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Abstract. This paper is devoted to stability analysis of the acoustic wave equation
exterior to a bounded scatterer, where the unbounded computational domain is trun-
cated by the exact time-domain circular/spherical nonreflecting boundary condition
(NRBC). Different from the usual energy method, we adopt an argument that leads
to L2-a priori estimates with minimum regularity requirement for the initial data and
source term. This needs some delicate analysis of the involved NRBC. These results
play an essential role in the error analysis of the interior solvers (e.g., finite-element/spectral-
element/spectral methods) for the reduced scattering problems. We also apply the
technique to analyze a time-domain waveguide problem.
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1 Introduction

In this paper, we consider the time-domain acoustic scattering problem:

∂2
t U= c2∆U+F, in Ω∞ :=R

d\D̄, t>0, d=2,3; (1.1)

U=U0, ∂tU=U1, in Ω∞, t=0; (1.2)

U=0, on ΓD, t>0; ∂tU+c∂nU= o(|x|(1−d)/2), |x|→∞, t>0, (1.3)

where D is a bounded obstacle (scatterer) with Lipschitz boundary ΓD, c>0 is the wave
speed, and n=x/|x|. Assume that the data F,U0 and U1 are compactly supported in a 2D
disk or a 3D ball B of radius b, which contains the obstacle D.
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The acoustic wave propagates in the free space exterior to D, so the first important
issue is to reduce the unbounded domain to a bounded domain. One efficient way is to
set up an artificial boundary and impose a transparent/non-reflecting boundary condi-
tion (NRBC) thereon (see e.g., [8]). It is advantageous to use the exact NRBC, as it can be
placed as close as possible to the scatterer, and the reduced problem, so as the discretized
problem, can be best mimic to the continuous problem. Though such a NRBC is global
in time and space in nature, fast and accurate numerical and/or semi-numerical means
were developed for its evaluation and/or seamless integration with some solver in the
reduced domain (see e.g., [3, 14, 15]).

This paper is largely concerned with the analysis of the reduced scattering problem
by the exact circular/spherical NRBC. We remark that in [5,15], the usual energy method
(i.e., testing the equation with ∂tU) was used to obtain H1-type estimates under strong
regularity assumptions for the initial data and source term. Moreover, this approach did
not lead to optimal L2-estimates. In this paper, we resort to an argument in [4, 7], which,
together with a delicate analysis of the involved NRBC, leads to L∞(L2)- and L2(L2)-a
priori estimates for the reduced problem with a minimum regularity requirement for the
initial data and source term. With this at our disposal, we can also analyze a waveguide
problem considered in [18].

The paper is organized as follows. We present the reduced problem and carry out the
a priori estimates in the forthcoming section. In the last section, we apply the argument
to analyze a waveguide problem.

2 L∞(L2)- and L2(L2)-a priori estimates

2.1 The reduced problem

We first reduce the scattering problem (1.1)-(1.3) to a bounded domain via the exact cir-
cular/spherical NRBC (see e.g., [3, 8, 15]), leading to

∂2
t U= c2∆U+F, in Ω :=B\D̄, t>0, d=2,3; (2.1)

U=U0, ∂tU=U1, in Ω, t=0; U=0, on ΓD, t>0; (2.2)

∂rU−Td(U)=0, at r=b, t>0, (2.3)

where the time-domain DtN boundary condition at the artificial boundary Γb := ∂B, is
given, in polar/spherical coordinates, by

Td(U)=





(
− 1

c

∂U

∂t
− U

2r

)∣∣∣
r=b

+
∞

∑
|n|=0

σn(t)∗Ûn(b,t)einφ, d=2,

(
− 1

c

∂U

∂t
−U

r

)∣∣∣
r=b

+
∞

∑
n=0

n

∑
|m|=0

σn+1/2(t)∗Ûnm(b,t)Ym
n (θ,φ), d=3.

(2.4)
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Here, the kernel functions in the convolution are

σν(t) :=L−1

[
s

c
+

1

2b
+

s

c

K′
ν(sb/c)

Kν(sb/c)

]
, ν=n,n+1/2, (2.5)

where Kν is the modified Bessel function of the second kind of order ν (see e.g., [1, 17]),
and L−1[h(s)] is the inverse Laplace transform of a Laplace transformable function H(t) :

h(s)=L[H(t)](s)=
∫ ∞

0
H(t)e−st dt, s∈C, Re(s)>0.

In (2.4), {Ym
n } are the spherical harmonics, which are orthonormal as defined in [10], and

{Ûn}/{Ûnm} are the Fourier/spherical harmonic expansion coefficients of U|r=b. Recall
that the convolution in (2.4) is defined as usual:

( f ∗g)(t)=
∫ t

0
f (t−τ)g(τ)dτ.

Another useful alternative expression (cf. [15]) of Td(U), where the temporal convo-
lution is expressed in terms of expansion coefficients of ∂tU|r=b, is given as follows:

Td(U)=−1

c

∂U

∂t

∣∣∣
r=b

+
1

c





∞

∑
|n|=0

ωn(t)∗∂tÛn(b,t)einφ, d=2,

∞

∑
n=0

n

∑
|m|=0

ωn+1/2(t)∗∂tÛnm(b,t)Ym
n (θ,φ), d=3,

(2.6)

where for d=2,3,

ων(t)=L−1

[
1− (d−2)c

2bs
+

K′
ν(sb/c)

Kν(sb/c)

]
(t), ν=n,n+1/2. (2.7)

It is clearly that

ων(t) :=ων(t;d) :=− (d−1)c

2b
+c

∫ t

0
σν(τ)dτ, (2.8)

and ω′
ν(t)= cσν(t). Since K−n(z)=Kn(z) (see [1, Formula (9.6.6)]), it suffices to consider

ωn and σn with n≥0, for d=2.

Remark 2.1. It is seen from (2.4) that the NRBC is global in time and space, due to the
involvement of the convolution and Fourier/spherical harmonic expansions. We refer
to [3,14,15] for fast and accurate methods for dealing with the inverse Laplace transform
and temporal convolution, and also refer to [11,13] for techniques to overcome globleness
of the exact boundary conditions in the context of time-harmonic scattering problems.
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2.2 A priori estimates

We now intend to derive a priori estimates for the solution of the reduced problem (2.1)-
(2.3). For this purpose, we first introduce some notation. Given a generic weight function
w, let Hr

w(Ω) be the usual weighted Sobolev space of complex-valued functions as in
Admas [2] with the norm ‖·‖Hr

w(Ω). As usual, L2
w(Ω)=H0

w(Ω) with inner product denoted
by (·,·)L2

w(Ω). We drop the weight function, whenever w≡1. To characterize the regularity

in time, we also use e.g., the space L∞(0,T;L2(Ω)), as defined in [2].
We formulate the equation (2.1)-(2.3) in a weak form (in space). For any t>0, it is to

find U(·,t)∈V :={v∈H1(Ω) : v|ΓD
=0} such that

∫

Ω
∂ttUVdx=−c2

∫

Ω
∇U ·∇Vdx+c2

∫

Γb

Td(U)Vdγ+
∫

Ω
FVdx, ∀V∈V . (2.9)

Remark 2.2. It is important to point out that using the standard energy argument (i.e.,
taking V = ∂tU in (2.9), see [5, 15]), we are able to derive the a priori estimates in the en-
ergy norm, that is, ‖∂tU‖L∞(0,T;L2(Ω))+c‖∇U‖L∞(0,T;L2(Ω)). However, this requires strong

regularity of the initial and boundary data, and does not lead to optimal L2-estimates.

Hereafter, we take a different route that will lead to L∞(L2)-a priori estimates for the
reduced problem (2.1)-(2.3), with a minimum requirement for the regularity of the inputs.
We essentially employ an argument due to Dupont [7] (also see Baker [4]), but significant
care is needed to analyze the exact NRBCs. For this purpose, we first make necessary
preparations.

Recall the Plancherel or Parseval identity for the Laplace transform (see e.g., [6, (2.46)]).

Lemma 2.1. Let s= s1+is2 with s1,s2∈R. If f ,g are Laplace transformable, then

1

2π

∫ ∞

−∞
L[ f ](s)L[ḡ](s)ds2=

∫ ∞

0
e−2s1t f (t)ḡ(t)dt, ∀s1>γ, (2.10)

where γ is the absissa of convergence for both f and g, and ḡ is the complex conjugate of g.

For notational convenience, we introduce the modified spherical Bessel function (cf.
[17]):

kn(z)=

√
2

πz
Kn+1/2(z), so

k′n(z)
kn(z)

=− 1

2z
+

K′
n+1/2(z)

Kn+1/2(z)
. (2.11)

Then, by (2.7),

ωn+1/2(t)=L−1

[
1+

k′n(sb/c)

kn(sb/c)

]
(t), n≥0. (2.12)

We shall use the following property (see [5, 15]).

Lemma 2.2. Let s= s1+is2 with s1,s2∈R. Then we have

Re
(Z′

n(sb/c)

Zn(sb/c)

)
≤0, ∀s1>0, (2.13)

where Zn(z)=Kn(z) or kn(z).



Wang B. et. al. / J. Math. Study, 1 (2014), pp. 65-84 69

The following lemma is indispensable for the forthcoming analysis.

Lemma 2.3. For any v∈L2(0,T) with v(0)=0, we have

Re
∫ T

0

(∫ t

0
[σν∗v](τ)dτ

)
v̄(t)dt≤ 1

c

∫ T

0
|v(t)|2dt+

1

4b

∣∣∣
∫ T

0
v(t)dt

∣∣∣
2
, (2.14)

Re
∫ T

0

(∫ t

0
[ων∗v′](τ)dτ

)
v̄(t)dt+

(d−2)c

4b

∣∣∣
∫ T

0
v(t)dt

∣∣∣
2
≤

∫ T

0
|v(t)|2dt, (2.15)

for ν=n,n+1/2, where σν and ων are the convolution kernel functions.

Proof. Using the property of the Laplace transform:

L
[∫ t

0
f (τ)dτ

]
(s)=

1

s
L[ f ](s),

we have

L
[∫ t

0
[σν∗v](τ)dτ

]
(s)=

1

s
L[σν∗v](s)=

[
1

c
+

1

2bs
+

1

c

K′
ν(sb/c)

Kν(sb/c)

]
L[v](s), (2.16)

where in the last step, we used the property of the Laplace transform and the definition:

σν(t)=L−1
[ s

c
+

1

2b
+

s

c

K′
ν(sb/c)

Kν(sb/c)

]
.

Let ṽ = v1[0,T] where 1[0,T] is the characteristic function of [0,T]. Using the Parseval
identity (2.10), and Lemma 2.2, we have

Re
∫ T

0
e−2s1t

(∫ t

0
[σν∗v](τ)dτ

)
v̄(t)dt=Re

∫ ∞

0
e−2s1t

(∫ t

0
[σν∗ ṽ](τ)dτ

)
¯̃v(t)dt

=
1

2π

∫ ∞

−∞
Re

[
1

c
+

1

2bs
+

1

c

K′
ν(sb/c)

Kν(sb/c)

]
L[ṽ](s)L[ ¯̃v](s)ds2

≤ 1

2π

∫ ∞

−∞
Re

[
1

c
+

1

2bs

]
|L[ṽ](s)|2 ds2

=
1

c

∫ T

0
e−2s1t|v(t)|2dt+

1

2b
Re

∫ T

0
e−2s1t

(∫ t

0
v(τ)dτ

)
v̄(t)dt.

(2.17)

Letting s1→0, we obtain

Re
∫ T

0

(∫ t

0
[σν∗v](τ)dτ

)
v̄(t)dt≤ 1

c

∫ T

0
|v(t)|2dt+

1

2b
Re

∫ T

0

(∫ t

0
v(τ)dτ

)
v̄(t)dt. (2.18)

Moreover, using integrate by parts yields

∫ T

0

(∫ t

0
v(τ)dτ

)
v̄(t)dt=

[∫ t

0
v(τ)dτ

∫ t

0
v̄(τ)dτ

]T

0

−
∫ T

0

(∫ t

0
v̄(τ)dτ

)
v(t)dt,
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which implies

Re
∫ T

0

(∫ t

0
v(τ)dτ

)
v̄(t)dt=

1

2

∣∣∣
∫ T

0
v(t)dt

∣∣∣
2
. (2.19)

Therefore, (2.14) follows from (2.18).
We now turn to the derivation of (2.15). By (2.8),

ων(0)=− (d−1)c

2b
, ω′

ν(t)= cσν(t).

A direct calculation using integration by parts and the condition v(0)=0, leads to

∫ t

0
[ων∗v′](τ)dτ=ων(0)

∫ t

0
v(τ)dτ+

∫ t

0
[ω′

ν∗v](τ)dτ

=− (d−1)c

2b

∫ t

0
v(τ)dτ+

∫ t

0
[ω′

ν∗v](τ)dτ

=− (d−1)c

2b

∫ t

0
v(τ)dτ+c

∫ t

0
[σν∗v](τ)dτ.

Therefore, by (2.14) and (2.19),

Re
∫ T

0

(∫ t

0
[ων∗v′](τ)dτ

)
v̄(t)dt

≤− (d−1)c

4b

∣∣∣
∫ T

0
v(t)dt

∣∣∣
2
+

c

4b

∣∣∣
∫ T

0
v(t)dt

∣∣∣
2
+
∫ T

0
|v(t)|2dt.

This implies (2.15).

With the above preparations, we are ready to derive the L∞(L2)-a priori estimates by
using an argument due to [4, 7].

Theorem 2.1. Let U (∈ V for t > 0) be the solution of (2.9). If U0,U1 ∈ L2(Ω) and F ∈
L1
(
0,T;L2(Ω)

)
, then the solution U∈L∞(0,T;L2(Ω)). Moreover, we have

‖U‖L∞(0,T;L2(Ω))≤C
(
‖U0‖L2(Ω)+T‖U1‖L2(Ω)+T‖F‖L1(0,T;L2(Ω))

)
, (2.20)

and

‖U‖L2((0,T)×Ω))≤C
√

T
(
‖U0‖L2(Ω)+T‖U1‖L2(Ω)+T‖F‖L1(0,T;L2(Ω))

)
, (2.21)

where C is a positive constant independent of T,c and any functions.

Proof. Let 0< ξ≤T, and define

ψ(x,t)=
∫ ξ

t
U(x,τ)dτ, 0≤ t≤ ξ, x∈Ω. (2.22)
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It is clear that

ψ(x,ξ)=0,
∂ψ

∂t
(x,t)=−U(x,t). (2.23)

Moreover, for any φ(x,t)∈L2((0,ξ)×Ω), we have

∫ ξ

0
φ(x,t)ψ̄(x,t)dt=

∫ ξ

0

(∫ t

0
φ(x,τ)dτ

)
U(x,t)dt. (2.24)

We show this identity below. Indeed, using integration by parts and (2.23), we have

∫ ξ

0
φ(x,t)ψ̄(x,t)dt=

∫ ξ

0

(
φ(x,t)

∫ ξ

t
U(x,τ)dτ

)
dt

=
∫ ξ

0

∫ ξ

t
U(x,τ)dτd

(∫ t

0
φ(x,τ)dτ

)

=
∫ t

0
φ(x,τ)dτ

∫ ξ

t
U(x,τ)dτ

∣∣∣
ξ

0
+
∫ ξ

0

(∫ t

0
φ(x,τ)dτ

)
U(x,t)dt

=
∫ ξ

0

(∫ t

0
φ(x,τ)dτ

)
U(x,t)dt.

Next, taking the test function V=ψ in (2.9), leads to
∫

Ω
∂ttUψ̄dx=−c2

∫

Ω
∇U ·∇ψ̄dx+

∫

Ω
Fψ̄dx+c2

∫

Γb

Td(U)ψ̄dγ. (2.25)

By (2.23),

Re
∫ ξ

0

∫

Ω
∂ttUψ̄dxdt=Re

∫

Ω

∫ ξ

0

(
∂t

(
∂tUψ̄

)
+∂tUU

)
dtdx

=Re
∫

Ω

((
∂tUψ̄

)∣∣∣
ξ

0
+

1

2
|U|2

∣∣∣
ξ

0

)
dx

=
1

2
‖U(·,ξ)‖2

L2(Ω)−
1

2
‖U0‖2

L2(Ω)−Re
∫

Ω
U1(x)ψ̄(x,0)dx.

Thus, integrating (2.25) from t=0 to ξ and taking the real parts, yields

1

2
‖U(·,ξ)‖2

L2(Ω)−
1

2
‖U0‖2

L2(Ω)+
c2

2

∫

Ω

∣∣∣
∫ ξ

0
∇U(x,t)dt

∣∣∣
2
dx

=Re
∫

Ω
U1(x)ψ̄(x,0)dx+Re

∫ ξ

0

∫

Ω
Fψ̄dxdt+c2Re

∫ ξ

0

∫

Γb

Td(U)ψ̄dγdt.

(2.26)

We derive from (2.22) and the Cauchy-Schwartz inequality that

Re
∫

Ω
U1(x)ψ̄(x,0)dx=Re

∫

Ω
U1(x)

(∫ ξ

0
U(x,t)dt

)
dx

=Re
∫ ξ

0

∫

Ω
U1(x)U(x,t)dxdt≤‖U1‖L2(Ω)

∫ ξ

0
‖U(·,t)‖L2(Ω)dt.

(2.27)



72 Wang B. et. al. / J. Math. Study, 1 (2014), pp. 65-84

Similarly, by (2.24), we have that for 0≤ t≤ ξ≤T,

Re
∫ ξ

0

∫

Ω
Fψ̄dxdt=Re

∫

Ω

∫ ξ

0

(∫ t

0
F(x,τ)dτ

)
U(x,t)dxdt

=Re
∫ ξ

0

∫ t

0

∫

Ω
F(x,τ)U(x,t)dxdτdt

≤Re
∫ ξ

0

(∫ t

0
‖F(·,τ)‖L2(Ω)dτ

)
‖U(·,t)‖L2(Ω)dt

≤Re
∫ ξ

0

(∫ ξ

0
‖F(·,τ)‖L2(Ω)dτ

)
‖U(·,t)‖L2(Ω)dt

=
(∫ ξ

0
‖F(·,t)‖L2(Ω)dt

)(∫ ξ

0
‖U(·,t)‖L2(Ω)dt

)
.

(2.28)

For the NRBC term, we consider the 3D case (2D case is similar). Using Lemma 2.3, we
obtain

Re
∫ ξ

0

∫

Γb

Td(U)ψ̄dγdt=−1

c
Re

∫

Γb

∫ ξ

0

∂U

∂t

(∫ ξ

t
U(·,τ)dτ

)
dtdγ

+
1

c

∞

∑
n=0

n

∑
|m|=0

Re
∫ ξ

0
ωn+ 1

2
(t)∗∂tÛnm(b,t)

(∫ ξ

t
Ûnm(b,τ)dτ

)
dt

=− 1

c

∫

Γb

∫ ξ

0
|U(·,t)|2dtdγ

+
1

c

∞

∑
n=0

n

∑
|m|=0

Re
∫ ξ

0

(∫ t

0
ωn+ 1

2
(τ)∗∂τÛnm(b,τ)dτ

)
Ûnm(b,t)dt

≤− 1

c

∫

Γb

∫ ξ

0
|U(·,t)|2dtdγ+

1

c

∞

∑
n=0

n

∑
|m|=0

∫ ξ

0
|Ûnm(b,t)|2dt=0.

Now, substituting (2.27)-(2.28) into (2.26), we have that for any ξ∈ [0,T],

1

2
‖U(·,ξ)‖2

L2(Ω)+
c2

2

∫

Ω

∣∣∣
∫ ξ

0
∇U(x,t)dt

∣∣∣
2
dx

≤1

2
‖U0‖2

L2(Ω)+
(∫ ξ

0
‖F(·,t)‖L2(Ω)dt+‖U1‖L2(Ω)

)∫ ξ

0
‖U(·,t)‖L2(Ω)dt.

(2.29)

Taking L∞-norm with respect to ξ on both sides of (2.29), yields

‖U‖2
L∞(0,T;L2(Ω))≤‖U0‖2

L2(Ω)+2T
(
‖F‖L1(0;T;L2(Ω))+‖U1‖L2(Ω)

)
‖U‖L∞(0,T;L2(Ω)).

Therefore, the estimate (2.20) follows directly from the Cauchy-Schwartz inequality.
Integrating (2.29) with respect to ξ over (0,T) and using the Cauchy-Schwartz in-

equality, leads to

‖U‖2
L2((0,T)×Ω)≤T‖U0‖2

L2(Ω)+2T3/2
(
‖F‖L1(0;T;L2(Ω))+‖U1‖L2(Ω)

)
‖U‖L2((0,T)×Ω).

Using the Cauchy-Schwartz inequality again, we derive the L2-bound (2.21).
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2.3 Regular scatterers

The previous analysis applies to a general bounded scatterer with Lipschitz boundary.
Accordingly, the results pave the way for analyzing finite-element/spectral-element ap-
proximations to the reduced problem. However, if the scatterer is a disk/ball, it is ideal
to formulate the problem in the polar/spherical coordinates. Moreover, the NRBC turns
out to be local in the space of Fourier/spherical harmonic coefficients. This allows us
to further reduce the problem of interest to a sequence of decoupled one-dimensional
problems (see (2.32) below). We refer to [15] for the fast spectral-Galerkin solver under
this notion and [11] for the time-harmonic case coupled with an efficient technique for
dealing with irregular scatterers. The previous results do not imply the estimates below,
but the argument can be applied.

Consider the reduced problem (2.1)-(2.3) with a regular scatterer:

∂2
t U= c2∆U+F, in Ω=

{
x∈R

d : b0< |x|<b
}

, t>0, d=2,3;

U=U0, ∂tU=U1, in Ω, t=0;

U|r=b0
=0,

(
∂rU−Td(U)

)∣∣
r=b

=0, t>0,

(2.30)

where Td(U) is the time-domain DtN map as before and b0 >0. We expand the solution
and given data in Fourier/spherical harmonic series, e.g.,

{
U,F,U0,U1

}
=

∞

∑
|n|=0

{
Ûn, F̂n,Û0,n,Û1,n

}
einθ . (2.31)

Then the problem (2.30), after a polar (in 2-D) and spherical (in 3-D) transform, reduces to
a sequence of one-dimensional problems (for brevity, we use u to denote the Fourier/spherical
harmonic expansion coefficients of U, and likewise, we use u0,u1 and f to denote the ex-
pansion coefficients of U0,U1 and F, respectively):

∂2u

∂t2
− c2

rd−1

∂

∂r

(
rd−1 ∂u

∂r

)
+c2βn

u

r2
= f , b0< r<b, t>0;

u|t=0=u0,
∂u

∂t

∣∣∣
t=0

=u1, b0< r<b; u|r=b0
=0, t>0;

(1

c

∂u

∂t
+

∂u

∂r
+

d−1

2r
u
)∣∣∣

r=b
=

∫ t

0
σν(t−τ)u(b,τ)dτ, t>0,

(2.32)

where βn =n2,n(n+1) and ν=n,n+1/2 for d=2,3, respectively.

Hereafter, let I = (b0,b) and ̟ = rd−1. We introduce the weighted space L2
̟(I) (of

complex-valued functions), and denote the (weighted) norm by ‖·‖̟ and the inner prod-
uct by (·,·)̟. The weak form for (2.32) is to find that u(·,t)∈V :={φ∈H1

̟(I) : φ(b0)=0},
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such that for all t>0 and w∈V,

(ü,w)̟+cbd−1u̇(b,t)w(b)+c2(∂ru,∂rw)̟+c2βn(ur−2,w)̟

+c2bd−1
[ (d−1)

2b
u(b,t)−σν(t)∗u(b,t)

]
w(b)=( f ,w)̟, t>0,

u(r,0)=u0(r), u̇(r,0)=u1(r), r∈ I,

(2.33)

where ü,u̇ denote the derivatives in time.
Like Theorem 2.1, we derive the a prior estimates for (2.33).

Theorem 2.2. Let u be the solution of (2.33). If u0,u1∈ L2
̟(I) and f ∈ L1(0,T;L2

̟(I)), then for
all T>0, and each mode n,

‖u‖L∞(0,T;L2
̟(I))≤C

(
‖u0‖L2

̟(I)+T‖u1‖L2
̟(I)+T‖ f ‖L1(0,T;L2

̟(I))

)
, (2.34)

and
‖u‖L2(0,T;L2

̟(I))≤C
√

T
(
‖u0‖L2

̟(I)+T‖u1‖L2
̟(I)+T‖ f ‖L1(0,T;L2

̟(I))

)
, (2.35)

where C is a positive constant independent of T, c and any functions.

Proof. Like the proof of Theorem 2.1, taking w=
∫ ξ

t u(r,τ)dτ with 0< ξ ≤T in (2.33), and
integrating the resulted equation from 0 to ξ, we obtain that

1

2
‖u(·,ξ)‖2

L2
̟(I)−

1

2
‖u(·,0)‖2

L2
̟(I)+cbd−1

∫ ξ

0
|u(b,t)|2dt

+
c2

2

∫ b

b0

∣∣∣
∫ ξ

0
∂ru(r,t)dt

∣∣∣
2
̟(r)dr+

c2βn

2

∫ b

b0

rd−3
∣∣∣
∫ ξ

0
u(r,t)dt

∣∣∣
2
dr

+c2bd−1Re
∫ ξ

0

[d−1

2b

∫ t

0
u(b,τ)dτ−

∫ t

0
σν(τ)∗u(b,τ)dτ

]
ū(b,t)dt

=Re
(

u̇(·,0),
∫ ξ

0
u(·,t)dt

)
̟
+Re

∫ ξ

0

(
f (·,t),

∫ ξ

t
u(·,τ)dτ

)
̟

dt,

(2.36)

where we used the property (2.24) to handle the integrals of the boundary terms. We now
show the summation of three boundary terms is non-negative. By (2.14) and (2.19),

cbd−1
∫ ξ

0
|u(b,t)|2dt+c2bd−1Re

∫ ξ

0

[d−1

2b

∫ t

0
u(b,τ)dτ−

∫ t

0
σν(τ)∗u(b,τ)dτ

]
ū(b,t)dt

≥c2bd−1 d−2

4b

∣∣∣
∫ ξ

0
u(b,t)dt

∣∣∣
2
≥0.

Using the Cauchy-Schwartz inequality leads to

Re
(

u̇(·,0),
∫ ξ

0
u(·,t)dt

)
̟
=Re

∫ ξ

0

(
u1(·),u(·,t)

)
̟

dt

≤
∫ ξ

0
‖u1‖L2

̟(I)‖u(·,t)‖L2
̟(I)dt≤T‖u1‖L2

̟(I)‖u‖L∞(0,T;L2
̟(I)),
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and

Re
∫ ξ

0

(
f (·,t),

∫ ξ

t
u(·,τ)dτ

)
̟

dt=Re
∫ ξ

0

(∫ t

0
f (·,τ)dτ,u(·,t)

)
̟

dt

≤
∫ ξ

0

∫ t

0
‖ f (·,τ)‖L2

̟(I)‖u(·,t)‖L2
̟(I)dτdt

≤
(∫ ξ

0
‖ f (·,τ)‖L2

̟(I)dτ
)(∫ ξ

0
‖u(·,t)‖L2

̟(I)dt
)

≤T‖ f ‖L1(0,T;L2
̟(I))‖u‖L∞(0,T;L2

̟(I)).

Therefore, we obtain

1

2
‖u(·,ξ)‖2

L2
̟(I)−

1

2
||u0||2L2

̟(I)≤T(‖u1‖L2
̟(I)+‖ f ‖L1(0,T;L2

̟(I)))‖u‖L∞(0,T;L2
̟(I)). (2.37)

This leads to the estimate (2.34). Moreover, integrating (2.37) from 0 to T, we obtain the
L2-estimate (2.35) like Theorem 2.1.

Remark 2.3. The estimates in Theorem 2.2 are valid for each mode n, which cannot be
derived from Theorem 2.1. However, the converse statement is true. Indeed, using the
Parseval’s identity of the Fourier/spherical harmonic series, we can claim Theorem 2.1
in the case of regular scatterers from Theorem 2.2 straightforwardly.

Remark 2.4. The stability results are essential for the analysis of numerical solvers for the
reduced problem. We illustrate this in the forthcoming section.

3 Analysis of a waveguide problem

In this section, we apply the previous argument to analyze a waveguide problem consid-
ered in [18], which involves the exact planar non-reflecting boundary condition (cf. [8]).
More precisely, let

Ω∞ :=
{
(x,y) : 0< x<∞, 0<y<2π

}
,

and consider

∂2
t U= c2∆U+F, in Ω∞, t>0, (3.1)

U|t=0=U0, ∂tU|t=0=U1, in Ω∞; U|x=0=0, t>0, (3.2)

∂tU+c∂xU= o(x−1/2), x→∞, t>0, (3.3)

where c > 0 is the wave speed. Here, we assume that the given data F,U0 and U1 are
2π-periodic in y, and are compactly supported (with respect to x), in an interval (0,a) for
some a>0.
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We adopt the exact planar NRBC at the artificial boundary x = a. This leads to the
reduced problem in Ω :=(0,a)×[0,2π):

∂2
t U= c2∆U+F, in Ω, t>0, (3.4)

U|t=0=U0, ∂tU|t=0=U1, in Ω; U|x=0=0, t>0, (3.5)

∂xU−TaU=0, at x= a, t>0. (3.6)

Note that the time-domain DtN map is given by

Ta(U) :=−1

c
∂tU− 1

c

∞

∑
|m|=0

ρm(t)∗Ûm(a,t)eimy, (3.7)

where the convolution kernel ρm and Fourier coefficients {Ûm} are given by (cf. [8]):

ρm(t) :=
mcJ1(mct)

t
, Ûm(a,t)=

1

2π

∫ 2π

0
U(a,y,t)e−imydy, (3.8)

with J1(·) being the Bessel function of the first kind of order 1 (cf. [17]). Alternatively, we
have (cf. [9, Table 19.1, Page 90]):

ρm(t)=L−1
[√

s2+m2c2−s
]
. (3.9)

Since ρ0=0 and ρ−m =ρm, it suffices to consider m>0 below.

3.1 A priori estimates

To derive the L2-a priori estimates for the reduced problem (3.4)-(3.6), we first recall the
following properties (see [18]).

Lemma 3.1. Let s= s1+is2 with s1,s2∈R. Then for any integer m and s1>0,

Re
(√

s2+m2c2
)
≥0, s2Im

(√
s2+m2c2

)
≥0. (3.10)

Like Lemma 2.3, the following result is very important for the analysis.

Lemma 3.2. For any v∈L2(0,T), we have

Re
∫ T

0

(∫ t

0
[ρm∗v](τ)dτ

)
v̄(t)dt≥−

∫ T

0
|v(t)|2dt, ∀T>0, m≥0. (3.11)

Proof. Let ṽ=v1
[0,T]

, where 1
[0,T]

is the characteristic function of [0,T]. Then we obtain from
Lemma 2.1 that

∫ T

0
e−2s1t

∫ t

0
[ρm∗v](τ)dτv̄(t)dt=

∫ ∞

0
e−2s1t

∫ t

0
[ρm∗ ṽ](τ)dτ ¯̃v(t)dt

=
1

2π

∫ ∞

−∞

[√s2+m2c2

s
−1

]∣∣L[ṽ](s)
∣∣2ds2

=
1

2π

∫ ∞

−∞

√
s2+m2c2

s

∣∣L[ṽ](s)
∣∣2ds2−

1

2π

∫ ∞

−∞

∣∣L[ṽ](s)
∣∣2ds2.
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Taking the real part of the above equation, we get

Re
∫ T

0
e−2s1t

∫ t

0
[ρm∗v](τ)dτv̄(t)dt

=
1

2π

∫ ∞

−∞
Re

(√s2+m2c2

s

)∣∣L[ṽ](s)
∣∣2ds2−

1

2π
Re

∫ ∞

−∞

∣∣L[ṽ](s)
∣∣2ds2.

(3.12)

It is clear that by (2.10) with f = g= ṽ,

1

2π

∫ ∞

−∞

∣∣L[ṽ](s)
∣∣2ds2=

∫ ∞

0
e−2s1t|ṽ(t)|2dt=

∫ T

0
e−2s1t|v(t)|2dt. (3.13)

By Lemma 3.1,

Re
(√s2+m2c2

s

)
=

1

|s2|
[
s1Re

(√
s2+m2c2

)
+s2Im

(√
s2+m2c2

)]
≥0. (3.14)

By letting s1→0+ in (3.12), a combination of (3.12)-(3.14) leads to (3.11).

Define X :=
{

U∈ H1(Ω) : U|x=0 =0
}

, and denote by 〈·,·〉L2(Γa) and ‖·‖L2(Γa) the inner

product and norm of L2(Γa), respectively, where Γa={(a,y) : 0<y<2π}. The weak form
of (3.4)-(3.6) is to find U∈X for all t>0, such that

∫

Ω
∂ttUVdx=−c2

∫

Ω
∇U ·∇Vdx+c2

∫

Γa

Ta(U)Vdy+
∫

Ω
FVdx, ∀V∈X. (3.15)

Theorem 3.1. Let U(∈X for t> 0) be the solution of (3.4)-(3.6). If U0 ∈ L2(Ω),U1 ∈ L2(Ω),
and F∈L1(0,T;L2(Ω)) for any T>0, then we have U∈L∞(0,T;L2(Ω)), and there holds

‖U‖L∞(0,T;L2(Ω))≤C
(
‖U0‖L2(Ω)+T‖U1‖L2(Ω)+T‖F‖L1(0,T;L2(Ω))

)
, (3.16)

and

‖U‖L2((0,T)×Ω))≤C
√

T
(
‖U0‖L2(Ω)+T‖U1‖L2(Ω)+T‖F‖L1(0,T;L2(Ω))

)
, (3.17)

where C is a positive constant independent of any functions and c.

Proof. Taking

V=ψ(x,y,t)=
∫ ξ

t
U(x,y,τ)dτ, ∀(x,y)∈Ω, 0≤ t≤ ξ≤T,

in (3.15) and following the same lines as in the proof of Theorem 2.1, we have

1

2
||U(·,ξ)||2L2(Ω)−

1

2
||U(·,0)||2L2(Ω)+

c2

2

∫

Ω

∣∣∣
∫ ξ

0
∇U(x,y,t)dt

∣∣∣
2
dxdy

=Re
∫

Ω
∂tU(·,0)ψ̄(·,0)dxdy+Re

∫

Ω

∫ ξ

0
Fψ̄dtdxdy+c2Re

∫

Γa

∫ ξ

0
Ta(U)ψ̄dtdy.

(3.18)
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According to the definition of ψ(x,y,t) and the Cauchy-Schwartz inequality, we have

∣∣∣
∫

Ω

∫ ξ

0
Fψ̄dtdxdy

∣∣∣=
∣∣∣
∫

Ω

∫ ξ

0

∫ t

0
F(x,τ)dτU(x,t)dtdxdy

∣∣∣

≤T‖F‖L1(0,T;L2(Ω))‖U‖L∞(0,T;L2(Ω)),

(3.19)

and

∣∣∣
∫

Ω
∂tU(x,0)ψ̄(x,0)dx

∣∣∣≤T‖U1‖L2(Ω)‖U‖L∞(0,T;L2(Ω)). (3.20)

We next show that for any t>0,

Re
∫ ξ

0

∫

Γa

Ta(U)ψ̄dydt≤0. (3.21)

It follows from (3.7), Theorem 3.2 and the orthogonality of {eimy} that

Re
∫ ξ

0

∫

Γa

Ta(U)ψ̄dydt

=−
∫ ξ

0
‖U‖2

L2(Γa)
dt−2π

∞

∑
|m|=0

Re
∫ ξ

0

[
ρm∗Ûm(a,t)

]
ψ̂m(a,τ)dt

=−
∫ ξ

0
‖U‖2

L2(Γa)
dt−2π

∞

∑
|m|=0

Re
∫ ξ

0

∫ t

0

[
ρm∗Ûm(a,τ)

]
dτÛm(a,t)dt

≤−
∫ ξ

0
‖U‖2

L2(Γa)
dτ+2π

∞

∑
|m|=0

∫ ξ

0

∣∣Ûm(a,τ)
∣∣2dτ=0.

Thus, the estimate (3.16) follows from (3.18)-(3.21) and the Cauchy-Schwartz inequality.
According to (3.18) and (3.21), we have

1

2
‖U(·,ξ)‖2

L2(Ω)−
1

2
‖U(·,0)‖2

L2(Ω)≤Re
∫

Ω
∂tU(·,0)ψ̄(·,0)dxdy+Re

∫

Ω

∫ ξ

0
Fψ̄dtdxdy. (3.22)

Integrating this inequality from 0 to T w.r.t ξ and then using the Cauchy-Schwartz in-
equality we derive the L2-estimate (3.17).

3.2 Fourier-Legendre spectral-Galerkin approximation

We expand the solution U and given data U0,U1,F in Fourier series:

{
U,U0,U1,F

}
=

∞

∑
|m|=0

{
ûm,û0,m,û1,m, f̂m

}
eimy. (3.23)
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With a little abuse of notation, we still denote by u the Fourier coefficient ûm, and likewise,
we use u0,u1 and f to denote û0,m,û1,m and f̂m, respectively. Then the problem (3.4)-(3.6)
reduces to a sequence of 1D problems:

∂2
t u= c2(∂2

xu−m2u)+ f , 0< x< a, t>0,

u=u0, ∂tu=u1, 0< x< a, t=0; u|x=0=0, t>0, (3.24)

∂tu+c∂xu+ρm∗u=0, x= a, t>0.

Now, we apply the Legendre spectral-Galerkin approximation to discretize (3.24) in space.
For convenience of implementation, we transform the interval (0,a) to the reference in-
terval I :=(−1,1) by x= a(x̃+1)/2, and denote

v(x̃,t)=u(x,t), g(x̃,t)= f (x,t), vi(x̃)=ui(x), i=0,1.

Then (3.24) becomes

∂2
t v= c̃2∂2

x̃v−m2c2v+g, −1< x̃<1, t>0,

v=v0, ∂tv=v1, −1< x̃<1, t=0; v|x̃=−1=0, t>0, (3.25)

∂tv+ c̃∂x̃v+ρm∗v=0, x̃=1, t>0,

where the constant c̃=2c/a. Then the weak form of (3.25) is to find v(·,t)∈V :={v∈H1(I):
v(−1)=0}, such that for all w∈V and t>0

Am(v,w) :=(v̈,w)+ c̃v̇(1,t)w(1)+ c̃2(∂x̃v,∂x̃w)

+c2m2(v,w)+ c̃(ρm∗v)(1,t)w̄(1)=(g,w), (3.26)

v(x̃,0)=v0(x̃), ∂tv(x̃,0)=v1(x̃), x̃∈ I, (3.27)

where (·,·) is the inner product of L2(I).
We can derive the following a priori estimates for each mode m.

Theorem 3.2. Let v(∈V for t>0) be the solution of (3.26)-(3.27). If v0∈L2(I),v1∈L2(I), and
f ∈L1(0,T;L2(I)) for any T>0, then we have v∈L∞(0,T;L2(I)), and there holds

‖v‖L∞(0,T;L2(I))≤C
(
‖v0‖L2(I)+T‖v1‖L2(I)+T‖g‖L1(0,T;L2(I))

)
, (3.28)

and

‖v‖L2((0,T)×I)≤C
√

T
(
‖v0‖L2(I)+T‖v1‖L2(I)+T‖g‖L1(0,T;L2(I))

)
, (3.29)

where C is a positive constant independent of any functions and c.

Proof. Taking w(x̃)=
∫ ξ

t v(x̃,τ)dτ in (3.26), and integrating the resulted equation from 0
to ξ with respect to t, we use Lemma 3.2 and the argument similar to that for Theorem
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3.1 to derive the estimates:

Re
{∫ ξ

0
Am

(
v(·,t),

∫ ξ

t
v(·,τ)dτ

)
dt
}

≥1

2
‖v(·,ξ)‖2

L2(I)−
1

2
‖v(·,0)‖2

L2(I)−
∫ ξ

0
(v̇(·,0),v(·,t))dt

≥1

2
‖v(·,ξ)‖2

L2(I)−
1

2
‖v0‖2

L2(I)−Re
∫ ξ

0
(v1,v(·,t))dt,

and

Re
{∫ ξ

0

(
g(·,t),

∫ ξ

t
v(·,τ)dτ

)
dt
}
=Re

{∫ ξ

0

∫ t

0

(
g(·,τ),v(·,t)

)
dτdt

}

≤
∫ ξ

0

∫ t

0
‖ f (·,τ)‖L2(I)‖v(·,t)‖L2(I)dτdt

≤
(∫ ξ

0
‖g(·,τ)‖L2(I)dτ

)(∫ ξ

0
‖v(·,t)‖L2(I)dt

)

≤T‖g‖L1(0,T;L2(I))‖v‖L∞(0,T;L2(I)).

Therefore, we derive the a priori estimates by using the Cauchy-Schwartz inequality.

Let VN :=
{

ψ∈PN :ψ(−1)=0
}

, where PN is the set of all polynomials of degree at most
N. The semi-discretization Legendre spectral-Galerkin approximation of (3.25) is to find
vN(x̃,t)∈VN for all t>0 such that

Am(vN ,wN)=(IN g,wN), ∀wN ∈VN ,

vN(x̃,0)=v0,N(x̃), v̇N(x̃,0)=v1,N(x̃), x̃∈ I,
(3.30)

where IN is the interpolation operator on (N+1) Legendre-Gauss-Lobatto points, and
v0,N ,v1,N ∈PN are suitable approximations of the initial values.

In what follows, we perform the error estimates for the scheme (3.30). For this pur-
pose, we make some preparations.

Lemma 3.3. Let ρm(t) be the kernel function defined in (3.8). Then we have

|ρm(t)|≤
√

2

2
m2c2, ∀t>0, (3.31)

for all integer m.

Proof. Recall the properties of the Bessel functions (see [1]):

2n

z
Jn(z)= Jn+1(z)+ Jn−1(z), n≥1; J2

0(z)+2
∞

∑
n=1

J2
n(z)=1, z>0. (3.32)
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By (3.8) and the above properties, we obtain that for m≥1,

ρm(t)=
mcJ1(mct)

t
=

m2c2

2
(J0(mct)+ J2(mct))

≤ m2c2

2

√
2(J2

0(mct)+ J2
2(mct))≤

√
2

2
m2c2.

(3.33)

Since ρ0=0, and ρ−m =ρm, the upper bound is valid for all m and t>0.

Consider the orthogonal projection: 0π1
N : 0H1(I) := {u∈ H1(I) : u(−1)=0}→ 0PN :=

PN∩0H1(I), such that

((0π1
Nu−u)′,w′)+(0π1

Nu−u,w)=0, ∀w∈ 0PN . (3.34)

Recall the Legendre-approximation results (see e.g., [12]): for any u∈0H1(I)∩Hs(I) with
1≤ s≤N+1,

‖0π1
Nu−u‖Hµ(I)≤DNµ−s‖u(s)‖L2(I), µ=0,1, (3.35)

and
‖0π1

Nu−u‖L∞(I)≤DN1/2−s‖u(s)‖L2(I), (3.36)

where D is a positive constant independent of N,s and u.
We also recall the approximation result on Legendre-Gauss-Lobbatto interpolation:

for any u∈Hs(I) with 1≤ s≤N+1 (see e.g., [12]):

‖u−INu‖L2(I)≤DN−s‖u(s)‖L2(I). (3.37)

Moreover, we shall use the trace inverse inequality (see e.g., [16]): for any φ∈PN ,

|φ(1)|≤ N+1√
2

‖φ‖L2(I). (3.38)

With the above preparations, we are now ready to carry out the error analysis. It is
clear that by (3.26) and (3.30),

Am(vN−v,wN)=(IN g−g,wN), ∀wN ∈VN , t>0. (3.39)

To this end, let

eN =vN−0π1
Nv, êN =v−0π1

Nv, so vN−v= eN− êN .

Then we derive from (3.30) and (3.34) that for any wN ∈VN ,

Am(eN ,wN)=Am(êN ,wN)+(IN g−g,wN)

=(∂2
t êN ,wN)+(m2c2− c̃2)(êN ,wN)+ c̃∂t êN(1,t)w̄N(1)

+ c̃ρm(t)∗ êN(1,t)w̄N(1)+(IN g−g,wN),

(3.40)
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and

eN(x,0)=v0,N(x)−0π1
Nv0(x), ėN(x,0)=v1,N(x)−0π1

Nv1(x). (3.41)

We apply the argument of taking wN =
∫ ξ

t eN(·,τ)dτ in (3.39). Following the previous
practice (see the proof of Theorem 3.2), leads to

Re
{∫ ξ

0
Am

(
eN ,

∫ ξ

t
eN(·,τ)dτ

)
dt
}

≥ 1

2
‖eN(·,ξ)‖2

L2(I)−
1

2
‖eN(·,0)‖2

L2(I)−Re
∫ ξ

0
(ėN(·,0),eN(·,t))dt,

and letting f =(m2c2− c̃2)êN+(IN g−g), we have

Re
{∫ ξ

0

(
f ,
∫ ξ

t
eN(·,τ)dτ

)
dt
}

≤T
(
|m2c2− c̃2|‖êN‖L1(0,T;L2(I))+‖IN g−g‖L1(0,T;L2(I))

)
‖eN‖L∞(0,T;L2(I)).

Thus it remains to deal with the other terms at the right-hand side of (3.40). We derive
from the integration by parts and Cauchy-Schwartz inequality that

Re
∫ ξ

0
(∂2

t êN ,wN)dt=Re
∫ ξ

0

(∫ t

0
∂2

t êN(x̃,τ)dτ,eN

)
dt

=Re
∫ ξ

0

∫ 1

−1
(∂t êN(x̃,t)−∂t êN(x̃,0))ēN(x̃,t)dx̃dt

≤
(
‖∂t êN‖L1(0,T;L2(I))+T‖∂t êN(·,0)‖L2(I)

)
‖eN‖L∞(0,T;L2(I)).

Using the integration by parts, we then infer from Lemma 3.3 and the inverse inequality
(3.38) that

c̃Re
∫ ξ

0

{
∂t êN(1,t)+ρm(t)∗ êN(1,t)

}
w̄N(1)dt

=c̃Re
∫ ξ

0

{
êN(1,t)− êN(1,0)+

(∫ t

0
ρm(τ)∗ êN(1,τ)dτ

)}
ēN(1,t)dt

≤c̃
[∫ ξ

0

(
|êN(1,t)|+|êN(1,0)|+

∫ t

0
|ρm(τ)∗ êN(1,τ)|dτ

)
dt
]
‖eN(1,·)‖L∞(0,T)

≤c̃DTN
{
‖êN(1,·)‖L∞(0,T)+

√
2m2c2

2
‖êN(1,·)‖L1(0,T)

}
‖eN‖L∞(0,T;L2(I)).

Choosing v0,N=0π1
Nv0 and v1,N=0π1

Nv1, so we have eN(·,0)=∂teN(·,0)=0. Consequently,
we obtain that

‖eN‖L∞(0,T;L2(I))≤D
{
‖∂t êN‖L1(0,T;L2(I))+|m2c2− c̃2|T‖êN‖L1(0,T;L2(I))

+c̃TN‖êN(1,·)‖L∞(0,T)+m2c2c̃TN‖êN(1,·)‖L1(0,T)+T‖g−IN g‖L1(0,T;L2(I))

}
.

(3.42)
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Finally, using the fact vN−v = eN− êN , the triangle inequality and (3.41)-(3.42), we
obtain from the approximation results (3.35)-(3.37) the following error bound for each
mode m.

Theorem 3.3. Let v and vN be respectively the solution of (3.26) and (3.30). If v0,v1∈0H1(I)∩
Hs(I),g∈ L1(0,T;Hs(I)) v∈ L∞(0,T;0H1(I)∩Hs(I)) and ∂tv∈ L1(0,T;Hs(I)) with 1≤ s≤
N+1, then

‖v−vN‖L∞(0,T;L2(I))≤DN−s
{
‖∂s

xv0‖L2(I)+T‖∂s
xv1‖L2(I)+T‖∂s

xg‖L1(0,T;L2(I))

+‖∂t∂
s
xv‖L1(0,T;L2(I))+|m2c2− c̃2|T‖∂s

xv‖L1(0,T;L2(I))

}

+ c̃DTN3/2−s
{
‖∂s

xv‖L∞(0,T;L2(I))+m2c2‖∂s
xv‖L1(0,T;L2(I))

}
,

(3.43)

where D is a positive constant independent of N,T and any function. A similar error bound holds
for ‖v−vN‖L2(0,T;L2(I)).

Remark 3.1. The presence of the NRBC brings about significantly subtle issues for the
analysis compared with the standard setting in [4,7]. Moreover, the error bounds appear
suboptimal.

Remark 3.2. We can further assemble the Fourier approximation and derive the error
estimates for the full Fourier-Legendre spectral approximation with the aid of Theorem
3.3. This follows a standard procedure (cf. [12]), so we omit the details.
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