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Abstract

Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces are investigated.
Some results on orthogonal projections and interpolations are established. Explicit expressions
describing the dependence of approximation results on the parameters of Jacobi polynomials
are given. These results serve as an important tool in the analysis of numerous quadratures
and numerical methods for differential and integral equations.
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1. Introduction

The Jacobi polynomials J;“’ﬁ) (x) play important roles in mathematical analysis
and its applications, see [1,27,28]. In the early work, one only considered Jacobi
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approximations in uniformly weighted Sobolev spaces. In other words, the weight is
uniform for all derivatives involved in their norms. This fact limits their applications.
For instance, we consider the following equation in cylindrical coordinates,
%ar(ra,v) + rlz@f,v + %0+ =f.

In its weak formulation, the weights for 0,v,0¢v,0.v and v are r, %,r and r,
respectively, see [S]. So we cannot use Jacobi approximations in uniformly weighted
spaces to deal with this problem properly. It is also difficult to use such
approximations for singular differential equations, see [24].

In the past decade, Jacobi approximations developed again because of several
reasons. Firstly, Gegenbauer approximations were successfully used for removing
Gibbs phenomenon, see [12]. Next, the usual Gauss-type interpolations are not
applicable to quadratures involving derivatives of functions at endpoints, and so we
need to study certain Jacobi interpolations, see [10]. Thirdly, in the numerical
analysis of finite element methods, one used some results on Jacobi approximations,
see [2,22,23,26]. In particular, the Legendre and Chebyshev approximations have
been widely used for spectral methods of non-singular differential equations, see
[6,7,11,13]. Recently, some authors applied Jacobi approximations directly to
singular problems and differential equations on unbounded domains and axisym-
metric domains, see [5,14-17,20]. Furthermore, Dubiner [9] investigated an
orthogonal approximation on a triangle in which the base functions are the
products of two Jacobi polynomials, also see [23]. Jacobi approximations were also
used for the numerical analysis of some rational approximations, see [18,19].

As we know, the more precise the results on Jacobi approximations, the more
accurate the error estimates of related numerical algorithms. Canuto and Quarteroni
[8] first studied the Legendre and Chebyshev approximations in Sobolev spaces.
Bernardi and Maday [6] developed symmetric Jacobi approximations (x = f§) in
uniformly weighted Sobolev spaces. However in many practical problems, the
coefficients of derivatives of unknown functions involved in differential equations
degenerate in different ways. Therefore we need to study various orthogonal
projections in non-uniformly Jacobi-weighted Sobolev spaces, in which the weights
for different derivatives appearing in the expressions of norms are different. Babuska
and Guo [3], Guo [16,17], and Guo and Wang [20] developed such approximations.
But the results in [3] are valid only for symmetric Jacobi approximations in the
standard Jacobi-weighted Sobolev spaces in which the weight for derivative of order
k is the product of the weight for function itself and (1 — xz)k. This is not the most
appropriate in some applications. On the other hand, the results of Guo [16,17] and
Guo and Wang [20] do not seem optimal. Furthermore, the existing results are of the
form,

1Qvv = vl <eN 7|

5, 420, (1.1)

where B is a certain Sobolev space, B, is a related Sobolev or Besov space, Qy is an
orthogonal projection or interpolation upon the set of polynomials of degree at most
N. The generic positive constant ¢, does not depend on N and v, but depends on «
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and f implicitly. Such an estimate is useful for many problems. But it is not enough
sometimes. For instance, for the orthogonal approximation on a triangle, we take
the base functions as the products of two Jacobi polynomials, where one of
parameter of the first Jacobi polynomial is just the degree of the second one. In this
case, we have to explore explicit dependence of ¢, on the parameters o and /.

This paper is devoted to Jacobi approximations in non-uniformly Jacobi-weighted
Sobolev spaces. We shall derive approximation results as

1Onv = vl <dn o pl0lp,, (1.2)

where B; and B, are non-uniformly Jacobi-weighted Sobolev spaces, dy, s is an
explicit function of N, o and f3, independent of v. The main advantages of this work
are as follows. Firstly, the results are valid for general Jacobi approximations, and so
could be applied to numerous problems. Next, all estimates are as sharp as possible.
In particular, the space B; in (1.2) is much more reasonable than those in existing
literatures, and seems optimal. This fact simplifies theoretical analysis, and leads to
more precise results on various numerical methods. Finally, the explicit expressions
describing the dependence of [|Qyv — v||5 on o and f are presented, which open a
new goal for applications of Jacobi approximations.

This paper is organized as follows. In the next section, we establish some basic
results on Jacobi approximations. In Section 3, we deal with several orthogonal
approximations in non-uniformly Jacobi-weighted Sobolev spaces, which are related
to numerical solutions of various differential equations. In Section 4, we study
Jacobi—Gauss-type interpolations which are often preferable in the numerical
solutions of differential and integral equations. The final section is for some
concluding remarks.

2. Preliminaries

Let A = {x||x|<1} and y(x) be a certain weight function. Denote by N the set of
all non-negative integers. For any re N, we define the weighted Sobolev space H)(A)

in the usual way, and denote its inner product, semi-norm and norm by (u,v), , |v]

V,X7 rx
and ||v||r‘x, respectively. In particular, Li(/l) = HQ(A), (u, U)Z = (u, U)va and ||v\|/ =
||L7HO$X. For any real number r = [r] + 6,0<6< 1, we define the interpolation space
H(A) = [H/ (A), H]'(4)],_, as in [4]. Moreover, the following Gagliardo—
Nirenberg-type inequality holds (see [4] and (1.10) of [6]),

0 -0 v
||v‘|r,x<‘|U||[l']+]$x||v||[lr],x VUEH/H-H(A)
Furthermore, the space Hj (A) stands for the closure in Hj(A) of the set D(A)

consisting of all infinitely differentiable functions with compact support in 4. When
7(x) = 1, we omit the subscript y in notations as usual.
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The Jacobi polynomials J,(“’ﬁ)(x), [=0,1,2, ..., are the eigenfunctions of Sturm—
Liouville problem

Ou((1 = x)"' (1 + ) opu(x)) + 41 — x)*(1 + x)Pu(x) =0, xe4, (2.1)

with the corresponding eigenvalues i;“'ﬁ) =Ill4+a+p+1),l=0,1,2,... . It is
noted that
(.8) 1 7(B) (,B) Ir(l+a+1)
J —x)=(-1)J J )=——1——. 2.2
P = 0P, TP ) =t 22)
The Jacobi polynomials fulfill the recurrence relation
0P (x) =L+ o+ p+ 1) TP (), 1z1. (2.3)
Let y*P(x) = (1 — x)*(1 + x)’, o, > — 1. We have
/A TP )25 ()P (x) dxe = 776, (2.4)
where ¢;p is the Kronecker function, and
” 2 (I 4o+ D)L+ B+ 1
yo ( )( ) (2.5)

Qo+ p+ DI+ DI(I+o+B+1)

For any veL’,, (4), we have that

0 . ) l A
o) =3 d PP ), = = /A o(x)7 P (x)09) (x) dix.
1=0 i

Let NeN. We denote by Py the set of all algebraic polynomials of degree at most
N. Moreover, Py = {v|vePy,v(—1) =0} and P = {v|vePy,v(+1) = 0}.
We first consider the orthogonal projection Py ,p: Liw) (A) > Py. It is defined by
(PNap0 =0, @) e =0 VpePy. (2.6)
To derive approximation results, we introduce the Jacobi-weighted space
H.p 4(4) ={v|v is measurable and [[v[|, un 4 <0}, reN,

equipped with the following norm and semi-norm,

P 1/2
||UHr.Z(7~/f),A = (Z |6§v|§(w.ﬁ+m> ) |U|r,z("~/f),A = ||a;—0\|x<z+»arf+r>~

k=0

Next, let r = [r] +6>0. Since Hl"]

o 4(4) and H}E’;];ﬁ)l_ ,(A) are separable Hilbert

spaces such that Hi’l;f’ y

we can use complex interpolation as in [4] to define the space H;(x_,;) L(A) =

(A) is continuously imbedded and dense in Hy{fl_,;)’ (A4,
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(L) (4), HYL, ()], Moreover,

2P 4

1-6 1+1
||UH),./1/3 A\”UH +17%(°“/‘)-A||U||[f]-,l(“‘ﬁ)-,«4 VUEHy[f(L/f),A(A)' (2.7)
Theorem 2.1. For any veH',,, ,(A),reN and 0<p<r,

—r
||PN%5U — U”M-,X(“‘m-A <c¢(N(N+oa+ ﬁ)) 2 |U|, 2B 4 (2.8)
Hereafter ¢ denotes a generic positive constant independent of any function, N, o and f5.

Proof. We have from (2.3) that for ke N,

K (Pyapo(x) —v(x) = — > ik (x)

== > it I ),

where

I'l+a+p+k+1)
kMo +p+1)

Claphk =

Thus by (2.4),

o0

k 2 2 (atk,p+k
105 (Pyaapo = 0) ks = D (G720, (2.9)
I=N+1
Similarly,
r B
[ Z &3 p (7P 2P, (2.10)

I=r+1

Using (2.5) and the Stirling formula

[(s+1) = Vamss'e (1 + O(s°3)), 2.11)

we deduce that

o+k,f+k
ik ' rg-r+nr Utat Bkl vy oy g
Gy T Tk A DI+ at far 1)

The above with (2.9) and (2.10) leads to that for all k<r,

PN a0 = Vg yow 4 < (N(N‘f‘“‘f'ﬁ)) 2 |U| B A
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This implies the desired result for peN. For u = [u] + 6,0<6<1, we use (2.7) to
verify that
0
1P p0 = 0]y 4 < || Pyapt — UII[,¢]+1 7(1 0l PN g0 = o]l S 4

C(N(N+O(+ﬁ)) z |v\ ) 4 O

We may consider Jacobi approximations for functions belonging to Jacobi-
weighted Besov spaces, see [3,25], and follow the same line as in [3] to derive the
corresponding result. This generalizes Theorem 2.3 of [3], since u and r are real
numbers and o could be different from f. But in this case, the norm at the right side
of (2.8) becomes the norm of v, in a Jacobi-weighted Besov space. However, in
duality arguments used in Section 3, we need to use the result (2.8) in which only the
semi-norm |v], . 4 appears.

An interesting application of Theorem 2.1 is stated below, which will be used in
the next section. For —1<a, f<1, let

Unap(A) = {o]o=1"P¢, pePy1}.
The orthogonal projection 7 y 4 L%%,m (A)>Un o p(A) is defined by
(TNapv =V, @) yapy =0 VPEUy o p(A). (2.12)

In order to estimate ||7 y v — v|| -p, We need several preparations. Firstly, we
have that for any ueHXIH‘,m (A) and —1<a, <1,

l
max [v(x)| <3552l nn- (2.13)
xeA

Indeed, H), ,(4)=C(A). Let [v(x,)| = min, 7 [v(x)|. Then

1
()] = o) < (5P 210l e
Moreover,
o(x) < [ 100 dx <2 (S Rl
2 /4 20 A

which leads to (2.13).
Next, let A; = (0,1), A, = (—1,0] and

1 11 1
&, =max(2%,1), {,p=max(&(b+1)72,&(a+1)72), ab>—1.

By the Hardy inequality, for any measurable function y(x), a<b and g<1,

/ab (ﬁ/xbwy) dy)2<b - x>qu<%,/ab V@G -2d(214)
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Let UGH&Z(M) (A). Taking a=0,b=1 and ¢ = o<1 in (2.14), we obtain that for
B<2,

/vz(x)x(“*z’ﬁfz)(x) dx</ P(x)(1 — x)* % dx
/1] AI
<L [ @) ) .

A similar result holds on A,. Therefore, for any veH(;Jw) (A) and —1<a, <1,

0]l S [0l 20 < 2Ly —plv] Jam- (2.15)

Lemma 2.1. If —1<a, <1, then for any UGH;(,%,/;) (A),

max(a,f,0)—1
T Nnapo = vllnp Scup(N(N +a+B)) 2 |[ofly youn

where q, 5 = maX(qi{;;, CI?/);)» and

Ca )k 1
6} = QOSP4 1)@ + B2 + 1),
% = Gy o+ 1), I (B+1 2.16
€= (02 max(" a4 1), I (B + 1), (2.16)

If, in addition, ve H ., ,(A), then

1
|7 N o pv — v ‘Z(—y.—/f) SCQSI);(N(N + o+ ﬁ))_2|U|1,Z(4,7/;). (2.17)

Proof. Let
v(x) = So()(T+x) +5v(-D)(1 —x), “(x) =o(x) —v*(x), xed (2.18)

Clearly o’€ H, . (A). Moreover,

Bk
|UO|17X<—1,—/0 < |U|17X(*x.—li) +%(V§) " m)z/A |0xv(x)] dx
o —o,— 1
< GO 2+ Dol e (2.19)
Further, let

oy (%) = 1P () P10 (00 ()2 747 ().
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Obviously v}, €Uy 4 5(A). By Theorem 2.1 with r =1 and u = 0, (2.15) and (2.19),

[0 = 0l = N1Pr-1ap (057 P) = 5P

5

1
< C(N(N + o+ ﬂ))izlvox(_a’_ﬁ) |1,X<a+|,/;+1)

1
(101 e + 208 + B2210° )

Bo|—

<c(N(N+oa+p))
< (AL p (02 + B2+ NN + o+ B)) 200

1
< cg JININ + o+ B)) [l oan- (2.20)

Next, we consider the upper-bound of [[7 y 50" — v*[| -s-p - It suffices to estimate
T N wpw — Wl o, w=1,x. Due to (2.12), it can be checked that

Twvapl = 1= =32 dif™ P (I ()
I=N

Multiplying the above by J “h) (x), I=N and integrating the result, we obtain
di= PO [0 a

According to (2.7) of [20],
J AP0 dy =D 1) = I 1) + B (1) = 50 (1)

+ U = 5P (1),

where
. 2+t ) 5 2z~ )
QI+oa+p+1)2+a++2) Ql+a+B)RI+a+p+2)
¢ = =2(I+a)(I + B) '
(I+a+p) 2 +a+p)2+o+p+1)
By (2.11),

at+p+1 “ B l+%
P (i-ret) () ()
2040+ p+1 I+o+p I+oa+p I+o+p

Since —1<a, f<1, we have y P <11, Furthermore (see [20, p. 249])
200+ )L (I + o)p(l)
I+ DI +o+ BT (e+1) [Ty +a+p+k)

AP + ) =

where
p()=(+a+ D) +a+p)(l+a+B+1)2+o+p)
=1+ D)+ B2+ o+ B+2).
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Clearly, for —1<a, f<1,|p(I)|<cl®. Thus by using (2.2) and (2.11), we deduce that

(o, 8) (o, ) —1 =2 l+°‘_ /+2
A=) () + G )< er ™ ot D0+ o= )

<l Yo+ )P

Similarly,

AT D) + G (D s e (B 1P
Moreover,

Bl<e?, PP < o+ DE, P (= <er (B4 DI
The above statements lead to

di<cmax(I' o+ 1), I7H (B + 1))maH-1
Thus

1
0 2

T Wapl = Ul ywn = (Z d?“/;“’ﬁ)>
I=N

1

<cmax(I Ya+ 1), I+ 1)) (ZIZmaxaﬁ )

< cmax(I o+ 1), 07 (B+1))

max(o,f)—1

x (N(N+a+p) 2 . (2.21)

We have the same upper-bound for |[|7ypx — x||,xp. So it follows from
projection theorem and (2.18) that

NT N apv = 0l yon < NT g’ — O yan + 1T wapt™ = 0[] cnn)
< oy = llceem + 30D+ [o(=DDUIT wapl = Ul em
+ T W px = x| acn)- (2.22)

Finally we obtain the desired result by substituting (2.13), (2.20) and (2.21) into
(2.22). If ueH .p(A), then the second result follows from (2.20) immedi-
ately. O

The next lemma will play an important role in the analysis of Jacobi—-Gauss-type
interpolations.

Lemma 2.2. There exists a mapping PN - (H! oy (A) > Pn such that IA’}\,‘MU(—I) =
v(—1), and for any veHyw) (A,

(0x(Py 40 — 1),0x0) irpoy =0 VpePy. (2.23)
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Moreover, for any UEHW) (A),u,reN,r=1 and 0< u<r,

—r

1Py 0 = tll e a4 S (N (N + o+ e 0], e a5 (2.24)

where

Gup = /2160,y max((z+ 1, (B + 1)) + 1),

Proof. Let Py, be the orthogonal projection as in (2.6), and
X
Plapt() = [ Pyoraepd o) dy o). (225)
-1

Clearly, (2.23) holds and Ig}vya_ﬁv(—l) =ov(—1). For any integer u>1, we have from
Theorem 2.1 that

|af»(ﬁzlv.a,ﬁv— )]y 4 =105 NPyt t1,5010x0 — O0) |0

u
C(N(N + o+ ﬁ)) 2 |U|r1X(7./f)_’A. (226)

1+[L St

We now prove (2.24) with ¢ =0 by an duality argument. Let geLiw) (A4) and

consider an auxiliary problem. It is to find weH;M’ 4(4) such that

(03w, 0x2) iy = (9,2) ) VzeH, Lo 4 (A)- (2.27)
Let w(x) vary in D(A). Then in sense of distributions,

—0u(@uw(x)7* D () = g (x) P (). (2.28)
Furthermore,

—0Pw(x) = —((a+ 4 2)x+ (@ — )1 —x*) 'ow(x) + (1 — x2) ' g(x).
Thus
||aiW||i<«+2-/f+2> <8max((a+ 1), (B + 1)7)][0.w] |~2<«</f> +2| \g||i<«./r>- (2.29)

Since o+ 1>0 and B+ 1>0, we have that d,w(x)y**"#*1)(x)-0 as |x|>1. By
(2.28) and (2.14) with y(x) = g(x)*F (x) and ¢ = —a<1, we derive that

/A (B (x)) 2P (x) dix
2

= /01 A (x) (/xl gD (y )dy> dx

1 1 2
<[ (1—x)™2 @H()) d ) d
< /0 (1-x) (/ g P (y)dy | dx
4
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A similar result is valid on A. Therefore |[32w|| o210 SOyl [g]] - Now, by taking
z= ﬁ}v,az,ﬂv —vin (2.27), we use (2.23) and (2.26) to obtain that

|(ﬁ}v.u,/ﬂ’ -0 g)x(x_/gl = |(6X(ﬁ]1\7,1,[)’v —0), Py—1,041,+10xW — axW)X<x+1-/f—n|

< |ox (Pl 50 = 0)]

st || PN=101, 10w — Oxw|

g HLBED
_r
< c(N(N+oa+p)) 2|v|r7x<“v/f>,A||6§W||X<a+z_,;+2)
r
< g (N(N + o+ B))2[0l, e 4119l cn-
Consequently,
~ |(ﬁ]l\/ U — U’g)"(a‘)/})|
||P]l\/'o<,ﬂv - U| X(x'ﬂ) = Sup ,17|ﬂ| || Pa
gEL.z(x_/g) (A) g X(ui)
z
g#0
_r
< cop(N(N + o0+ B)) 20], ey (2.30)

Finally, we obtain the desired result with 0<u<1 by using (2.7), (2.26) and (2.30).
The desired result for >1 comes from (2.7) and (2.26) directly. O

We now establish two embedding inequalities. For simplicity, we set

_ \/5 Ve, _ — Y ’ b '
Ka,b—max(a+1,b+l, Moo =1, Aqp=4/2 a+b) \a+b) "’

Lemma 2.3. If

a<y+2, B<o+2, (2.31)

then for any veH;(x,ﬂ) (A) with v(xg) =0, xp€eA,

|[0[]00) < Dapyololy um s (2.32)

where

1
max (27, (1 — x0)") max(2°, (1 + x0)°) | \°
@+ 121 =x)™ (p+ 1) (1+x0)f )

Dupyo =280 5126-p+2 (max{

. 1
In particular, D, g, s = '7517;;;,-,5 = 2Ky 5, _sq25-p+2 for xo = 0.
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Proof. For any xe[xo, 1),

P -9+ 6+ ) [ 2000 -0 @

RY]

=2 /x v(»)8,0(y)(1 — y)" "' dy

1

</ 2oy -war) (| (R dy>%.

1 1
/vz(x)x( )(x) dx < max(2°, (1 + xo)° /v )(1 —x)" dx

X0

Thus

4max(2°, (1 + x0)°) ,
< [ @atopa - ax
(7+1)°

4max(2?, (1 : 2
< de( . ) ( + X(()Slz) / (axv(x))ZX(,-klé-%Z) (X) dx.
(r+ 17(1 + xo) X0
A similar result is valid on the interval (—1, x]. Moreover,
1 ifa=b=0,

max(1 — x)%(1 + x)’ = a b
max(l —x)(1 +x) 2atr (N (PN i 0 b0, @ + b0,
a+b a+b

Therefore,
|v] 172042 S Ay o5 pin |v] 1,8

Finally, a combination of previous results leads to the desired result. [

Lemma 2.4. If

a<y+2, p<0, 620 (2.33)
or

a<y+1, f<o+2, O<a<l, f<l1, (2.34)
then for any ve H ., (A) with v(~1) =0,

101100 <5 o011 0 (2.35)
where

7+6—a—p

T P+ 1)7! for (2.33),
”iz/)fo = V2A, 15 pra(max(d(1 — o)~ E

Jrafly(()*%ﬁﬁ)@(l _ ﬁ)ilfa—l))% for (2.34).
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Proof. We have

X X

R — x4+ 1) /

-1 1

If (2.33) holds, then

: 4 |
/ v (x)(1 — x)" dx < —z/(axv(x))2(1 — )2
A (y+1)*Ja
o [ @ty - v7d
SOE1e (X 1— x o .
(7 +1)"Ja
and so
/ ‘ yr+o—otd 2
s 20/ v (x)(1 = x) dx<7z/(@xv(x)) (1 —x)"dx
| g (+1)7 Ja
Qr+o—a—prd
) W'Uh,z(w).

Next, we consider the case with (2.34). By (2.14) with ¢ = a <1,

[ 66 =eP0 -0 ar< L [ @) ) a
Ay 1 A

—

Let |v(x*)] = max,; |v(x)|. It can be checked that for «, f<1,

x* o 1
o(1)]| < Jo(x")| < / 1 18x0(x)] dx< (25 )2l

Furthermore, for o>0,

/(v(x)—v(l))z(l—x)“_l dx>/ 21— ) dx

A

13

PO)(1—y) dy =2 / 008,00 (1 — 3 dy.

(2.36)

(2.37)

2(1) = 2|v v(x* —x)* Vdx
+/AI(U(1) 2o fo(x")N(1 = x)" d

_ /Alvz(x)(l X dx

+ ~(lo* ()] = 2Jo(D)] fo(x")])-

R |~

(2.38)
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Therefore we use (2.36)—(2.38) to obtain that for f<2,
/ Z(X)alﬂZ()dx

/v l—x“ldx
A

//1 )P(1=x)" a4t @l ()] = [* (1))
2/ N1 = x)* 72 dx—l—;vz(x*)
(—e,—p)
<2<%+V0 . >|U|fvx(%,f>, (2.39)

On the other hand, using (2.14) with ¢ = <1 yields that
4
/ 21+ 0P 2 des—— [ (@u0(x)2(1 +x)F dx
A3 l - ﬁ Ay

and so for a>0,

/ V2 (x) % (x) dx
Az
<fa—1/ 2 (x)(1 4 x)"2 dx

Ay

460{ 1
1 - B Az

<@ (@x0(x))%*P) (x) dx. (2.40)
1 - ﬂ /12

Finally, a combination of (2.39) and (2.40) leads to

(8x0(x))*(1 + x) dx

oy SWps) 10l e O

2 2
||v] |~,§vﬁ> \A, a+1,0—f+1 ||U|

In the end of this section, we present two inverse inequalities.

Lemma 2.5. For any ¢ePy, reNand o, f>r — 1,
0@ e S (N(N + o+ ﬁ)) [ arsn - (2.41)

Proof. Letr=1,a,f>0and ¢\ "#~V

JE0 (). By (2.3),

be the Jacobi-coefficients of ¢(x) in terms of

1

N—
10sl e = 5 Z +o+ B (B Y (2.42)
1=0
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Using (2.5) and I'(x + 1) = xI'(x), we deduce that
1 2, (06) (6= 1p=1)y 1 _
g onax (Tt By 0" 7) 7 = NN +at+f-1).

Therefore, we use (2.42) to reach that

1
[8x @l < (N (N + o+ B))2[| ] jo-r-1) -

Repeating the above procedure leads to the desired result. [

Lemma 2.6. If one of the following conditions holds:

() a=pz b () a2prl f20. i) S<a<pil  (243)
then for any ¢ €Py,
105 o < (= B+ DN(N + o+ B)[[D]] - (2.44)

Proof. Let ¢35“’ﬁ ) be the Jacobi-coefficients of ¢(x) in terms of J,(‘:"’/j )(x). For
simplicity, we introduce the following notations:

ril+p+2) QRk+oa+p+2)I'(k+a+1)

El:m7 G = r'k+p+2) )
Qe DI +at 1) &
= F(j+oa+1) ' l%'.,l*kz:; (=1)" Gy (2.45)

It is shown on p. 378 of [17] that

N-1

:% Z (—1) JHJ xﬁ (Z EﬂP,zd’; ) (2.46)

Thus by (2.4),

N-1
[0 ¢|| o S 7 2 Z (Z Ez Vi V/+1 ) (Z V/+1 +1 )
I=j

“7ﬁ~N‘ |¢| X(

%p) (247)
where

(e.) 2
Moreover, using (2.5) and (2.45) yields that

ot Z B Q p et BA DI et f+ DI+ B+ 1)
Y FG+ DI +a+1)

(2.48)
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and

(o >),1_(2[+oc+[3+3)1"(l—|—2)1“(1+ﬁ+2)

E? = .
s 2B (I+ o4 2)T (I 4+ o+ f 4 2)

(2.49)

If o = B, then Gy = 2 and so [;;|<2. Thus by (2.5), (2.45) and (2.47),

1211,

N .
I(j+2o+1)
W< (D Q2+ 1) =
2 </0 J rG+1

N-1
X Z (I+1) 2l+2a+3)r(“rl))>|¢|§m). (2.50)
I=j

I'(l+20+2

If, in addition, o> —, then I'(/ + 1)I" "' (I + 20 + 2) decreases as [ increases. Hence

| max I+ 10T +2042)" =T+ D) +20+2)"

Using the above, we obtain from (2.50) that

2j+2u+ 1%
2 < (S A2
[l ;HMH Z (1+ D21+ 20+ 3) |19l

)((M)
<8N(N + a)2||¢>l|x<m>. (2.51)

This implies (2.44) with o = > — 1.
Next, we consider the case of «>f + 1 and >0. Let

A= Qk+o+p+3)(k+a+1)(T(k+p+3)"
It can be checked that Gy — Gy = (o — B)Ax and
A —Ar= (0= =Dk +a+p+dHlk+a+ )(T(k+p+4)". (2.52)

Thus for a=f+ 1,

N ki A< )= ))A; (2.53)
=
Let
=TI+ D)+ oa+ )T+ B+ DI +oa+f+1))7"
Then (2.49) with (2.53) leads to that
BN G5 T < (= BP0 = ) B AR )
<clo— P22l 4 o4 4+ 3T (2.54)
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Clearly, T;>=T;;; for $=0. Thus using (2.48) and (2.54) gives that

N-1
AM, N < c(a— B2 IN(N + o+ B+1) HY DT,
j=0

N-
<cla— P NN +a+p+1) (j+oat+p+1)

=0
<cla— B’ N* (N +a+ ). (2.55)

A combination of (2.47) and (2.55) leads to (2.44) with >+ 1 and >0.
Finally, we prove (2.44) with {<a<f + 1. We have from (2.52) that

~.

/
W1 <o — B Z A <o — B|(I —j)A4;. (2.56)

k=i

By (2.48),

a1 ; ; 2
2 wh) 2 2P ta+ pH1)(2j +a+ B +3)
I—]j/. A =

S, <2t Ps (2.57)
o G+B+D)(j+B+2) ! !

where
Sj=T(j+oa+ DI(j+atp+ )T+ DI +p+2)"
It can checked that S;,; > S; for oc)%. Therefore, by (2.49) and (2.57),

/
AM,pn = Z AURD 1(2 H]‘z‘/’fyﬂ/('a’ﬂ))

=0

< C( ﬂ) 2x+/)’+1 Z 13E2 ))[+1 ) 1S1<c(:x—ﬁ)2N4.

This implies the desired result. [

By Theorem 2.2 of [17], for any ¢ePy,reN and o, f> —1,
1051 | e < (o, B)N?[| ]| o) Where c(a, ) is a constant depending only on o and .

3. Orthogonal projections in non-uniformly Jacobi-weighted Sobolev spaces

In many practical problems, the coefficients of terms involving derivatives of
different orders degenerate in different ways, such as singular differential equations,
differential equations in unbounded domains and axisymmetric domains. In these
cases, the exact solutions are not in the usual Sobolev spaces, but in non-uniformly
Jacobi-weighted Sobolev spaces. In this section, we consider Jacobi approximations
in such spaces.
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Let o,f,7,0> — 1. We introduce the space Hf_ﬁm(/l),og,ugl. For u=
0, HY ., 5(A) = L2, (A). For pu =1,
H;M&( ) = {v|v is measurable and ||v||1_aﬁ%5< o0}

equipped with the norm

1
101111555 = (1017 o + [l0150)2:
For 0<pu<1, the space H" e 5( ) is defined by complex interpolation as in [4]. In
other words, Hj ;. ;(A)=[H); ; (A),L?(}_&) (A)],_,- Tts norm is denoted by
|[0]0.5..6- Moreover for any veHaﬂ (4,

We also define the spaces
oH.y 5(A) = {v|veH! ;. ;(4) and v(~1) =0},
H(;,a,ﬂ,v,é(/l) = {v| UEH;,ﬁ%&(A) and v(—1) = v(1) = 0}.
Now, let
Ao 3.6 (U ) = (Ox, Ox0) ) + (U, V) ) Vit veH! wps(A)-

1
Ol a0 SIOIT 261101 (3.1)

The orthogonal projection P}V,a,ﬁ-y,é :H;‘ﬂm(/l) — Py is defined by
a“’/my’a(P]lv_’“’ﬂ,%éU —0,0) =0 VoePy.

For description of approximation results, we introduce the space H;W,)_’*(/l), r=1,

with the following weighted norm and semi-norm,
1

r—1 2
[Vl e o = (Z ||a§+lv||i(«+k-ﬂ+k>> Pl | (L
k=0

yltr=1pr=1) -

Theorem 3.1. If (2.31) holds, then for any ve H) ﬁ/(,(/l)r\Hf(z‘,f) (A), reN and r=1,

1
1PN gy = Ol apro <l s+ DN + o+ B T 1ol e (32)
If, in addition,
a<y+1, p<o+1, (3.3)

then for 0<u<1,
||PNacﬂ/5U U||,uotﬂ}5\cco![} a(N(N+0H‘/3)) 7 |U|r47/f>* (3.4)

where Ca;; 6 (ni{}h s+ D" (C;:g,y_’é)l_“ and

Cof 5 =200, 5+ 17 (A2, 02 + B + A2 15 p)

o=
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Proof. Let

$(x) = / " Pro1agBy0(y) dy + &,

1

where ¢ is chosen in such a way that v(0) = ¢(0). By projection theorem, Theorem
2.1 and Lemma 2.3,

||PNA[3,/()U U1 app0 < o —vlly, x,/fyé\(naﬂ} s T Do — vl en
= (045 + DIIPN-10,050 — 80| un

ﬂ
)5+ DINWN +a+B)) 2 [o], o .- (3.5)

We next consider the case with (3.3). Let QEL;«,«» (A) and consider the auxiliary
problem

Ay pys(W,2) = (g,z)x(,,&) VZGH;’Mﬁ(A). (3.6)

Taking z = w in (3.6), we get that ||w][, , ;. 5<]|g]|
in sense of distributions,

—0(@w ()" (x)) = (g(x) — w(x))27 (). (3.7)

It can be verified as in the proof of Theorem 2.5 of [17] that d,w(x)y*#(x) -0 as
|x| > 1. Moreover by (3.7),

—0w(x) = — (e + B)x + (&= B))(1 = x*) ' 0uw(x)
+ (g(x) = w(2)2 "0 (). (3-8)

It is not difficult to show that

). Let w(x) vary in D(A). Then

X(}‘-'5

1
103w (1 = ¥%)2[[Jun <D1 + Do, (3.9)

where D; = Dy(A,) + D;(A4;) and

Di(4;) :8(a2+[32)/ @uw(x) 2D (x) dx, j=1,2,
A

j

Dy, =2

/ (9(x) — w(x) 2@ #1250 (x) iy,

Obviously, (3.3) implies that

2 2 2 2
D2<2A}'7oc+l,57ﬁ+l||g - W||X(7~0’) SAAL s ﬁ+1||g||l<-,uo'>-
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Thus it remains to estimate D, (A
D;(Ay)

1 2
=8 ) (-9 1 ( / (g(y)—w(y))x“fﬁ)(y)dy) dx

AR s ?
<864 8) [ (107 (725 [ 60 - w00 ) e
1 X
<8EE )0+ [ () =) )
We can estimate D;(A;) similarly. Therefore we obtain from (3.9) that
1
133w(1 —x2)2||§(1,,;) <4(4C§ («® + B) +

Furthermore, using (3.5) and (3.9) yields that

||PN1/51, oW = Wlhapys

;). By (3.3), (3.7) and (2.14) with g = —,

2
A airs-proll9llea- (3.10)

1 1
<c(n}, 5+ DIVIN + o+ B)2][02w(1 — 222 | s

<cn), s + DAL 02 + 1)

A e PNV + 2+ B)) gl G
Now, taking z = P]l\/'ozﬁ sv—vin (3.6), we use (3.5) and (3.11) to verify that
|(P11V.a,/3,y,éu —0,9),00| = |t p.y6 (P Bs0 = 0, P]lV,x,[j,y,éw —w)]
Ccig s(N (N+O(JrB))7%||g|‘z(w)|U|,,7X(,/;>
Consequently,
1PN 50 = tll o S €Colg s(N(N + o4 f 4 1)) 210, oo (3.12)

Finally the result for 0<u<1 follows from (3.1), (3.5) and (3.12). O

In some cases, we have to study the orthogonal projection (P} s
OH [i/b( )—oPy, defined by,

aa,/}a"/'75(0P]lV,o¢,/},y,5U -0 ¢) =0 VoeoPy.

Theorem 3.2. If (2.33) or (2.34) holds, then for any ve H p6(A) mH;(,_ﬁ)‘*(A), reN
and r=1,

1P g0 — tll 1 <1 5+ NN 400 B)Y T,

(3.13)
If, in addition, (3.3) holds, then for 0<u<1,

10PN 50 = Ol <CCol, 5(N(N+0<+ﬁ)) z Ivl,yw (3.14)
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where Cig 6= (nit;w + 1)* (Ci’g,y_a)lf" and

ol=

2,0 2
szﬁ/é 72(7’2(,/)3,}’,5 ) (452 ((X +,B) v o+1,0— /3+1)

Proof. Let
P(x) = / Pucrage(y) .

By projection theorem, Lemma 2.4 and Theorem 2.1,

2
||0P]1V‘x,ﬁ,v‘5v - UHI,&,[},«/,& < ||¢ - Ulll,oc.[?.",',é < (ngf,[)fgy,é + ])|¢ - U|1,X<1~/f)

= (17),5 + DIIPy—14,5050 — O],

e
<%, 5+ DININ +a+ B) 2 Jol, jon. (3.15)
Now, let (3.3) hold and geLim (A). We consider the auxiliary problem
ypyo(w,2) = (9,2) 50 Vz€oHyp, 5(A). (3.16)

Taking z = w in (3.16), we get that [|w|[; , 5. ;<cl|g]|,00)- It can be shown that (3.7)

still holds and d,w(x)y(*# (x) -0 as x— — 1. Moreover (3.8) and (3.9) are valid also.
We can estimate D; and D; in (3.9) as in the proof of Theorem 3.1. Finally, a duality
argument and (3.1) lead to the desired result. [

There are several Hé‘w’v_’(s(A)-orthogonal projections corresponding to various

practical problems. The orthogonal projection P}\’,OM_}, 5t Héﬂx’ﬁ% 5(A4) —>P(,)V is defined
by,

a“aﬁ;“]ﬁ(P}Votﬂ} oV — ¢) =0 V¢€P0

Theorem 3.3. Let y<oa<y+1, 0<f<d+1 and y,6<1. If for reN, r=2,
UEH&(X?/}W(A) and axveH;@% (A), then

1,0 |
1PN st = Vs S€Cop s (NN +a+ B)) 2 [0, 1) 0 (3.17)

where

- ’ —7,=0 i 7,0+2 ,0 1
Co = OO (A + 365G + 0 +2650)).

Proof. Let
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Clearly (;SEP(])V. Since y <o and < f, we have from projection theorem that

||PN1[}}50 U||1,0:,ﬂ,",',(5

< ||¢ - U||l,1,ﬁ;y.5
(2,8)
<IIPY -1 000 — D0l +3 (3 D)1 )+ 1ld = vl 00
1 *
<Aa*"y‘-ﬁﬂS'|P}V71.a,ﬁ,y,5axu - axUHZ(m + % (V(()a’m)2|¢ (1)| + ||¢ - U||Z(:=,a'>- (3~18)

Next, thanks to y,0<1,

D= ‘A(Pk_l,a,ﬂ,y,éaxv(x) — 0yv(x)) dx

o

L _5) L
< (V(() a a))2||P}v71_a,ﬁ,y,5axU = 0x0|]0)- (3.19)

Moreover, we use the above result to verify that

—y—8) L 5+2)
16— vll oo < GE1STNIPY g sds — Ostll 0 +3 (082267 (1)
"75 2 —y— 7y ,5 l
<AOE= T+ 65T
X ||P}v—1,a:/5,~,,5ax” = 0uv]] 60 - (3.20)

Substituting (3.19) and (3.20) into (3.18) and using Theorem 3.1, we obtain
3.17). O

We now turn to another orthogonal projection. Let
dy,p(u,v) = (Oyu, axv)xu,/f) .

The orthogonal projection ﬁ}voa s H U on (A)—>PY is defined by

0/1/3

Gy p(Py, g0 —0,0) =0 VePy). (3.21)

Theorem 3.4. If —1 <o, f<1, then for any veH ,,;)(A)K\H;m_,;)’*(/l),reN andr>=1,

~ 1—r
1Py, 50 = vlly o <CCog(N(N + o+ B)) 2 [0l e (3.22)
where
Coh = Ly + DEGEP5 D) 4 1),

If, in addition, —1 <o, <0 or 0<a, B<1, then for 0<u<1,

—r

”PN“I? ||u¢x<“~ﬁ)<663:g( (NJFO‘JFﬁ)) 2 |U|,;,<a/f>*, (3.23)
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where 6‘3;; = (E;;;)ﬂ(éjg)l‘” and

1 i
30 %ﬁacﬁrﬁ+1x%wwmy< 17 for —1<a, <0,
—B)y3

R B N ) 0 |
w2 o Vo +) Jor 0<o, f<1.

Proof. Let

wm:/fmuw@mmm ) = () — 1" (1)(1 + ).

1

Clearly ¢ eP?V. By projection theorem and an argument as in derivation of (3.19), we
have that

o +LGEP (1)

PN |
< G594+ 1) Py-1,0p0x0 — 00l o (3.24)

Py ap¥ = Ve < [0 = @ s <[ PN-14,0x0 — Ox)

The above with (2.15) and Theorem 2.1 leads to (3.22).
We now turn to prove (3.23) with u = 0. Let g eLiw) (A) and consider an auxiliary

problem. It is to seek we H| n (A) such that

dyp(W,2) = (9,2) o vZeHgﬂl(%,ﬂ (A). (3.25)
In sense of distributions,

=0 (2P (x)0uw(x)) = g(x) 2P (x). (3:26)

Let u(x) = P (x)0,w(x). We take z=w in (3.25). Due to (2.15), we assert that
el ,iam = Wy yem <285 pllgll n - Moreover, by taking the Li(,uv,ﬁ) -norms of both
sides of (3.26), we obtain that

|”|1,X<—«,—/r> = ||Q(X)X(“’ﬂ> (X)||XH,7/;> = l|g| 2

Next, let 7y, p be the same as in (2.12), and

- (3.27)

1
uy(x) = Tapu(x) =517 (x) / Ty ap(x)7 P (x) dx, (3.28)
A

W@:[Umw%%m@

1

Clearly uyely,p(A) and wyePy. Since weH| .,(A) and u(x)y =P (x) =

O0,w(x), we have

/ T Ny pu(x —%=p) (x)dx = / (T N pu(x) — u(x))}g(_“’_m (x) dx.
A
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For simplicity, we denote the right side of the above formula by 5. If —1<a, $<0,
then by (2.15), (3.27), (3.28) and Lemma 2.1,

[w— WN‘LX(%I?) = ||lu— HNHX(—x.—/f) <7 o pu — u||l(,1‘,ﬁ) +1 ( 7[?)) |
<( (V(()“’m)’éﬂ’fﬂ))% + DT napt = u] jon
< cqup3 576" ﬂ))z + DNV(N +o+ ﬂ))7%||”||1ﬁx<wﬁ)
<08 0 DGO )
-

X (N(N +a+ ) 2llgll yun- (3.29)

If 0<a,f<1, then u(x) = y*# (x)0,w(x)—>0 as |x|—>1. So we can use (2.17) to
estimate ||7 yqptt — || (.. By the same procedure as in derivation of (3.29), we

assert that
_pl 1
w = wwlen <cgl 3G O8I+ DNV + o+ ) 2lgll o (3.30)

Taking z = P, ;v — vin (3.25), and using (3.21), (3.24), (3.29) and (3.30), we deduce
that

1,0
|(PN1/; -, ) x/f>|*|aa/3(PNaﬂ —v,w—wy)|

< CCHYNN + o+ B) 2lgll gun o] .
Consequently,
||PN3<ISU Ul|x(“/f)<CdC%ﬁ< (N+a+ﬁ))7§|vlr,l(%ﬁ),’*' (331)

Finally, we obtain the desired result for 0<u<1 by space interpolation. [J

When we apply Jacobi approximations to non-singular problems, we should use
another orthogonal projection. To do this, let

a“ﬁ(u) U) = (axuv a‘C(XW’ﬂ)U))
Lemma 3.1. If —1 <o, <1, then for any u, veH&yw> (A),

(11, 0)| < Maglul o 0] o, Bap(v,0) = Liflol - (3.32)
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where My =4(_, 5+ 1 and

1 for 0<a, B<1,

\/5(16§§Aﬁ(062+ﬁ2)+1)% for —1<a, <0,
fr VI(62L 4 12 for —1<a<0<p<I,

ﬁ(16ﬁ2(‘lmﬁ+lﬁ for —1<p<0<a<l.

Proof. Since —1<a, f<1, we have from (2.15) that
| (10, )| < | (D1t D10) ey + (B, 0,7 P

0]

< \u|1_x<«.ﬁ> U|1,%<x.ﬁ> + 2|M|1,Z<x.ﬁ) (@25-2) <Ma,/f|u|1,z(1.ﬁ> U|1_x<u.ﬁ>~

We now prove the second result of (3.32). A direct calculation gives that

1
_ 2
ay,p(v,v) = |U|1,Z(v-/f) +§(”2, Wa,ﬁ)zu—z./f—zn

Wip(x) = (o4 B)(1 — = B)x* +2(a = B)(1 — ot = B)x + o+ B — (o — B)°.
It can be checked that W, g(x) >0, provided that
@+ )+ —1)=0, W,p(—1)=—4p> +4p>0,
W,p(1) = —40* +40>0 (3.33)
or
(04 B)(a+p—1)<0,
4= P+ B— 17+ 40+ )+ p—1)(a+p— (= p))<0.  (3.34)

If 0<a, f<1, then both (3.33) and (3.34) are valid. This fact implies the second result
of (3.32) with 0<o, f<1.
Next, let —1 <a, <0 and u(x) = ¥*F (x)v(x). We know from Lemma 3.8 of [20]

that ueH&yM_,m (A4). So by the previous result,
G p(0,0) = A1) 2} 0. (3.35)

On the other hand, by (2.15),

2 2
017 o < 201l e + 8 + B7)|Ju]

2
L#-25-2)
2 (2 p2 2
< 2(164, (o + B7) + Dfuli yan - (3.36)

A combination of (3.35) and (3.36) leads to the second result of (3.32).
Thirdly, let —1<a<0<f<1 and u(x) = (1 — x)"v(x). By Lemma 3.8 of [20],
ueH&%,%O) (A). Using (2.15) again gives that

2 — 12 2 2
|U|1,X(1-ﬁ) =[(1-x) a“|1,x(x.ﬁ> <2|“\1,X<—u.ﬁ> + 20!2||u||x<7172,m

< 2ul cap + 8 Ul <2(16670 g+ D]uli ap- (3.37)
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Moreover, due to —1 <a<0<f<1, we have that
2 2 2
Jul} oo < Nl e = 200+ Dl zm + 281 = B)lul s

= (0, ((1 = x) " u), 0, ((1 + x)ﬁu)) = d,p(v,0). (3.38)

A combination of (3.37) and (3.38) leads to the second result of (3.32).
We can deal with the case —1 <f<0<a<1 in the same manner. [

The orthogonal projection PN“ E H&Xw) (A)—>PY is defined by
ayp(Py, o0 —v,¢) =0 VePy. (3.39)
Theorem 3.5. If —1<a, f<1, then for any UEH&X(M) (A)r\H’ ) *(A),re N,r=>1 and
O<u<l,
1P 50 = ol SCCIHNN + 0+ B)' 7 Jol o (340)
where Cz% =(C ;,) (Ci 2)1 " and
Cop = LapM; (3 (yé“””/( 1),

_ L
Cop= (2 o+ 1>L M2 SE OSP4 ),

Proof. By projection theorem, Lemma 3.1, (3.24) and Theorem 2.1, we have that,

|PNa<ﬁ U\%,Xw-ﬁ) < |1~)11\}?a,/3” - Uﬁ,xum <La‘/f6_la,/;(1~’11\}?wv — mﬁ]l\}?wv —v)

< LupMap3 GEP D) 4+ 171|Py- 100 — Bsl e
< cLapMapGOFP2 )+ 1)2
X (N(N +a+ )7 [of} o .. (3.41)

The above with (2.15) implies

1282, 0 = oll o <CHHNN + 4 ) o, . (3.42)

Now, let geLi(Z,]_ﬁ,l) (A) and consider the auxiliary problem

ayp(w,z) = (gvz)xu—lﬁ—l) VZGH £h) ) (4). (3.43)
By (2.15),

(9, 2) jurn [ < lgll

(a=1,8-1) ||Z| 72~ 7)<ZC_O, [;||C]| P 1>|Z|1/1/1

Thus (3.43) has a unique solution in H Jn (4). Moreover, in sense of distributions,

1 .
o%w(x) = —(1 — x2) 'g(x). Accordingly [|@*w(1 — X)2||ep = gl 15 Taking
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z=pY Napl — U0 (3.43), we use Lemma 3.1 and (3.41) to reach that
(g PIIVy[f U)X(ocfl-/ffl>| = |y p(w — PNa/;W PIIVy[f —v)|
< Ma,ﬁ|}_’11\},a7ﬁw — Wi ap |P1\}7a1ﬁv — 0]y e
< LopM2y b GEP PR 1)
X (NN + o+ ) 216 om gl

Therefore,
(e 1p) SCC;:;;(N(N +o+ ﬁ))_%|v|,,ﬁx<z,,e)"*.
From the above, (3.42) and space interpolation, the desired result (3.40) follows. [

||P b =0l

Jom <IN g0 = 0],

In the previous parts, we studied Jacobi approximations with the parameters
o, fB,7,0> — 1. But in some practical problems, we also need to consider certain
critical cases, in which some parameters are equal to —1, see [5,14,15]. Here, we
consider the case with a=1,=0,y=—-1 and J6=0. The notations

| 1,0 . .
Hpyo-10(A), Pyig 1 and aio-10(-,-) have the same meanings as in Theorem 3.3.

Theorem 3.6. For any UEH&LO,LO(A)“H;@,Q (A),reN;r>1 and ae(-1,1),

-
1,0 41
1Py 10100 = Vll110-10<cCy (N(N +a)) 2 |U|r/°‘0 (3.44)
where
= Lo 60) (a0l
' =27 (2 g0+ 12665952 + 1),
If, in addition, €0, 1), then for 0<u<1,

—r

Nl A2 N5
||PN 10-1,00 = U||#~,X(l'0) SC(A“J) (Cai YHN(N +4)) |U|r7x(&_()),*. (3.45)

Proof. We first prove (3.44). Let PZM0 be the orthogonal projection as in (3.21).
Then by projection theorem, (2.15), (3.24) and Theorem 3.4,

1,0 2 31,0 2
||PN,1,071.,OU - U||1,1,071,0< |PN.az,0” U|1 400 T || aov v||x(,]0)

<2772 g0+ )|PNaov ”|1,l<aw>

- g s0) L
<22 g0+ DG OF )+ 1)
< (N(N + @) " |o]} o0, (3.46)
We next prove (3.45). By (3.44),
||PN 10-1.0V — Oll1 400 < 2HPN 10-100 — 11010

1—r
< cCH'(N(N +a)) 2 |v] (3.47)

P %0
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Now, let geLi(m) (A) and consider the auxiliary problem

al,Ofl,O(sz) = (972);{(1,0) VZGH(},Xu.m (/1) (3~48)

Following the same lines as in derivation of (IV.3.19) of [5], we can verify that
||w||2_x<m) <c||g||x(1m. Since 0<a< 1, we get from (3.44) that,

1

41 Y5 A2
||PN10 1o = W1 0-10< €C; (NN +a)) 2[07w]|
1

< eGP (N(N + @) 2851wl 00

1
< Az 1 Gy (N(N + @) 2[lgl] 0. (3.49)

Taking z = Py" o_; o0 — v in (3.48), we use (3.44), (3.48) and (3.49) to obtain that

1,0 1 g
|(PN.,1,071.,0” g)y(‘0| al(C4 ) (N(N +a)) 2||g||x(1-0)|U|r,z(5-0),*‘

Consequently,

1Py 01,00 = vl 00 <Az (G (N(N + &) o] (3.50)

rx(x()

Finally, we obtain (3.45) with O<u<1 by using (3.47), (3.50) and space
interpolation. [

4. Jacobi-Gauss-type interpolations

In this section, we study Jacobi-Gauss-type interpolations. Let C G. N ¢ Ig‘ Il\f, J

Cff,)], 0<j<N, be the zeros of polynomials J1\7+ﬁ1( ), (1 +x)J1(V’ﬁ+1>(x) and ( -
)6 Jy (@) (x), respectively. They are arranged in decreasing order. Denote by
a)Z NJ, 0<j<N, Z = G,R, L, the corresponding Christoffel numbers such that,

/A $(x)7 %P (x) dx = Z PN IS, YhePivi,, (4.1)
j=0

where 1z = 1,0 and —1 for Z = G, R and L, respectively. There hold the relations
(see [20]),

(o, o, f+1 o,f+1) .
Cany = LoRD, oy = L+ G0 oGt 0<isN -1, (42)

(o+1,p+1) (o) (o0+1,8+1) \2y—1 _(a+1,5+1)
CLN] CGN 2j-10 OLN; = (1- (CG,N72.j71) ) DG N-2j-11

1<j<N - 1. (4.3)
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Let zy and wy be two sequences and wy #0. If fﬁ—ﬂ as N — oo, then we write
zy =wy. According to (15.3.10) of [27], (4 2) and (4.3), we have that

g b)) o .
ook, = N+1(17C<C§‘,/\,]) +z( + {55 )’”z 0<j<N, (4.4)
1 wf) ok .
w(RN),]— (1 - CRN])“JrZ(l + CSV,)I\;I)J)ﬁJrz? 0<]<N - la (45)
1 1 .
O (= R+ R, 1SN - 1. (4.6)

We now define the dlscrete inner product and norm by
1

o) B) B 2
(1,0) 20 = >SRN CERDOTR, el o iy = (0,002 1
Jj=0

By (4.1), we have

(DY) om zn = (D W) oy VO Y EPaNti,, Z=G,R,L. (4.7)
For any ¢pePy (see [20]),
18l <1l 1w 2+ (o B+ DNl (43)
Let ”ﬁ ={x|x Z“ J/f, »0<j<N}. The Jacobi-Gauss-type interpolant
IZ‘,N@#UGPN such that
Tynapo(x) = v(x), xeASW, (4.9)

where for Z = G, R and L. They are named as Jacobi—Gauss, Jacobi—-Gauss—Radau
and Jacobi—Gauss—Lobatto interpolation, respectively.

We shall estimate the difference between Z 7 v, gv and v in non-uniformly Jacobi-
weighted Sobolev spaces. In the sequel,

x=cosl, 0¢€0,n], 0¥:’£),—arccosCZN/, Z=G,R,L, 0<j<N.
(4.10)

We first present a result on distribution of Jacobi—Gauss interpolation nodes.

Lemma 4.1. Let N = N + % (0 + B) +3. We have that
() if —3<o, p<i, then
(+ L+ g+ 1)aN <008 <(j+ DaN~!, 0<j<N, (4.11)

(i1) if >0 and f> — 1, then
(+30)nN~ <0gy < (j+ia+1)aN~", 0<j<N, (4.12)

(ii1) if a> — 1 and >0, then
4+ L+ 1D))aN T <0gR <(j+1(+3)aN"", 0<j<N, (4.13)
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@iv) if
—1<oc<—%, —1<p<0, or —%<oc<0, —1<[3<—%, (4.14)

then
05, = Un+ 0NN+ 1), 0<j<N. (4.15)

Proof. The results (4.11) and (4.15) come from (6.3.7) and Theorem 8.9.1 of [27]. We
now prove (4.12). By Theorem 8.21.8 of [27],

P (cos 0) = (N + 1) ZF(0) cos(NO +7) + O((N + 1)2), (4.16)

where

L2 0\ P2
F(0)=n2 <sm 2) <cos 2) , 7 =—1Qu+ . (4.17)

Let ag\?f):((j—i)n—y)]v’l,0<j<N+l. Since «>0 and B> —1, we have

gg\?f)e(o,n),0<j<N+l. Moreover, —u—3<0,—f—1<0 and sinx>2x for
x€(0,5]. Thus we have from (4.17) that for 0<j<N,

1
~( 1 H(x/f ) (_)xﬁ —p— 2
F(Hgvlﬁ)) —_ﬁ(sm 5 ) (cos 5 )

1

1
1 e 1 i P\2 [N
> (cos™ 5= = —=| sin g““’ > ﬁ (4.18)
VT VT N

Meanwhile we have from (4.16) that

n 1~ o . 3
Iy (eos O3y = (N + 1) ZF(B]) cos(jm + %) + O((N +1)2)

— (=1 (N + 1) ZF@P) cos(Z) + O((N +1)2),
0<j<N + 1.

The above with (4.18) implies sgn(J ](\iffl) (cos 5“’3 >)) = (—1)”. Therefore there exists at

o,f) o) plep)

least one zero of J\ v.11(cos 0) in each subinterval (HN b ). Since the zeros of

N1+1
Jz(v fl (cos ) are distinct, there is exactly one zero in each subinterval
(0%_]{3),9,3]&]) 0<j<N. This leads to (4.12).

We next prove (4.13). Let GN,)' =((j+Hn — )N, 0<j<N + 1. Since a> — 1
and >0, we have /0\55/5) €(0,n). Thanks to —a — 1 <0 and —f§ — %<O, we obtain that

1
. L/ NI [ +5+3
P> (s ) 5 A 0gien

N
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By this fact and (4.16), we assert that sgn(],(ffl) (cos 553‘;”)) = (—1)’™". The rest part
of proof is clear. [

The results (4.12) and (4.13) refine the results of Theorem 8.9.1 of [27] in the three
special cases. But they cover nearly the whole range o, > — 1. How to improve the
result of Theorem 8.9.1 of [27] with o< — 1, <0 and 0<0, f< — 1 is still an open
problem.

We next present a result on the stability of Jacobi—Gauss interpolation. For
simplicity, we denote by d; >1 a constant such that d, »>1 as N — oo, and set

Olly = max((2u+ 2k + 1), (2B + 21 + 1)%).

Theorem 4.1. For any UGH;(X,A,,M)_A(A), k,leN and 0<k +1<1,

Do)

||ZG7N,1,[}U| etk ) < A etk )

1
+ (NN +2+5+ 1) 72|00l g, (4.19)

where

1

4 nQy \?
O =

=

a+p+1 . 1 1
X<l+m) l]( —z<0€,ﬂ<§,
1
2 k.l B 20\ 2
Vdin ;—anwmax(a ,(L+p5))
A - 1
‘ \2
x<l+%) if >0 and f> —1,

1
2

V(2 + nQlgmax((1 402, 7))

D=

a+f+1 .
X<1+m> l](‘OC>—1and‘B>0,

c(a, B) if (4.14) holds,

while dy = 2n\/dy, in the first three cases and d» = c(a, B) if (4.14) holds. Hereafter
c(a, B) is a positive constant depending only on o and f.
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Proof. Let 0<ag<3<ax<m, and {I,}fio be a set of subintervals such that
N -
lao,ax) = J I, OGN €l Lnl=0 Vi)
j=0
We denote by |I;| the length of subinterval I;, and set 6(0) = v(cos 0). It is noted that
for any ve H'(a, b),

1 1
max [v(x)|< (b —a) 20l 245 + (b = @200l 1204 p)-
x€la,b]

Obviously, (ZG7Nﬁ%ﬁU(x))2X<k’l) (x)€Pans1. Thus by (4.4), (4.7) and (4.10),

||ZG,NA,o:,/fU| i(x\k.,lﬂl)

>

I\)\?r

I~
2

N
= [ Zonapor 22 un g = D P CoR )7 CER Y ole,

, (@,B) 204+2k+1 (@,h) 2p+21+1
R XN: 2000 [ sin OGN, cos OGN
_7]\7 T 1 G,Nj 2 2

N NG ?
5(0) <sin 2) <cos 2)

1 1

2a+ﬁ+k+l+1dln N ) ) ath+y o\ Pt 5

SW; |I|HU( )<s1n§> <cos§> 2
=

O\ #H+3 O\ B+ ,
w2l fouteo)(sin5) - (eos3) Il

2a+ﬁ+k+l+ldl n 0 o:+k+% 0 ﬂ+l+% )
<- 7= e
om0 (s05)(eos5) I

athts LA
+2 orgjixzv |Z;] - ||00 | 0(0) <s1n 5) (cos 5) l2@pa) |- (4:20)

2zx+/3+k+l+ldln N

su
N+T 200

X

A direct calculation gives that

1 i i i
atk+y B+l7 atk—y B+i—3
Oy <sin g) (cos g) = D(0) (sin g) <cos g) , (4.21)

D) =4(a—B+k—1+4(a+p+k+1+1)cos0).
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It can be checked that maxgc(o 1 D?(0) <7 Q{:é Therefore by (4.21),

I I
) 0 otk+5 0 B+l+5
[100 | 9(0) <sm §> <COS 5) ||iz(a0,az)
1 1
) g\ *tk2 o\ PHi+s
<2|[0¢8(0) (sm 5) (COS 5) ||iz(0,n)

1 athkty 0 B+l+5 5
+ = ———|[0(0) | sin cos = 207 4.22
§ O max Lo 0)(sing) (eos3) I @22
It is easy to show that

do 1
_—— —-—-- 3 — )
e Vg 09?(0) V1 — x20,v(x),

max ! <T[2 max ! !
Oclava] sin® O 4 @ (n—a)))

So a combination of (4.20) and (4.22) leads to that

||IG,N,1,[}U| i(mk./ﬂ/) <p§“,\l,3>|\ ok f+1) +p2N Ha‘(U| kLB (4.23)
where
(a-ﬁ):ﬂ 2 max max I;|max 1
PN N + 1( 0</<N |I| 4Q ’ﬂ 0< 14 aé’ (- a2)2 ’
(a,B) 4d17'E

pZ,N N+1 01'<133<N‘I|

If —}<a, f<3, then by (4.11), we can take
L=((+3e+p+10))aN " (j+)aN "), [[] =1 —a—p)aN ",
0<j<N.

In this case, g = J(o + f + )aN~"' and a; = a(N + 1)N~' = 7 — qo. Thus

“ N 4 l—a—pf)m
Py = dim <( T L )

N+I\(I—a=B)n (1 4o+ p)
p(“ﬁ) _ 2(1 : o — ﬁ)dﬂt
>N N(N +1)

This with (4.23) leads to the desired result for —3 <o, f<1.
Next, let >0 and > — 1. According to (4.12), we take

I = ((j—&-%)nﬁ’l, (j+%+ DaN—), |5l ==N"', 0j<N.
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In this case, ay = 2omN and ay = (N + o+ 1)7N~"'. So we have that

(@) _ 2 ™) l+at+p
il = a2+ mg g max?, (1497 ) (1455550,
p(%ﬁ): 4d17t
NOUN(N+1)

This with (4.23) leads to the desired result. We can derive the desired result for
o> — 1 and >0, similarly.

Finally, if (4.14) holds, then we know from (4.15) that GG Ndelj7 being of size
N+ 17" Let ap=O((N+1)"") and a; = (Nz+ O(1))(N + 1)"". By an argu-
ment as in the previous parts, we have that

ey + (N + 1)_1||axv|

k) < C(O(, B)(| |U|

||IG7N-,%7/5U| X(m+k+],/§+l+]))- O

We are now in position of presenting the main results on the Jacobi-Gauss
interpolation. We first estimate the difference between Zs v, 40 and v in the space
Hy ,(A4).

7P A

Theorem 4.2. Let k,l,reN and 0<k+1<1. For any UGH;(1+1<_/:+/)7A (A),r=1 and
O<us<r,
u
Z 6N 0,50 = Ul ytoknn 4 <CB(19,<}5>(N(N +o+B+k+1) 2 |v], jenpn 4 (4.24)
where B(1 N) = E“Aé) +dr + 1.
Proof. By using Lemma 2.5, Theorem 2.1 and Theorem 4.1, we obtain that for ue N,
10%(Z 6.3 080 — Ptk prtV)| | jsscsnprrn

L
S(NN o+ B+k+1421))2|Z6N8ap(PN otk pr10 — 0)|] e

etk p)

I
<MKN+a+ﬂ+k+l+ZMPC4%WPMHmHU—ﬂ

(ool LB

1
o B 2
+dr( N(N+5+5+1 |[0x (PN etk pr1v — V)],

,u;r
<AV + d) (NN + o+ B+ ke +1) 2 [0l wripen 4

Then the result (4.24) with e N follows from the above estimate, Theorem 2.1 and a
triangle inequality. Finally, we use (2.7) to obtain the desired result. [

It is more important to estimate the error of Jacobi—Gauss interpolation in the
space H! b 5(4). In this case, we can choose Jacobi-Gauss interpolation associated

with the weighted function z(*#)(x) or 3" (x). We state the results in the following
two theorems.
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Theorem 4.3. If (2.31) and (2.43) hold, then for any ve H" b L(A),reNand r=1,

1T 630 — 01 o <€GY g s(N(N + 0+ ) 720l e, (4.25)

1 _r
1Z 68050 = 0ll 00 < €Ky 6Ay—i26-p2GY g s (NN + a4 B) 2 [0, e

(4.26)
where
s = (1= B+ DB + €LY ) + (NN + o+ )
If, in addition, a <y, f <9, then
16,8000 — 0l <CAy o g B (NN + 24 B)) 2 [0l o1 (4.27)

Proof. By Lemma 2.6, Theorem 4.2 and an argument as in derivation of (3.5),

|I(;Na/517—v|1/(7/;) |ZGN1[;U P}Vaﬂapvhy(z.ﬂ)+|P}vaﬂaﬁl)—v|11(z.m

<cle— B+ 1NN + o+ B)(|IZ6yapv — vl

()
F 1PN o0 = Vll o) + [P s = 0l
<Gy, S(NIN 4o+ B) 2o, .
Since IGNMU(C(GNJ) =v( (gf,J) 0<j<N, we can choose xp = C(G“f,)k such that
|xo| = ming<;<n |CGNJ| Then by Lemma 2.3 with (2.31),
| Z 6500 = 0l o0 S €Ky 68y—042 6-p+2| TGN 0,0 — Ul -

The above two estimates imply (4.26).
If <y and <4, then (4.27) follows from Theorem 4.2 and the fact that

34V 5y, YA S0 [EAEID) g
|Z 65 up0 = 0l 00 <Dy—so-plIZ 6N 0 p0 — O] - O
Theorem 4.4. If (2.43) holds and
y<a<<y+1, O<B<KI+1, (4.28)
then for any veH;(x,ﬂ)v*(/l)7 reN and r=1,
o300 = 0l <CGLY (NN + o+ ) 2ol . (4.29)

5 _r
1Z63300 = vll oo SCBYY (NN + 00+ B)) 2o, ersin 4 (4.30)
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where
2 7,0 1,0
G\opgs = (@ = B+ DA 5 s (BYVA s pin + )

1
+ (N(N+a+p)2
Proof. Due to (4.28), we have from Theorem 4.2 that

.0 _r
1 Z 600 = vl 00 < CBng)(N(N + o0+ B)) 2ol yorrain 4
'S _r
< eBUY A a5 gt (N(N + o+ £) 2|0l -

Next, we use (4.28), Theorem 3.1 and Lemma 2.6 to obtain that

Z6.N560 = Py gyl yon < €(e = B+ NN + o+ B)||Zn 60

- P}V-%/f,y,év||x<x/f>
<clo—B+1D)AypsN(N 4o+ B)(|[ZGn 50

- U||X<m + ||P}V7oc,[} sV — U||Zw'>)

< (e =B+ DAy g s(BIY Ay oo pi
_r
+ Cp ) NV +a+ ) 2ol o .-

Finally, the result (4.29) follows from the above estimate and an argument as in
derivation of (3.5). O

We now turn to the Jacobi-Gauss—Radau interpolation. To shorten the paper, we
only present the results which can be proved in the same manner as in the proof of
the last four theorems. But we should use Lemma 2.2 in the proof of Theorem 4.6,

and use Theorem 3.4 in the proof of Theorem 4.10, respectively.

Theorem 4.5. Let k,[eN,0<k<I<!1 and I<p + 1. For any veH;(Hkv,f,,)ﬂA (A) with
v(—1) =0,

| |IR,N_1,ﬂU| |1(«+k./17/) < Ag(}\l;) | |U| ‘Z(wrk./i—l)

1
2
RIN (N <N +5+ g)) [y (4.31)

where d is the same as in Theorem 4.1, and

1 1
a , . ) \2 2 2
A5 = \/dz_?f(n*an;,’ﬂlmaX((l‘Fa) (4 B) 2)) <l+w> ‘
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Theorem 4.6. Let k, [, reN,0<k<I<1 andl<f+ 1. For any UEH%H,(_,},,) L), =1
and 0< u<r,

TR0 = Ol ot 0 4 SCBSY (N(N + o0+ B+ ke — 'z |U|r/“+k/f 04 (432)
where Bg“/\/,f) = oa‘ﬁ(A “B d2 +1).

Theorem 4.7. If (2.31) and (2.43) hold, then for any veH,, (A),reN and r>1,

1 _r
TR0 — 0]y o SRV, 5 sS(N(N + 00+ B))' 20, e ., (4.33)

1 _r
||IR1N-%ﬁU - U||l<7‘-5) <CKVﬁA“/*“*zs‘S*ﬁ*ZREV,)z,ﬁ;y,& (N(N +o+ ﬁ))l 2|U|r,l("-/f),*7

(4.34)
where
R(l) ( B) 1.0 7%
NoBy,d — =(x—p+1)(B N +Caﬁy5) (N(N+o+p))
If, in addition, a <y, <0, then
12 Rvap0 = Oll 00 SCAV*M‘*/?B(;}\[Z)(N (N +o+B) 2 v, jon 4 (4.35)

Theorem 4.8. If (2.43) and (4.28) hold, then for any veH’m *(A), reN and r=1,

ITrv ot = vl SR} 5NN + a2+ §) el (4.36)
||ZR,N_A',,5U — U| |Z(~N5) SCB%;]) (N(N + o+ ﬁ))_i |U|V’X(7+r.r5+r)1A7 (437)
where

2 bR 5 ) 71
RY, pos= (= B+ DAy s(BSY A, usrsopii + Cyh ) H(N(N + o0+ ) 2

Finally, we present the main results on the Jacobi—-Gauss—Lobatto interpolation.

Theorem 4.9. Let k,leN,0<k,I<1,k<a+ 1andl<f + 1. For any veH;@,ky,,,,)’A(A)
with v(+1) =0,

T vt < ASS ol ot

1
2
+ 27T\/Z< (N += 3 + g)) ||axv||l(1—k+l,ﬁ—l+l)7 (4.38)

where d is the same as in Theorem 4.1, and

1
AL = \/d1n<2 + 10, max((1+0)7, 2+ ﬁ)2)>2 (1 + %) .

=
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Theorem 4.10. If —1<a, <0 or 0<a,f<]1, then for any veH;(,_,,;)‘*(A),reN and
r=1,

_r
1Z 2.0 = Ol o S LY, s(N(N + 00+ B)) 2], ., (4.39)
where
LY, = (L PyeP)z )(c3 A +1) + 21 /d C ‘)

If, in addition, (2.43) holds, then we have
T80 = 0l un SCLY, y(N(N + o+ B) 720,

where

—o,— o 1 -~ -
LY =5+ (o= f+ DESN(N + o+ )

+ L (VN +a 4 B) D) + (= B+ DL, . (4.40)

Let ¢, 5,5 be a generic positive constant depending only on «, 8,7, 6. If (2.43) is not
fulfilled, then the right sides of (4.25), (4.26), (4.29), (4.33), (4.34), (4.36) and (4.40)
become ¢, p,5N>" "[0l, jun ., While the right sides of (4.27) and (4.35) become
CopysN "|u| wn 4- Similarly, the right sides of (4.30) and (4.37) now turn to be
CopysN~ |U|rx< o+ 4- 10 fact, in these cases, [v],, rrorn 4 <Ayt /,>+1|v|,/qﬁ

5. Concluding discussions

As we know, Babuska and Guo [3] studied symmetric Jacobi approximations in
Jacobi-weighted Sobolev spaces, in which the weight for v is (1 —x?)*"".
Meanwhile Bernardi and Maday [6] considered symmetric Jacobi approximations
in Sobolev spaces with the uniform weight (1 — x?)*. In this paper, we established a
series of results on general Jacobi approximations and Jacobi—Gauss-type
interpolations. They generalize the results of [3,6] and so could be used for
numerical solutions of various problems, such as

(1 = )" (1 + ) 0,0(x)) + (1 = %) (1 + x)’v(x) = £(x),
0<a<y+2,0<<d+2,|x|< 1.

Especially, they are more appropriate for singular problems. Moreover, we may use
variable transformations to change some problems on unbounded and axisymme-
trical domains to singular problems on bounded domains (see [5,14,15]), and then
design suitable numerical algorithms and analyze numerical errors by using some
results in this paper.
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The results of this paper also improved the work of [17] essentially. Clearly, the
power of N(N + o+ f) in all approximation results is optimal. In particular, the
Lf((,,,,)(/l)-errors of the orthogonal projection Py, and various interpolations

depend now only on ||0}v]

Ja+rpen - 1t is optimal and ensures approximability of some
important functions related to singularity analysis of functions at corners. For
instance, for a function v(x) behaving like (1 — x)” as x— 1, we have d_v(x)~ (1 —
x)"", and so for r<2y + 1, |[8}0]|(, ) < o0 . Therefore by the results in Sections 2 and
4, we have at least that for any arbitrary ¢>0,

||PNTQ,()U — U||Z<0-O)’ ||ZZ,N,0,OU — UH;{(O,O) <CN_27_1+8, Z=G,R L.

It is more important that the HJ’M s(A)-errors of various orthogonal projections
discussed in Section 3 only depend on the semi-norm |[0\0|,w+r-14:-1). Thus we can
use the results in Sections 3 and 4 to analyze spectral methods and p-versions of finite
element methods of differential equations of second order, and obtain optimal error
estimates which also depend only on [[0}0[| u+r-14+-1). This semi-norm depends in
turn on regularity of exact solution. In opposite, exact solution may not possess the
regularity required by validity of approximation results in [17]. This fact also
simplifies the analysis of various rational approximations induced by Jacobi
polynomials, see [18,19].

In this paper, we described the explicit dependance of approximation results on
the parameters «, f,7 and ¢ precisely. It helps us to deal with more complicated
problems. For example, the convergence of orthogonal approximation on a triangle
T ={(x,y)]0<x,y<1,0<x + y<1}, which is related to spectral methods and p-
versions of finite element methods on non-rectangle domains, see [9,23]. In this case,
we take the base functions

3 2x+y—1
gim(x) = 2%2(1 = ) 7" (ﬁ) T2y - 1).
Let Prym(7T) = span{g;m(x,y) |0<I<L,0<m<M}. The orthogonal projection
Pry: LX(T)>Pru(T) is defined by
(PLyuv—v,¢)7 =0 VoePru(7T).
For r,seN, we introduce the non-isotropic Sobolev space H"»*(7") with the norm,
k

,
or PP
i (z S (L — ) S0l ol

k=0 j=0

s s
+ |[x2(1 —x —y)26iv||iz(7)) :

By using the results in Sections 2 and 4, we can derive some important

approximation results, see [21]. For instance, if M = O(LH%), then

2rs
Pr v —v||<eM 2r+s||v
: T

Hs (T) .
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But we cannot use the results in [17] for such problem. Indeed, all results in [17] are

for fixed o, B,y and J, while one of parameters of J,(n2 1+10) (2y — 1) tends to infinity as

/- 0.
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