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Abstract A p-type spectral-element method using prolate spheroidal wave functions
(PSWFs) as basis functions, termed as the prolate-element method, is developed for solving
partial differential equations (PDEs) on the sphere. The gridding on the sphere is based on
a projection of the prolate-Gauss-Lobatto points by using the cube-sphere transform, which
is free of singularity and leads to quasi-uniform grids. Various numerical results demon-
strate that the proposed prolate-element method enjoys some remarkable advantages over
the polynomial-based element method: (i) it can significantly relax the time step size con-
straint of an explicit time-marching scheme, and (ii) it can increase the accuracy and enhance
the resolution.

Keywords Bandlimited basis · Prolate-Gauss-Lobatto points · Cube-sphere transform ·
Spectral-element method · Quasi-uniform grids

1 Introduction

Spectral method has become fairly attractive for simulations with stringent accuracy and/or
memory requirements (cf. [3, 8, 9]). Over the past two decades, it has dominated the area
of weather prediction and climate modeling. Indeed, in the 1990s, the spectral transform
method based on the spherical harmonics has been extensively used (cf. [3, 14] and the ref-
erences therein), after all the spherical harmonics are the eigenfunctions of the Laplace op-
erator. However, this global method makes use of highly non-uniform computational grids,
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requires expensive nonlocal communication operations and has difficulty in exploiting high-
performance parallel computing. The local spectral-element method can overcome these de-
ficiencies, so it has attracted many attentions since 1990s (see, e.g., [14, 18, 27, 40, 41]).
One major type of elements is based on the cube-sphere partition of the sphere (introduced
by Sadourny [33] and further developed by [24, 32, 40]). As pointed out in [32], the cube-
sphere transform meets the desirable features for a “good” partition proposed by Phillips
[29]. However, the direct projection of the Legendre-Gauss-Lobatto (LGL) points by this
transform still leads to unsatisfactory grid distributions (see Fig. 4 (right) below), as the
grid points are much denser near boundaries of the elements and the non-uniformity is even
severer when each patch is partitioned into many more elements. Consequently, the explicit
time discretization suffers from the Courant-Friedrichs-Lewy (CFL) condition so the time
step has to be very small for a stable computation. To overcome this difficulty, some semi-
implicit and fully implicit schemes were proposed in e.g., [41, 49]. However, this requires
robust solvers for the resultant systems which normally involve a huge number of unknowns
(cf. [23]), so many efforts need to be devoted to constructing a suitable preconditioning (cf.
[42]).

In this paper, we propose a p-type element method based on the cube-sphere projection
of the prolate-Gauss-Lobatto points generated from the prolate spheroidal wave functions
(PSWFs). This leads to almost uniform computational grids on the sphere (see Fig. 4 (mid-
dle) below), so it can significantly relax the CFL constraint and the time step limitation.
Typically, various numerical experiments indicate that with a suitable choice of the band-
width parameter, the proposed method can achieve a nearly O(N−1) time step restriction by
using N2 points on each patch. It is worthwhile to point out that Kosloff and Tal-Ezer [19]
proposed a mapped spectral method to obtain an O(N−1) Runge-Kutta method for first-
order problems. In fact, a composition of the cube-sphere transform and the mapping in [19]
can also produce almost uniform grids on the sphere. However, the error estimates in [36]
indicate that the accuracy is deteriorated when the parameter suggested in [19] is chosen.
On the other hand, the presence of the extra mapping complicates the original problem. In
contrast, the PSWF-based method uses a natural set of Gauss-type points and can be easily
extended from the usual spectral-element method. Moreover, the prolate-element method
inherits some other advantages over the polynomial-based approaches, that is, the gain in
accuracy and in enhancement of resolution. These merits have also been observed and/or
analyzed for PSWF-based spectral methods (cf. [2, 5, 10, 20, 45]).

The rest of the paper is organized as follows. In the next section, we review some ba-
sic properties of the PSWFs. In Sect. 3, we first introduce the cube-sphere transform, and
then develop the prolate-element methods based on a collocation formulation for advection
transport on the sphere. Finally, we apply this p-type method to reaction-diffusion mod-
els for texture synthesis and the fourth-order Cahn-Hilliard equation for phase transition on
the sphere. Moreover, we present ample numerical results for each application in Sect. 3
to demonstrate the advantages of the proposed method. We conclude the paper with some
remarks.

2 Prolate Spheroidal Wave Functions

We collect in this section some relevant properties of the PSWFs, and introduce the associ-
ated quadrature and interpolation.
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2.1 Basic Properties

The PSWFs, denoted by ψc
n(x), are eigenfunctions of the Sturm-Liouville problem:

Dxψ
c
n := −∂x

(
(1 − x2)∂xψ

c
n

) + c2x2ψc
n = χc

nψ
c
n, x ∈ I := (−1,1), c ≥ 0, (2.1)

where {χc
n} are the corresponding eigenvalues, and the constant c is called the bandwidth

parameter. In particular, if c = 0, the PSWFs are reduced to the classical Legendre polyno-
mials and the eigenvalues χ0

n = n(n + 1).
The following properties, which are typical for eigenfunctions of Sturm-Liouville equa-

tions (cf. [1, 11]), can be found in, e.g., [13, 21, 25, 38, 39, 48]. More precisely, for any
c > 0, we have

(i) {ψc
n}∞

n=0 are smooth and form a complete orthonormal system of L2(I ), namely,

∫ 1

−1
ψc

m(x)ψc
n(x)dx = δmn, (2.2)

where δmn is the Kronecker delta.
(ii) {χc

n}∞
n=0 are real, positive, simple and ordered as

0 < χc
0 < χc

1 < · · · < χc
n < · · · . (2.3)

Moreover, there holds the estimate (cf. [45]):

n(n + 1) < χc
n < n(n + 1) + c2. (2.4)

(iii) {ψc
n}∞

n=0 are even (resp. odd) for even (resp. odd) n, that is,

ψc
n(−x) = (−1)nψc

n(x), ∀x ∈ I. (2.5)

(iv) ψc
n has exactly n real distinct zeros in the interval (−1,1).

As a remarkable coincidence, the PSWFs are also eigenfunctions of an integral operator
(cf. [39]):

inλc
nψ

c
n(x) =

∫ 1

−1
eicxtψc

n(t)dt, ∀x ∈ (−1,1), ∀c > 0, (2.6)

where the corresponding eigenvalues {λc
n} (modulo the factor in) are all real, positive, simple

and of the ordering

λc
0 > λc

1 > · · · > λc
n > · · · > 0, ∀c > 0. (2.7)

Thanks to the notable property (2.6), the PSWFs are bandlimited in frequency domain and
mostly concentrated in time domain. Moreover, They form an optimal basis for approximat-
ing bandlimited functions (see, e.g., [21, 37, 39]).

Compared with the Legendre polynomials, the PSWFs oscillate more uniformly. In
Fig. 1, we plot some samples with various c, and see that the zeros of ψc

n become more
uniformly distributed as c increases. Indeed, they behave like (cf. [4]):

ψc
n(x) ∼

√
2

π

1

c

1√
1 − x2

cos
([π/2]n(1 − x)

)
for c = c∗(n) = π

2

(
n + 1

2

)
, n 	 1,

(2.8)
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Fig. 1 The graphs of ψc
7 (x) (left) and ψc

16(x) (right) with several samples of c and x ∈ [0,1]

where c∗(n) is known as the “transition bandwidth”. If c > c∗(n), the PSWFs almost vanish
at the endpoints, so the PSWF series is incapable of representing general functions. Con-
sequently, the feasible c must be in the range: 0 ≤ c < c∗(n) (cf. [5]). In fact, the presence
of the tuning parameter c is an essential advantage over the polynomial approach, as this
allows to construct spectral approximations on quasi-uniform grids (cf. [5, 10, 45]).

2.2 Quadrature and Interpolation

We now introduce the PSWF-based quadrature rule, interpolation and nodal basis.
The prolate-Gauss-Lobatto quadrature is of the form

∫ 1

−1
u(x)dx ∼

N∑

j=0

u(xc
j )ω

c
j , ∀u ∈ C[−1,1], (2.9)

where xc
0 = −1, xc

N = 1 and the interior quadrature points {xc
j }N−1

j=1 and the weights {ωc
j }N

j=0
are determined by the 2N × 2N nonlinear system:

∫ 1

−1
ψc

n(x)dx =
N∑

j=0

ψc
n(x

c
j )ω

c
j , n = 0,1, . . . ,2N − 1. (2.10)

The Matlab codes for computing the nodes and weights can be found in [6].
An alternative quadrature formula has been used in PSWF-based methods (cf. [10, 48]),

where the quadrature points {x̃c
j }N

j=0 are chosen as the zeros of (1 − x2)(ψc
N(x))′, and the

weights are determined by

∫ 1

−1
ψc

n(x)dx =
N∑

j=0

ψc
n(x̃

c
j )ω̃

c
j , n = 0,1, . . . ,N − 1. (2.11)

It can be regarded as a direct extension of the Legendre-Gauss-Lobatto rule. In fact, numer-
ical evidences in [10] have shown that the performance of PSWF-pseudospectral methods
based on these two sets of points is nearly the same.

In this paper, we shall adopt the former rule for numerical integration and interpolation.
In Fig. 2, we plot two dimensional 10 × 10 tensorial Legendre-Gauss-Lobatto and prolate-
Gauss-Lobatto points with c = 8, which shows that the prolate-Gauss-Lobatto points are
more uniformly distributed.
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Fig. 2 Distribution of 10 × 10 tensorial prolate-Gauss-Lobatto points with c = 0 (left) and c = 8 (right)

Define the finite dimensional space

Xc
N = span

{
ψc

n(x) : 0 ≤ n ≤ N
}
. (2.12)

As a generalization of the polynomial interpolation, the PSWF interpolation I c
N : C[−1,1] →

Xc
N, is defined by

I c
Nu ∈ Xc

N and u(xc
j ) = (

I c
Nu

)
(xc

j ), 0 ≤ j ≤ N. (2.13)

Correspondingly, we introduce the Lagrange-type nodal basis of the form

hc
j (x) =

N∑

k=0

d
j

k ψc
k (x) ∈ Xc

N, 0 ≤ j ≤ N, (2.14)

where the coefficients {dj

k } are uniquely determined by the interpolating condition:

hc
j

(
xc

i

) = δij , 0 ≤ i, j ≤ N. (2.15)

Accordingly, we can introduce the differentiation matrices in the same fashion as the Legen-
dre and Chebyshev spectral methods (see, e.g., [8, 16]).

3 Prolate-Element Method on the Sphere

The section is devoted to introducing the p-type prolate-element method on the sphere using
PSWFs as basis functions. The computational grids are generated by a cubed-sphere projec-
tion (cf. [33]) of the prolate-Gauss-Lobatto points, so the partition is free of singularity and
the grid points are quasi-uniformly distributed. As some applications, the proposed method
will be applied to the advection flow, reaction-diffusion models for texture synthesis, and
the Cahn-Hilliard equation for phase transition on the sphere.
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3.1 Cubed-Sphere Transform

The cubed-sphere transform was originally introduced by Sadourny [33] (and further devel-
oped by [24, 32, 40]), to overcome the pole singularity induced by the spherical transform.
The basic idea is to partition the sphere into six identical patches through a central projec-
tion of the faces of the inscribed cube onto the spherical surface so that each of the six local
coordinates is free of singularity. More precisely, let (X,Y,Z) be the Cartesian coordinate
on the sphere

S := SR :=
{
(X,Y,Z) ∈ R

3 : X2 + Y 2 + Z2 = R2
}
, (3.1)

and let Q be the inscribed cube centered at origin with faces perpendicular to the axes.
Note that the length of each size of Q is 2a = 2R/

√
3. As illustrated in Fig. 3, the so-

called gnomonic projection (from the origin) projects the faces of Q onto S, which decom-
poses S into six identical patches. Here, we label the four patches along the equator by
Pn,n = 1,2,3,4, and the top (or north-pole) and the bottom (or the south-pole) patches by
P5 and P6, respectively. Note that the corresponding faces of Q are also labeled by {Pn}6

n=1

accordingly, see Fig. 3 (right).
Let (x, y) be the local coordinate on Q. One finds the transform between S and Q :

(
X,Y,Z

) = R

r

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a, x, y), on P1,

(−x, a, y), on P2,

(−a,−x, y), on P3,

(x,−a, y), on P4,

(−y, x, a), on P5,

(y, x,−a), on P6,

(
x, y

) = a

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Y/X,Z/X

)
, on P1,( − X/Y,Z/Y
)
, on P2,(

Y/X,−Z/X
)
, on P3,( − X/Y,−Z/Y
)
, on P4,(

Y/Z,−X/Z
)
, on P5,( − Y/Z,−X/Z

)
, on P6,

(3.2)
where r = √

a2 + x2 + y2. It is referred to as the equidistant central projection (see Fig. 4
(left) for the distribution of the prolate-Gauss-Lobatto points via this transform).

Fig. 3 Left: schematic illustration of the gnomonic (central) projection between the sphere of radius R and
the inscribed cube with side of length 2a. Right: the prolate points with N = 9 and c = 8 on the (expanded)
six faces of the cube
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To obtain more uniform computational grids, we use a second mapping as suggested in
[31]:

x = a tan
πξ

4
, y = a tan

πη

4
, ∀ ξ, η ∈ [−1,1]. (3.3)

This defines (ξ, η)-coordinate on the reference square (−1,1)2, and we have the relation:

(
ξ, η

) = 4

π
arctan

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Y/X,Z/X

)
, on P1,( − X/Y,Z/Y
)
, on P2,(

Y/X,−Z/X
)
, on P3,( − X/Y,−Z/Y
)
, on P4,(

Y/Z,−X/Z
)
, on P5,( − Y/Z,−X/Z

)
, on P6.

(3.4)

In Fig. 4 (middle and right), we compare the grid distribution through the equiangular
central projection of the prolate-Gauss-Lobatto and Legendre-Gauss-Lobatto in Fig. 2, and
find that the mapped prolate-Gauss-Lobatto points are almost uniformly distributed on the
sphere. It is anticipated that the prolate-element methods can significantly relax the con-
straint of explicit time stepping and enhance the spatial resolution, which will be demon-
strated below.

In what follows, we use the spherical transform (i.e., the longitude and latitude coordinate
(θ,φ)) as an intermediate coordinate system:

X = R cos θ cosφ, Y = R sin θ cosφ, Z = R sinφ, (3.5)

where we take φ ∈ [−π/2,π/2] and θ ∈ [−π/4,7π/4]. One finds that (cf. Fig. 3 (left)) the
angular variable θ of the four patches P1 − P4 along the equator has the range:

θ ∈ k := [−π/4,π/4] + (k − 1)π/2, 1 ≤ k ≤ 4. (3.6)

We present in Appendix the basic calculus of the common differential operators ex-
pressed in a general curvilinear coordinate, and make it specific for the aforementioned
three coordinates, i.e., (x, y), (ξ, η) and (φ, θ).

Fig. 4 The grid distribution on the sphere with 10 × 10 points on each patch. Left: (x, y) to (X,Y,Z) with
c = 8. Middle: (ξ, η) to (X,Y,Z) with c = 8. Right: (ξ, η) to (X,Y,Z) with c = 0
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3.2 Advection Transport on the Sphere

Consider the conservative transport on the sphere governed by the continuity equation in
flux form (see, e.g., [27]):

∂�

∂t
+ div(�V ) = 0 on S × (0, T ]; �|t=0 = �̃0, (3.7)

where � is the advection field and V = (u, v)t is the horizontal wind vector. To this end,
S is a unit sphere. The equation (3.7) can be formulated in any curvilinear coordinate in a
uniform format (see Appendix). With a little abuse of notation, we denote the transformed
functions by the same notation as for the original ones throughout the paper.

Computationally, it is more suitable to use the form in (ξ, η)-coordinate system defined
in (3.2)–(3.3) (cf. (A.7)):

∂(
√

g�)

∂t
+ ∂(

√
gv1�)

∂ξ
+ ∂(

√
gv2�)

∂η
= 0, (3.8)

where
√

g is the Jacobian of the Cartesian coordinate (X,Y,Z) to (ξ, η) given by (A.11).
The contravariant components v1 and v2 are determined by V (cf. Formula (32) and Appen-
dix B of [27]).

Next, we describe the prolate-element scheme based on a collocation formulation for
(3.7). As in Sect. 3.1, we partition S into six identical (closed) patches {Pn}6

n=1, i.e., S =⋃6
n=1 Pn. Let � = [−1,1]2 be the reference square, and denote the mapping from � to Pn

by Fn : � → S, which is a composition of (3.2) and (3.3). Let {xc
j ,ω

c
j }N

j=0 be the prolate-
Gauss-Lobatto points and weights defined in (2.9)–(2.10), and let {hc

j }N
j=0 be the nodal basis

in (2.14). Define the finite dimensional space

Y c
N = span

{
hc

i (ξ)hc
j (η) : 0 ≤ i, j ≤ N, (ξ, η) ∈ �

}
. (3.9)

The prolate-element approximation of (3.7) in collocation formulation is to find �N on the
sphere such that

• �N is continuous across the patches;
• For each of the six patches, we seek �n := �N ◦ Fn|(ξ,η)∈� ∈ Y c

N, such that

(∂�n

∂t
+ L(�n)

)∣∣
∣
(ξ,η)=(xc

i
,xc

j
)
= 0, 0 ≤ i, j ≤ N, 1 ≤ n ≤ 6, (3.10)

where

L(ϕ) = 1√
g

(
∂(

√
gv1ϕ)

∂ξ
+ ∂(

√
gv2ϕ)

∂η

)
. (3.11)

The subproblems in (3.10) can be discretized in time by various schemes (see, e.g., [27,
49]). To show the effect of the quasi-uniform grids, we intend to adopt the explicit third-
order Adams-Bashforth scheme of the form

�k+3
n = �k+2

n + τ

12

(
23L(�k+2

n ) − 16L(�k+1
n ) + 5L(�k

n)
)
, 1 ≤ n ≤ 6, (3.12)

where τ is the time step size, and �k
n is the approximation of �n at t = kτ for 0 ≤ k ≤

[T/τ ] − 3. We use a one-step scheme such as the third-order Runge-Kutta method to gener-
ate the initial values �1

n and �2
n from given �0

n. In short, at each iteration, we update �N on
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the reference domain � for each patch by evaluating (3.12) locally, and assemble new �N

modifying the values �n at the boundaries of Pn to ensure continuity across the elements as
usual.

We test the deformation flow (cf. [26, 27]) consisting of two opposite vortices located at
two poles of the rotated spherical coordinates (θ ′, φ′), which has the north pole (θ0, φ0) with
respect to the regular spherical coordinate system (θ,φ) in (3.5). For any given position of
the north pole (θ0, φ0), the rotated coordinate (θ ′, φ′) is computed from (θ,φ) by

⎧
⎨

⎩

θ ′ = arctan
(

cosφ sin(θ−θ0)

cosφ sinφ0 cos(θ−θ0)−cosφ0 sinφ

)
,

φ′ = arcsin
(

sinφ sinφ0 + cosφ cosφ0 cos(θ − θ0)
)
.

(3.13)

Define the horizontal wind velocity V = (u, v)t in (3.7) as
⎧
⎨

⎩

u = ω′(φ′)
(

sinφ0 cosφ − cosφ0 cos(θ − θ0) sinφ
)
,

v = ω′(φ′) cosφ0 sin(θ − θ0),
(3.14)

where

ω′(φ′) =
⎧
⎨

⎩

0, if ρ ′ = 0,

3
√

3 sech2ρ′ tanhρ′
2ρ′ , if ρ ′ �= 0,

with ρ ′ = μ cosφ′ and μ being a constant. With the input (3.14), the equation (3.7) admits
the exact solution

�(θ ′, φ′, t) = 1 − tanh
(ρ ′

ν
sin

(
θ ′ − ω′t

))
, (3.15)

where ν is a nonzero constant. In the following computations, we take μ = 3, ν = 5, and the
initial value �̃0 = �(θ ′, φ′,0).

In the first test, we particularly choose (θ0, φ0) = (0,π/2) so that two vortices symmet-
rically locate at two poles of the sphere. This appears to be an ideal problem to examine the
effect of uniformity of the grids.

In Table 1, we tabulate the maximum point-wise errors at t = 3 for various choices of
c,N and τ. Observe from Table 1(a) that compared with the usual polynomial-based ele-
ment method (i.e., c = 0), the prolate-element method with c = N requires about ten times
fewer steps to achieve even better accuracy in the last column. In Table 1(b), we present
the maximum point-wise errors for c = N. It shows that the proposed method on quasi-
uniform grids can significantly relax the time step size. Indeed, the scheme with c = N is

Table 1 Convergence of the prolate-element method for deformation flow on the sphere

N c Steps Error

64 0 12288 8.13E−06

72 0 15552 2.62E−06

80 0 19200 5.56E−07

64 64 1536 7.60E−07

72 72 1500 8.27E−08

80 80 1000 6.58E−08

N τ Error

64 64−0.9 2.11E−02

72 72−0.9 4.70E+02

80 80−0.9 2.37E+07

64 64−1 7.12E−06

72 72−1 4.98E−06

80 80−1 6.58E−08
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Fig. 5 The maximum point-wise
errors at t = 3 against N for
c = 0,2N/3,N and τ = N−3/2

stable for τ = O(N−1) (but not stable for τ = O(N−0.9)), rather than O(N−2) for the usual
Legendre-Gauss-Lobatto based element method (cf. [8]).

In Fig. 5, we plot the maximum point-wise error against N for τ = N−3/2 and
c = 0,2N/3,N , which shows that the choice of c = 2N/3,N leads to more accurate nu-
merical solutions. In other words, a larger time step can be adopted.

Next, we apply the proposed method to simulate the deformation flow up to t = 10 with
vortex center (θ0, φ0) = (0,π/2), (π − 0.8,π/4.8), where in the latter case, two opposite
vortices are located at two common vertices of three patches (P2,P3,P5) and (P1,P4,P6),

respectively. Notice that as time evolves, thinner and thinner vortex layers are emerged. In
Fig. 6(a)–(d), we depict numerical solutions at t = 10 for both cases, and plot their graphs
on P5 in Fig. 6(e)–(f). Here, the maximum point-wise errors at t = 10 for two tests are about
10−4.

3.3 Reaction-Diffusion Models for Texture Synthesis

Texture synthesis is one fundamental task in computer vision. One important approach is
to generate texture by simulating a process of local nonlinear reaction diffusion, which is
capable of overcoming the distortions induced by the commonly used texture mappings (see,
e.g., [46, 47]).

3.3.1 Gray-Scott’s Model

We consider the model with isotropic diffusion:

∂a

∂t
= da�a + F(a, b),

∂b

∂t
= db�b + G(a,b), on S × (0, T ], (3.16)

where a and b are concentrations of two “chemicals”, da and db are the diffusion rates of
a and b, respectively, and F and G are the reaction terms. Various F and G have been
used, among which the classical but popular one is known as the Turing model [43], and an
interesting variant has been discussed in e.g., [17, 46]. Here, we consider the Gray-Scott’s
model [17, 35]:

F(a, b) = s(α − a + a2b), G(a, b) = s(β − a2b), (3.17)
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Fig. 6 Numerical vortices on the cubed faces and spherical surfaces at t = 10 computed by (3.12)
with N = 96, c = N/2 and τ = N−3/2, where the vortex center: (θ0, φ0) = (0,π/2) for (a)–(b), and
(θ0, φ0) = (π − 0.8,π/4.8) for (c)–(d). The second row is the numerical structure of the vortices on patch
P5 for vortex center at (0,π/2) (e) and (π − 0.8,π/4.8) (f), respectively

where s is the reaction rate, and α,β are two constants.
Let τ be the time step, and let (ak, bk) be the approximation of (a, b) at t = kτ for

k = 1, . . . , [T/τ ]. We discretize (3.16)–(3.17) in time by using Crank-Nicolson-leap-frog
scheme:

⎧
⎨

⎩

ak+1−ak−1

2τ
= da�

(
ak+1+ak−1

2

)
+ F(ak, bk),

bk+1−bk−1

2τ
= db�

(
bk+1+bk−1

2

)
+ G(ak, bk).

(3.18)

Setting

u1 = ak+1 + ak−1

2
, u2 = bk+1 + bk−1

2
,

we find that at each time step we need to solve two elliptic equations:

−τda�ui + ui = fi on S, i = 1,2, (3.19)

where f1 = ak−1 +τF (ak, bk) and f2 = bk−1 +τG(ak, bk). Hence, it is necessary to develop
the prolate-element solver for elliptic equations.

3.3.2 Prolate-Element Solver for Elliptic Equations

Consider

−div
(
A∇u

) + Bu = f on S, (3.20)
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where A,B and f are given functions such that (3.20) is elliptic. The standard Galerkin
formulation for (3.20) is to find u ∈ H 1(S) such that

(
A∇u,∇v

) + (
Bu,v

) = (f, v), ∀v ∈ H 1(S), (3.21)

which has a unique solution if f ∈ L2(S). As before, we partition S into six identical patches
{Pn}6

n=1 (can be viewed as curved p-elements), which are the images of the reference square
� = [−1,1]2 under the corresponding mapping {Fn}6

n=1. The associated transformed dif-
ferential operators are formulated in Appendix. Hence, by swapping the polynomial nodal
basis and the Legendre-Gauss-Lobatto quadratures respectively with (3.9) and

〈u,v〉N =
N∑

i,j=0

u(ξc
i , ηc

j )v(ξ c
i , ηc

j )ω
c
i ω

c
j , ∀u,v ∈ C(�), (3.22)

where {(ξ c
i , ηc

j ) = (xc
i , x

c
j )} and {ωc

j } are given in (2.9)–(2.10), the C0-prolate-element
method for (3.21) can be implemented as the usual C0-Legendre-spectral-element method
(cf. [9, 12, 28]). Notice that the mappings Fn are nonlinear, but are free of singularity. Here,
we use the iteration solver, the bi-conjugated gradient stabilized (BICGSTAB) method, to
solve the resultant system.

We test the scheme for solving (3.20) with four different sets of coefficients A,B and ex-
act solution u on the unit sphere S (see the caption of Fig. 7). In Fig. 7, we plot log10 of the
maximum point-wise errors against N with several typical choices of bandwidth parame-
ter c. We see that the method with c < N provides more accurate approximations. Indeed,
Chen et al. [10] empirically suggested the choice of c = N/2 in the one-dimensional case.
We also observe that in all cases, the choice of c = N/2 seems to be more desirable. In fact,
a very similar convergence behavior was also observed for the prolate-Galerkin approach in
a single two-dimensional domain (see Fig. 5 in [45]). In particular, we point out that given
the test solution in Fig. 7(c), the choice of c = 10π should be the best, since it is expected
to have a super-geometric convergence (cf. Theorem 3.1 in [45]).

We remark that by using the approximation results in [45], the Galerkin formulation
can be analyzed in a similar fashion as the usual spectral-element method. However, to the
best of our knowledge, the results on the prolate-Gauss-Lobatto interpolation errors are not
available, so the analysis of the Galerkin scheme with numerical integration might not be
possible without the aid of these results.

3.3.3 Numerical Results for (3.18)–(3.19)

With the above preparation, we solve (3.19) by using the foregoing elliptic solver. We
first test the proposed method for three sets of parameters and initial conditions: (i) τ =
10−4,N = 48 and s = 200; (ii) τ = 10−2,N = 32 and s = 50; (iii) τ = 10−2,N = 48 and
s = 50, and choose the following common parameters

da = 0.05, db = 1, α = 0.1305, β = 0.7695, R = 1, c = N/2.

In all three tests, the initial values are b0 ≡ 0.95 and a0 = 0.9 with a small Gaussian pertur-
bation at the common vertices of P1,P2 and P5 (with an additional Gaussian perturbation at
the opposite vertex for Test (iii)) of magnitude 10−3 and different “radius” of the “support”.

In Fig. 8, we plot the patterns (a-component) at different time of the reaction-diffusion
process on the sphere and cube faces in three tests. Due to the competition of reaction and
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Fig. 7 log10 of the maximum point-wise errors against N with various bandwidth parameter c.
In (a), A = 1,B = 2 and u = (X − 2)2exp(4YZ) sin(5πX). In (b), A = 2 + sinX,B = 1 and
u = (X − 2)2exp(3YZ) sin(2πX). In (c), A = B = 1 and u = sin(10πY). In (d), A = B = 1, and
u = exp(3YZ) sin(20πY)

diffusion, the initial perturbation is amplified and spread that leads to different patterns such
as spots and stripes. Although these patterns are typical for the Turing model (see, e.g.,
[44]), their synthesis is sensitive to the choices of parameters, initial inputs, geometry of
the computational domain and/or the accuracy of the numerical approaches (cf. [50]). It
is interesting to see some new patterns generated by the Gray-Scott’s model by using the
proposed high-order methods.

Similar to the Turing model (cf. [34] for analysis), the reaction rate s also controls the
size of the patterns. As an illustration, we vary s in Test (i) and plot in Fig. 9 the final stable
patterns for different s, which shows that the size of the spots becomes larger as s gets
smaller.

3.4 Cahn-Hilliard Equation

As the last example, we consider the Cahn-Hilliard equation (cf. [7]):

∂u

∂t
= �

( − ε2�u + f (u)
)

on S × (0, T ]; u|t=0 = u0 on S, (3.23)
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Fig. 8 Patterns synthesized by the reaction-diffusion model (3.16)–(3.17) on the spherical surfaces and the
inscribed cube faces. Three tests are depicted: rows 1–2 for Test (i) at t = 0,0.37,0.53,3.87; rows 3–4 for
Test (ii) at t = 0,0.15,0.2,0.35; and rows 5–6 for Test (iii) at t = 0,0.2,0.4,1.1, respectively

where ε > 0 and f (u) = u3 − u. It is a classical phase field model for spinodal decom-
position of alloys, which involves the coarsening dynamics such as the process of phase
separation following a quench from a disordered to an ordered phase.

Define the energy

E(u) =
∫

S

(ε2

2
|∇u|2 + F(u)

)
dS, (3.24)

where F ′(u) = f (u), namely,

F(u) = u4

4
− u2

2
.
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Fig. 9 Patterns for different reaction rate s. From left to right: s = 50,30,10 and t = 3.87,12,12, respec-
tively

One verifies readily that

∂E

∂t
= −

∫

S

∣
∣∇( − ε2�u + f (u)

)∣∣2
dS ≤ 0, t ≥ 0, (3.25)

so the energy decays with time. On the other hand, one integrates (3.23) over S and derives
the mass conservation:

∫

S

u(·, t)dS =
∫

S

u0dS, t ≥ 0. (3.26)

Let τ be the time step size and let uk be the approximation of u at tk = kτ for
0 ≤ k ≤ [T/τ ] as before. The equation (3.23) with small ε presents some challenge for
time discretization. Here, we use a second-order semi-implicit stabilizer scheme, which has
proven to be quite stable for the phase model involving the Allen-Cahn equation even cou-
pled with Navier-Stokes equations (see, e.g., [22], and refer to [51] for the error analysis).
Such a scheme for (3.23) reads

3uk+1 − 4uk + uk−1

2τ
= �

(
− ε2�uk+1 + (

2f (uk) − f (uk−1)
) + λ

(
uk+1 − 2uk + uk−1

))
,

(3.27)
where λ > 0 is a stabilizing parameter. Notice that the extra dissipative term λ(uk+1 − 2uk +
uk−1) of order λτ 2 is added to improve the stability while preserving the simplicity of the
semi-implicit scheme.

It is clear that the scheme (3.27) requires to solve biharmonic equations at each time step,
which is troublesome for conforming spectral-element discretization. To overcome this, we
introduce

wk+1 = −ε2�uk+1 + (
2f (uk) − f (uk−1)

) + λ
(
uk+1 − 2uk + uk−1

)
, (3.28)
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Fig. 10 Verification of (3.25) (left) and (3.26) (right) for 0 ≤ t ≤ 2. Here, the parameters are the same as in
Fig. 11

Fig. 11 Cahn-Hilliard equation for phase transition on the sphere obtained by the prolate-element method
with ε = 10−2, τ = 10−3, N = 32, c = N/2, and the initial value being zero mean perturbation of u = 0.

The snapshots are taken at t = 0,0.2,0.3,0.5,1,1.7

and rewrite (3.27) as a system of two second-order equations:

{
3uk+1 − 2τ�wk+1 = 4uk − uk−1,

−(ε2� − λ)uk+1 − wk+1 = f (uk−1) − 2f (uk) + λ
(
2uk − uk−1

)
.

(3.29)

Once again, at each time step, we need to solve elliptic equations as described in the first
part of Sect. 3.3.

In the numerical tests, we take the initial value as a small perturbation of zero mean, i.e.,∫
S
u0dS = 0, and choose ε = 10−2, τ = 10−3,N = 32 and c = N/2. We record in Fig. 10

the numerical energy EN and the mass (the error maxk|
∫

S
uk

NdS| = 2.94 × 10−8), which
verifies the property (3.25) and (3.26). It also shows that the proposed scheme is quite stable
and accurate.

Several snapshots of the numerical solution are plotted in Fig. 11 on both S and the cube
faces. We see that the disordered pattern quickly becomes well-organized and grouped, and
the numerical solution separates the surface S into two regions S+ and S−, where it takes 1
and −1, respectively, with a transition layer of width O(ε). Due to the mass conservation
(3.26), S+ and S− equally divides the sphere into two regions when the evolution reaches
the steady state. Such a phase decomposition is typical in the planar domains and is also
simulated in other geometries (cf. [15]).
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Concluding Remarks In this paper, a p-type element method using the bandlimited PSWFs
was proposed for solving various PDEs on the sphere. The partition of the sphere is based
on a cubed-sphere transform, which is free of singularity. More importantly, the mapped
prolate-Gauss-Lobatto points are almost uniformly distributed on the sphere, so the prolate-
element method could significantly relax the constraint of explicit time stepping schemes
for advection problems, and to increase the accuracy and enhance the spatial resolution for
diffusion problems.

In the implementations, we merely decomposed the sphere into six patches (p-elements),
but it is obvious that one can further partition each patch into many more elements. In this
situation, the use of prolate-Gauss-Lobatto points must be more desirable than that based on
the usual Legendre-Gauss-Lobatto points.

Appendix: Differential Operators in Curvilinear Coordinates

We start with the expressions of the most common differential operators such as gradient,
divergence and Laplacian on the sphere in a general curvilinear coordinate (cf. [27, 30]). Let
(X,Y,Z) be the Cartesian coordinate on the sphere S in (3.1), and let (α,β) be a curvilinear
coordinate which could be one of the following coordinates:

(i) (x, y)—the local coordinate on the cube faces in (3.2) obtained by the equidistant cen-
tral projection;

(ii) (ξ, η)—the coordinate of the reference square � = [−1,1]2 in (3.3) obtained by the
equiangular central projection;

(iii) (θ,φ)—the spherical coordinate in (3.5).

Let r = (X,Y,Z) = r(α,β). The covariant base vectors in (α,β) are defined by

a1 = ∂r

∂α
, a2 = ∂r

∂β
. (A.1)

The metric tensor in (α,β) is

G =
(

g11 g12

g21 g22

)
where gij = ai · aj , i, j = 1,2, (A.2)

and denote its inverse by

G−1 =
(

g11 g12

g21 g22

)
= 1

det(G)

(
g22 −g12

−g12 g11

)
. (A.3)

The contravariant base vectors are obtained by

a1 = g11a1 + g12a2, a2 = g21a1 + g22a2. (A.4)

Hence, a given vector v in (α,β) can be expressed in both base vectors:

v = v1a1 + v2a2 = v1a
1 + v2a

2. (A.5)

Given a scalar field f , the gradient operator in the general curvilinear coordinates (α,β)

is defined by

∇ ≡ ∂

∂α
a1 + ∂

∂β
a2, ∇f = ∂f

∂α
a1 + ∂f

∂β
a2. (A.6)
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Let g = det(G), so
√

g is the Jacobian of the transform. We find from (A.5) and (A.6) that
the divergence of a vector v in (A.5) is given by

divv = ∇ · v = 1√
g

( ∂

∂α
(
√

gv1) + ∂

∂β
(
√

gv2)
)
, (A.7)

and

�f = ∇ · (∇f ) =
(
a1 ∂

∂α
+ a2 ∂

∂β

)
·
(
a1 ∂f

∂α
+ a2 ∂f

∂β

)

= g11 ∂2f

∂α2
+ g12 ∂2f

∂α∂β
+ g21 ∂2f

∂β∂α
+ g22 ∂2f

∂β2

+
(
a1 · ∂a1

∂α
+ a2 · ∂a1

∂β

) ∂f

∂α
+

(
a1 · ∂a2

∂α
+ a2 · ∂a2

∂β

)∂f

∂β
. (A.8)

Specifically, if (α,β) is one of the three coordinate systems of interest, it suffices to
compute (A.1) or (A.2). For (α,β) = (x, y), we have

G = R2

r4

(
a2 + y2 −xy

−xy a2 + x2

)
, r =

√
a2 + x2 + y2. (A.9)

For (α,β) = (ξ, η), the matrix tensor is given by

G = π2R2

16ρ4
sec2

(πξ

4

)
sec2

(πη

4

)
⎛

⎝
1 + tan2

(
πξ

4

)
− tan

(
πξ

4

)
tan

(
πη

4

)

− tan
(

πξ

4

)
tan

(
πη

4

)
1 + tan2

(
πη

4

)

⎞

⎠ ,

(A.10)
where

ρ =
√

1 + tan2
(πξ

4

)
+ tan2

(πη

4

)
.

The Jacobian of the transform is

√
g = √

det(G) = π2R2

16ρ3
sec2

(πξ

4

)
sec2

(πη

4

)
. (A.11)

Notice that G is uniform for all six patches, so we can easily work out the differential
operators (A.6)–(A.8) in (ξ, η).
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