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The purpose of this paper is twofold. Firstly, we provide explicit and compact formulas for 
computing both Caputo and (modified) Riemann–Liouville (RL) fractional pseudospectral 
differentiation matrices (F-PSDMs) of any order at general Jacobi–Gauss–Lobatto (JGL) 
points. We show that in the Caputo case, it suffices to compute F-PSDM of order μ ∈
(0, 1) to compute that of any order k + μ with integer k ≥ 0, while in the modified 
RL case, it is only necessary to evaluate a fractional integral matrix of order μ ∈ (0, 1). 
Secondly, we introduce suitable fractional JGL Birkhoff interpolation problems leading to 
new interpolation polynomial basis functions with remarkable properties: (i) the matrix 
generated from the new basis yields the exact inverse of F-PSDM at “interior” JGL points; 
(ii) the matrix of the highest fractional derivative in a collocation scheme under the new 
basis is diagonal; and (iii) the resulted linear system is well-conditioned in the Caputo 
case, while in the modified RL case, the eigenvalues of the coefficient matrix are highly 
concentrated. In both cases, the linear systems of the collocation schemes using the new 
basis can be solved by an iterative solver within a few iterations. Notably, the inverse 
can be computed in a very stable manner, so this offers optimal preconditioners for 
usual fractional collocation methods for fractional differential equations (FDEs). It is also 
noteworthy that the choice of certain special JGL points with parameters related to the 
order of the equations can ease the implementation. We highlight that the use of the 
Bateman’s fractional integral formulas and fast transforms between Jacobi polynomials with 
different parameters, is essential for our algorithm development.
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1. Introduction

Fractional differential equations have been found more realistic in modelling a variety of physical phenomena, engi-
neering processes, biological systems and financial products, such as anomalous diffusion and non-exponential relaxation 
patterns, viscoelastic materials, among others. Typically, such scenarios involve long-range temporal cumulative memory 
effects and/or long-range spatial interactions that can be more accurately described by fractional-order models (see, e.g., 
[38,36,24,12,13] and the references therein).

One challenge in numerical solutions of FDEs resides in that the underlying fractional integral and derivative operators 
are global in nature. Indeed, it is not surprising to see the finite difference/finite element methods based on “local oper-
ations” lead to full and dense matrices (cf. [35,32,40,34,15,16,42,22] and the references therein), which are expensive to 
compute and invert. It is therefore of importance to construct fast solvers by carefully analysing the structures of the matri-
ces (see, e.g., [44,31]). This should be in marked contrast with the situations when they are applied to differential equations 
of integer order derivatives. In this aspect, the spectral method using global basis functions appears to be well-suited for 
non-local problems. However, only limited efforts have been devoted to this very promising approach (see, e.g., [29,30,28,
49,48,9]), when compared with a large volume of literature on finite difference and finite element methods.

Another more distinctive challenge in solving FDEs lies in that the intrinsic singular kernels of the fractional integral 
and derivative operators induce singular solutions and/or data. Just to mention a simple FDE involving RL fractional deriva-
tives of order μ ∈ (0, 1): 

(
R−1 Dμ

x u
)
(x) = 1 for x ∈ (−1, 1), such that u(−1) = 0, whose solution behaves like u(x) ∼ (1 + x)μ . 

Accordingly, it only has a limited regularity in a usual Sobolev space, so the naive polynomial approximation has a poor con-
vergence rate. Zayernouri and Karniadakis [49] proposed to approximate such singular solutions by Jacobi poly-fractonomials 
(JPFs), which were derived from eigenfunctions of a fractional Sturm–Liouville operator. Chen, Shen and Wang [9] modified 
the generalised Jacobi functions (GJFs) introduced earlier in Guo, Shen and Wang [19], and rigorously derived the approxi-
mation results in weighted Sobolev spaces involving fractional derivatives. The JPFs turned out to be special cases of GJFs, 
and the GJF Petrov-spectral-Galerkin methods could achieve truly spectral convergence for some prototypical FDEs. We also 
refer to [45] for interesting attempts to characterise the regularity of solutions to some special FDEs by Besov spaces. It is 
also noteworthy that the analysis of spectral-Galerkin approximation in [29,30] was under the function spaces and notion 
in [16], and in [22], the finite-element method was analysed for the case with smooth source term but singular solution.

It is known that by pre-computing the pseudospectral differentiation matrices (PSDMs), the collocation method enjoys 
a “plug-and-play” function with simply replacing derivatives by PSDMs, so it has remarkable advantages in dealing with 
variable coefficients and nonlinear PDEs. However, the practicers are usually plagued with the dense, ill-conditioned linear 
systems, when compared with properly designed spectral-Galerkin approaches (see, e.g., [8,39]). The “local” finite-element 
preconditioners (see, e.g., [25]) and “global” integration preconditioners (see, e.g., [11,18,20,14,46,47]) were developed to 
overcome the ill-conditioning of the linear systems. When it comes to FDEs, it is advantageous to use collocation methods, 
as the Galerkin approaches usually lead to full dense matrices as well. Recently, the development of collocation methods 
for FDEs has attracted much attention (see, e.g., [28,50,43,17]). It was numerically testified in [28,50] that for both Lagrange 
polynomial-based and JPF-based collocation methods, the condition number of the Caputo F-PSDM of order μ behaves like 
O (N2μ) which is consistent with the integer-order case. However, it seems very difficult to construct preconditioners from 
finite difference and finite elements as they own involve full and dense matrices and suffer from ill-conditioning.

The main purpose of this paper is to construct integration preconditioners and new basis functions for well-conditioned 
fractional collocation methods from some suitably defined fractional Birkhoff polynomial interpolation problems. In [46], optimal 
integration preconditioners were devised for PSDMs of integer order, which allows for stable implementation of collocation 
schemes even for thousands of collocation points. Following the spirit of [46], we introduce suitable fractional Birkhoff inter-
polation problems at general JGL points with respect to both Caputo and (modified) Riemann–Liouville fractional derivatives 
(note: the RL fractional derivative is modified by removing the singular factor so that it is well defined at every collocation 
point). As we will see, the extension is nontrivial and much more involved than the integer-order derivative case. Here, 
we restrict our attention to the polynomial approximation, though the ideas and techniques can be extended to JPF- and 
GJF-type basis functions. On the other hand, using a suitable mapping, we can transform the FDE (e.g., the aforementioned 
example) and approximate the smooth solution of the transformed equation, which is alternative to the direct use of JPF or 
GJF approximation to achieve spectral accuracy for certain special FDEs.

We highlight the main contributions of this paper in order.

• From the fractional Birkhoff interpolation, we derive new interpolation basis polynomials with remarkable properties:
(i) It provides a stable way to compute the exact inverse of Caputo and (modified) Riemann–Liouville fractional PSDMs 

associated with “interior” JGL points. This offers integral preconditioners for fractional collocation schemes using 
Lagrange interpolation basis polynomials.

(ii) Using the new basis, the matrix of the highest fractional derivative in a collocation scheme is identity, and the 
F-PSDMs are not involved. More importantly, the resulted linear systems can be solved by an iterative method con-
verging within a few iterations even for a very large number of collocation points.

• We propose a compact and systematic way to compute Caputo and (modified) Riemann–Liouville F-PSDMs of any order 
at JGL points. In fact, we can show that the computation of F-PSDM of order k + μ with k ∈ N and μ ∈ (0, 1) boils 
down to evaluating (i) F-PSDM of order μ in the Caputo case, and (ii) a modified fractional integral matrix of order μ
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in the Riemann–Liouville case. Using the Bateman’s fractional integral formulas and the connection problem, i.e., the 
transform between Jacobi polynomials with different parameters, we obtain the explicit formulas of these matrices.

The rest of the paper is organised as follows. The next section is for some preparations. In Section 3, we present algo-
rithms for computing Caputo and (modified) Riemann–Liouville F-PSDMs. In Sections 4–5, we introduce fractional Birkhoff 
polynomial interpolation and compute new basis functions. Then we are able to stably compute the inverse of F-PSDMs 
at “interior” JGL points and construct well-conditioned collocation schemes. The final section is for numerical results and 
concluding remarks.

2. Preliminaries

In this section, we make necessary preparations for subsequent discussions. More precisely, we first recall the definitions 
of fractional integrals and derivatives. We then collect some important properties of Jacobi polynomials and the related 
Jacobi–Gauss–Lobatto interpolation. We also highlight in this section the transform between Jacobi polynomials with differ-
ent parameters, which is related to the so-called connection problem.

2.1. Fractional integrals and derivatives

Let N and R be the sets of positive integers and real numbers, respectively, and denote by

N0 := {0} ∪N, R
+ := {

a ∈R : a > 0
}
, R

+
0 := {0} ∪R

+. (2.1)

The definitions of fractional integrals and fractional derivatives in the Caputo and Riemann–Liouville sense can be found 
from many resources (see, e.g., [38,12]): For ρ ∈ R

+ , the left-sided and right-sided fractional integrals of order ρ are defined by

(a Iρx u)(x) = 1

�(ρ)

x∫
a

u(y)

(x − y)1−ρ
dy, (x Iρb u)(x) = 1

�(ρ)

b∫
x

u(y)

(y − x)1−ρ
dy, (2.2)

for x ∈ (a, b), respectively, where �(·) is the Gamma function.
Denote the ordinary derivative by Dk = dk/dxk (with k ∈ N). In general, the fractional integral and ordinary derivative 

operators are not commutable, leading to two types of fractional derivatives: For μ ∈ (k −1, k) with k ∈N, the left-sided Caputo 
fractional derivative of order μ is defined by

(C
a Dμ

x u
)
(x) = a Ik−μ

x
(

Dku
)
(x) = 1

�(k − μ)

x∫
a

u(k)(y)

(x − y)μ−k+1
dy, (2.3)

and the left-sided Riemann–Liouville fractional derivative of order μ defined by

(R
a Dμ

x u
)
(x) = Dk(

a Ik−μ
x u

)
(x) = 1

�(k − μ)

dk

dxk

x∫
a

u(y)

(x − y)μ−k+1
dy. (2.4)

Note that if μ = k ∈N, we have C
a Dk

x = R
a Dk

x = Dk .

Remark 2.1. Similarly, one can define the right-sided Caputo and Riemann–Liouville derivatives:(C
x Dμ

b u
)
(x) = (−1)k

x Ik−μ
b

(
Dku

)
(x),

(R
x Dμ

b u
)
(x) = (−1)k Dk(

x Ik−μ
b u

)
(x). (2.5)

With a change of variables:

x = b + a − t, u(x) = v(a + b − x), x, t ∈ (a,b),

one finds

(t Iρb v)(t) = (a Iρx u)(x), x, t ∈ (a,b), (2.6)

and likewise for the fractional derivatives. In view of this, we restrict our discussions to the left-sided fractional integrals 
and derivatives. �

Recall that for μ ∈ (k − 1, k) with k ∈N,

(R
a Dμ

x u
)
(x) = (C

a Dμ
x u

)
(x) +

k−1∑ u( j)(a)

�(1 + j − μ)
(x − a) j−μ (2.7)
j=0
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(see, e.g., [38,12]), which implies(R
a Dμ

x u
)
(x) = (C

a Dμ
x u

)
(x), if u( j)(a) = 0, j = 0, · · · ,k − 1. (2.8)

Moreover, there holds (see, e.g., [12, Thm. 2.14]):

R
a Dμ

x a Iμx u(x) = u(x) a.e. in (a,b), μ ∈ R
+. (2.9)

In addition, we have the explicit formulas (see, e.g., [12, p. 49]): for real η > −1 and μ ∈R
+ ,

a Iμx (x − a)η = �(η + 1)

�(η + μ + 1)
(x − a)η+μ, (2.10)

and for μ ∈ (k − 1, k) with k ∈ N,

C
a Dμ

x (x − a)η =

⎧⎪⎨
⎪⎩

0, if η ∈ {0,1, · · · ,k − 1},
�(η + 1)

�(η − μ + 1)
(x − a)η−μ, if η > k − 1, η ∈ R.

(2.11)

Similarly, for μ ∈ (k − 1, k) with k ∈ N, and real η > −1, we have (cf. [38, p. 72])

R
a Dμ

x (x − a)η = �(η + 1)

�(η − μ + 1)
(x − a)η−μ. (2.12)

Hereafter, we restrict our attention to the interval � := (−1, 1), and simply denote

Iμ− := −1 Iμx , C Dμ
− := C

−1 Dμ
x , R Dμ

− = R−1 Dμ
x , x ∈ �. (2.13)

Apparently, the formulas and results can be extended to the general interval (a, b) straightforwardly.

2.2. Jacobi polynomials and Jacobi–Gauss–Lobatto interpolation

Throughout this paper, the notation and normalisation of Jacobi polynomials are in accordance with Szegö [41].
For α, β ∈ R, the Jacobi polynomials are defined by the hypergeometric function (cf. Szegö [41, (4.21.2)]):

P (α,β)
n (x) = �(n + α + 1)

n!�(α + 1)
2 F1

(
−n,n + α + β + 1;α + 1; 1 − x

2

)
, x ∈ �, n ∈ N, (2.14)

and P (α,β)

0 (x) ≡ 1. Note that P (α,β)
n (x) is always a polynomial in x for all α, β ∈ R, but not always of degree n. A reduction of the 

degree of P (α,β)
n (x) occurs if and only if

m := −(n + α + β) ∈N and 1 ≤ m ≤ n (2.15)

(cf. [41, p. 64] and [7]). Note that for α, β ∈ R, there hold

P (α,β)
n (x) = (−1)n P (β,α)

n (−x); P (α,β)
n (1) = �(n + α + 1)

n!�(α + 1)
. (2.16)

For α, β > −1, the classical Jacobi polynomials are orthogonal with respect to the Jacobi weight function: ω(α,β)(x) =
(1 − x)α(1 + x)β , namely,

1∫
−1

P (α,β)
n (x)P (α,β)

n′ (x)ω(α,β)(x)dx = γ
(α,β)

n δnn′ , (2.17)

where δnn′ is the Dirac Delta symbol, and

γ
(α,β)

n = 2α+β+1�(n + α + 1)�(n + β + 1)

(2n + α + β + 1)n!�(n + α + β + 1)
. (2.18)

However, the orthogonality does not carry over to the general case with α or β ≤ −1 (see, e.g., [27] and [26, Ch. 3]).
Recall the three-term recurrence relation (see, e.g., [41,39]): for α, β > −1,

P (α,β)

n+1 (x) = (
â(α,β)

n x − b̂(α,β)
n

)
P (α,β)

n (x) − ĉ(α,β)
n P (α,β)

n−1 (x), n ≥ 1,

P (α,β)

0 (x) = 1, P (α,β)

1 (x) = 1
(α + β + 2)x + 1

(α − β), (2.19)

2 2
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where

â(α,β)
n = (2n + α + β + 1)(2n + α + β + 2)

2(n + 1)(n + α + β + 1)
,

b̂(α,β)
n = (β2 − α2)(2n + α + β + 1)

2(n + 1)(n + α + β + 1)(2n + α + β)
,

ĉ(α,β)
n = (n + α)(n + β)(2n + α + β + 2)

(n + 1)(n + α + β + 1)(2n + α + β)
. (2.20)

The following formulas derived from Bateman fractional integral formulas of Jacobi polynomials [4] (also see [2, p. 313], 
[41, p. 96] and [9]) are indispensable for the algorithm development.

Theorem 2.1. Let ρ, s ∈R
+, n ∈N0 and x ∈ �. Then for α ∈ R and β > −1, we have

Iρ−
{
(1 + x)β P (α,β)

n (x)
} = �(n + β + 1)

�(n + β + ρ + 1)
(1 + x)β+ρ P (α−ρ,β+ρ)

n (x), (2.21)

and

R Ds−
{
(1 + x)β+s P (α−s,β+s)

n (x)
} = �(n + β + s + 1)

�(n + β + 1)
(1 + x)β P (α,β)

n (x). (2.22)

As direct consequences of Theorem 2.1, we have the following important special cases.

Corollary 2.1. For α ∈R, ρ ∈ R
+, n ∈N0 and x ∈ �,

Iρ−
{

P (α,0)
n (x)

} = n!
�(n + ρ + 1)

(1 + x)ρ P (α−ρ,ρ)
n (x); (2.23)

R Dρ
−
{
(1 + x)ρ P (α,ρ)

n (x)
} = �(n + ρ + 1)

n! P (α+ρ,0)
n (x). (2.24)

In particular, for ρ ∈ R
+, n ∈N0 and x ∈ �,

Iρ−
{

Pn(x)
} = n!

�(n + ρ + 1)
(1 + x)ρ P (−ρ,ρ)

n (x); (2.25)

R Dρ
−
{
(1 + x)ρ P (−ρ,ρ)

n (x)
} = �(n + ρ + 1)

n! Pn(x). (2.26)

Remark 2.2. Remarkably, the formulas (2.25)–(2.26) link up the Legendre polynomials with the non-polynomials (1 +
x)ρ P (−ρ,ρ)

n (x). They are referred to as the generalised Jacobi functions [19,9], and as the Jacobi poly-fractonomials [49]
when 0 < ρ < 1. �

For α, β > −1, let 
{

x j := x(α,β)

N, j , ω j := ω
(α,β)

N, j

}N
j=0 be the set of Jacobi–Gauss–Lobatto (JGL) quadrature nodes and weights, 

where the nodes are zeros of (1 − x2)D P (α,β)
N (x). Hereafter, we assume that {x j} are arranged in ascending order so that 

x0 = −1 and xN = 1. Moreover, to alleviate the burden of heavy notation, we sometimes drop the parameters α, β in the 
notation, whenever it is clear from the context.

The JGL quadrature enjoys the exactness (see, e.g., [39, Ch. 3]):

1∫
−1

φ(x)ω(α,β)(x)dx =
N∑

j=0

φ(x j)ω j, ∀φ ∈ P2N−1, (2.27)

where PN is the set of all polynomials of degree at most N . Let IN u be the JGL Lagrange polynomial interpolant of u ∈ C(�̄)

defined by

(
IN u

)
(x) =

N∑
j=0

u(x j)h j(x) ∈ PN , (2.28)

where the interpolating basis polynomials {h j}N
j=0 can be expressed by

h j(x) =
N∑

tnj P (α,β)
n (x), 0 ≤ j ≤ N, where tnj := ω j

γ̃
(α,β)

P (α,β)
n (x j), (2.29)
n=0 n
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with

γ̃
(α,β)

n = γ
(α,β)

n , 0 ≤ n ≤ N − 1; γ̃
(α,β)
N =

(
2 + α + β + 1

N

)
γ

(α,β)
N . (2.30)

2.3. Transform between Jacobi polynomials with different parameters

Our efficient computation of fractional differentiation matrices and their inverses, relies on the transform between Jacobi 
expansions with different parameters. It is evident that for α, β, a, b > −1,

PN = span
{

P (α,β)
n : 0 ≤ n ≤ N

} = span
{

P (a,b)

l : 0 ≤ l ≤ N
}
.

Given the Jacobi expansion coefficients {û(α,β)
n } of u ∈PN , find the coefficients {û(a,b)

l } such that

u(x) =
N∑

n=0

û(α,β)
n P (α,β)

n (x) =
N∑

l=0

û(a,b)

l P (a,b)

l (x). (2.31)

This defines a connection problem (cf. [3]) resolved by the transform:

û(a,b) = (α,β)C (a,b) û(α,β)
, (2.32)

where û(α,β) and û(a,b) are column-(N + 1) vectors of the coefficients, and (α,β)C (a,b) is the connection matrix of the 
transform from 

{
P (α,β)

n
}

to 
{

P (a,b)

l

}
. One finds from the orthogonality (2.17) and (2.31) that the entries of (α,β)C (a,b) , i.e., 

the connection coefficients, are given by

(α,β)C (a,b)

ln := 1

γ
(a,b)

l

1∫
−1

P (a,b)

l (x)P (α,β)
n (x)ω(a,b)(x)dx, 0 ≤ l,n ≤ N. (2.33)

Some remarks are in order.

• It is evident that P (α,β)

l ∈ span
{

P (a,b)
0 , · · · , P (a,b)

l

}
. Thus by the orthogonality (2.17) and (2.33), we have (α,β)C (a,b)

ln = 0
for n < l. In other words, the connection matrix is an upper triangular matrix, so (2.32) reduces to

û(a,b)

l =
N∑

n=l

(α,β)C (a,b)

ln û(α,β)
n , 0 ≤ l ≤ N. (2.34)

• In fact, we have the explicit formula of the connection coefficient (cf. [2, p. 357])

(α,β)C (a,b)

ln = (2l + a + b + 1)
�(n + α + 1)

�(n + α + β + 1)

�(l + a + b + 1)

�(l + a + 1)

×
n−l∑

m=0

(−1)m�(n + l + m + α + β + 1)�(m + l + a + 1)

m!(n − l − m)!�(l + m + α + 1)�(m + 2l + a + b + 2)
. (2.35)

This exact formula is less useful in computation, as even in the Chebyshev-to-Legendre case, significant effort has to 
be made to analyse their behaviours and take care of the cancellations, when N is large (cf. [1,6]). One can actually 
compute the connection coefficients by using the recursive formula in Proposition 2.1 below.

• In general, it requires O (N2) operations to carry out the matrix–vector product in (2.32). In practice, several tech-
niques have been proposed to speed up the transforms (see, e.g., [1,37,5,21] and the monograph [23] and the references 
therein). In particular, through exploiting the remarkable property that the columns of the connection matrix are eigen-
vectors of a certain structured quasi-separable matrix, fast and stable algorithms can be developed (cf. [23,5] and the 
references therein). The interesting work [21] fully used the low-rank property of the connection matrix, and proposed 
fast algorithms based on rank structured matrix approximation.

Proposition 2.1. For α, β, a, b > −1, the connection coefficients in (2.33) can be computed recursively as follows.

(i) For n = 0,

(α,β)C (a,b)
00 = 1, (α,β)C (a,b)

l0 = 0, l = 1, · · · , N; (2.36)
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(ii) For n = 1,

(α,β)C (a,b)
01 = α(b + 1) − β(a + 1) + b − a

a + b + 2
, (α,β)C (a,b)

11 = α + β + 2

a + b + 2
, (2.37)

and (α,β)C (a,b)

l1 = 0 for l = 2, · · · , N;
(iii) With the initials in (2.36)–(2.37), we compute

(α,β)C (a,b)

l,n+1 = ălân
(α,β)C (a,b)

l−1,n + (b̆lân − b̂n)
(α,β)C (a,b)

ln + c̆lân
(α,β)C (a,b)

l+1,n − ĉn
(α,β)C (a,b)

l,n−1, (2.38)

for n = 1, · · · , N − 1, l = 0, · · · , n + 1, and set (α,β)C (a,b)

l,n+1 = 0 for l = n + 2, · · · , N. Here, we define (α,β)C (a,b)
−1,n = 0 and the 

coefficients

ăl = 2l(l + a + b)

(2l + a + b − 1)(2l + a + b)
, b̆l = b2 − a2

(2l + a + b)(2l + a + b + 2)
,

c̆l = 2(l + a + 1)(l + b + 1)

(2l + a + b + 2)(2l + a + b + 3)
, ân = â(α,β)

n , b̂n = b̂(α,β)
n , ĉn = ĉ(α,β)

n , (2.39)

where {â(α,β)
n , ̂b(α,β)

n , ̂c(α,β)
n } are defined in (2.20).

Proof. Since P (α,β)

0 (x) = 1 = P (a,b)
0 (x), we have (α,β)C (a,b)

l0 = δl0, which follows from (2.33) and (2.17) directly. This leads to 
(2.36).

We now turn to (2.37). One verifies that

P (α,β)

1 (x) = α + β + 2

a + b + 2
P (a,b)

1 (x) + α(b + 1) − β(a + 1) + b − a

a + b + 2
P (a,b)

0 (x). (2.40)

Then we can derive (2.37) from (2.33) and (2.17) again.
It remains to prove (2.38). By (2.33) and the three-term recurrence relation (2.19), we have

(α,β)C (a,b)

l,n+1 = â(α,β)
n

γ
(a,b)

l

1∫
−1

xP (a,b)

l (x)P (α,β)
n (x)ω(a,b)(x)dx − b̂(α,β)

n
(α,β)C (a,b)

l,n − ĉ(α,β)
n

(α,β)C (a,b)

l,n−1

= â(α,β)
n

â(a,b)

l

γ
(a,b)

l+1

γ
(a,b)

l

(α,β)C (a,b)

l+1,n + â(α,β)
n b̂(a,b)

l

â(a,b)

l

(α,β)C (a,b)

l,n + â(α,β)
n ĉ(a,b)

l

â(a,b)

l

γ
(a,b)

l−1

γ
(a,b)

l

(α,β)C (a,b)

l−1,n

− b̂(α,β)
n

(α,β)C (a,b)

l,n − ĉ(α,β)
n

(α,β)C (a,b)

l,n−1.

Working out the constants by using (2.18) and (2.20), we obtain the desired formula. �
3. Fractional pseudospectral differentiation

In this section, we extend the pseudospectral differentiation (PSD) process of integer order derivatives to the fractional 
context, and present efficient algorithms for computing the fractional pseudospectral differentiation matrix (F-PSDM). We 
show that

(i) in the Caputo case, it suffices to evaluate Caputo F-PSDM of order μ ∈ (0, 1) to compute F-PSDM of any order (see 
Theorem 3.1);

(ii) in the Riemann–Liouville case, it is necessary to modify the fractional derivative operator in order to absorb the singular 
fractional factor (see (3.8)), and the computation of the modified F-PSDM of any order boils down to computing a 
modified fractional integral matrix of order μ ∈ (0, 1) (see Theorem 3.3).

3.1. Fractional pseudospectral differentiation process

It is known that the pseudospectral differentiation process is the heart of a collocation/pseudospectral method for PDEs 
(see, e.g., [8,39]). Typically, for any u ∈PN , the differentiation Dku is carried out via (2.28) in an exact manner, that is,

Dku(x) =
N∑

u(x j)Dkh j(x), k ∈N. (3.1)

j=0
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It is straightforward to extend this to the fractional pseudospectral differentiation. More precisely, for any u ∈ PN ,

(Dμu)(x) =
N∑

j=0

u(x j)Dμh j(x), Dμ := C Dμ
−, R Dμ

−, μ ∈R
+. (3.2)

However, in distinct contrast to (3.1), we have Dμu, Dμh j /∈ PN , if μ /∈ N. To provide some insights into this, we introduce 
the space:

F (ν)
N := {

(1 + x)νφ : ∀φ ∈ PN
}
, ν ∈R, (3.3)

and show the following properties.

Lemma 3.1. For μ ∈ (k − 1, k) with k ∈N, and for any u ∈PN , we have

C Dμ
−u ∈ F (k−μ)

N−k , R Dμ
−u ∈ F (−μ)

N , (3.4)

and

C Dμ
−u → 0, as x → −1. (3.5)

Proof. It is clear that

Dku ∈ PN−k = span
{

Pn : 0 ≤ n ≤ N − k
}
.

Thus, we derive from the definition (2.3) and (2.25) with ρ = k − μ that

C Dμ
−u = Ik−μ

− (Dku) = (1 + x)k−μφ, for some φ ∈ PN−k. (3.6)

This implies (3.4)–(3.5) for the Caputo case.
Similarly, in the Riemann–Liouville case, we deduce from (2.25) that Ik−μ

− u ∈ F (k−μ)

N . Then by the definition (2.4), we 
obtain from a direct calculation that

R Dμ
−u = Dk(Ik−μ

− u) = (1 + x)−μψ, for some ψ ∈ PN . (3.7)

This ends the proof. �
Remark 3.1. This implication of Lemma 3.1 is that

(i) if a FDE has a smooth solution, the source term might have a singular behaviour;
(ii) conversely, for a FDE with smooth inputs, the solution might possess singularity.

To achieve spectrally accurate approximation for some prototype FDEs pertaining to the latter case, the recent works [49,9]
proposed to approximate the singular solutions by using Jacobi polyfractonomials and general Jacobi functions, i.e., the basis 
of F (ν)

N . �
Observe from (3.7) that the Riemann–Liouville fractional derivative of a polynomial might tend to infinity as x → −1. This 

brings about some inconvenience for the computation of the related F-PSDM and implementation of the collocation scheme. 
This inspires us to multiply both sides of (3.2) by the singular factor (1 + x)μ , leading to the modified Riemann–Liouville 
fractional pseudospectral differentiation:

( R D̂μ
−u

)
(x) =

N∑
j=0

u(x j)
( R D̂μ

−h j
)
(x) where R D̂μ

− := (1 + x)μ R Dμ. (3.8)

With such a modification, we can recover the Riemann–Liouville fractional derivative values at xi �= −1 by( R Dμ
−u

)
(xi) = (1 + xi)

−μ
( R D̂μ

−u
)
(xi), 1 ≤ i ≤ N. (3.9)

Correspondingly, we can define the modified factional integral and state some important properties as follows.

Lemma 3.2. Let u ∈PN and {h j} be the Lagrange interpolating basis polynomials at JGL points as before. Define

Îμ− = (1 + x)−μ Iμ−, R D̂μ
− := (1 + x)μ R Dμ

−, ∀μ ∈ R
+. (3.10)
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Then we have

Îμ−u, R D̂μ
−u ∈ PN , 0PN = span

{
Îμ−h j : 1 ≤ j ≤ N

}
, (3.11)

where 0PN = {φ ∈PN : φ(−1) = 0}.

Proof. By (3.7), R D̂μ
−u ∈PN , and by (2.25) and (3.10),

Îμ−
{

Pn(x)
} = n!

�(n + μ + 1)
P (−μ,μ)

n (x), μ ∈R
+. (3.12)

Note that for any real μ > 0, P (−μ,μ)
n (x) is a polynomial of degree n (cf. [41, p. 64]). Thus, we have

PN = span
{

Îμ− Pn : 0 ≤ n ≤ N
} = span

{
Îμ−h j : 0 ≤ j ≤ N

}
, (3.13)

and Îμ−u ∈PN .

We now show ( Îμ−h j)(−1) = 0 for 1 ≤ j ≤ N . It is clear that 
{
(1 + x)P (μ,1)

n
}N−1

n=0 forms a basis of 0PN , and by (2.21) with 
α = μ and β = 1,

Îμ−
{
(1 + x)P (μ,1)

n (x)
} = (n + 1)!

�(n + μ + 2)
(1 + x)P (0,1+μ)

n (x). (3.14)

Since h j ∈ 0PN , the identity (3.14) implies ( Îμ−h j)(−1) = 0 for 1 ≤ j ≤ N . �
3.2. Caputo fractional pseudospectral differentiation matrices

As before, we use boldface uppercase (resp. lowercase) letters to denote matrices (resp. vectors), and simply denote the 
entries of a matrix A by Ai j . Introduce the Caputo F-PSDM of order μ:

C D(μ) ∈R
(N+1)×(N+1), C D(μ)

i j = C Dμ
−h j(xi), 0 ≤ i, j ≤ N. (3.15)

In particular, for μ = k ∈N, we denote D(k) = C D(k) and D = D(1) .
Remarkably, the higher order Caputo fractional PSDM at JGL points can be computed by using the following recursive 

relation.

Theorem 3.1. Let μ ∈ (0, 1). Then we have

C D(k+μ) = C D(μ) D(k) = C D(μ) Dk, k ∈N, (3.16)

where Dk stands for the product of k copies of the first-order PSDM at JGL points.

Proof. For any u ∈PN , we have

u′(x) =
N∑

l=0

u(xl)h
′
l(x). (3.17)

Taking u = h′
j in (3.17), leads to

h′′
j (x) =

N∑
l=0

h′
j(xl)h

′
l(x), (3.18)

which, together with the definition (2.3), implies

C D1+μ
− h j(x) = I1−μ

− h′′
j (x) =

N∑
l=0

h′
j(xl)I1−μ

− h′
l(x) =

N∑
l=0

h′
j(xl)

C Dμ
−hl(x). (3.19)

Taking x = xi in the above, we obtain the matrix identity:

C D(1+μ) = C D(μ) D, μ ∈ (0,1). (3.20)

This leads to (3.16) with k = 1. Taking u = h(k)
(x) in (3.17), we can derive the first identity in (3.16) in the same fashion.
j



10 Y. Jiao et al. / Journal of Computational Physics 305 (2016) 1–28
Using the property (see [39, Thm. 3.10]):

D(k) = Dk, k ∈ N, (3.21)

we obtain the second identity in (3.16). �
It is seen from Theorem 3.1 that the computation of Caputo F-PSDM of any order at JGL points boils down to computing 

the first-order usual PSDM D (whose explicit formula can be found in e.g., [39]), and the Caputo F-PSDM C D(μ) with 
μ ∈ (0, 1). We present the formulas below.

Theorem 3.2. Let 
{

x j = x(α,β)

N, j

}N
j=0 with α, β > −1, x0 = −1 and xN = 1 be the JGL points, and let 

{
ω j = ω

(α,β)

N, j

}N
j=0 be the corre-

sponding quadrature weights. Then the entries of C D(μ) with μ ∈ (0, 1) can be computed by

C D(μ)

i j = (1 + xi)
1−μ

N∑
l=1

(l − 1)!
�(l + 1 − μ)

slj P (μ−1,1−μ)

l−1 (xi) , (3.22)

for 0 ≤ i, j ≤ N, where

slj = 1

2

N∑
n=l−1

(n + α + β + 1)(α+1,β+1)C (0,0)

l−1,n−1 tnj, tnj := ω j

γ̃
(α,β)

n

P (α,β)
n (x j), (3.23)

{
(α+1,β+1)C (0,0)

l−1,n−1

}
are the Jacobi-to-Legendre connection coefficients, and {γ̃ (α,β)

n } are defined in (2.30).
For α = β = 0, we can alternatively compute the coefficients {slj} by

slj = 1

γl−1

{
δ jN + (−1)lδ j0 − ω j P ′

l−1(x j)
}
, γl−1 = 2

2l − 1
. (3.24)

To avoid the distraction from the main results, we provide the derivation of the formulas in Appendix A.

Remark 3.2. We see that in the Legendre case, we can bypass the connection problem. It is noteworthy that in [28], the 
Caputo F-PSDM of order μ > 0 was computed largely by the derivative formula of Pn and some recurrence relation of 
Iμ− Pn built upon three-term recurrence formula of Legendre polynomials. As shown above, the use of the compact, explicit 
formula (2.25) leads to much concise representation and stable computation. �
3.3. Modified Riemann–Liouville fractional pseudospectral differentiation matrices

Introduce the matrices:

R
̂D

(μ)
, Î

(μ) ∈R
(N+1)×(N+1), (3.25)

where

R
̂D

(μ)

i j = ( R D̂(μ)
− h j

)
(xi), Î

(μ)

i j = (
Îμ−h j

)
(xi), 0 ≤ i, j ≤ N.

We can show the following important property similar to Theorem 3.1.

Theorem 3.3. Let {h j} be the JGL interpolating basis polynomials. Then for μ ∈ (k − 1, k) with k ∈N, we have

R
̂D

(μ) = D̆
(k)

Î
(k−μ)

, (3.26)

where the entries of D̆
(k)

are given by

D̆
(k)

i j = (1 + x)μDk{(1 + x)k−μh j(x)
}∣∣

x=xi
, 0 ≤ i, j ≤ N. (3.27)

Proof. By (3.11), we can write that for any u ∈PN ,

( Îk−μ
− u)(x) =

N∑
( Îk−μ

− u)(xl)hl(x). (3.28)

l=0
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Multiplying both sides by (1 + x)k−μ , and using (3.10), we find

(Ik−μ
− u)(x) =

N∑
l=0

( Îk−μ
− u)(xl)(1 + x)k−μhl(x), (3.29)

which implies

( R D(μ)
− u

)
(x) = Dk(Ik−μ

− u)(x) =
N∑

l=0

( Îk−μ
− u)(xl)Dk{(1 + x)k−μhl(x)

}
, (3.30)

for x ∈ (−1, 1]. To remove the singularity at x = −1, we multiply both sides of (3.30) by (1 + x)μ , and reformulate the 
resulted identity by the modified operator in (3.8), leading to

( R D̂(μ)
− u

)
(x) =

N∑
l=0

( Îk−μ
− u)(xl)

{
(1 + x)μDk{(1 + x)k−μhl(x)

}}
. (3.31)

Taking u = h j and x = xi in the above equation yields (3.26). �
Observe from (3.26) that it suffices to compute the modified fractional integral matrix Î

(k−μ)
with k − μ ∈ (0, 1), since 

D̆
(k)

can be expressed in terms of the PSDM of integer order, e.g., for k = 1,

D̆
(1) = (1 − μ)I N+1 + �D, � = diag

(
(1 + x0), · · · , (1 + xN)

)
, (3.32)

where I N+1 is an identity matrix.

Theorem 3.4. Let 
{

x j = x(α,β)

N, j

}N
j=0 with α, β > −1, x0 = −1 and xN = 1 be the JGL points, and let 

{
ω j = ω

(α,β)

N, j

}N
j=0 be the corre-

sponding quadrature weights. Then the entries of Î
(μ)

with μ ∈ (0, 1) can be computed by

Î
(μ)

i j =
N∑

l=0

l!
�(l + μ + 1)

ŝl j P (−μ,μ)

l (xi), 0 ≤ i, j ≤ N, (3.33)

where

ŝlj =
N∑

n=l

(α,β)C (0,0)

ln tnj, tnj := ω j

γ̃
(α,β)

n

P (α,β)
n (x j), (3.34)

with 
{
(α,β)C (0,0)

ln

}
being the Jacobi-to-Legendre connection coefficients, and γ̃ (α,β)

n defined in (2.30). In particular, if α = β = 0, we 
have ŝl j = tlj .

Proof. It is essential to use the explicit formulas in Corollary 2.1. Accordingly, we expand the JGL Lagrange interpolating 
basis polynomials {h j} in terms of Legendre polynomials, and resort to the connection problem to transform between the 
bases as before. Equating (2.29) and the new expansion leads to

h j(x) =
N∑

n=0

tnj P (α,β)
n (x) =

N∑
l=0

ŝl j Pl(x), 0 ≤ j ≤ N, (3.35)

which defines a connection problem. Thus by (2.34),

ŝl j =
N∑

n=0

(α,β)C (0,0)

ln tnj =
N∑

n=l

(α,β)C (0,0)

ln tnj, (3.36)

where we used the property: (α,β)C (0,0)

ln = 0 if n < l. Then it follows from (3.12) immediately that for μ ∈ (0, 1),

Î
(μ)

i j = (
Îμ−h j

)
(xi) =

N∑
l=0

l! ŝl j

�(l + μ + 1)
P (−μ,μ)

l (xi), 0 ≤ i, j ≤ N. (3.37)

This leads to the desired formulas.
In the Legendre case, it is clear that the expansions in (3.35) are identical, so we have ŝl j = tlj . �
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Fig. 3.1. Maximum and minimum (in modulus) eigenvalues of F-PSDM with μ = 1.5. Left: Caputo. Right: modified Riemann–Liouville.

We conclude this section by providing some numerical study of (discrete) eigenvalues of F-PSDMs. Observe from (3.5)
that the first row of C D(μ) is entirely zero, so C D(μ) is always singular. We therefore remove the “boundary” row/column, 
and define

C D(μ)

in :=
⎧⎨
⎩

(
C D(μ)

i j

)
1≤i, j≤N , if μ ∈ (0,1),(

C D(μ)

i j

)
1≤i, j≤N−1, if μ ∈ (1,2),

where C D(μ)

i j = ( C Dμ
−h j

)
(xi), (3.38)

which is invertible and allows for incorporating boundary condition(s). Similarly, we define

R D̂
(μ)

in :=
⎧⎨
⎩

(
R D̂

(μ)

i j

)
1≤i, j≤N , if μ ∈ (0,1),(

R D̂
(μ)

i j

)
1≤i, j≤N−1, if μ ∈ (1,2),

where R D̂
(μ)

i j = ( R D̂μ
−h j

)
(xi). (3.39)

In Fig. 3.1, we illustrate the smallest and largest eigenvalues (in modulus) of these matrices. Observe that in both cases, the 
largest eigenvalue grows like O (N2μ), while the smallest one remains a constant in the Caputo case, and mildly decays with 
respect to N in the modified RL case.

4. Caputo fractional Birkhoff interpolation and inverse of F-PSDM

As already mentioned, the condition number of the collocation system of a FDE of order μ grows like O (N2μ), so 
its solution suffers from severe round-off errors, and it also becomes rather prohibitive to solve the linear system by an 
iterative method. Following the spirit of [10,46], we introduce the Caputo fractional Birkhoff interpolation that generates a 
new interpolating polynomial basis with remarkable properties:

(i) It provides a stable way to invert the Caputo F-PSDM in (3.38), leading to optimal fractional integration preconditioners 
for the ill-conditioned collocation schemes.

(ii) It offers a basis for constructing well-conditioned collocation schemes.

4.1. Caputo fractional Birkhoff interpolation

Let 
{

x j = x(α,β)

N, j

}N
j=0 (with x0 = −1 and xN = 1) be the JGL points as before. Consider the following two interpolating 

problems:

(i) For μ ∈ (0, 1), the Caputo fractional Birkhoff interpolation is to find p ∈PN such that

C Dμ
− p(x j) = C Dμ

−u(x j), 1 ≤ j ≤ N; p(−1) = u(−1), (4.1)

for any u ∈ C[−1, 1] satisfying C Dμ
−u ∈ C(−1, 1].

(ii) For μ ∈ (1, 2), the Caputo fractional Birkhoff interpolation is to find p ∈PN such that

C Dμ
− p(x j) = C Dμ

−u(x j), 1 ≤ j ≤ N − 1; p(±1) = u(±1), (4.2)

for any u ∈ C[−1, 1] satisfying C Dμ
−u ∈ C(−1, 1).
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Remark 4.1. The usual Birkhoff interpolation is comprehensively studied in e.g., the monograph [33]. Typically, a polyno-
mial Birkhoff interpolation requires at least one point at which the function and the derivative values are not interpolated 
consecutively. For example, consider a three-point interpolation problem: find p ∈ P2 such that

p(−1) = u(−1), p′(0) = u′(0), p(1) = u(1).

It defines a Birkhoff interpolation problem, since the function value at x = 0 is not interpolated, as opposite to the Hermite 
interpolation. Due to the involvement of Caputo fractional derivatives, we call (4.1) and (4.2) the Caputo fractional Birkhoff 
interpolation problems. �

As with the Lagrange interpolation, we search for a nodal basis to represent the interpolating polynomial p. More pre-
cisely, we look for Q μ

j ∈PN such that

(i) for μ ∈ (0, 1),

Q μ
0 (−1) = 1, C Dμ

− Q μ
0 (xi) = 0, 1 ≤ i ≤ N,

C Dμ
− Q μ

j (xi) = δi j, 1 ≤ i ≤ N; Q μ
j (−1) = 0, 1 ≤ j ≤ N, (4.3)

(ii) for μ ∈ (1, 2),

Q μ
0 (−1) = 1, C Dμ

− Q μ
0 (xi) = 0, 1 ≤ i ≤ N − 1; Q μ

0 (1) = 0,

C Dμ
− Q μ

j (xi) = δi j, 1 ≤ i ≤ N − 1; Q μ
j (±1) = 0, 1 ≤ j ≤ N − 1,

Q μ
N (−1) = 0, C Dμ

− Q μ
N (xi) = 0, 1 ≤ i ≤ N − 1; Q μ

N (1) = 1. (4.4)

Remark 4.2. We can show that for μ ∈ (0, 1), Q μ
0 (x) ≡ 1 in (4.3), while for μ ∈ (1, 2), Q μ

0 (x) = (1 − x)/2 and Q μ
N (x) =

(1 + x)/2 in (4.4).
Indeed, for μ ∈ (0, 1), we find from (3.4) that C Dμ

− Q μ
0 ∈ F (1−μ)

N−1 , i.e., C Dμ
− Q μ

0 = (1 + x)1−μψ for some ψ ∈ PN−1. From 
the interpolation condition: C Dμ

− Q μ
0 (xi) = 0, 1 ≤ i ≤ N , we claim that ψ(xi) = 0, 1 ≤ i ≤ N , i.e., ψ(x) has N distinct zeros. 

This implies ψ(x) ≡ 0, as ψ ∈PN−1. Then solving the fractional equation:

C Dμ
− Q μ

0 (x) = 0, x ∈ (−1,1); Q μ
0 (−1) = 1,

leads to Q μ
0 (x) ≡ 1.

Similarly, for μ ∈ (1, 2), we deduce from (3.4) and (4.4) that

C Dμ
− Q μ

0 (x) = 0, Q μ
0 (−1) = 1, Q μ

0 (1) = 0,

C Dμ
− Q μ

N (x) = 0, Q μ
N (−1) = 0, Q μ

N (1) = 1.

Noting that C Dμ
− = I2−μ

− D2, we obtain immediately that Q μ
0 (x) = (1 − x)/2 and Q μ

N (x) = (1 + x)/2. �
We can express the Caputo fractional Birkhoff interpolating polynomial p of (4.1) and (4.2), respectively, as

p(x) = u(−1) +
N∑

j=1

C Dμ
−u(x j) Q μ

j (x), μ ∈ (0,1), (4.5)

and

p(x) = 1 − x

2
u(−1) +

N−1∑
j=1

C Dμ
−u(x j) Q μ

j (x) + 1 + x

2
u(1), μ ∈ (1,2). (4.6)

Therefore, {Q μ
j } are dubbed as the Caputo fractional Birkhoff interpolating basis polynomials of order μ.

Introduce the matrices

Q (μ) =
⎧⎨
⎩

(
Q (μ)

l j

)
1≤l, j≤N , if μ ∈ (0,1),(

Q (μ)

l j

)
1≤l, j≤N−1, if μ ∈ (1,2),

where Q (μ)

l j = Q μ
j (xl). (4.7)

Remarkably, the matrix Q (μ) is the inverse of C D(μ) defined in (3.38).
in
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Theorem 4.1. For μ ∈ (k − 1, k) with k = 1, 2, we have

Q (μ) C D(μ)

in = C D(μ)

in Q (μ) = I N+1−k, (4.8)

where I N+1−k is the identity matrix of order N + 1 − k.

Proof. We just prove (4.8) with μ ∈ (0, 1), as the case μ ∈ (1, 2) can be shown in a similar fashion. Since Q μ
j ∈ PN and 

Q μ
j (−1) = 0 for 1 ≤ j ≤ N , we can write

Q μ
j (x) =

N∑
l=0

Q μ
j (xl)hl(x) =

N∑
l=1

Q μ
j (xl)hl(x), 1 ≤ j ≤ N,

where {hl} are the Lagrange interpolating basis polynomials associated with JGL points. Thus,

C Dμ
− Q μ

j (x) =
N∑

l=1

Q μ
j (xl)

C Dμ
− hl(x).

Taking x = xi for 1 ≤ i ≤ N in the above equation, we obtain (4.8) with μ ∈ (0, 1) from (4.3) straightforwardly. �
4.2. Computing the new basis {Q μ

j }

The following property plays a crucial role in computing the new basis {Q μ
j }, which follows from Lemma 3.1.

Lemma 4.1. Let {x j}N
j=0 be the JGL points with x0 = −1 and xN = 1. Then for μ ∈ (k − 1, k) with k = 1, 2, we have

Dk Q μ
j (x) = R Dk−μ

−
{( 1 + x

1 + x j

)k−μ
h̄ j(x)

}
, 1 ≤ j ≤ N + 1 − k, (4.9)

where {h̄ j}N+1−k
j=1 are the Lagrange–Gauss interpolating basis polynomials associated with the JGL points {x j}N+1−k

j=1 , that is,

h̄ j ∈ PN−k, h̄ j(xi) = δi j for 1 ≤ i, j ≤ N + 1 − k. (4.10)

Proof. Since Q μ
j ∈PN , we obtain from Lemma 3.1 that C Dμ

− Q μ
j ∈F (k−μ)

N−k . Noting that {h̄ j}N+1−k
j=1 forms a basis of PN−k , so 

by (3.3),

C Dμ
− Q μ

j (x) =
N+1−k∑

l=1

clj (1 + x)k−μh̄l(x), 1 ≤ j ≤ N + 1 − k.

Letting x = xi and using the interpolating conditions, we find that clj = (1 + xl)
μ−kδl j . Thus, we obtain

C Dμ
− Q μ

j (x) =
( 1 + x

1 + x j

)k−μ
h̄ j(x), 1 ≤ j ≤ N + 1 − k. (4.11)

By the definition (2.3), we have C Dμ
− = Ik−μ

− Dk , so using (2.9), we obtain (4.9) from (4.11) immediately. �
With the aid of (4.9), we are able to derive the explicit formulas for computing the new basis. We provide the derivation 

in Appendix B.

Theorem 4.2. Let 
{

x j = x(α,β)

N, j , ω j = ω
(α,β)

N, j

}N
j=0 with α, β > −1, x0 = −1 and xN = 1 be the JGL quadrature nodes and weights. 

Then {Q μ
j } can be computed by

(i) For μ ∈ (0, 1),

Q μ
j (x) = 1

(1 + x j)
1−μ

N−1∑
l=0

�(l − μ + 2)

l! ξ̆l j

x∫
−1

Pl(x)dx, 1 ≤ j ≤ N, (4.12)

where
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ξ̆l j =
N−1∑
n=l

(α,β)C (μ−1,1−μ)

ln ξnj, (4.13)

ξnj = 1

γ
(α,β)

n

{
− c j

β + 1

P (α,β)
N (−1)

P (α,β)
N (x j)

P (α,β)
n (−1)ω0 + P (α,β)

n (x j)ω j

}
, (4.14)

with c j = 1 for 1 ≤ j ≤ N − 1, and cN = α + 1.
(ii) For μ ∈ (1, 2),

Q μ
j (x) = 1

(1 + x j)
2−μ

N−2∑
l=0

�(l − μ + 3)

l! ξ̆l j �l(x), 1 ≤ j ≤ N − 1, (4.15)

where

ξ̆l j =
N−2∑
n=l

(α,β)C (μ−2,2−μ)

ln ξnj, (4.16)

ξnj = 1

γ
(α,β)

n

{
(x j − 1)P (α,β)

N (−1)

2(β + 1)P (α,β)
N (x j)

P (α,β)
n (−1)ω0

− (1 + x j)P (α,β)
N (1)

2(α + 1)P (α,β)
N (x j)

P (α,β)
n (1)ωN + P (α,β)

n (x j)ω j

}
, (4.17)

and

�l(x) := 1 + x

2

1∫
−1

(t − 1)Pl(t)dt +
x∫

−1

(x − t)Pl(t)dt. (4.18)

Here, 
{
(α,β)C (μ−k,k−μ)

ln

}
are the connection coefficients as defined in (2.33).

Remark 4.3. Observe from (4.13) and (4.16) that if we take (α, β) = (μ − k, k − μ) with k = 1, 2, we have ξ̆l j = ξl j , so (4.12)
and (4.15) have the simplest form. Thus, it is preferable to choose these special parameters. �
5. Modified RL fractional Birkhoff interpolation and inverse of F-PSDM

We introduce in this section the fractional Birkhoff interpolation involving modified Riemann–Liouville (RL) fractional 
derivatives which offers new polynomial bases for well-conditioned collocation methods for solving FDEs with Riemann–

Liouville fractional derivatives. Moreover, we are able to stably compute the inverse matrix of R D̂
(μ)

in defined in (3.39). 
However, this process appears more involved than the Caputo case in particular for μ ∈ (1, 2).

5.1. Modified Riemann–Liouville fractional Birkhoff interpolation

Like the Caputo case, we consider the modified Riemann–Liouville fractional Birkhoff interpolating problems (i)–(ii) as 
defined in (4.1)–(4.2) with R D̂

μ
− in place of C Dμ

− . Similarly, we look for the interpolating basis polynomials {Q̂ μ
j }N

j=0 ⊆ PN

such that

(i) for μ ∈ (0, 1),

R D̂μ
− Q̂ μ

0 (xi) = 0, 1 ≤ i ≤ N; Q̂ μ
0 (−1) = 1,

R D̂μ
− Q̂ μ

j (xi) = δi j, 1 ≤ i ≤ N, Q̂ μ
j (−1) = 0, 1 ≤ j ≤ N; (5.1)

(ii) for μ ∈ (1, 2),

R D̂μ
− Q̂ μ

0 (xi) = 0, 1 ≤ i ≤ N − 1; Q̂ μ
0 (−1) = 1, Q̂ μ

0 (1) = 0,

R D̂μ
− Q̂ μ

j (xi) = δi j, 1 ≤ i ≤ N − 1, Q̂ μ
j (±1) = 0, 1 ≤ j ≤ N − 1,

R D̂μ
− Q̂ μ

N (xi) = 0, 1 ≤ i ≤ N − 1; Q̂ μ
N (−1) = 0, Q̂ μ

N (1) = 1. (5.2)
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Then for any u ∈PN , we can write

u(x) = u(−1)Q̂ μ
0 (x) +

N∑
j=1

R D̂μ
−u(x j) Q̂ μ

j (x) (for μ ∈ (0,1))

= u(−1)Q̂ μ
0 (x) +

N−1∑
j=1

R D̂μ
−u(x j) Q̂ μ

j (x) + u(1)Q̂ μ
N (x) (for μ ∈ (1,2)). (5.3)

Introduce the matrices generated from the new basis:

Q̂
(μ) =

⎧⎨
⎩

(
Q̂

(μ)

l j

)
1≤l, j≤N , if μ ∈ (0,1),(

Q̂
(μ)

l j

)
1≤l, j≤N−1, if μ ∈ (1,2),

where Q̂
(μ)

l j = Q̂ μ
j (xl). (5.4)

Like Theorem 4.1, we can claim that Q̂
(μ)

is the inverse of R D̂
(μ)

in . As the proof of the theorem below is very similar to that 
of Theorem 4.1, we omit it.

Theorem 5.1. For μ ∈ (k − 1, k) with k = 1, 2, we have

Q̂
(μ)R D̂

(μ)

in = R D̂
(μ)

in Q̂
(μ) = I N+1−k, (5.5)

where I N+1−k is the identity matrix of order N + 1 − k.

5.2. Computing the new basis {Q̂ μ
j }N

j=0

The following lemma is very useful for the computation, whose proof is provided in Appendix C.

Lemma 5.1. Let μ ∈ (k − 1, k) with k = 1, 2. Then for any f ∈ 0PN , the fractional equation

R D̂μ
−u(x) = f (x), u(−1) = 0, (5.6)

has a unique solution u ∈ 0PN of the form

u(x) = Iμ−
{
(1 + x)−μ f (x)

}
. (5.7)

In particular, for any u ∈PN , we have

R D̂μ
−u(−1) = 0 if and only if u(−1) = 0. (5.8)

For clarity of presentation, we deal with two cases: (i) μ ∈ (0, 1) and (ii) μ ∈ (1, 2), separately.

5.2.1. {Q̂ μ
j }N

j=0 with μ ∈ (0, 1)

Using the properties (3.11) and (5.8), we obtain from the interpolating conditions in (5.1) that(R D̂μ
− Q̂ μ

j

)
(x) = h j(x), 1 ≤ j ≤ N; (R D̂μ

− Q̂ μ
0

)
(x) = ξh0(x), (5.9)

where {h j} are the JGL interpolating basis polynomials defined in (2.29), and ξ is a constant to be determined by 
Q̂ μ

0 (−1) = 1. Note that thanks to (5.8), the condition Q̂ μ
j (−1) = 0 is built-in, as h j(−1) = 0 for 1 ≤ j ≤ N . We summarise 

below the explicit representation of the new basis. Once again, we put the proof in Appendix D.

Theorem 5.2. Let 
{

x j = x(α,β)

N, j , ω j = ω
(α,β)

N, j

}N
j=0 with α, β > −1, x0 = −1 and xN = 1 be the JGL quadrature points and weights. 

Then 
{

Q̂ μ
j

}N
j=0 with μ ∈ (0, 1) can be computed by

Q̂ μ
j (x) = ζ j

N∑
l=0

�(l − μ + 1)

l! t̂l j Pl(x) with t̂lj =
N∑

n=l

(α,β)C (μ,−μ)

ln tnj, (5.10)

where ζ0 = 1/�(1 − μ), ζ j = 1 for 1 ≤ j ≤ N, 
{
(α,β)C (μ,−μ)

ln

}
are the connection coefficients defined in Subsection 2.3, and

tnj = ω j

γ̃
(α,β)

n

P (α,β)
n (x j), (5.11)

with γ̃ (α,β)
n being defined in (2.30).
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Remark 5.1. If (α, β) = (μ, −μ) with μ ∈ (0, 1), we have t̂l j = tlj , so Q̂ μ
j has the simplest form.

5.2.2. {Q̂ μ
j }N

j=0 with μ ∈ (1, 2)

It is essential to derive the identities like (5.9). Indeed, using (3.11) and (5.8), we obtain from the interpolating conditions 
in (5.2) that(R D̂μ

− Q̂ μ
0

)
(x) = (τ0 + κ0 x)ĥ0(x), Q̂ μ

0 (−1) = 1, Q̂ μ
0 (1) = 0; (5.12)(R D̂μ

− Q̂ μ
j

)
(x) = x + τ j

x j + τ j
ĥ j(x), Q̂ μ

j (1) = 0, 1 ≤ j ≤ N − 1; (5.13)

(R D̂μ
− Q̂ μ

N

)
(x) = τN(1 + x) ĥ0(x), Q̂ μ

N (1) = 1, (5.14)

where {ĥ j}N−1
j=0 are the Lagrange interpolating basis polynomials at JGL points {x j}N−1

j=0 , that is,

ĥ j(x) ∈ PN−1, ĥ j(xi) = δi j, 0 ≤ i, j ≤ N − 1. (5.15)

In (5.12)–(5.14), {τ j}N
j=0 and κ0 are constants to be determined by the corresponding conditions at x = ±1, e.g., Q̂ μ

j (1) = 0

in (5.13). It is noteworthy that thanks to (5.8), the interpolating condition: Q̂ μ
j (−1) = 0 is built in 

(
R D̂μ

− Q̂ μ
j

)
(−1) = 0 for 

1 ≤ j ≤ N .
In what follows, we shall use the three-term recurrence relation of Jacobi polynomials (see (2.19)–(2.20)):

xP (μ,1−μ)

l (x) = al+1 P (μ,1−μ)

l+1 (x) + bl P (μ,1−μ)

l (x) + cl−1 P (μ,1−μ)

l−1 (x), l ≥ 0, (5.16)

where c−1 = 0, μ ∈ (1, 2), and

al+1 = l + 2

2l + 3
, bl = 1 − 2μ

(2l + 1)(2l + 3)
, cl−1 = (l + μ)(l − μ + 1)

(l + 1)(2l + 1)
. (5.17)

As before, it is necessary to expand {ĥ j} in terms of Jacobi polynomials with different parameters by using the notion 
of connection problems, so as to use compact and closed-form formulas to compute the new basis. We state below the 
connections of three expansions, and postpone the derivations in Appendix E.

Lemma 5.2. Let 
{

x j = x(α,β)

N, j , ω j = ω
(α,β)

N, j

}N
j=0 with α, β > −1, x0 = −1 and xN = 1 be the JGL quadrature nodes and weights, and 

let {ĥ j}N−1
j=0 be the Lagrange interpolating basis polynomials associated with {x j}N−1

j=0 defined in (5.15). Then for μ ∈ (1, 2), we have

ĥ j(x) =
N−1∑
n=0

�nj P (α,β)
n (x) =

N−1∑
l=0

�̃l j P (μ,1−μ)

l (x)

= �̂0 j +
N−2∑
l=0

�̂l+1, j (1 + x)P (μ,1−μ)

l (x), 0 ≤ j ≤ N − 1, (5.18)

where �̂00 = 1 and �̂0 j = 0 for 1 ≤ j ≤ N − 1. Moreover, the coefficients can be computed by

�n0 = 1

γ
(α,β)

n

{
P (α,β)

n (−1)ω0 − β + 1

α + 1

P (α,β)
N (1)

P (α,β)
N (−1)

P (α,β)
n (1)ωN

}
, (5.19)

�nj = 1

γ
(α,β)

n

{
P (α,β)

n (x j)ω j − 1

α + 1

P (α,β)
N (1)

P (α,β)
N (x j)

P (α,β)
n (1)ωN

}
, 1 ≤ j ≤ N − 1, (5.20)

�̃l j =
N−1∑
n=l

(α,β)C (μ,1−μ)

ln �nj, 0 ≤ l, j ≤ N − 1, (5.21)

and by the backward recurrence relation:

�̂i j = 1

ai
�̃i j − bi + 1

ai
�̂i+1, j − ci

ai
�̂i+2, j, i = N − 3, N − 2, · · · ,1,

�̂N−1, j = 1

aN−1
�̃N−1, j, �̂N−2, j = 1

aN−2
�̃N−2, j − bN−2 + 1

aN−2
�̂N−1, j, (5.22)

where {ai, bi, ci} are given in (5.17).
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With the above preparations, we are ready to derive the explicit formulas of the new basis 
{

Q̂ μ
j

}N
j=0 with μ ∈ (1, 2). We 

refer to Appendix F for the derivation.

Theorem 5.3. Let 
{
�̃l j, �̂l j

}
be the coefficients defined in Lemma 5.2, and denote

dμ
l := �(l + 2 − μ)

(l + 1)! , ϕl(x) := (1 + x)P (0,1)

l (x). (5.23)

Then 
{

Q̂ μ
j

}N
j=0 at JGL points with μ ∈ (1, 2) can be computed by

(i) for j = 0,

Q̂ μ
0 (x) = 1 +

(
τ0 − 1

�(1 − μ)

) N−1∑
l=0

dμ
l �̃l0 ϕl(x) + 1

�(1 − μ)

N−2∑
l=0

dμ
l �̂l+1,0 ϕl(x),

where τ0 − 1

�(1 − μ)
= −

{
1

2
+ 1

�(1 − μ)

N−2∑
l=0

dμ
l �̂l+1,0

}/ N−1∑
l=0

dμ
l �̃l0; (5.24)

(ii) for j = N,

Q̂ μ
N (x) = 1

2

N−1∑
l=0

dμ
l �̃l0 ϕl(x)

/ N−1∑
l=0

dμ
l �̃l0 ; (5.25)

(iii) for 1 ≤ j ≤ N − 1,

Q̂ μ
j (x) = τ j

x j + τ j

N−2∑
l=0

dμ
l �̂l+1, j ϕl(x) + 1

x j + τ j

×
N−2∑
l=0

dμ
l �̂l+1, j

{
l + 2 − μ

l + 2
al+1ϕl+1(x) + blϕl(x) + l + 1

l + 1 − μ
cl−1ϕl−1(x)

}
, (5.26)

where {al, bl, cl} (with c−1 = 0) are defined in (5.17), and

τ j = −1 + μ�(2 − μ)�̂1 j

/N−2∑
l=0

dμ
l �̂l+1, j. (5.27)

Remark 5.2. We see from (5.21) that if (α, β) = (μ, 1 − μ) with μ ∈ (1, 2), the connections coefficients are not involved, so 
Q̂ μ

j has a simpler form. �
6. Well-conditioned collocation schemes and numerical results

In this section, we apply the tools developed in previous sections to construct well-conditioned collocation schemes 
for initial-valued or boundary-valued FDEs, and provide ample numerical results to show the accuracy and stability of the 
methods.

6.1. Initial-valued Caputo FDEs

To fix the idea, we first consider the Caputo FDE of order μ ∈ (0, 1):

C Dμ
−u(x) + λ(x)u(x) = f (x), x ∈ (−1,1]; u(−1) = u−, (6.1)

where λ, f are given continuous functions, and u− is a given constant. The collocation scheme is to find uN ∈PN such that

C Dμ
−uN(x j) + λ(x j)uN(x j) = f (x j), 1 ≤ j ≤ N; uN(−1) = u−. (6.2)

The corresponding linear system under the Lagrange basis polynomials {h j} (L-COL) becomes

(C D(μ) + �
)
u = f , (6.3)
in
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Fig. 6.1. Comparison of condition numbers (left), iteration numbers against errors (middle), and errors against N at convergence in log–log scale (right) for 
(6.1).

where C D(μ)

in is defined as in (3.38), � = diag(λ(x1), · · · , λ(xN )), and

u = (
uN(x1), · · · , uN(xN )

)t
, f = (

f (x1) − u−C Dμ
−h0(x1), · · · , f (xN ) − u−C Dμ

−h0(xN)
)t

. (6.4)

The collocation system under the Birkhoff interpolation basis polynomials {Q μ
j } in (4.3) (B-COL) becomes

(
I N + � Q (μ)

)
v = g, (6.5)

where

uN(x) = u− +
N∑

i=1

v j Q μ
j (x), v = (

v1, · · · , v N
)t

, (6.6)

and g = (
f (x1) − u−λ(x1), · · · , f (xN ) − u−λ(xN )

)t
. It is noteworthy that different from (6.3), the unknowns of (6.5) are not 

the approximation of u at the collocation points, but of the Caputo fractional derivative values in view of (4.5).
Thanks to Theorem 4.1, we can precondition (6.3) and obtain the PL-COL system:(

I N + Q (μ)�
)
u = Q (μ) f . (6.7)

In the computation, we take λ(x) = 2 + sin(25x) and u(x) = Eμ,1(−2(1 + x)μ) with μ = 0.8 in (6.1), where the Mittag-
Leffler function is defined by

Eα,β(z) =
∞∑

n=0

zn

�(nα + β)
. (6.8)

In view of Remark 4.3, we choose the JGL points with (α, β) = (μ − 1, 1 − μ) = (−0.2, 0.2). We compare the condition 
numbers, number of iterations (using BiCGSTAB in Matlab) and convergence behaviour (in discrete L2-norm on fine equally-
spaced grids) of three schemes (see Fig. 6.1). Observe from Fig. 6.1 (left) that the condition number of usual L-COL divided 
by N2μ behaves like a constant, while that of PL-COL and B-COL remains a constant even for N up to 2000. As a result, the 
latter two schemes only require about 8 iterations to converge, while the usual L-COL scheme requires much more itera-
tions with a degradation of accuracy as depicted in Fig. 6.1 (middle). We record the convergence history of three methods 
in Fig. 6.1 (right), and observe that two new schemes are stable even for very large N .

6.2. Boundary-valued Caputo FDEs

We now turn to the boundary value problem:

C Dμ
−u(x) + λ1(x)C Dν−u(x) + λ2(x)u(x) = f (x), x ∈ (−1,1);

u(−1) = u−, u(1) = u+, 0 < ν < μ, μ ∈ (1,2), (6.9)

where λ1, λ2 and f are given continuous functions, and u± are given constants.
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Fig. 6.2. Comparison of condition numbers (left), iteration numbers against errors (middle), and errors against N at convergence in log–log scale (right) for 
(6.9).

With a pre-computation of the Caputo fractional differentiation matrices of order μ and ν in Subsection 3.2, we can 
formulate the L-COL scheme as (6.3) straightforwardly. The counterpart of (6.5) i.e., the B-COL scheme, can be formulated 
as follows: find (cf. (4.6))

uN(x) = u∗
N(x) +

N−1∑
j=1

v j Q μ
j (x), μ ∈ (1,2); u∗

N(x) := 1 − x

2
u− + 1 + x

2
u+, (6.10)

such that(
I N−1 + �1 Q̄

(ν) + �2 Q (μ)
)

v = g, (6.11)

where �i = diag(λi(x1), · · · , λi(xN−1)), i = 1, 2, Q̄
(ν)

i j = C Dν− Q μ
j (xi), 1 ≤ i, j ≤ N −1, and g = (

f (x1) −q∗(x1), · · · , f (xN−1) −
q∗(xN−1)

)t
with q∗ = λ1

C Dν−u∗
N + λ2 u∗

N . Note that the entries of Q̄
(ν)

can be evaluated by Theorem 2.1, (2.7) and 
(4.15)–(4.18). Here, we omit the details.

Remark 6.1. If λ1 = 0 and λ2 is a constant, we can follow [46, Proposition 3.5] to justify the coefficient matrix of (6.11) is 
well-conditioned. Indeed, thanks to Theorem 4.1, the eigenvalues σ of I N−1 − λ2 Q (μ) satisfy

1 + λ2λ
−1
max ≤ σ ≤ 1 + λ2λ

−1
min,

where λmax and λmin are respectively the largest and smallest eigenvalues of C D(μ)

in . Since λmin = O (1) (see Fig. 3.1 (right)), 
the condition number of I N−1 − λ2 Q (μ) is independent of N . �

Like (6.7), we can precondition the L-COL scheme by Q (μ) which leads to the PL-COL system.
In the following comparison, we set μ = 1.9, ν = 0.7 and (α, β) = (−0.1, 0.1) (cf. Remark 4.3), and take

λ1(x) = 2 + sin(4πx), λ2(x) = 2 + cos x, (6.12)

and

u(x) = e1+x + (1 + x)6+4/7 − 2(1 + x)5+4/7, (6.13)

where we can use the formula
C Dμ

−e1+x = (1 + x)k−μE1,k+1−μ(1 + x), μ ∈ (k − 1,k), k = 1,2,

to work out f (x).
Once again, we observe from Fig. 6.2 that the new schemes: B-COL and PL-COL are well-conditioned, attain the expected 

convergence order about 10 iterations, and lead to stable computation for large N .

6.3. Riemann–Liouville FDEs

Consider the Riemann–Liouville version of (6.9):
R Dμ

−u(x) + λ1(x)R Dν−u(x) + λ2(x)u(x) = f (x), x ∈ (−1,1);
u(−1) = u−, u(1) = u+, 0 < ν < μ, μ ∈ (1,2), (6.14)

where λ1, λ2 and f are given continuous functions, and u± are given constants.
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Fig. 6.3. Errors against N of the B-COL schemes for Caputo fractional BVP (6.9) (left) and Riemann–Liouville fractional BVP (6.14) (right) with various μ, ν , 
where λ1, λ2 are given in (6.12), and the exact solution u is given in (6.17).

For a better treatment of the singularity, we consider the modified Riemann–Liouville fractional collocation scheme: find 
uN ∈PN such that

R D̂μ
−uN(x j) + λ̂1(x j)

R D̂ν−uN(x j) + λ̂2(x j)uN(x j) = f̂ (x j), 1 ≤ j ≤ N;
uN(−1) = u−, uN(1) = u+, 0 < ν < μ, μ ∈ (1,2), (6.15)

where λ̂1 = (1 + x)μ−νλ1, λ̂2 = (1 + x)μλ2, and f̂ = (1 + x)μ f .
Here, we just focus on the collocation system using the new basis in (5.3), that is,

uN(x) = u− Q̂ μ
0 (x) + u+ Q̂ μ

N (x) +
N−1∑
j=1

v j Q̂ μ
j (x), μ ∈ (1,2). (6.16)

Then one can write down the B-COL system in a fashion very similar to (6.11) with only a change of basis. Correspondingly, 
we denote the matrix of the linear system by A := I N−1 + �1 Q̃

(ν) + �2 Q̂
(μ)

.
We first show that the B-COL scheme enjoys spectral accuracy (i.e., exponential convergence), when the underlying 

solution is sufficiently smooth. For this purpose, we take

u(x) = e−(1+x) − 1 − x

2
− e−2 1 + x

2
, (6.17)

and λ1, λ2 to be the same as in (6.12). In Fig. 6.3, we plot discrete L2-errors for various pairs of (μ, ν) of the B-COL schemes 
for both Caputo and Riemann–Liouville fractional boundary value problems (BVPs) (6.9) and (6.14) under the same setting. 
We observe the exponential decay (i.e., O (e−cN) for some c > 0) of the errors. Both schemes take about 10 iterations to 
converge, while much more iterations are needed and severe round-off errors are induced if one uses the standard L-COL 
approach.

We further test the new B-COL method on (6.14) with smooth coefficients but large derivative:

λ1(x) = 1 + e−1000x2
, λ2(x) = 1 + e−1000(x+0.2)2

, (6.18)

and with the exact solution having finite regularity in the usual Sobolev space:

u(x) = Eμ,1
(−(1 + x)μ/2

) + 1 − Eμ,1(−2μ−1)

2
(1 + x) − 1. (6.19)

We tabulate in Table 6.1 the discrete L2-errors, number of iterations and the second smallest and largest eigenvalues (in 
modulus). Once again, the scheme converges within a few iterations even for very large N . In fact, as we observed from 
Fig. 3.1 (right), the smallest eigenvalue of R D̂

(μ)

in in (3.39) still mildly depends on N . As a result, the condition number of 
A grows mildly with respect to N . However, it is interesting to find that the eigenvalues in modulus of A (denoted by 
{|σ j|}N−1

j=1 which are arranged in ascending order) are concentrated in the sense that

O (1) = |σ2| ≤ |σ j| ≤ |σN−2| = O (1), 2 ≤ j ≤ N − 2. (6.20)

Thanks to this remarkable property, the iterative solver for the modified Riemann–Liouville system is actually as fast as the 
previous Caputo system where the coefficient matrix is well-conditioned.
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Table 6.1
Errors, number of iterations and concentration of eigenvalues of A.

N μ = 1.5, ν = 0.6 μ = 1.9, ν = 0.7

|σ2| |σN−2| Iters Errors |σ2| |σN−2| Iters Errors

8 0.7 1.0 7 8.58e−03 0.4 1.0 6 2.66e−03
16 0.6 1.1 12 2.03e−03 0.2 1.7 8 3.69e−04
32 0.6 1.2 12 5.39e−04 0.2 3.0 8 5.49e−05
64 0.6 1.3 12 1.31e−04 0.1 5.0 8 7.46e−06

128 0.6 1.5 12 3.24e−05 0.1 7.4 8 1.06e−06
256 0.6 1.6 12 8.08e−06 0.1 9.9 8 1.53e−07
512 0.6 1.7 13 2.02e−06 0.1 12.7 8 2.21e−08

1024 0.6 1.7 13 5.04e−07 0.1 21.1 8 3.69e−09

6.4. Concluding remarks

In this paper, we provided an explicit and compact means for computing Caputo and modified Riemann–Liouville 
F-PSDMs of any order, and introduced new fractional collocation schemes using fractional Birkhoff interpolation basis 
functions. We showed that the new approaches significantly outperformed the standard collocation approximation using 
Lagrange interpolation basis.

As a final remark, we point out two topics worthy of future investigation along this line, which we wish to explore in 
forthcoming papers. The first is to analyse the fractional Birkhoff interpolation errors and understand the approximability 
of the new interpolation basis functions from theoretical perspective. The second is to extend the idea and techniques in 
this paper to study the fractional collocation methods using the nodal basis 

{
(1 + x)μh j(x)/(1 + x j)

μ
}

(see [50], i.e., the 
counterpart of Jacobi poly-fractonomials [49] and generalised Jacobi functions [46]).
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Appendix A. Proof of Theorem 3.2

We expand {h′
j} in terms of Legendre polynomials, and look for {slj} such that

h′
j(x) = 1

2

N∑
n=1

(n + α + β + 1)tnj P (α+1,β+1)

n−1 (x) =
N∑

l=1

slj Pl−1(x), 0 ≤ j ≤ N, (A.1)

where {tnj} are given in (2.29) and we used the derivative formula (cf. [41]):

D P (α,β)
n (x) = 1

2
(n + α + β + 1)P (α+1,β+1)

n−1 (x), n ≥ 1. (A.2)

By (2.31)–(2.34), we find that

slj = 1

2

N∑
n=1

(n + α + β + 1)(α+1,β+1)C (0,0)

l−1,n−1 tnj = 1

2

N∑
n=l−1

(n + α + β + 1)(α+1,β+1)C (0,0)

l−1,n−1 tnj, (A.3)

for 1 ≤ l ≤ N and 0 ≤ j ≤ N . In view of (A.1), we can use the first formula in (2.25) to derive

C D(μ)

i j := (C Dμ
−h j

)
(xi) = I1−μ

− h′
j(xi) =

N∑
l=1

slj I1−μ
− Pl−1(xi)

= (1 + xi)
1−μ

N∑
l=1

(l − 1)!
�(l + 1 − μ)

slj P (μ−1,1−μ)

l−1 (xi) . (A.4)

This ends the derivation of (3.22)–(3.23).
We now derive (3.24) for the LGL case. Using the orthogonality of Legendre polynomials, integration by parts and the 

exactness of LGL quadrature (cf. (2.27)), we obtain from (A.1) that
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slj = 1

γl−1

1∫
−1

h′
j(x)Pl−1(x)dx = 1

γl−1

{
h j(x)Pl−1(x)

∣∣1
−1 −

N∑
i=0

h j(xi)P ′
l−1(xi)ωi

}

= 1

γl−1

{
δ jN + (−1)lδ j0 − ω j P ′

l−1(x j)
}
, (A.5)

where we used the properties: h j(xi) = δi j and Pl−1(±1) = (±1)l−1.

Appendix B. Proof of Theorem 4.2

Since h̄ j ∈PN−k , we can write

h̄ j(x) =
N−k∑
n=0

ξnj P (α,β)
n (x) =

N−k∑
l=0

ξ̆l j P (μ−k,k−μ)

l (x), 1 ≤ j ≤ N + 1 − k. (B.1)

As before, if one can work out {ξnj}, then by (2.31)–(2.34),

ξ̆l j =
N−k∑
n=l

(α,β)C (μ−k,k−μ)

ln ξnj . (B.2)

As to be shown later, inserting (B.1) into (4.9), we can derive from (2.26) with ρ = k − μ the desired formulas. Thus, it 
remains to find {ξnj} in (B.1). We proceed separately for two cases.

(i) For μ ∈ (0, 1), we obtain from the orthogonality (2.17), the exactness of JGL quadrature (2.27), and the interpolating 
condition (4.10) that

ξnj = 1

γ
(α,β)

n

1∫
−1

h̄ j(x)P (α,β)
n (x)ω(α,β)(x)dx = 1

γ
(α,β)

n

N∑
i=0

h̄ j(xi)P (α,β)
n (xi)ωi

= 1

γ
(α,β)

n

{
h̄ j(−1)P (α,β)

n (−1)ω0 + P (α,β)
n (x j)ω j

}
, 1 ≤ j ≤ N. (B.3)

Now, we evaluate h̄ j(−1). Since {h̄ j} are associated with the interpolating points {x j}N
j=1, which are zeros of (1 −

x)D P (α,β)
N (x), we have the representation:

h̄ j(x) = (1 − x)D P (α,β)
N (x)

(x − x j)D
{
(1 − x)D P (α,β)

N (x)
}∣∣

x=x j

, 1 ≤ j ≤ N. (B.4)

Recall the Sturm–Liouville equation of Jacobi polynomials (cf. [41, (4.2.1)]):

−(1 − x2)D2 P (α,β)
N (x) = {

β − α − (α + β + 2)x
}

D P (α,β)
N (x) + λ

(α,β)
N P (α,β)

N (x), (B.5)

where λ(α,β)
N = N(N + α + β + 1). It follows from (B.5) that

2(β + 1)D P (α,β)
N (−1) = −λ

(α,β)
N P (α,β)

N (−1), 2(α + 1)D P (α,β)
N (1) = λ

(α,β)
N P (α,β)

N (1),

−(1 − x2
j )D2 P (α,β)

N (x j) = λ
(α,β)
N P (α,β)

N (x j), 1 ≤ j ≤ N − 1. (B.6)

Using the property: (1 − x j)D P (α,β)
N (x j) = 0 and (B.6), we compute from (B.4) that

h̄ j(−1) = − c j

β + 1

P (α,β)
N (−1)

P (α,β)
N (x j)

, 1 ≤ j ≤ N, (B.7)

where c j = 1 for 1 ≤ j ≤ N − 1, and cN = α + 1. Substituting (B.7) into (B.3) yields (4.14).
Inserting (B.1) into (4.9), we derive from (2.26) with ρ = 1 − μ that

D Q μ
j (x) = 1

(1 + x j)
1−μ

N−1∑
l=0

�(l − μ + 2)

l! ξ̆l j Pl(x), 1 ≤ j ≤ N. (B.8)

In view of Q μ
(−1) = 0, a direct integration of (B.8) leads to (4.12).
j
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(ii) For μ ∈ (1, 2), (B.3) reads

ξnj = 1

γ
(α,β)

n

{
h̄ j(−1)P (α,β)

n (−1)ω0 + h̄ j(1)P (α,β)
n (1)ωN + P (α,β)

n (x j)ω j
}
, 1 ≤ j ≤ N − 1. (B.9)

We need to evaluate h̄ j(±1). Note that in this case, {h̄ j} are associated with the interior JGL points {x j}N−1
j=1 , which are zeros 

of D P (α,β)
N (x), so we have

h̄ j(x) = D P (α,β)
N (x)

(x − x j)D2 P (α,β)
N (x j)

, 1 ≤ j ≤ N − 1. (B.10)

Thus using (B.5)–(B.6) leads to

h̄ j(−1) = − 1 − x j

2(β + 1)

P (α,β)
N (−1)

P (α,β)
N (x j)

, h̄ j(1) = − 1 + x j

2(α + 1)

P (α,β)
N (1)

P (α,β)
N (x j)

. (B.11)

Substituting (B.11) into (B.9) yields (4.17).
Similar to case (i), inserting (B.1) into (4.9), we derive from (2.26) with ρ = 2 − μ that

D2 Q μ
j (x) = 1

(1 + x j)
2−μ

N−2∑
l=0

�(l − μ + 3)

l! ξ̆l j Pl(x). (B.12)

Solving this equation with the boundary conditions: Q μ
j (±1) = 0, we obtain �l in (4.18) and the desired formula (4.15).

Appendix C. Proof of Lemma 5.1

We carry out the proof by directly verifying that u(x) in (5.7) is the desired polynomial solution. It is evident that for 
any f ∈ 0PN , we can write

f (x) =
N−1∑
n=0

f̂n (1 + x)P (μ,1−μ)
n (x), (C.1)

where the coefficients { f̂n} are uniquely determined. Using (2.21) with ρ = μ, α = μ and β = 1 − μ, leads to

u(x) = Iμ−
{
(1 + x)−μ f (x)

} =
N−1∑
n=0

�(n + 2 − μ)

(n + 1)! f̂n (1 + x)P (0,1)
n (x), (C.2)

which implies u ∈ 0PN . Recall that R D̂μ
− = (1 + x)μR Dμ

− . Thus, acting R D̂μ
− on both sides of (C.2), we obtain from (2.22) and 

(C.1) immediately that

R D̂μ
−u(x) =

N−1∑
n=0

�(n + 2 − μ)

(n + 1)! f̂n
R D̂μ

−
{
(1 + x)P (0,1)

n (x)
}

=
N−1∑
n=0

f̂n (1 + x)P (μ,1−μ)
n (x) = f (x). (C.3)

Therefore, u(x) in (5.7) verifies (5.6). The uniqueness follows from R D̂μ
−u(x) = 0 implying u(x) = 0.

We now turn to (5.8). The above verification shows that if f (−1) = 0, i.e., R D̂μ
−u(−1) = 0, then u(−1) = 0. Hence, it 

suffices to show if u(−1) = 0, then R D̂μ
−u(−1) = 0. For this purpose, we expand

u(x) =
N−1∑
n=0

ûn (1 + x)P (0,1)
n (x), (C.4)

where {ûn} can be uniquely determined. Like the derivation of (C.3), acting R D̂μ
− and using (2.22), we obtain

R D̂μ
−u(x) =

N−1∑
n=0

(n + 1)!
�(n + 2 − μ)

ûn (1 + x)P (μ,1−μ)
n (x), (C.5)

which implies R D̂μ
−u(−1) = 0.
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Appendix D. Proof of Theorem 5.2

We intend to use the compact identity deduced from (2.22), that is,

R D̂μ
−
{

Pn(x)
} = n!

�(n − μ + 1)
P (μ,−μ)

n (x), n ≥ 0, μ ∈ (0,1). (D.1)

This inspires us to expand {h j} (resp. Q̂ μ
j ) in terms of {P (μ,−μ)

l } (resp. {Pl}). Following (3.35)–(3.36), we have

h j(x) =
N∑

l=0

t̂l j P (μ,−μ)

l (x), t̂l j =
N∑

n=l

(α,β)C (μ,−μ)

ln tnj, (D.2)

and

Q̂ μ
j (x) =

N∑
l=0

q̂lj Pl(x), 0 ≤ j ≤ N. (D.3)

Inserting (D.2)–(D.3) into (5.9), we obtain from (D.1) immediately that for 0 ≤ l ≤ N ,

q̂lj = �(l − μ + 1)

l! t̂l j, 1 ≤ j ≤ N, q̂l0 = �(l − μ + 1)

l! ξ t̂l0. (D.4)

Thus, it remains to determine the constant ξ . Setting Q̃ μ
0 (x) = Q̂ μ

0 (x) − 1, we have Q̃ μ
0 (−1) = 0. Using (5.8), the formula 

(2.12), and definition (3.10), we obtain from (5.9) that

0 = (R D̂μ
− Q̃ μ

0

)
(−1) = ξ − R D̂μ

− 1 = ξ − 1

�(1 − μ)
, so ξ = 1

�(1 − μ)
. (D.5)

This ends the proof.

Appendix E. Proof of Lemma 5.2

We first derive the coefficients in (5.19)–(5.20). By the orthogonality (2.17), the exactness of JGL quadrature (2.27), and 
the interpolating condition (5.15), we have

�nj = 1

γ
(α,β)

n

1∫
−1

ĥ j(x)P (α,β)
n (x)ω(α,β)(x)dx = 1

γ
(α,β)

n

N∑
i=0

ĥ j(xi)P (α,β)
n (xi)ωi

= 1

γ
(α,β)

n

{
P (α,β)

n (x j)ω j + ĥ j(1)P (α,β)
n (1)ωN

}
, 0 ≤ n, j ≤ N − 1. (E.1)

Since {ĥ j} are associated with the JGL points {x j}N−1
j=0 , which are zeros of (1 + x)D P (α,β)

N (x), we have the representation:

ĥ j(x) = (1 + x)D P (α,β)
N (x)

(x − x j)D
{
(1 + x)D P (α,β)

N (x)
}∣∣

x=x j

, 0 ≤ j ≤ N − 1. (E.2)

A direct calculation using (B.6) leads to

ĥ0(1) = −β + 1

α + 1

P (α,β)
N (1)

P (α,β)
N (−1)

, ĥ j(1) = − 1

α + 1

P (α,β)
N (1)

P (α,β)
N (x j)

, 1 ≤ j ≤ N − 1. (E.3)

Thus, we obtain (5.19)–(5.20) by inserting them into (E.1).
Thanks to

ĥ j(x) =
N−1∑
n=0

�nj P (α,β)
n (x) =

N−1∑
l=0

�̃l j P (μ,1−μ)

l (x), 0 ≤ j ≤ N − 1, (E.4)

we solve the connection problem and obtain from (2.34)–(2.33) the formula (5.21).
It remains to derive (5.22). Applying the three-term recurrence relation (5.16) to the last expansion in (5.18), we obtain 

the connection

T �̂ j = �̃ j, �̂ j = (�̂0 j, · · · , �̂N−1, j)
t, �̃ j = (�̃0 j, · · · , �̃N−1, j)

t, (E.5)
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where T is an upper triangular matrix with only nonzero entries on diagonal and two upper diagonals:

T 00 = 1, T ii = ai; T i,i+1 = bi + 1; T i,i+2 = ci . (E.6)

Solving the linear system by backward substitution leads to (5.22).

Appendix F. Proof of Theorem 5.3

We first use Lemma 5.1 to solve (5.12)–(5.14) and find the expressions of the constants therein. It’s more convenient to 
reformulate (5.12) as: find Q̂ μ

0 (x) = Q̆ μ
0 (x) + 1 such that

(R D̂μ
− Q̆ μ

0

)
(x) =

(
τ0 − 1

�(1 − μ)

)
(1 + x)ĥ0(x) + 1

�(1 − μ)

(
ĥ0(x) − 1), Q̆ μ

0 (1) = −1, (F.1)

where we used (2.12), (3.8) and (5.8) to derive

R D̂μ
−1 = 1

�(1 − μ)
, κ0 = τ0 − 1

�(1 − μ)
. (F.2)

Using Lemma 5.1 and (2.10), we obtain

Q̆ μ
0 (x) =

(
τ0 − 1

�(1 − μ)

)
Iμ−

{
(1 + x)1−μĥ0(x)

} + 1

�(1 − μ)
Iμ−

{
(1 + x)−μ(ĥ0(x) − 1)

}
. (F.3)

As Q̆ μ
0 (1) = −1, we have

�(1 − μ)τ0 = 1 − Iμ−
{
(1 + x)−μ(ĥ0(x) − 1)

}∣∣
x=1 + �(1 − μ)

Iμ−
{
(1 + x)1−μĥ0(x)

}∣∣
x=1

. (F.4)

Following the same argument, we derive

Q̂ μ
N (x) = τN Iμ−

{
(1 + x)1−μĥ0(x)

}
, τN = 1

Iμ−
{
(1 + x)1−μĥ0(x)

}∣∣
x=1

, (F.5)

and for 1 ≤ j ≤ N − 1,

Q̂ μ
j (x) = 1

x j + τ j

(
τ j Iμ−

{
(1 + x)−μĥ j(x)

} + Iμ−
{
(1 + x)−μxĥ j(x)

})
, (F.6)

τ j = − Iμ−
{
(1 + x)−μxĥ j(x)

}∣∣
x=1

Iμ−
{
(1 + x)−μĥ j(x)

}∣∣
x=1

. (F.7)

We now evaluate fractional integrals of ĥ j . Using the last two expansions with j = 0 in (5.18), and the identity (2.21)
with ρ = μ, α = μ and β = 1 − μ, we obtain

Iμ−
{
(1 + x)1−μĥ0(x)

} =
N−1∑
l=0

�(l + 2 − μ)

(l + 1)! �̃l0 (1 + x)P (0,1)

l (x),

Iμ−
{
(1 + x)−μ(ĥ0(x) − 1)

} =
N−2∑
l=0

�(l + 2 − μ)

(l + 1)! �̂l+1,0 (1 + x)P (0,1)

l (x). (F.8)

Noting that P (0,1)
n (1) = 1 (cf. [41]), we obtain from (F.4) and (F.8) the value of τ0 in (5.24), and the expression of Q̂ μ

0 (x)
follows from (F.3) immediately.

Similarly, we obtain from (F.5) and (F.8) the expression of Q̂ μ
N (x) in (5.25).

We now turn to Q̂ μ
j (x) with 1 ≤ j ≤ N − 1. Once again, using (2.21) (with ρ = μ, α = μ and β = 1 −μ) and (5.18), leads 

to

Iμ−
{
(1 + x)−μĥ j(x)

} = (1 + x)
N−2∑
l=0

�(l + 2 − μ)

(l + 1)! �̂l+1, j P (0,1)

l (x),

Iμ−
{
(1 + x)−μĥ j(x)

}∣∣
x=1 = 2

N−2∑ �(l + 2 − μ)

(l + 1)! �̂l+1, j , (F.9)

l=0
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where we used P (0,1)

l (1) = 1. Moreover, by (2.21), (5.18) and (5.16)–(5.17),

Iμ−
{
(1 + x)−μxĥ j(x)

}
=

N−2∑
l=0

�̂l+1, j Iμ−
{
(1 + x)1−μxP (μ,1−μ)

l (x)
} = (1 + x)

×
N−2∑
l=0

�(l + 2 − μ)

(l + 1)! �̂l+1, j

{
l + 2 − μ

l + 2
al+1 P (0,1)

l+1 + bl P (0,1)

l + l + 1

l + 1 − μ
cl−1 P (0,1)

l−1

}
(x), (F.10)

where c−1 = 0. Using the property: P (0,1)

l−1 (1) = 1 and (5.17), we find from a direct calculation and (F.9) that

Iμ−
{
(1 + x)−μxĥ j(x)

}∣∣
x=1 = 2(1 − μ)�(2 − μ)�̂1 j + 2

N−2∑
l=1

�(l + 2 − μ)

(l + 1)! �̂l+1, j

= Iμ−
{
(1 + x)−μĥ j(x)

}∣∣
x=1 − 2μ�(2 − μ)�̂1 j. (F.11)

Inserting (F.9)–(F.11) into (F.6)–(F.7), we derive the formulas (5.26)–(5.27).
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