‖ψ‖. �

Corollary 4.2. For any v ∈ X ∩ Bm
−2(I ),m ≥ 2 and any φ ∈ X N ,

|(v, φ)− 〈v, φ〉N | ≤ cN−m
‖∂m

x v‖ωm−2‖φ‖N . (4.36)

Proof. By (4.3), (4.4), and Theorem 4.1,

|(v, φ)− 〈v, φ〉N | ≤ |(v, φ)− (π
1
N−1v, φ)| + |

〈
π1

N−1v, φ
〉

N
− 〈I Nv, φ〉N |

≤ c
(
‖π1

N−1v − v‖ + ‖I Nv − v‖
)
‖φ‖

≤ cN−m
‖∂m

x v‖ωm−2‖φ‖N .

This result is useful in numerical analysis of the related pseudospectral scheme. �

5. GLLB pseudospectral methods and error estimates

Among several different versions of spectral approximations, pseudospectral methods are
commonly used and more preferable in industrial codes owing to its ease of implementations and
treatment of nonlinear problems. Most existing literature concerning this method is based on the
collocation points that are identified as (generalized) Gauss–Lobatto quadrature formulae [24,9,
21,18]. In a pseudospectral method, the choice of collocation points is crucial for the stability and
treatment of boundary conditions [21]. The GLLB quadrature formula (2.13) involves first-order
derivative values at the endpoints, which allows a natural and exact imposition of Neumann
boundary conditions. Based on this, Ezzirani and Guessab [8] proposed a GLLB collocation
method for some model elliptic equations, and showed that this method leads to a resulting
discrete system with a diagonal mass matrix, and thereby can be used to introduce explicit
resolutions in the lumped mass method for the time-dependent problems.

The main purposes of this section are two-folds: (i) to present a user-oriented implementation
of the GLLB psuedospectral methods based on pure collocation and variational formulations,
and (ii) to make an error analysis of the GLLB pseudospectral method based on a (discrete)
variational formulation. We will first restrict our attentions to one-dimensional problems, and
then follow with multi-dimensional cases. It should be pointed out that the methods go beyond
these model equations.

5.1. GLLB collocation method

Consider the elliptic equation:{
L[u](x) := −u′′(x)+ b(x)u(x) = f (x), b(x) ≥ 0, x ∈ I = (−1, 1),
u′(±1) = g±,

(5.1)
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where in the case of b(x) ≡ 0, the problem admits a solution only provided that the given data
satisfy the compatibility∫ 1

−1
f (x)dx = g− − g+. (5.2)

Let {x j }
N
j=0 be the GLLB quadrature nodes. The GLLB collocation approximation to (5.1) is to

find uN ∈ PN such that{
L[uN ](x j ) = −u′′N (x j )+ b(x j )uN (x j ) = F(x j ), 1 ≤ j ≤ N − 1,
u′N (±1) = g±,

(5.3)

where F(x) is a consistent approximation to f (x) with F(x) = f (x) for b(x) 6= 0, and the case
for b(x) ≡ 0 to be specified below.

We see that like the LGL collocation method for Dirichlet problems, the numerical solution
satisfies the boundary conditions exactly.

Remark 5.1. In the case of b(x) ≡ 0, the scheme (5.3) is reduced to

− u′′N (x j ) = F(x j ), 1 ≤ j ≤ N − 1; u′N (±1) = g±. (5.4)

Let
(
IL

N−2 F
)
(x) ∈ PN−2 be the Lagrange interpolation polynomial of F associated with the

interior GLLB nodes {x j }
N−1
j=1 . Since u′′N ∈ PN−2, the scheme (5.4) implies

−u′′N (x) =
(
IL

N−2 F
)
(x), x ∈ I ; u′N (±1) = g±.

Thus, a direct integration leads to∫ 1

−1

(
IL

N−2 F
)
(x)dx = g− − g+. (5.5)

This means that (5.4) has a solution as long as the above compatibility holds. However, since
f, g+ and g− are given, the compatibility is not valid if we take F(x) = f (x). To meet the
condition (5.5), we may follow the idea of Guo (cf. page 558 of [12]) to take

F(x) = f (x)−
1
2

S N

[
IL

N−2 f
]
+

1
2
(g− − g+),

where the functional S N [·] is defined in (2.13). It is clear that for N ≥ 3, we have(
IL

N−2 F
)
(x) =

(
IL

N−2 f
)
(x)−

1
2

S N

[
IL

N−2 f
]
+

1
2
(g− − g+).

By virtue of (2.13) and (5.2), we have that∫ 1

−1

(
IL

N−2 F
)
(x)dx =

∫ 1

−1

(
IL

N−2 f
)
(x)dx − S N

[
IL

N−2 f
]
+ g− − g+ = g− − g+.

�

We now examine the matrix form of (5.3). Let
{
h j
}N

j=0 ⊆ PN be the set of Lagrangian
polynomials associated with the GLLB points:

h′0(−1) = 1, h′0(1) = h0(xk) = 0, 1 ≤ k ≤ N − 1,
h′j (±1) = 0, h j (xk) = δ jk, 1 ≤ j, k ≤ N − 1,
h′N (1) = 1, h′N (−1) = hN (xk) = 0, 1 ≤ k ≤ N − 1,

(5.6)
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whose explicit expressions are given in Appendix A. It is clear that
{
h j
}N

j=0 ⊆ PN and spans the
polynomial space PN . Under this nodal basis, we write

uN (x) = g−h0(x)+ g+hN (x)+
N−1∑
k=1

akhk(x) ∈ PN , (5.7)

and determine the unknowns {ak}
N−1
k=1 by (5.3), i.e., the system

AcEa :=
(
−D(2)in + B

)
Ea = Eb, (5.8)

where

d(2)jk = h′′k (x j ), D(2)in =

(
d(2)jk

)
1≤ j,k≤N−1

,

B = diag (b(x1), b(x2), . . . , b(xN−1)) , Ea = (a1, a2, . . . , aN−1)
T ,

Eb = ( f (x1), . . . , f (xN−1))
T
+

(
d(2)10 , d(2)20 , . . . , d(2)(N−1)0

)T
g−

+

(
d(2)1N , d(2)2N , . . . , d(2)(N−1)N

)T
g+.

(5.9)

As with the usual collocation schemes, the GLLB method is easy to implement once the
associated differentiation matrices are pre-computed. The following lemma provides a recursive
way to evaluate the differentiation matrices.

Lemma 5.1. Let

d(l)jk = h(l)k (x j ) =
dlhk

dx l (x j ), D(l) =
(

d(l)jk

)
0≤ j,k≤N

, l ≥ 0. (5.10)

Then we have{
D(l+1)

= D(1) × D̃
(l)
, l ≥ 0,

D(0) = D̃
(0)
= IN+1,

(5.11)

where IN+1 is the identity matrix of order N + 1, and D̃
(l)

is identical to D(l) except

that the first and last rows of D(l) are replaced by
(

d(l+1)
00 , d(l+1)

01 , . . . , d(l+1)
0N

)
and(

d(l+1)
N0 , d(l+1)

N1 , . . . , d(l+1)
N N

)
, respectively.

Proof. For any φ ∈ PN , we have that

φ(x) = φ′(−1)h0(x)+
N−1∑
j=1

φ(x j )h j (x)+ φ
′(1)hN (x) ∈ PN ,

which implies that

φ′(x) = φ′(−1)h′0(x)+
N−1∑
j=1

φ(x j )h
′

j (x)+ φ
′(1)h′N (x) ∈ PN .

Let x0 = −1 and xN = 1. Taking φ(x) = h(l)k (x) and x = xi leads to that for all 0 ≤ i, k ≤ N
and l ≥ 0,
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d(l+1)
ik = h(l+1)

k (xi ) = h(l+1)
k (x0)h

′

0(xi )+

N−1∑
j=1

h(l)k (x j )h
′

j (xi )+ h(l+1)
k (xN )h

′

N (xi )

= d(1)i0 d(l+1)
0k +

N−1∑
j=1

d(1)i j d(l)jk + d(1)i N d(l+1)
Nk , (5.12)

which implies the desired result. �

As a consequence of this lemma, it suffices to evaluate the first-order differentiation matrix
D(1) and values h(l+1)

j (±1) for l ≥ 1 and 0 ≤ j ≤ N to compute higher-order differentiation
matrices.

Although the collocation scheme (5.3) is easy to implement, the GLLB differentiation matrix
D(2) is full with Cond(D(2)) ∼ N 4, and thereby when N is large, the accuracy of nodes and of
entries of D(2) are subject to significant roundoff errors. To overcome this trouble, it is advisable
to construct a preconditioning for the system (5.8), and use a suitable iteration solver [4,7]. As a
matter of fact, Canuto [4] proposed a finite-difference preconditioning for the LGL collocation
method for Neumann problems, but it cannot be applied to this context directly. However, with
a different treatment of the boundary conditions, we are able to derive an optimal preconditioner
as that in [4] (for the LGL collocation method).

To this end, we assume that {x j }
N
j=0 are arranged in an ascending order, and let

δ j = x j+1 − x j , u j = u(x j ), u′′j = u′′(x j ), f j = f (x j ).

Taking the Neumann boundary conditions into account, we discretize u′′1 and u′′N−1 as

u′′1 ≈
u2 − u1 + δ1u′0
δ1(δ1/2+ δ0)

, u′′N−1 ≈
uN−2 − uN−1 − δN−2u′N
δN−2(δN−2/2+ δN−1)

, (5.13)

and use centered differences for the interiors {u′′j }
N−2
j=2 . More precisely, the finite-difference

approximation to (5.1) reads

u1 − u2

δ1(δ1/2+ δ0)
+ b1u1 = f1 +

g−
δ1/2+ δ0

,

−
2u j−1

δ j−1[δ j + δ j+1]
+

[
2

δ jδ j−1
+ b j

]
u j −

2u j+1

δ j [δ j + δ j+1]
= f j ,

2 ≤ j ≤ N − 2,
uN−1 − uN−2

δN−2(δN−2/2+ δN−1)
+ bN−1uN−1 = fN−1 −

g+
δN−2/2+ δN−1

.

(5.14)

Denote by Ad the coefficient matrix of the above system. Table 5.1 contains the spectral radii
(i.e., the largest modulus of the eigenvalues) of Ac (cf. (5.8)) and A−1

d Ac with b = 1 (in
columns 2–3) and b(x) = 100+ sin(100πx) (in columns 4–5). The eigenvalues of two matrices
are real, positive and distinct in all cases. We also point out that the smallest modulus of the
eigenvalues of A−1

d Ac is one for both cases, while that of Ac is one for b = 1 and 100 for
b(x) = 100+sin(100πx). The eigenvalues of the preconditioned matrix A−1

d Ac lie in the interval
[1, π2/4], as shown in Table 5.1, and therefore the system (5.8) can be solved efficiently by an
iteration solver.
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Table 5.1

The spectral radii of Ac and A−1
d Ac.

N ρ (Ac) ρ
(

A−1
d Ac

)
ρ (Ac) ρ

(
A−1

d Ac

)
8 47.2 1.68 146.3 1.1

16 633.8 2.11 732.8 1.58
32 10202.0 2.30 10301.0 2.10
64 166178.9 2.39 166277.9 2.33

128 2691955.4 2.43 2692054.2 2.41
256 43374170.2 2.45 43374269.2 2.44
512 696563431.7 2.46 696563530.7 2.46

5.2. GLLB pseudospectral method in a variational form

The collocation scheme (5.3) is based on a strong form of the original equation, while it is
more preferable to implement the GLLB pseudospectral method in a discrete weak form. For
simplicity, we consider (5.1) with a constant coefficient and homogeneous Neumann boundary
conditions, i.e., b(x) ≡ b and g± = 0. The GLLB pseudospectral scheme reads{

Find uN ∈ X N such that〈
u′N , v

′

N

〉
N + 〈buN , vN 〉N = 〈 f, vN 〉N , ∀vN ∈ X N .

(5.15)

Remark 5.2. Unlike the collocation method based on Legendre–Gauss–Lobotto points for
Dirichlet boundary conditions, the GLLB scheme (5.3) (with b(x) ≡ b and g± = 0) is not
equivalent to the pseudospectral scheme (5.15). Indeed, multiplying (5.3) with F(x) = f (x) by
vN (x j )ω j and summing the result for j = 1, 2, . . . , N−1, we may rewrite the GLLB collocation
scheme as{

Find uN ∈ X N such that〈
u′N , v

′

N

〉
N + 〈buN , vN 〉N = 〈 f, vN 〉N +R N , ∀vN ∈ X N ,

(5.16)

where

R N = (L[u])′ (−1)vN (−1)ω0 + (L[u])′ (1)vN (1)ωN

− f ′(−1)vN (−1)ω0 − f ′(1)vN (1)ωN

= −
(
u′′′N (−1)− (buN )

′(−1)+ f ′(−1)
)
vN (−1)ω0

−
(
u′′′N (1)− (buN )

′(1)+ f ′(1)
)
vN (1)ωN . (5.17)

Hence, up to a boundary residual, two schemes are equivalent. �

We now examine the matrix form of the system (5.15). As usual, we may choose the nodal
basis {hk}

N−1
k=1 for X N . By (5.6), one verifies that the coefficient matrix under this basis is

Ap :=
(

D(1)in

)T
WD(1)in + bW. (5.18)

where D(1)in =

(
d(1)jk

)
1≤ j,k≤N−1

(cf. (5.10)), and W = diag(ω1, ω2, . . . , ωN−1). We see that Ap

is full and ill-conditioned as the GLLB collocation system (5.8) (cf. Table 5.2), so it subjects to
similar roundoff errors (cf. Fig. 5.1).
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Table 5.2
Condition numbers.

N b = 0.01 b = 1 b = 100

32 Ac 1.25e+06 1.24e+04 1.19e+02
32 Ap 4.33e+05 4.40e+03 8.01e+01
32 As 50.20 1.999 198.7
64 Ac 1.95e+07 1.93e+05 1.83e+03
64 Ap 3.43e+06 3.50e+04 6.72e+02
64 As 50.20 1.999 199.9

128 Ac 3.08e+08 3.05e+06 2.88e+04
128 Ap 2.74e+07 2.79e+05 5.55e+03
128 As 50.20 1.999 199.9
256 Ac 4.90e+09 4.85e+07 4.59e+05
256 Ap 2.19e+08 2.24e+06 4.51e+04
256 As 50.20 1.999 199.9

Fig. 5.1. Convergence rate (L2-errors vs. N ) for b = 1 (left) and b = 100 (right).

In fact, it is more advisable to use a modal basis and perform the GLLB method in the
frequency space. Using this approach, the spectral linear system will be sparse and well-
conditioned. As with [22], we define the basis function as a “compact” combination of the
Legendre polynomials

φ0(x) = 1, φn(x) := dn(Ln(x)+ en Ln+2(x)), n ≥ 1, (5.19)

where

dn =

√
(n + 2)(n + 3)

2n(n + 1)(2n + 3)
, en = −

n(n + 1)
(n + 2)(n + 3)

.

Since L ′n(±1) = 1
2 (−1)n+1n(n + 1), one can verify readily that φ′n(±1) = 0, and

X N = span{φ0, φ1, . . . , φN−2}.

Moreover, as shown in Appendix B, we have

φ′n(x) = (1− x2)Pn−1(x) = λ̃n−1(1− x2)J (2,2)n−1 (x), n ≥ 1, (5.20)
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which, together with (2.1), (2.8) and (4.3), leads to

s jk :=

〈
φ′k, φ

′

j

〉
N
= (φ′k, φ

′

j ) =

{
1, 1 ≤ j = k ≤ N − 2,
0, otherwise.

(5.21)

Meanwhile, using (4.3), (5.19) and the orthogonality of the Legendre polynomials yields

m jk :=
〈
φk, φ j

〉
N =

{
d2

N−2

(
‖L N−2‖

2
+ e2

N−2 〈L N , L N 〉N

)
, k = j = N − 2,

(φk, φ j ), otherwise,

6= 0, only if k = j or k = j ± 2.

Hence, by setting uN (x) =
∑N−2

n=0 ûnφn(x), and

û = (û0, û1, . . . , ûN−2)
T, f j =

〈
f, φ j

〉
N , f̂ = ( f̂0, f̂1, . . . , f̂N−2)

T,

the system (5.15) under the basis (5.19) becomes

Asû :=
[
diag(0, 1, . . . , 1)+ b(m jk)0≤ j,k≤N−2

]
û = f̂. (5.22)

We see that As is pentadiagonal with three nonzero diagonals, which can be decoupled into
two tridiagonal sub-matrices, and inverted efficiently as in [22]. Moreover, the entries of the
coefficient matrix can be evaluated exactly.

We can also prove that the condition number of As does not depend on N . To show this, we
define the discrete l2-inner product and norm, i.e., for any two vectors of length N−1, 〈u, v〉l2 :=∑N−2

j=0 u j v j and ‖u‖l2 = 〈u,u〉1/2
l2 . By using (5.21), (4.3), the definition of As, (4.4) and the

Poincaré inequality (4.12) successively, we derive that

‖û‖2l2 = ‖u
′

N‖
2
+ û2

0 ≤
〈
u′N , u′N

〉
N + b 〈uN , uN 〉N + û2

0 = 〈Asû, û〉l2 + û2
0

= ‖u′N‖
2
N + b‖uN‖

2
N + û2

0 ≤ ‖u
′

N‖
2
+ 9b‖uN‖

2
+ û2

0

≤ (1+ cb)‖u′N‖
2
+ cb|ūN |

2
+ û2

0

≤ (1+ cb)(‖u′N‖
2
+ û2

0) = ‖û‖
2
l2 , (5.23)

where in the last step, we used the fact ūN =
∫ 1
−1 uN (x)dx = 2û0. Therefore, we claim that

Cond(As) ≤ 1+ cb, which is also verified numerically by Table 5.2.
We compare in Table 5.2 the condition numbers of the matrices Ac, Ap and As resulting from

the pure collocation method (PCOL, cf. (5.8)), pseudospectral method with nodal basis (PSND,
cf. (5.18)) and pseudospectral method with modal basis (PSMD, cf. (5.22)), respectively. We see
that for various b and N , the condition numbers of the system (5.22) are small and independent
of N (also cf. (5.23)), while those of the collocation scheme and pseudospectral method using a
nodal basis grow like O(N 4).

To check the accuracy, we take b = 1 and u(x) = cos2(12πx) as the exact solution.
The discrete L2-errors against various N are plotted at the left of Fig. 5.1, which indicates an
exponential convergence rate. We also see that PSND and PSMD methods can provide better
numerical results than PCOL method. To exam the effect of roundoff errors, we take b = 100
and u(x) = cos2(8πx) as an exact solution. We observe from Fig. 5.1(right) that the effect
of roundoff errors is much more severe in PCOL method. Indeed, like the Gauss–Lobatto
pseudospectral method, both PSND and PSMD have higher accuracy, when compared to PCOL.
However, in multi-dimensional cases, PSMD (based on tensor product of the basis functions) is
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more preferable, since it involves sparse and well-conditioned systems, which can be inverted
very efficiently by using the matrix decomposition techniques (cf. [22]).

5.3. Error estimates

In this section, we apply the approximation results established in the previous section to
analyze the errors of the GLLB pseudospectral scheme (5.15).

Theorem 5.1. Let uN and u be respectively the solutions of (5.15) and (5.1) with b(x) = b > 0
and g± = 0. If u ∈ X ∩ Bm

−2(I ) and f ∈ Bs
−2(I ) with integers m, s ≥ 2, then

‖u − uN‖µ ≤ c(Nµ−m
‖∂m

x u‖ωm−2 + N−s
‖∂s

x f ‖ωs−2), µ = 0, 1. (5.24)

Proof. For simplicity, let eN = π
1
N u − uN and Ev(φ) = (v, φ) − 〈v, φ〉N . By (4.3), (5.1) and

(5.15),

(∂x (u − uN ), ∂xφ)+ b
(
(u, φ)− 〈uN , φ〉N

)
= E f (φ), ∀φ ∈ X N .

Thanks to (4.24), we can rewrite the above equation as

(∂x eN , ∂xφ)+ b 〈eN , φ〉N = b
(〈
π1

N u, φ
〉

N
− (u, φ)

)
+ E f (φ), ∀φ ∈ X N . (5.25)

Using (4.4), Theorems 4.1 and 4.2, and Corollary 4.2 leads to∣∣∣〈π1
N u, φ

〉
N
− (u, φ)

∣∣∣ ≤ ∣∣∣〈π1
N u − I N u, φ

〉
N

∣∣∣+ |Eu(φ)|

≤ ‖π1
N u − I N u‖‖φ‖ + |Eu(φ)| ≤ cN−m

‖∂m
x u‖ωm−2‖φ‖,

and

|E f (φ)| ≤ N−s
‖∂s

x f ‖ωs−2‖φ‖.

Hence, taking φ = eN in (5.25) and using (4.4), we reach that

|eN |1 + ‖eN‖ ≤ c(N−m
‖∂m

x u‖ωm−2 + N−s
‖∂s

x f ‖ωs−2).

Finally, using Theorem 4.2 again leads to the desired result. �

Remark 5.3. Theorem 4.2 of [4] presents an analysis estimate in L2-norm of a modified LGL
collocation method for (5.1) (with b = 1) with a convergence order O(N 2−m). Obviously,
the estimate (5.24) improve the existing result essentially, and seems optimal (with the order
O(N−m)).

6. Concluding remarks

In the foregoing discussions, we restrict our attentions to one-dimensional linear problems,
but the ideas and techniques go beyond these equations. An interesting extension is on
the construction and analysis of a quadrature formula and the associated pseudospectral
approximations for mixed boundary conditions α±u′(±1) + β±u(±1) where α± and β± are
constants such that

− u′′ + bu = f, in (−1, 1); α±u′(±1)+ β±u(±1) = g±, (6.1)

is well-posed. We will report this topic in our future work.
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In summary, we have derived in this paper the asymptotic properties of the nodes and weights
of the GLLB quadrature formula, and obtained optimal estimates for the GLLB interpolation
errors. We also presented a detailed implementation of the associated GLLB pseudospectral
method for second-order PDEs.
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Appendix A. Expressions of the Lagrangian basis

For notational simplicity, let q(x) := QN−1(x) be the quadrature polynomial given in (2.10),
and define

q j (x) :=
1

Q′N−1(x j )

QN−1(x)

x − x j
=

1
q ′(x j )

q(x)

x − x j
∈ PN−2, 1 ≤ j ≤ N − 1. (A.1)

We see that
{
q j
}N−1

j=1 are the Lagrangian basis associated with the interior points
{

x j
}N−1

j=1 of the
GLLB quadrature. This matter with (5.6) implies that the corresponding basis functions can be
expressed as follows.

• Boundary basis functions :

h0(x) =

[
q ′(1)(x − 1)− q(1)

]
q(x)

q(−1)q ′(1)− 2q ′(1)q ′(−1)− q ′(−1)q(1)
,

hN (x) =

[
q ′(−1)(x + 1)− q(−1)

]
q(x)

q(1)q ′(−1)+ 2q ′(1)q ′(−1)− q ′(1)q(−1)
.

(A.2)

• Interior basis functions:

h j (x) =
x2
+ ax + b

x2
j + ax j + b

q j (x), 1 ≤ j ≤ N − 1, (A.3)

where

a =
2q j (1)q ′j (−1)+ 2q ′j (1)q j (−1)

q ′j (1)q j (−1)− 2q ′j (1)q
′

j (−1)− q j (1)q ′j (−1)
,

b =
3q j (1)q ′j (−1)− 3q ′j (1)q j (−1)+ 2q ′j (1)q

′

j (−1)− 4q j (1)q j (−1)

q ′j (1)q j (−1)− 2q ′j (1)q
′

j (−1)− q j (1)q ′j (−1)
.

(A.4)

Appendix B. The derivation of (5.20)

We first recall the formula (see, e.g., [23]):

∂x J (α,β)n (x) =
1
2
(n + α + β + 1)J (α+1,β+1)

n−1 (x), n ≥ 1. (B.1)
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Using (B.1) and the expressions of dn and en gives

φ′n(x) = dn

(
1
2
(n + 1)J (1,1)n−1 (x)+

1
2
(n + 3)en J (1,1)n+1 (x)

)
=

1
2

dn(n + 1)
(

J (1,1)n−1 (x)−
n

n + 2
J (1,1)n+1 (x)

)
.

By (B.1) and formula (4.5.5) of [23],

(1− x2)
d

dx
J (1,1)n (x) =

(n + 1)(n + 3)
2n + 3

(
J (1,1)n−1 (x)−

n

n + 2
J (1,1)n+1 (x)

)
.

A combination of the above two facts leads to

φ′n(x) =
2n + 3

4
dn(1− x2)J (2,2)n−1 (x) = λ̃n−1(1− x2)J (2,2)n−1 (x).

Indeed, the normalized factor dn is chosen such that {φn} is orthonormal in L2
ω2(I ).
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