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Abstract In this paper, we extend the study of superconvergence properties of Chebyshev-
Gauss-type spectral interpolation in Zhang (SIAM J Numer Anal 50(5):2966–2985, 2012) to
general Jacobi–Gauss-type interpolation. We follow the same principle as in Zhang (SIAM J
Numer Anal 50(5):2966–2985, 2012) to identify superconvergence points from interpolating
analytic functions, but rigorous error analysis turns out much more involved even for the
Legendre case. We address the implication of this study to functions with limited regularity,
that is, at superconvergence points of interpolating analytic functions, the leading term of the
interpolation error vanishes, but there is no gain in order of convergence, which is in distinctive
contrast with analytic functions. We provide a general framework for exponential convergence
and superconvergence analysis. We also obtain interpolation error bounds for Jacobi–Gauss-
type interpolation, and explicitly characterize the dependence of the underlying parameters
and constants, whenever possible. Moreover, we provide illustrative numerical examples to
show tightness of the bounds.
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1 Introduction

The study of superconvergence phenomenon for h-version methods has had a great impact on
scientific computing, especially on a posteriori error estimates and adaptive methods. With
a belief that the scientific community would also benefit from the study of superconvergence
phenomenon of spectral methods, the third author studied spectral collocation related to the
Chebyshev polynomials under the analytic assumption, and the Legendre polynomials under
even more restrictive assumption—polynomials of one degree higher than the approximating
polynomial space [24]. Two issues remain open: What happens to general Jacobi polynomi-
als? Is the superconvergence phenomenon still valid for functions with limited regularity?

This work is the second stage towards superconvergence phenomenon of orthogonal poly-
nomial interpolation, in which we will study the aforementioned two issues. Answer to the
first one is affirmative. The main effort here is devoted to identifying superconvergence points
for interpolation by general Jacobi polynomials. We would like to emphasize that the proof
for general case is very different from the Chebyshev case, in which a special closed form
in terms of trigonometry functions can be utilized. In general case, analysis is much more
involved and complicated. For functions with limited regularity, answer is partially positive in
the sense that the convergence rate remains the same at all points. Nevertheless, the numerical
error is significantly smaller at those superconvergence points obtained from interpolating
analytic functions.

Rather than the conventional algebraic order (i.e., O(N−r )-type) error estimates, we
will establish error bounds in the form of C(N )ρ−N with ρ > 1 (where N + 1 is the
number of interpolation points) under analytic assumption, and explicitly characterize the
dependence of C(N ) on N . This kind of error bounds has been studied in a number
of articles in literature. For example, Tadmor [16], and Reddy and Weideman [13] ana-
lyzed the Fourier and/or Chebyshev interpolation of analytic functions, while Xie, Wang
and Zhao [21] conducted analysis of Gegenbauer–Gauss and Gegenbauer–Gauss–Lobatto
interpolations. The exponential convergence of orthogonal polynomial expansions under
analytic assumption was studied by e.g., Gottlieb and Shu et al. [5,6], Zhang [22–24],
Wang and Xiang [18], Xiang [20], and Zhao, Wang and Xie [25]. The interested readers
are also referred to some insightful discussions and applications in e.g., [7,11,17]. It is
worthwhile to point out that the argument for Legendre–Gauss–Radau case in this paper
appears similar to that in [21], but it needs much more delicate analysis, and the extension is
nontrivial.

With the aforementioned issues in mind, we identify in Sect. 2 superconvergence points
from interpolating analytic functions, and address the implication to functions with limited
regularity. In Sect. 3, we present a general framework for analyzing exponential convergence
and superconvergence of polynomial interpolation. In Sect. 4, we apply the general result to
Jacobi–Gauss-type interpolation, and provide detailed estimates with explicit dependence of
all involved parameters for Legendre–Gauss–Radau case. The last section is for numerical
results and concluding remarks.
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2 Superconvergence Points

In this section, we identify superconvergence points for derivatives of general Jacobi–Gauss-
type interpolants under analytic assumption, and discuss the indication to functions with
limited regularity.

2.1 Jacobi–Gauss-Type Interpolation of Analytic Functions

Throughout this paper, let P(α,β)
N (x)(x ∈ [−1, 1] and α, β > −1) be the Jacobi polynomial

of degree N , as normalized in [15]. In particular, we denote the Legendre polynomial by
PN (x)(= P(0,0)

N (x)), and the Chebyshev polynomial by TN (x)(= arccos(N cos x)). We
collect in Appendix A some relevant properties of Jacobi polynomials.

Hereafter, let PN be the set of all real polynomials of degree at most N . Let {x j }N
j=0 be a

set of generic distinct interpolation points on [−1, 1], and let IN : C([−1, 1]) → PN be the
Lagrange interpolation operator such that {(IN u)(x j ) = u(x j )}N

j=0 for any u ∈ C([−1, 1]).
Recall that Jacobi–Gauss-type interpolation is on one of the following sets of points:

• The Jacobi–Gauss (JG) points
{

x j = ξ
α,β
G, j

}N
j=0 are zeros of the Jacobi polynomial

P(α,β)
N+1 (x).

• The (left) Jacobi–Gauss–Radau (JGR) points
{

x j = ξ
α,β
R, j

}N
j=0 (with fixed left endpoint

x0 = −1) are zeros of (1 + x)P(α,β+1)
N (x). With a change of variable x → −x, JGR

interpolation with fixed right endpoint xN = 1, can be obtained.
• The Jacobi–Gauss–Lobatto (JGL) points

{
x j = ξ

α,β
L , j

}N
j=0 (with x0 = −1, xN = 1) are

zeros of (1 − x2)∂x P(α,β)
N (x).

It is known from the seminal work of Bernstein [2] that any analytic function u(x) on
[−1, 1] can be continued analytically to an elliptic domain enclosed by the so-called Bernstein
ellipse Eρ, with foci ±1 and ρ being the sum of semi-axes. The Bernstein ellipse can be
obtained from the circle Cρ := {w = ρeiθ } through the Joukowski transformation (cf. [9]):

Eρ :=
{

z ∈ C : z = 1

2
(w + w−1), w = ρeiθ , θ ∈ [0, 2π]

}
, ρ > 1, (2.1)

where C is the set of all complex numbers, and i = √−1 is the complex unit. The perimeter
of Eρ can be approximated by (see Ramanujan [12]): π(3ρ −√

4ρ2 − ρ−2 ). A tighter bound
is given by [19, (2.15)]:

L(Eρ) ≤ (24 − 5
√

2π)ρ − (
8 − (1 + √

2)π
)
(ρ − ρ−3) − (16 − 5π)

√
ρ2 + ρ−2

2(3 − 2
√

2)
. (2.2)

The distance from Eρ to [−1, 1] is

dρ = 1

2
(ρ + ρ−1) − 1. (2.3)

Define

Aρ := {
u : u is analytic on and within Eρ

}
, 1 < ρ < ρmax, (2.4)

where Aρmax labels the largest ellipse within which u is analytic. In particular, if ρmax = ∞, u
is an entire function.
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We now introduce the major analysis tool—Hermite’s contour integral (see e.g.,
[3, (3.6.5)–(3.6.6)]), that is, for any u ∈ Aρ,

(IN u)(x) = 1

2π i

∮

Eρ

QN+1(z) − QN+1(x)

z − x

u(z)

QN+1(z)
dz, ∀x ∈ [−1, 1], (2.5)

and

(u − IN u)(x) = 1

2π i

∮

Eρ

QN+1(x)

z − x

u(z)

QN+1(z)
dz, ∀x ∈ [−1, 1]. (2.6)

In particular, for Jacobi–Gauss-type interpolation, we have

QN+1(x) = cN

{
P(α,β)

N+1 (x), (1 + x)P(α,β+1)
N (x) or (1 − x2)∂x P(α,β)

N (x)
}
, (2.7)

where cN is any nonzero factor.
Thus, by (2.6),

(u − IN u)′(x) = 1

2π i

∮

Eρ

(
Q′

N+1(x)

z − x
+ QN+1(x)

(z − x)2

)
u(z)

QN+1(z)
dz, (2.8)

and

(u − IN u)′′(x) = 1

2π i

∮

Eρ

(
Q′′

N+1(x)

z − x
+ 2Q′

N+1(x)

(z − x)2 + 2QN+1(x)

(z − x)3

)
u(z)

QN+1(z)
dz. (2.9)

Likewise, we can compute higher order derivatives by direct differentiation.

2.2 Superconvergence Points for Derivatives

As observed in [24] for the Chebyshev case, a differentiation of QN+1 magnifies a factor of
N or N 2, so the highest derivative of QN+1 dominates the error, and superconvergence can
be attained at zeros of the highest derivative of QN+1(x). Following the same principle, we
have the following claim.

Proposition 2.1 If we interpolate a function u ∈ Aρ at the zeros of QN+1(x) (e.g., (2.7)),
then the superconvergence points for the first (resp. second) derivative are the zeros of
Q′

N+1(x) (resp. Q′′
N+1(x)), and likewise for higher order derivatives.

Remark 2.1 Extreme points of QN+1(x) are superconvergence points of the first derivative.

�

Applying the above rule, we can locate superconvergence points for Jacobi–Gauss-type
interpolation as follows.

Proposition 2.2 (Jacobi–Gauss interpolation) For Jacobi–Gauss interpolation at zeros of
QN+1(x) = P(α,β)

N+1 (x), the first derivative superconverges at N interior Jacobi–Gauss–

Lobatto points, i.e., zeros of ∂x P(α,β)
N+1 (x); the second derivative superconverges at N − 1

Jacobi–Gauss points with the parameter (α + 2, β + 2), i.e., zeros of P(α+2,β+2)
N−1 (x)

(= γ
α,β
N ∂2

x P(α,β)
N+1 (x) by (6.1)).
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Proposition 2.3 ((left) Jacobi–Gauss–Radau interpolation) For (left) Jacobi–Gauss–Radau
interpolation at zeros of (1 + x)P(α,β+1)

N (x), the first derivative superconverges at zeros of

Q′
N+1(x) = ∂x P(α,β)

N+1 (x) + N + β + 1

N + 1
∂x P(α,β)

N (x); (2.10)

the second derivative superconverges at zeros of Q′′
N+1(x).

Remark 2.2 Note that the identity (2.10) (up to a constant multiple) follows from (6.2). 
�
Proposition 2.4 (Jacobi–Gauss–Lobatto interpolation) For Jacobi–Gauss–Lobatto interpo-
lation at zeros of (1 − x2)∂x P(α,β)

N (x), the first derivative superconverges at zeros of

Q′
N+1(x) = ∂x P(α,β)

N+1 (x) + (β − α)
2N + α + β + 1

(N + 1)(2N + α + β)
∂x P(α,β)

N (x)

− (N + α)(N + β)(2N + α + β + 2)

N (N + 1)(2N + α + β)
∂x P(α,β)

N−1 (x); (2.11)

the second derivative superconverges at zeros ofQ′′
N+1(x).

Remark 2.3 For Legendre–Gauss–Lobatto (LGL) case, (2.11) reduces to

Q′
N+1(x) = P ′

N+1(x) − P ′
N−1(x) = (2N + 1)PN (x),

where the last identity can be found in e.g., [15]. Therefore, superconvergence points of first
derivative for LGL interpolation are Legendre–Gauss points (involving only N points); while
superconvergence points for second derivative are N − 1 interior LGL points. In fact, only
the Legendre case enjoys this property. 
�

2.3 Computation of Superconvergence Points

It is known that Jacobi–Gauss-type points {x j } can be computed by the eigen-method (see e.g.,
[4,14]). It is known that between every two consecutive zeros of QN+1(x), there exists exactly
one extreme point of QN+1(x), so we can set {y0

j = (x j−1 +x j )/2}N
j=1 as initial guesses, and

then use the Newton’s iterative method to locate the superconvergence points {y j }N
j=1 for first

derivative. Similarly, we can compute those for second derivative by using {(y j−1 + y j )/2}
as initial guesses. In Fig. 1, we plot zeros of Q′

N+1(x) with QN+1(x) = (1− x2)∂x P(α,β)
N (x)

for some α, β and N .

2.4 Implication to General Non-analytic Functions

We reiterate that the superconvergence points are at which the leading term of the error
remainder vanishes (see (2.8)–(2.9) and Propositions 2.2–2.4). It is also based on this prin-
ciple that Zhang [24] locates the superconvergence points for the function values, when one
interpolates the first derivative values.

A natural question to ask is what would be the indication of superconvergence points
(identified from interpolating analytic functions) to functions which are not analytic? We will
examine this from two perspectives, and illustrate that the leading term of the interpolation
error of functions with finite regularity vanishes at superconvergence points, but there is no
gain in order of convergence, as opposite to the analytic case.
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Fig. 1 Zeros (marked by “∗”) and extreme points (marked by “◦”) of QN+1(x). a α = 2, β = 3, N = 6. b
α = 1, β = 2, N = 15

The first perspective is from the remainder of the interpolation error for u ∈ Ck+1[−1, 1]
with finite integer k (see [10]):

RN (x) = (u − IN u)(x) = (−1)k

k!
N∑

j=0

h j (x)

x∫

x j

(t − x j )
ku(k+1)(t)dt, (2.12)

where {h j } are the Lagrange basis polynomials given by

h j (x) = QN+1(x)

(x − x j )Q′
N+1(x j )

, 0 ≤ j ≤ N .

A direct calculation leads to

R′
N (x) := (−1)k

k!
(
R1(x) + R2(x)

)
,

where

R1(x) =
N∑

j=0

Q′
N+1(x)

(x − x j )Q′
N+1(x j )

x∫

x j

(t − x j )
ku(k+1)(t)dt;

R2(x) =
N∑

j=0

QN+1(x)

(x − x j )Q′
N+1(x j )

(
(x − x j )

ku(k+1)(x) − 1

x − x j

x∫

x j

(t − x j )
ku(k+1)(t)dt

)
.

Observe that at interpolation points {xi }N
i=0, we have R′

N (xi ) = (−1)k R1(xi )/k!, while at
superconvergence points {yi }N

i=1,we have R′
N (yi ) = (−1)k R2(yi )/k!. In fact, R1(x) domi-

nates the error. For example, we consider the function:

u(x) = xa exp
(1

2
sin(x/3)

)
, x ∈ (−1, 1), (2.13)
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Fig. 2 Errors for a = 7/2 (left) and a = 11/2 (right) with α = β = 0

where a > 1 is a non-integer number with integer part [a]. It is clear that u ∈ C [a][−1, 1],
but u 
∈ C [a]+1[−1, 1]. Denote

eN = max|x |≤1

∣
∣RN (x)

∣
∣, EN = max|x |≤1

∣
∣R′

N (x)
∣
∣, E x

N = max
0≤ j≤N

∣
∣R′

N (x j )
∣
∣, E y

N = max
1≤i≤N

∣
∣R′

N (yi )
∣
∣.

(2.14)

We compute eN and EN by a dense sampling of uniform points on [−1, 1], and evaluate the
derivatives and integrals in R1(x) and R2(x) exactly.

In Fig. 2, we plot eN , EN , E x
N , E y

N and the reference lines N−a, N 1−a in log-log scale
with a = 7/2, 11/2. We find that (i) the errors EN , E x

N , E y
N decay at the same rate as N 1−a

(expected order for EN , see e.g., [14]); (ii) the convergence rate in the first derivative is
one order lower than eN ; and (iii) E x

N dominates the error EN . We also see that it is more
accurate at superconvergence points, but there is no gain in convergence order. This should
be in contrast with interpolating analytic functions, where an order of N 2 can be gained at
the superconvergence points (see Theorem 4.1).

We next take a different viewpoint from the spectral expansion of a function with finite
regularity. Let us consider the JGL case (see Proposition 2.4). Define

φ0(x) = 1, φ1(x) = x, φk(x) = (1 − x2)∂x P(α,β)
k−1 (x), k ≥ 2. (2.15)

The so-defined {φk}k≥2 are mutually orthogonal in L2
ωα−1,β−1(−1, 1) (where ωα−1,β−1 =

(1−x)α−1(1+x)β−1), which follows from (6.1) and the orthogonality of Jacobi polynomials.
Moreover, {φk}k≥0 form a complete basis of X := P1 ∪ L2

ωα−1,β−1(−1, 1) (which reduces

to L2
ωα−1,β−1(−1, 1), if α, β > 0). For any u ∈ X, we expand it as u(x) = ∑∞

k=0 ûkφk(x),

where {ûk} can be uniquely determined. Then we have

(u − IN u)(x) = ûN+1(φN+1 − IN φN+1)(x) +
∞∑

k=N+2

ûk(φk − IN φk)(x). (2.16)

We have IN φN+1 ≡ 0 (which is actually aliased). Indeed, from the expansion: (IN φN+1)(x)

= ∑N
k=0 ũk P(α,β)

k (x), we find that the pseduospectral coefficients {ũk} vanish, as

ũk = 1

γk

N∑

j=0

φN+1(x j )P(α,β)
k (x j )ω j = 0, 0 ≤ k ≤ N ,
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where {γk} are constants, {ω j } are the JGL quadrature weights and we have used the fact
φN+1(x j ) = 0 for 0 ≤ j ≤ N . This implies

(u − IN u)′(x) = ûN+1φ
′
N+1(x) +

∞∑

k=N+2

ûk(φk − IN φk)
′(x). (2.17)

Consequently, at the zeros of φ′
N+1 (i.e., the superconvergence points {y j }N

j=1 in Proposition
2.4), the leading term of the error remainder in (2.17) vanishes.

In summary, we infer from the previous discussions that at the superconvergence points,
the leading term of the interpolation error remainder for functions with limited regularity,
vanishes. This leads to better accuracy, but there is no gain in order of convergence, which
should be in contrast with interpolating analytic functions.

3 Error Estimates: A General Framework

In this section, we analyze interpolation errors of analytical functions, and intend to estimate

max
j

∣
∣(u − IN u)(k)(x j )

∣
∣, max

i

∣
∣(u − IN u)(k)(yi )

∣
∣, k = 1, 2, (3.1)

where we recall that {x j } are the Jacobi–Gauss-type points, and {yi } are the corresponding
superconvergence points in Proposition 2.1.

From the reminders in (2.6) and (2.8)–(2.9), we derive the following general results. Note
that at this stage, the estimates depend on several constants involving N , which will be
estimated in Sect. 4 for specific sets of interpolation points.

Theorem 3.1 Let {x j }N
j=0 be the zeros of QN+1(x) defined in (2.7), and let IN u be the

associated Lagrange interpolant. Denote

m Q = min
z∈Eρ

|QN+1(z)|, MQ = max|x |≤1
|QN+1(x)|, MQ′ = max|x |≤1

|Q′
N+1(x)|, (3.2)

and likewise MQ′′ . For any u ∈ Aρ with ρ > 1, define M = maxz∈Eρ |u(z)|. Then

(i) for the first derivative, we have

max
0≤ j≤N

|(u − IN u)′(x j )| ≤ M L(Eρ)

2πdρ

MQ′

m Q
, (3.3)

and at the corresponding superconvergence points {y j }N
j=1 (i.e., zeros of Q′

N+1(x)),
we have

max
1≤ j≤N

|(u − IN u)′(y j )| ≤ M L(Eρ)

2πd2
ρ

MQ

m Q
; (3.4)

(ii) for the second derivative, we have

max
0≤ j≤N

|(u − IN u)′′(x j )| ≤ M L(Eρ)

2πdρ

( MQ′′

m Q
+ 2

dρ

MQ′

m Q

)
, (3.5)

and at the corresponding superconvergence points {z j }N−1
j=1 (i.e., zeros of Q′′

N+1(x)),
we have

max
1≤ j≤N−1

|(u − IN u)′′(z j )| ≤ M L(Eρ)

πd2
ρ

( MQ′

m Q
+ 1

dρ

MQ

m Q

)
. (3.6)

Here, the constants L(Eρ) and dρ are defined in (2.2) and (2.3), respectively.
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Proof As QN+1(x j ) = 0, we derive from (2.8) that

max
0≤ j≤N

|(u − IN u)′(x j )| ≤ MQ′ M

2πm Q
max

0≤ j≤N

∮

Eρ

|dz|
|z − x j | ≤ M L(Eρ)

2πdρ

MQ′

m Q
, (3.7)

which leads to (3.3). Similarly, (3.5) follows from (2.9).
Using the fact Q′

N+1(y j ) = 0 (resp. Q′′
N+1(z j ) = 0, see Proposition 2.1), we can obtain

(3.4) (resp. (3.6)) in a fashion very similar to (3.7). 
�

The following property is a direct consequence of Theorem 3.1.

Corollary 3.1 At superconvergence points, the maximum of the first derivative of the inter-
polation error converges at the same rate as the maximum interpolation error. Similarly,
the maximum of the second derivative of the interpolation error at superconvergence points
enjoys the same convergence rate as that of the first derivative.

Proof We find from (2.6) that

max|x |≤1

∣
∣(u − IN u)(x)

∣
∣ ≤ M L(Eρ)

2πdρ

MQ

m Q
. (3.8)

Hence, we claim the first statement from (3.4). Similarly, by (2.8),

max|x |≤1

∣
∣(u − IN u)′(x)

∣
∣ ≤ M L(Eρ)

2πdρ

( MQ′

m Q
+ 1

dρ

MQ

m Q

)
. (3.9)

Thus, the second claim follows from (3.6). 
�

Remark 3.1 Since the above error bounds share the common factor 1/m Q, it suffices to show
that MQ′ ∼ N γ MQ and MQ′′ ∼ N δ MQ′ (for γ, δ > 0) to obtain the gain in order of N at
superconvergence points. 
�

4 Error Estimates for Jacobi–Gauss-Type Interpolation

To derive the error bounds, it remains to estimate the constants MQ, MQ′ , MQ′′ and m Q . For
a specific set of interpolation points, the former three constants are not difficult to obtain from
the relevant properties of orthogonal polynomials (which only contribute to some powers of
N ), but much care has to be taken to estimate m Q (which actually leads to the exponential
convergence). Note that for the Chebyshev case, QN+1(z) with z ∈ Eρ has a simple closed
form, so the estimation of m Q becomes straightforward (see e.g., [3,8,13,24]). The recent
work [21] derived the lower bound of m Q for the Gegenbauer–Gauss (GG) and Gegenbauer–
Gauss–Lobatto (GGL) points. Typically, they are symmetric cases, as the interior interpo-
lation points are zeros of certain Jacobi polynomial with parameters α = β. However, the
results for the non-symmetric cases with α 
= β, for example, the Gauss-Radau interpola-
tion and Jacobi–Gauss-type interpolation with α 
= β, are lacking. The rest of this paper is
devoted to the analysis of these missing cases. We first consider the general Jacobi case, and
then refine the results for some special cases including the Gegenbauer–Gauss–Radau and
Legendre–Gauss–Radau interpolation.
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4.1 Jacobi–Gauss-Type Interpolation

To fix idea, we focus on Jacobi–Gauss interpolation. In this case, we have QN+1(x) =
P(α,β)

N+1 (x), and need to estimate the corresponding MQ, MQ′ , MQ′′ and m Q in Theorem 3.1.
We start with a property of the Gamma function. Recall that (see [1, (6.1.38)]):


(x + 1) = √
2πx x+1/2 exp

(
− x + θ

12x

)
, ∀ x > 0, 0 < θ < 1. (4.1)

Using this formula, we can show that (see [25, Lemma 2.1]) for any constants a, b, indepen-
dent of n, and for n ≥ 1, n + a > 1 and n + b > 1,

exp
( − ϒb,a

n

)
na−b ≤ 
(n + a)


(n + b)
≤ exp

(
ϒa,b

n

)
na−b, (4.2)

where

ϒa,b
n = a − b

2(n + b − 1)
+ 1

12(n + a − 1)
+ (a − 1)(a − b)

n
. (4.3)

Note that exp(ϒ
a,b
n ) ≈ 1 for large n.

Let q := max(α, β) with α, β > −1. Then we obtain from Szegö [15, Theorem 7.32.1]
that

MQ = max|x |≤1

∣
∣P(α,β)

N+1 (x)
∣
∣ =

⎧
⎪⎪⎨

⎪⎪⎩

∣
∣P(α,β)

N+1 (x ′)
∣
∣ ≤ cN (α, β)N−1/2, if q < −1/2;


(N + q + 2)


(N + 2)
(q + 1)
≤

exp
(
ϒ

q+2,2
N

)


(q + 1)
N q , if q ≥ −1/2,

(4.4)

where x ′ is one of two maximum points nearest (β − α)/(α + β + 1), and cN (α, β) ≈ 1 for
large N . Hence, by (6.1) and (4.4),

MQ′ = max|x |≤1

∣
∣∂x P(α,β)

N+1 (x)
∣
∣ = 1

2
(N + α + β + 2) max|x |≤1

∣
∣P(α+1,β+1)

N (x)
∣
∣

≤ 1

2
(N + α + β + 2)

exp
(
ϒ

q+2,1
N

)


(q + 2)
N q+1; (4.5)

MQ′′ ≤ 1

4
(N + α + β + 2)(N + α + β + 3)

exp
(
ϒ

q+2,0
N

)


(q + 3)
N q+2.

To estimate m Q, we resort to the asymptotic representation (see Szegö [15, Theorem
8.21.9]):

P(α,β)
N (z) = φ0(w;α, β)N−1/2wN + O(N−1), ∀z = 1

2
(w + w−1) ∈ Eρ, |w| = ρ,

(4.6)

where φ0(w;α, β) is regular for |w| = ρ > 1, and |w| = 1 but w 
= ±1. Thus, we have

m Q = min
z∈Eρ

∣
∣P(α,β)

N+1 (z)
∣
∣ ≥ C(ρ;α, β)N− 1

2 ρN+1(1 + O(N−1)
)
, (4.7)

where C(ρ;α, β) = min|w|=ρ |φ0(w;α, β)|, independent of N .
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With a little abuse of notation, we use cN (α, β) to denote the generic positive constant
such that cN (α, β) ≈ 1 for large N . For example, for q = max(α, β) ≥ −1/2, we denote

cN (α, β) =
exp

(
ϒ

q+2,1
N

)

1 + O(N−1)
,

which is extracted from the ratio MQ′/m Q, and likewise for MQ/m Q and MQ′′/m Q . Then
the error bounds for Jacobi–Gauss interpolation follow from Theorem 3.1.

Theorem 4.1 For any u ∈ Aρ with ρ > 1, let (IN u)(x) be the interpolant of u(x) at the
Jacobi–Gauss points {x j }N

j=0, and let q = max(α, β) for α, β > −1. Then

(i) we have

max
0≤ j≤N

|(u − IN u)′(x j )| ≤ cN (α, β)

4π
(q + 2)

M L(Eρ)

dρC(ρ;α, β)

N q+5/2

ρN+1 , (4.8)

and at the corresponding superconvergence points {y j }N
j=1, we have

max
1≤ j≤N

|(u − IN u)′(y j )|

≤ cN (α, β)M L(Eρ)

2πd2
ρC(ρ;α, β)

1

ρN+1

{
1, if q < −1/2,

N q+1/2/
(q + 1), if q ≥ −1/2; (4.9)

(ii) for the second derivative, we have

max
0≤ j≤N

|(u − IN u)′′(x j )| ≤ cN (α, β)

8π
(q + 3)

M L(Eρ)

dρC(ρ;α, β)

N q+9/2

ρN+1 , (4.10)

and at the corresponding superconvergence points {z j }N−1
j=1 , we have

max
1≤ j≤N−1

|(u − IN u)′′(z j )| ≤ cN (α, β)

2π
(q + 2)

M L(Eρ)

d2
ρC(ρ;α, β)

N q+5/2

ρN+1 . (4.11)

Remark 4.1 We see that we gain a factor of N 2 at superconvergence points. 
�
Remark 4.2 In both the Jacobi–Gauss–Radau and Jacobi–Gauss–Lobatto cases, QN+1 is
a linear combination of

{
P(α,β)

N+k : k = 0,±1
}

(see (6.2)–(6.3)), so we can estimate the
interpolation errors in a very similar fashion. 
�

It is seen from (4.7) that the dependence of C(ρ;α, β) in the asymptotic estimate (4.7)
on ρ is implicit. However, for the Chebyshev polynomial, we can explicitly characterize
this, and also the estimate of m Q is valid for all N ≥ 1. Indeed, we have the closed form
(see e.g., [3]):

TN+1(z) = 1

2

(
wN+1 + w−(N+1)

)
, z ∈ Eρ, |w| = ρ,

which implies

min
z∈Eρ

|TN+1(z)| ≥ 1

2

(
ρN+1 − ρ−N−1). (4.12)
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With a re-normalization of TN+1, we find from (4.2) that

m Q = min
z∈Eρ

∣
∣P(−1/2,−1/2)

N+1 (z)
∣
∣ = 
(N + 3/2)√

π(N + 1)! min
z∈Eρ

∣
∣TN+1(z)

∣
∣

≥ exp
( − ϒ

1,1/2
N+1

)

2
√

π

(
1 − 1

ρ2N+2

)
N−1/2ρN+1, N ≥ 1. (4.13)

In fact, such an estimate is also available for the Gegenbauer polynomial (i.e., α = β), but the
analysis is much more involved (see [21]). However, the analysis in [21] appears nontrivial
to be extended to the case with α 
= β. For example, m Q in the Gegenbauer–Gauss–Radau
interpolation is associated with the Jacobi polynomials with the parameter (α, α + 1). For
clarity of presentation, we just give the details for estimating m Q of the Legendre–Gauss–
Radau (LGR) interpolation (i.e., α = 0), which can be extended to the Gegenbauer case (i.e.,
α 
= 0) straightforwardly.

4.2 LGR Interpolation

In this case, the interpolation points are zeros of

QN+1(x) = PN (x) + PN+1(x) = (1 + x)P(0,1)
N (x), (4.14)

where the last identity follows from (6.2).
We state the main result on the estimate for m Q as follows.

Theorem 4.2 Let QN+1 be the polynomial defined in (4.14). Then for any integer 1 < K < N ,

we have

m Q = min
z∈Eρ

∣
∣QN+1(z)

∣
∣ ≥ A(K , N ; ρ)

e− 5
6N√
π

ρN+1

√
N

, (4.15)

where

A(K , N ; ρ) = ρ − 1
√

1 + ρ2
−

{(√
ρ + 1

ρ − 1
− 1

)
DK ,N + 1

ρ2K (ρ − 1)

}
, (4.16)

with

DK ,N = K

2(N − K )
+ 2N − K

2(N − K )

(
e

5
12(N−K ) − 1

)
. (4.17)

In particular, if N � 1, we can choose K = o(N ) such that

m Q ≥ cN√
π

ρ − 1
√

1 + ρ2

ρN+1

√
N

, (4.18)

where the constant cN ≈ 1 for large N.

The proof of this theorem is rather involved. To prevent distracting from the main results,
we postpone the proof to Appendix B.

Next, we provide some numerical illustrations to the tightness of the lower bound of
m Q . For fixed ρ, we compute m Q by sampling very dense points on Eρ, and scale m Q and
the corresponding lower bound by the factor ρN+1/

√
N . More precisely, we look at the

exact value m Q
√

N/ρN+1 and the scaled lower bound A(K , N ; ρ)e− 5
6N /

√
π. We choose

K = [N ε] with ε = 0.5, and plot in Fig. 3 the exact value and lower bound with ρ = 1.2
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Fig. 3 Comparison of m Q and the lower bound with ρ = 1.2 (left) and ρ = 1.3 (right)

(left) and ρ = 1.3 (right), respectively. Observe that when N increases, the lower bound
tends to m Q gradually and the rate is N ε−1 (see (7.19)).

Now, we continue to estimate MQ etc in Theorem 3.1. We find from (4.4), (4.5) and (4.14)
that

MQ ≤ 2, MQ′ ≤ 1

2

((
N 2 + 2N

)
exp

(
ϒ

2,1
N

) + (
N 2 − 1

)
exp

(
ϒ

2,1
N−1

))
,

MQ′′ ≤ N + 2

8

((
N + 3

)
N 2 exp

(
ϒ

2,0
N

) + (
N + 1

)(
N − 1

)2 exp
(
ϒ

2,0
N−1

))
. (4.19)

From Theorem 3.1, (4.18) and (4.19), we obtain the following estimates.

Theorem 4.3 For any u ∈ Aρ with ρ > 1, let (IN u)(x) be the interpolant of u(x) at the set
of (N + 1) Legendre–Gauss–Radau points {x j }N

j=0. Then

(i) we have

max
0≤ j≤N

∣
∣(u − IN u)′(x j )

∣
∣ ≤ cN

M L(Eρ)

2
√

πdρ

√
1 + ρ2

ρ − 1

N 5/2

ρN+1 , (4.20)

and at the corresponding superconvergence points {y j }N
j=1, we have

max
1≤ j≤N

∣
∣(u − IN u)′(y j )

∣
∣ ≤ cN

M L(Eρ)√
πd2

ρ

√
1 + ρ2

ρ − 1

√
N

ρN+1 ; (4.21)

(ii) for the second derivative, we have

max
0≤ j≤N

∣
∣(u − IN u)′′(x j )

∣
∣ ≤ cN

M L(Eρ)

8
√

πdρ

√
1 + ρ2

ρ − 1

N 9/2

ρN+1 , (4.22)

and at the corresponding superconvergence points {z j }N−1
j=1 , we have

max
1≤ j≤N−1

∣
∣(u − IN u)′′(z j )

∣
∣ ≤ cN

M L(Eρ)√
πd2

ρ

√
1 + ρ2

ρ − 1

N 5/2

ρN+1 . (4.23)

Here, M = maxz∈Eρ |u(z)|, and cN ≈ 1 for N � 1.
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Remark 4.3 We can apply the same argument to estimate the Gegenbauer–Gauss–Radau
interpolation errors, and have to resort to the formula in [21, Lemma 3.1] as a generalization
of (7.1)–(7.2). Here, we just state the result (for the first derivative) and leave the proof to
the interested readers. For any u ∈ Aρ with ρ > 1, let (IN u)(x)be the interpolant of u(x)at
the GGR points {x j }N

j=0. Then we have

max
0≤ j≤N

∣
∣(u − IN u)′(x j )

∣
∣

≤ 2cN M L(Eρ)

πdρ(ρ − 1)


(α + 3/2)


(2α + 3)

Nα+5/2

ρN

{
(1 − ρ−2)α+1/2, α < −1/2,

(1 + ρ−2)α+1/2, α > −1/2; (4.24)

and at the corresponding superconvergence points {y j }N
j=1,we have

max
1≤ j≤N

∣
∣(u − IN u)′(y j )

∣
∣

≤ cN M L(Eρ)

πd2
ρ(ρ − 1)

1

ρN

⎧
⎪⎨

⎪⎩

21/2−α(1 − ρ−2)α+1/2, α < −1/2,

2−2α
√

π


(α + 1)
(1 + ρ−2)α+1/2 Nα+1/2, α > −1/2.

(4.25)

Note that we exclude the Chebyshev case (with α = −1/2), as it can be derived from (4.13)
(see e.g., [13,24]). 
�

5 Numerical Results and Concluding Remarks

We present in this section some numerical examples to illustrate the superconvergence phe-
nomenon by comparing the convergence behavior between the superconvergence points and
the interpolation points. We then conclude the paper with some remarks.

5.1 Numerical Examples

We first consider the function:

u(x) = 1

1 + 25x2 , (5.1)

which has two simple poles at ±i/5 in the complex plane. Hence, it is analytic within the
Bernstein ellipse satisfying (ρ − ρ−1)/2 < 1/5, so we have 1 < ρ < (1 + √

52 + 1)/5 ≈
1.2198.

Let us look at the Legendre–Gauss–Lobatto case. We know from Remark 2.3 that the
superconvergence points for the first derivative are the N Legendre–Gauss points {y j }N

j=1.

Let rN (x) = (u − IN u)(x). In Fig. 4a, we plot the error curve r ′
N (x) and the samples

{r ′
N (x j )}N

j=0 and {r ′
N (y j )}N

j=1 with N = 55. Observe that the interior LGL points are the
extreme points of r ′

N (x), while the magnitude of the errors at the superconvergence points
is significantly smaller. We now numerically verify the claims in Corollary 3.1:

max
1≤ j≤N

|r ′
N (y j )| ∼ max|x |≤1

|rN (x)| ∼ N−2 max
0≤ j≤N

|r ′
N (x j )|.

For this purpose, we eliminate the exponential order ρ−N with ρ = 1.2198, and plot them
with various N in Fig. 4b. The numerical results agree well with what we have claimed. Very
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Fig. 4 Superconvergence of Gauss–Lobatto interpolation. a LGL interpolation error curve. b ρN multiple of
the errors (LGL). c JGL interpolation error curve (α = β = 1). d ρN multiple of the errors (JGL α = β = 1)
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Fig. 5 Superconvergence of GGR interpolation: α = 0 (left) and α = 1 (right)

similar behavior is observed from Fig. 4c–d for the Jacobi–Gauss–Lobatto interpolation with
α = β = 1.
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Next, we consider the interpolation of u(x) = 1
x−2 , which has a simple pole x = 2 on the

x-axis. It is analytic on and within the Bernstein ellipse with 1 < ρ < 2 + √
3. In Fig. 5, we

plot the maximum interpolation error and the error at the superconvergence points for the first
derivative of the Gauss-Radau interpolation. Once again, we observe the same convergence
behavior as claimed in Corollary 3.1.

5.2 Concluding Remarks

In this paper, we studied the superconvergence of Jacobi–Gauss-type spectral interpolation.
Following [24], we identified superconvergence points from the interpolation error remainder
represented by Hermite’s contour integral under analytic assumption. The main contributions
of this paper resided in that (i) for the first time, we had useful insights into the supercon-
vergence of functions with limited regularity, and (ii) we provided a general framework for
exponential convergence and superconvergence analysis, and obtained the error bounds of
the type C(N )ρ−N (with explicit dependence of C(N ) on N ) for general Jacobi–Gauss-type
interpolations.

6 Appendix A: Jacobi Polynomials

The Jacobi polynomials satisfy the derivative relation (see [15, (4.21.7)]):

∂x P(α,β)
N (x) = 1

2
(N + α + β + 1)P(α+1,β+1)

N−1 (x), (6.1)

and there holds (see [15, (4.5.4)])):

P(α,β+1)
N (x) = 2

2N + α + β + 2

(N + β + 1)P(α,β)
N (x) + (N + 1)P(α,β)

N+1 (x)

1 + x
. (6.2)

Another recurrence relation reads (see [15, (4.5.5)–(4.5.6)]):

(1 − x2)∂x P(α,β)
N (x) = AP(α,β)

N−1 (x) + B P(α,β)
N (x) + C P(α,β)

N+1 (x), (6.3)

where

A = 2(N + α)(N + β)(N + α + β + 1)

(2N + α + β)(2N + α + β + 1)
, B = 2(α − β)N (N + α + β + 1)

(2N + α + β)(2N + α + β + 2)
,

C = − 2N (N + 1)(N + α + β + 1)

(2N + α + β + 1)(2N + α + β + 2)
.

7 Appendix B: Proof of Theorem 4.2

We first present some necessary lemmas for its proof.
The following formula (see [3, Lemma 12.4.1]) is of paramount importance.

Lemma 7.1 Let z = (w + w−1)/2. Then

PN (z) =
N∑

k=0

gk gN−kw
N−2k, (7.1)

123

Author's personal copy



J Sci Comput

where

gk = (2k)!
(k!)222k

= 
(k + 1/2)√
π k! , k ≥ 0. (7.2)

In fact, the coefficients {gk} relate to the following Laurent series expansion.

Lemma 7.2 We have

F(w) := (1 − w−2)−1/2(1 + w−1) =
∞∑

k=0

gk

w2k
+

∞∑

k=0

gk

w2k+1 , (7.3)

which converges uniformly for all complex-valued w such that |w| > 1.

Proof Recall the binomial expansion:

(1 − w−2)−1/2 =
∞∑

k=0

gk

w2k
, ∀ |w| > 1. (7.4)

This implies (7.3). 
�
The key idea of estimating m Q is to show that for z ∈ Eρ with |w| = ρ > 1,

∣
∣
∣
∣F(w) − QN+1(z)

gN+1wN+1

∣
∣
∣
∣ → 0 as N → ∞, (7.5)

and more importantly, we care about the rate it decays. For this purpose, let us split the error
term into two parts:

∣
∣
∣
∣F(w) − QN+1(z)

gN+1wN+1

∣
∣
∣
∣ =

∣
∣
∣
∣

( ∞∑

k=0

gk

w2k
−

N+1∑

k=0

gk gN+1−k

gN+1w2k

)

+
( ∞∑

k=0

gk

w2k+1 −
N∑

k=0

gk gN−k

gN+1w2k+1

)∣
∣
∣
∣ (7.6)

≤ Re
N (ρ) + Ro

N (ρ),

where

Re
N (ρ) =

N+1∑

k=0

|qk ||gk |
ρ2k

+
∞∑

k=N+2

|gk |
ρ2k

; Ro
N (ρ) =

N∑

k=0

|qk+1||gk |
ρ2k+1 +

∞∑

k=N+1

|gk |
ρ2k+1 , (7.7)

with

qk := qk(N ) := gN+1−k

gN+1
− 1, 0 ≤ k ≤ N + 1. (7.8)

We deduce from (7.2) and (7.8) the following useful properties of {gk} and {qk}.
Lemma 7.3 (i) For k ≥ 0, gk > 0, and {gk} is strictly decreasing, namely,

1 = g0 > g1 > · · · > gk > gk+1 > · · · . (7.9)

(ii) We have

0 = q0 < q1 < · · · < qN < qN+1. (7.10)

Moreover, (qk + 1)gk < 1, for 1 ≤ k ≤ N, and (qk+1 + 1)gk < 1 for 1 ≤ k ≤ N − 1.

In addition, (qN+1 + 1)gN+1 = 1, and qN+1gN < 1 for N ≥ 2.
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Proof (i) It is clear that by (7.2), g0 = 1 and 0 < gk < 1 for all k ≥ 1. Since

gk+1

gk
= k + 1/2

k + 1
< 1, (7.11)

{gk} is strictly decreasing with respect to k.
(ii) Observe from (7.8) and (i) that q0 = 0 and {qk} is strictly increasing. A direct calculation

leads to that for 1 ≤ k ≤ N − 1,

(qk+1 + 1)gk = gN−k

gN+1
gk =

⎛

⎝
k−2∏

j=0

1 − 1/2
k− j

1 − 1/2
N+1− j

⎞

⎠ (N − k + 2)(N − k + 1)

2(N − k + 3/2)(N − k + 1/2)

≤ 1

2

(
1 + 1/2

N − k + 3/2

)(
1 + 1/2

N − k + 1/2

)
≤ 4

5
< 1,

where we used the fact 1+ 1/2
N−k+3/2 and 1+ 1/2

N−k+1/2 are strictly increasing with respect
to k. Note that if k = 1, the first term in the second identity equals 1.

By (7.9)–(7.10), we have

(qk+1 + 1)gk+1 < (qk+1 + 1)gk; (qk + 1)gk < (qk+1 + 1)gk,

which implies (qk + 1)gk < 1 for 1 ≤ k ≤ N .
Next, by (7.2) and (7.8), we have (qN+1 + 1)gN+1 = 1 and

qN+1gN = gN

gN+1
− gN = 1 + 1

2N + 1
− gN < 1,

since gN = 
(N+1/2)√
π N
(N )

> 1√
π N

> 1
2N+1 for N ≥ 2. This ends the proof. 
�

Lemma 7.4 We have

0 < qk ≤ Dk,N , 1 ≤ k ≤ N − 1, (7.12)

where Dk,N is defined in (4.17).

Proof By (7.2) and (7.8), we obtain from (4.2)–(4.3) that

qk + 1 = gN+1−k

gN+1
= 
(N − k + 3/2)


(N − k + 2)


(N + 2)


(N + 3/2)

≤
√

N + 1

N − k + 1
exp

(
ϒ

1/2,1
N−k+1 + ϒ

1,1/2
N+1

)
.

A direct calculation leads to

ϒ
1/2,1
N−k+1 + ϒ

1,1/2
N+1 = 1

6(2N − 2k + 1)
+

(
1

2(2N + 1)
+ 1

12(N + 1)

)

≤ 1

12(N − k)
+ 1

3N
≤ 5

12(N − k)
, 1 ≤ k ≤ N − 1.

Using the fact
√

1 + x ≤ 1 + x
2 (with x ≥ 0) yields

√
N + 1

N − k + 1
≤ 1 + k

2(N − k + 1)
≤ 1 + k

2(N − k)
.
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Consequently, we obtain

qk + 1 ≤
(

1 + k

2(N − k)

)
exp

( 5

12(N − k)

)
, (7.13)

which gives the desired upper bound. 
�
Proof of Theorem 4.2 By (7.6),

∣
∣QN+1(z)

∣
∣ ≥ gN+1ρ

N+1{|F(w)| − (
Re

N (ρ) + Ro
N (ρ)

)}
. (7.14)

As |w| = ρ, we find

|F(w)| = |1 − w−2|−1/2|1 + w−1| ≥ 1 − ρ−1
√

1 + ρ−2
= ρ − 1

√
1 + ρ2

. (7.15)

By (7.2) and (4.2),

gN+1 ≥ 1√
π N

exp
( − ϒ

2,3/2
N

) ≥ 1√
π N

e− 5
6N . (7.16)

We now work on the upper bound of Re
N (ρ) + Ro

N (ρ) defined in (7.7). Using the properties
in Lemma 7.3 and (7.3)–(7.4), we obtain that for some 1 < K < N ,

Re
N (ρ) =

K∑

k=1

qk gk

ρ2k
+

N+1∑

k=K+1

qk gk

ρ2k
+

∞∑

k=N+2

gk

ρ2k

≤ qK

K∑

k=1

gk

ρ2k
+

N+1∑

k=K+1

1

ρ2k
+

∞∑

k=N+2

1

ρ2k

≤ qK

(
(1 − ρ−2)−1/2 − 1

)
+ 1

ρ2K (ρ2 − 1)
,

and similarly,

Ro
N (ρ) =

K−1∑

k=0

qk+1gk

ρ2k+1 +
N∑

k=K

qk+1gk

ρ2k+1 +
∞∑

k=N+1

gk

ρ2k+1

≤ qK

K−1∑

k=0

gk

ρ2k+1 +
N∑

k=K

1

ρ2k+1 +
∞∑

k=N+1

1

ρ2k+1

≤ qK ρ−1(1 − ρ−2)−1/2 + 1

ρ2K−1(ρ2 − 1)
.

Collecting the terms leads to the upper bound

Re
N (ρ) + Ro

N (ρ) ≤
(√

ρ + 1

ρ − 1
− 1

)
qK + 1

ρ2K (ρ − 1)
. (7.17)

Thus, a combination of (7.14)–(7.17) yields (4.15).
It remains to show the asymptotic estimate (4.18). Observe that for N � 1, if we choose

K = [N ε] with 0 < ε < 1, then

DK ,N = N ε−1

2
+ O(N−1). (7.18)

123

Author's personal copy



J Sci Comput

Therefore,

A(K , N ; ρ) = ρ − 1
√

1 + ρ2
−

(√
ρ + 1

ρ − 1
− 1

)( N ε−1

2
+ O(N−1)

)
− O

(
ρ−(2N ε+1)

)
.

(7.19)

Thus, for N � 1,

A(K , N ; ρ) ≈ ρ − 1
√

1 + ρ2
.

Hence, the conclusion follows from (4.15). 
�
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