
J Sci Comput (2017) 70:451–477
DOI 10.1007/s10915-016-0253-2

Optimal Spectral Schemes Based on Generalized Prolate
Spheroidal Wave Functions of Order −1

Jing Zhang1 · Li-Lian Wang2 · Huiyuan Li3 ·
Zhimin Zhang4,5

Received: 20 March 2016 / Revised: 6 July 2016 / Accepted: 19 July 2016 / Published online: 25 July 2016
© Springer Science+Business Media New York 2016

Abstract We introduce a family of generalized prolate spheroidal wave functions (PSWFs)
of order −1, and develop new spectral schemes for second-order boundary value problems.
Our technique differs from the differentiation approach based on PSWFs of order zero in
Kong and Rokhlin (Appl Comput Harmon Anal 33(2):226–260, 2012); in particular, our
orthogonal basis can naturally include homogeneous boundary conditions without the re-
orthogonalization of Kong and Rokhlin (2012). More notably, it leads to diagonal systems
or direct “explicit” solutions to 1D Helmholtz problems in various situations. Using a rule
optimally pairing the bandwidth parameter and the number of basis functions as in Kong and
Rokhlin (2012), we demonstrate that the newmethod significantly outperforms the Legendre
spectral method in approximating highly oscillatory solutions. We also conduct a rigorous
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error analysis of this new scheme. The idea and analysis can be extended to generalized
PSWFs of negative integer order for higher-order boundary value and eigenvalue problems.

Keywords Generalized prolate spheroidal wave functions of order −1 · Helmholtz
equations · Optimal spectral schemes · Error analysis

Mathematics Subject Classification 65N35 · 65E05 · 65M70 · 41A05 · 41A10 · 41A25

1 Introduction

There have been limited studies and applications of the prolate spheroidal wave functions
of order zero (PSWFs) during the first three decades after the seminal works of Slepian
et al. (see, e.g., [17,19] in early 1960s). The renewed interest in PSWFs is evident in the
monographs by Osipov, Rokhlin and Xiao [14], and Hogan and Lakey [10]. The former
provided an up-to-date exposition of the analytic and asymptotic properties, and numerics
of PSWFs (but touched only briefly on the wide-ranging applications of PSWFs). The latter
elaborated on the applications of PSWFs in sampling and signal processing. We also refer to
[7] for a review of many recent publications on PSWFs of order zero.

On the one hand, the PSWFs are eigenfunctions of an integral operator related to the
finite Fourier transform and time–frequency concentration problem (cf. [18]). They naturally
form an orthogonal basis of the Paley–Wiener space of c-bandlimited functions, and offer an
optimal tool for approximating bandlimited functions.

On the other hand, the PSWFs are eigenfunctions of a singular Sturm–Liouville prob-
lem, so they are born with the orthogonality and completeness properties in L2-space as
do their counterparts, Legendre polynomials. Indeed, spectral approximations using PSWFs
have exhibited some advantages over theLegendre polynomial-basedmethods: (i) they enable
fewer number of points perwavelength to resolvewaves; and (ii) they use quasi-uniformly dis-
tributed collocation points allowing for larger time steps in explicit time-marching schemes.
However, the PSWFs are non-polynomials, which lack some attractive properties of orthog-
onal polynomials, e.g., three-term recurrence formulas, simple derivative relations, etc.
Consequently, one has a trade-off between efficiency and advantage at times. Moreover,
the PSWFs might lose certain abilities of polynomials. For instance, Boyd et al. [7] dis-
covered that prolate-element methods are nonconvergent when h-refinement is used in
hp-approximation.

We highlight some important attempts to improve the efficiency and performance of
PSWF-based algorithms.Kong andRokhlin [13] proposed a class of accurate prolate spectral-
differentiation schemes with the following features:

(i) It is based on the PSWF expansion of a function whose expansion coefficients are
determined by a least-square procedure using an oversampling of the nodal values.

(ii) For a given bandwidth c, the approximation with accuracy ε is attained by a minimal
number of terms in the PSWF expansion.

(iii) In order to incorporate the homogenous boundary conditions, e.g., u(±1) = 0, a linear
function: μ j (x) = ψ j (−1) + (ψ j (1) − ψ j (−1))(1 + x)/2, is subtracted from PSWF
ψ j (x), and then aGram–Schmidt orthogonalization is used to reconstruct an orthogonal
basis so that the differentiation in (i) can be implemented.

(iv) The differentiation matrix has much smaller spectral radius. For example, the second-
order one has a reduction of spectral radius from O(N 4) to O(N 2).
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Following the spirit of [22] (for polynomials), Wang et al. [24] constructed a new PSWF-type
basis from a PSWF-Birkhoff interpolation that led to well-conditioned prolate-collocation
schemes.

Our approach is different from the above works. We introduce in this paper a family of
generalized PSWFs of order −1 (denoted by {ψ(−1)

n (x; c)}∞n=0), and construct new spectral-
Galerkin schemes for boundary value problems (BVPs) and eigenvalue problems.We outline
below the main contributions.

• The generalized PSWFs of order −1 are defined as the eigenfunctions of a Sturm–
Liouville problem. They aremutually orthogonal in L2

ω−1
(−1, 1)withω−1 = (1−x2)−1.

They naturally build in the boundary conditions: u(±1) = 0. The matrix of a spectral-
Galerkin scheme for the Helmholtz operator d2/dx2 + c2 becomes diagonal under the
new basis. Thus, it offers an optimal spectral-algorithm for 1D Helmholtz problems with
arbitrary high wavenumber c. Indeed, we demonstrate that using the Kong–Rokhlin rule
for pairing (c, n) in [13], we can achieve an accuracy and resolution superior to the
Legendre–Galerkin method.

• We provide a rigorous error analysis of the new basis in error bounds with an explicit
dependence on the bandwidth parameter, thereby justifying that under the rule similar to
[13], spectral accuracy can be attained.

• When the bandwidth parameter c = 0, our approach reduces to the optimal spectral
algorithm in [9]. In fact, we can define generalized PSWFs of negative integer order and
extend our ideas to solve higher-order BVPs and eigenvalue problems.

The paper is organized as follows. In Sect. 2, we introduce the generalized PSWFs of order
−1 and study their properties. In Sect. 3, we construct the spectral schemes for 1DHelmholtz
equations and eigenvalue problems, and provide ample numerical results to demonstrate the
significant gain in accuracywhen one shifts fromLegendre approximation to the newmethod.
We conduct error analysis of approximation by the new basis in Sect. 4. We conclude the
paper with some remarks and possible extensions.

2 Generalized PSWFs of Order −1 and Their Properties

In this section, we introduce the generalized PSWFs of order −1, and highlight some prop-
erties. We also present a rule for optimally truncating the generalized PSWF expansion of a
function with bandwidth c and for a given error tolerance ε.

2.1 Generalized PSWFs of Order −1

Define the second-order differential operator:

D (−1)
c := −(1 − x2)

d2

dx2
+ c2x2 = −(1 − x2)

(
d2

dx2
+ c2

)
+ c2, (2.1)

for x ∈ I := (−1, 1), and real c ≥ 0. Consider the eigen-value problem: find {χ, u} such
that

D (−1)
c [u](x) = χ u(x), x ∈ I, u(±1) = 0. (2.2)
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Note that D (−1)
c is a positive, self-adjoint operator, as for any u, v in the domain of D (−1)

c ,

we have(
D (−1)
c u, v)ω−1 = (u,D (−1)

c v)ω−1;
(
D (−1)
c u, u)ω−1 = ‖u′‖2 + c2‖xu‖2ω−1

> 0, ∀ u �= 0,
(2.3)

where (·, ·)ω−1 and ‖ · ‖ω−1 are the inner product and norm of L2
ω−1

(I ) with the weight

function ω−1(x) = (1 − x2)−1, respectively. According to the general theory of Sturm–
Liouville problems (cf. [2,8]), the eigen-problem (2.2) admits a countable set of eigen-pairs:{
χ

(−1)
n (c), ψ(−1)

n (x; c)
}∞
n=0

, such that

D (−1)
c

[
ψ(−1)
n

]
(x) = χ(−1)

n (c) ψ(−1)
n (x; c), x ∈ I ; c ≥ 0. (2.4)

Moreover, we have the following properties common to a Sturm–Liouville problem.

• The eigenfunctions
{
ψ

(−1)
n (x; c)

}∞
n=0

are sufficiently smooth, and forma complete ortho-

normal system of L2
ω−1

(I ), namely,

∫ 1

−1
ψ(−1)
m (x; c)ψ(−1)

n (x; c)(1 − x2)−1 dx = δmn . (2.5)

• The eigenfunctions
{
ψ

(−1)
n (x; c)

}∞
n=0

with even n are even functions of x, and those

with odd n are odd.
• The eigenvlaues

{
χ

(−1)
n (c)

}∞
n=0

are all real, positive, simple and arranged in ascending

order. Moreover, limn→∞ χ
(−1)
n (c) = ∞.

Wecallψ(−1)
n (x; c) the generalized PSWFof order−1 (and of degree n), where the parameter

c is called the (generalized) bandwidth parameter.

Remark 2.1 Wang and Zhang [23] introduced the generalized PSWFs of order α > −1.Very
recently,Karoui and Souabni [12] extended the generalisation in [23] to amore general setting
and related these functions to a generalized energy concentration problem. More precisely,
the generalized PSWFs of order α > −1 and of degree n in [23], are eigenfunctions of the
singular Sturm–Liouville problem:

D (α)
c [ψ(α)

n ](x) = {−(1 − x2)∂2x + 2(α + 1)x∂x + c2x2
}
ψ(α)
n (x) = χ(α)

n (c) ψ(α)
n (x),

(2.6)
for α > −1, c > 0 and x ∈ I. The generalized PSWFs form a complete orthonormal system
in L2

ωα
(I ) (with the weight function ωα(x) = (1 − x2)α):

∫ 1

−1
ψ(α)
m (x)ψ(α)

n (x)ωα(x)dx = δmn, α > −1. (2.7)

Note that for c = 0, ψ(α)
n (x; 0) = P(α)

n (x), the normalized ultraspherical polynomial of
degree n (cf. [20]), and χ

(α)
n (0) = n(n + 2α + 1).

The generalized PSWFs of order α > −1 are eigenfunctions of the integral operator:

F (α)
c [ψ(α)

n ](x) =
∫ 1

−1
eictxψ(α)

n (t)ωα(t)dt = inλ(α)
n (c)ψ(α)

n (x), x ∈ I, c > 0, (2.8)

where the eigenvalues {λ(α)
n := λ

(α)
n (c)} (modulo the factor in) are all real, positive, simple

and in descending order (cf. [23]).
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We refer to [12,23] for many more properties. In particular, the PSWFs of order zero (i.e.,
α = 0) are well documented in literature, see [17–19,26] and the monographs [10,14]. 
�

The following proposition shows the intimate relation between generalized PSWFs of
order −1 and of order 1.

Proposition 2.1 Let
{
ψ

(1)
n (x; c)

}
be the generalized PSWFs of order 1, and {χ(1)

n (c)} be
the corresponding eigenvalues. Then we have

ψ(−1)
n (x; c) = (1 − x2)ψ(1)

n (x; c); χ(−1)
n (c) = χ(1)

n (c) + 2, (2.9)

for all x ∈ I, n ≥ 0 and c > 0.

Proof One verifies readily from (2.1) and (2.6) with α = 1 that

D (−1)
c [(1 − x2)v](x) = (1 − x2)

{−(1 − x2)v′′(x) + 4xv(x) + 2v(x) + c2x2v(x)
}

= (1 − x2)D (1)
c [v](x) + 2(1 − x2)v(x).

Thus, letting v(x) = ψ
(1)
n (x) in the above, we derive from (2.6) with α = 1 that

D (−1)
c

[
(1 − x2)ψ(1)

n

]
(x) = (1 − x2)D (1)

c

[
ψ(1)
n

]
(x) + 2(1 − x2)ψ(1)

n (x)

=
(
χ(1)
n + 2

)
(1 − x2)ψ(1)

n (x).

Comparing with (2.4), we infer that

χ(−1)
n (c) = χ(1)

n (c) + 2, ψ(−1)
n (x; c) = Cn(1 − x2)ψ(1)

n (x; c),
where Cn is any nonzero constant. By (2.5) and (2.7) (with α = 1), we have C2

n = 1. Here,
we take Cn = 1 by noting that the definition of these PSWFs can differ from a sign. 
�

Thanks to (2.9), the properties ofψ(1)
n (x; c) can be transplanted toψ

(−1)
n (x; c). Indeed, we

derive from (2.8) that the generalized PSWFs of order−1 are eigenfunctions of the following
operator.

Proposition 2.2 We have

F (−1)
c

[
ψ(−1)
n

]
(x) := (1 − x2)

∫ 1

−1
eicxtψ(−1)

n (t) dt = inλ(1)
n ψ(−1)

n (x), (2.10)

for all x ∈ I, n ≥ 0 and c > 0.

When c = 0, the generalized PSWF of order −1 reduces to the integrated Legendre
polynomial.

Proposition 2.3 For c = 0, we have

ψ(−1)
n (x; 0) = 1√

(n + 1)(n + 2)

∫ x

−1
P̄n+1(t) dt, n ≥ 0, (2.11)

where P̄n+1 is the Legendre polynomial of degree n + 1.

123



456 J Sci Comput (2017) 70:451–477

Proof Denote φn(x) = ∫ x
−1 P̄n+1(t) dt. By [15, (3.171)], we have

−(1 − x2)φ′′
n (x) = −(1 − x2)P̄ ′

n+1(x) = (n + 1)(n + 2)
∫ x

−1
P̄n+1(x)dx

= (n + 1)(n + 2)φn(x).

(2.12)

Let D (−1)
0 be the operator defined in (2.1) with c = 0. Then by (2.12),

D
(−1)
0 [φn] = (n + 1)(n + 2)φn . (2.13)

Noting that χ(−1)
n (0) = (n + 1)(n + 2) (cf. (2.9)), we infer from (2.4) with c = 0 and (2.12)

that ψ
(−1)
n (x; 0) = Cnφn(x), where the constant Cn is determined by the normalization

(2.5). Then we can work out this constant by using the properties of normalized Legendre
polynomials and derive (2.11). 
�
2.2 Evaluation of Generalized PSWFs and Their Eigenvalues

Thanks to (2.9), we can compute
{
ψ

(−1)
n (x; c), χ(−1)

n (c)
}
from

{
ψ

(1)
n (x; c), χ(1)

n (c)
}
via the

Bouwkamp algorithm (cf. [5,23]). Here, we sketch this algorithm and the related formulas
will be useful later on.

Let P(1)
k (x) be the normalized ultraspherical polynomial with α = 1 defined by the

three-term recurrence relation (cf. [20]):

x P(1)
k (x) = ak P

(1)
k+1(x) + bk P

(1)
k−1(x), k ≥ 1; P(1)

0 (x) =
√
3

2
, P(1)

1 (x) =
√
15

2
x,

(2.14)
where

ak =
√

(k + 1)(k + 3)

(2k + 3)(2k + 5)
, bk =

√
k(k + 2)

(2k + 1)(2k + 3)
. (2.15)

We expand ψ
(1)
n (x) as

ψ(1)
n (x) =

∞∑
k=0

βn
k P

(1)
k (x) with βn

k =
∫ 1

−1
ψ(1)
n (x)P(1)

k (x)(1 − x2) dx . (2.16)

Observe from the parity that βn
k = 0, if n+ k is odd. From (2.14) and the property (cf. [20]):

− (1 − x2)−1 d

dx

(
(1 − x2)2

d

dx
P(1)
k (x)

)
= k(k + 3)P(1)

k (x), (2.17)

we infer that (2.6) with α = 1 is equivalent to the matrix eigenvalue problem:

Aβn = χ(1)
n βn , ∀ n ≥ 0, (2.18)

where βn = (βn
0 , βn

1 , . . .)t , and A is an infinite symmetric peta-diagonal matrix with non-
zeros entries given by

ãk,k = k(k + 3) + 2k(k + 3) + 1

(2k + 1)(2k + 5)
× c2,

ãk,k+2 = ãk+2,k =
√

(k + 1)(k + 2)(k + 3)(k + 4)

(2k + 3)(2k + 5)2(2k + 7)
× c2.

(2.19)
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The infinite system (2.18) can be decomposed into two symmetric tridiagonal systems:

Aeβe
n = χe

n βe
n, n = 2l; Aoβo

n = χo
n βo

n, n = 2l + 1, (2.20)

where Ae (resp. Ao) consists of even-numbered (resp. odd-numbered) rows and columns of
A, and βe

n = (βn
0 , βn

2 , . . .)t (resp. βo
n = (βn

1 , βn
3 , . . .)t ).

In the computation, we have to reduce the infinite eigen-system (2.18) with a suitable
cut-off number M > N . More precisely, we take the first (N + 1) eigen-pairs from (M + 1)
pairs, and set

ψ(1)
n (x) =

M∑
k=0

βn
k P(1)

k (x), 0 ≤ n ≤ N , i.e., ψ (1)(x) = BP (1)(x), (2.21)

where B is an (N + 1)-by-(M + 1) matrix, and

B = (βn
k

)0≤k≤M
0≤n≤N , ψ (1) =

(
ψ

(1)
0 , . . . , ψ

(1)
N

)t
, P (1) =

(
P(1)
0 , . . . , P(1)

M

)t
. (2.22)

Remark 2.2 Boyd [6] suggested a conservative cut-off number: M = 2N + 30, which
guaranteed a machine zero accuracy for computing the PSWFs of order zero for all 0 < c ≤
c∗(N ) = π (N + 1/2) /2. This “transition bandwidth” c∗(N ) also plays an important role
in understanding the decay rate of λn(c) := λ

(0)
n (c). Note that by [12, Theorem 2], this rule

still works for α = 1, as λ
(1)
n (c) ≤ λ

(0)
n (c) = λn(c). 
�

The following formula (cf. [23]) provides a stable way to compute {λ(1)
n (c)} :

λ(1)
n (c) =

⎧⎪⎪⎨
⎪⎪⎩

2 βn
0

in
√
3ψ

(1)
n (0; c)

, if n is even,

2c βn
1

in−1
√
15 ∂xψ

(1)
n (0; c)

, if n is odd,
(2.23)

where βn
0 and βn

1 are given in (2.16). 
�
2.3 Optimal N for Given Bandwidth Parameter c

An important issue related to the application of PSWFs of order zero is the choice of band-
width parameter c and the number of basis functions N . Inmost cases, they are independently
chosen and sometimes on a trial-and-error basis. Kong and Rokhlin [13] proposed a useful
rule for pairing up c and N from a quadrature rule involving PSWFs of zero. More precisely,
for given c, one can control the accuracy of prolate-quadrature rule within a prescribed error
tolerance ε by choosing the smallest number of points N∗ := N∗(c, ε) such that

λN∗(c) ≤ ε ≤ λN∗−1(c). (2.24)

It is noteworthy that Wang et al. [24] introduced a practical mean to implement this rule
without computing the eigenvalues to find N∗ for c < c∗(N ).

In this context, we examine this issue from the perspective of best generalized PSWF
approximation to c-bandlimited functions of the type:

u(x) = F (α)
c [φ](x) for φ ∈ L2

ωα
(I ), α = ±1, (2.25)

where the integral F (α)
c is defined in (2.8) and (2.10).
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We write

u(x) =
∞∑
n=0

û(α)
n ψ(α)

n (x; c) with û(α)
n := û(α)

n (c) =
∫ 1

−1
u(x)ψ(α)

n (x; c)ωα(x)dx, (2.26)

and likewise for φ(x) with the expansion coefficients {φ̂(α)
n }.

Theorem 2.1 Let u(x) be defined in (2.25)with bandwidth c > 0, and denote (π
(α)
N ,cu)(x) =∑N−1

n=0 û(α)
n ψ

(α)
n (x; c) with α = ±1. Then we have∥∥∥u − π

(α)
N ,cu

∥∥∥
ωα

≤ λ
(1)
N (c)‖φ‖ωα , α = ±1. (2.27)

Proof We just provide the proof for α = −1 below, as the case with α = 1 can be shown in
the same fashion. One verifies readily from (2.10) and (2.25) that

û(−1)
n =

∫ 1

−1
F (−1)

c [φ] (x)ψ(−1)
n (x; c)ω−1(x) dx =

∫ 1

−1

[∫ 1

−1
eicxtφ(t) dt

]
ψ(−1)
n (x; c) dx

=
∫ 1

−1

[∫ 1

−1
eicxtψ(−1)

n (x; c)dx
]

φ(t) dt
(2.10)= inλ(1)

n (c)
∫ 1

−1
φ(t)ψ(−1)

n (t; c)ω−1(t) dt

= inλ(1)
n (c)φ̂(−1)

n .

Hence, by the orthogonality (2.5) and the decay of λ
(1)
n (c),

∥∥∥u − π
(−1)
N ,c u

∥∥∥2
ω−1

=
∞∑

n=N

|û(−1)
n |2 =

∞∑
n=N

|λ(1)
n (c)|2|φ̂(−1)

n |2 ≤
(
λ

(1)
N (c)

)2 ‖φ‖2ω−1
. (2.28)

This ends the proof. 
�
For given c > 0, and a prescribed error tolerance ε, we follow the spirit of [13] and look for
the optimal N∗, which is the smallest integer such that

λ
(1)
N∗ (c) ≤ ε ≤ λ

(1)
N∗−1(c). (2.29)

This ensures
‖u − π

(α)
N∗,cu‖ωα = O(ε). (2.30)

Remark 2.3 Note that {λ(1)
n (c)} is exponentially small for large n (cf. [23]):

λ(1)
n (c) ≈ ν(1)

n (c) :=
√
2π

c

e

4

(
2n + 4

2n + 3

) 3
2
(

ce

4n + 6

)n+ 1
2

exp

(
2n + 3

12(n + 1)(n + 2)

)
,

(2.31)
where ν

(1)
n (c) provides a good approximation to λ

(1)
n (c) when c < (4n + 6)/e. With this, we

can extend the practice rule in [24] to find N∗ in (2.29). 
�

3 New Spectral Schemes for Helmholtz Equations and Eigenvalue
Problems

Equipped with the generalized PSWFs of order −1, we develop in this section optimal
spectral-Galerkin schemes for one-dimensional Helmholtz equations in various situations,
and elaborate on some remarkable advantages over the polynomial counterparts.
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3.1 An Illustrative Model Problem and the Scheme

To fix the idea, we consider

Hc[u](x) := −u′′(x) − c2u(x) = f (x), x ∈ I ; u(±1) = 0, (3.1)

where c > 0 is the wavenumber, and f is independent of c.
As usual, a weak form of (3.1) is to find u ∈ H1

0 (I ) such that

Ac(u, v) := (u′, v′) − c2(u, v) = ( f, v), ∀ v ∈ H1
0 (I ). (3.2)

Introduce the approximation space

V0
N := span

{
ψ(−1)
n : 0 ≤ n ≤ N − 2

}
⊆ H1

0 (I ). (3.3)

The generalized PSWF-spectral scheme is to find uN ∈ V0
N such that

Ac(uN , vN ) =
(
I
(1)
L f, vN

)
, ∀ vN ∈ V0

N , (3.4)

where I
(1)
L f is the polynomial interpolation of f (x) on (L + 1) Gegenbauer–Gauss points

{ξ j }Lj=0 associated with the weight function ω1(x) = 1 − x2 (cf. [15, Ch. 3]).
We have the following markedly properties.

Theorem 3.1 Let {ψ(α)
n (x; c)} be the generalized PSWFs of order α = ±1. Then there holds

the orthogonality

Ac

(
ψ(−1)
n , ψ(−1)

m

)
= σn δmn, (3.5)

where
σn := χ(−1)

n − c2 = χ(1)
n + 2 − c2 �= 0, ∀ c > 0, ∀ n ≥ 0. (3.6)

Define the stiffness matrix S and mass matrix M associated with V0
N and with the entries

Sl j =
(
∂xψ

(−1)
j , ∂xψ

(−1)
l

)
, Ml j =

(
ψ

(−1)
j , ψ

(−1)
l

)
, 0 ≤ l, j ≤ N − 2. (3.7)

Then we have
S − c2M = �, M = IN−1 − BTT t Bt , (3.8)

where � = diag(σ0, . . . , σN−2), the matrix B is defined in (2.22), and T is a tridiag-
onal matrix of order M + 1 with zero main diagonal, and upper and lower diagonals
(a0, . . . , aM−1) and (b1, . . . , bM ) in (2.14)–(2.15), respectively.

Proof It follows from (2.1), (2.4) and (2.9) straightforwardly that for any c > 0,

Hc

[
ψ(−1)
n

]
(x) = σn ψ(1)

n (x). (3.9)

Since ψ
(−1)
n (±1) = 0, we derive from integration by parts, (2.7), (2.9) and (3.9) that

Ac

(
ψ(−1)
n , ψ(−1)

m

)
=
(
Hc

[
ψ(−1)
n

]
, ψ(−1)

m

)
= σn

(
ψ(1)
n , ψ(−1)

m

)

= σn

(
ψ(1)
n , ψ(1)

m

)
ω1

= σn δmn .
(3.10)

We next show that σn �= 0. We argue by contradiction. If σn = 0, we find from (3.9) that
ψ

(−1)
n (x) = A sin(cx) + B cos(cx) for some constants A, B. From ψ

(−1)
n (±1) = 0, we
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conclude that A = B = 0 and ψ
(−1)
n (x) ≡ 0, which contradicts to the fact that ψ(−1)

n (x) is
an eigenfunction (cf. (2.4)). Therefore, (3.6) holds.

The first identity in (3.8) follows from (3.5) directly. By (2.9) and the orthogonality of
generalized PSWFs {ψ(1)

n }, we have

Ml j =
∫ 1

−1
ψ

(−1)
j (x)ψ(−1)

l (x)dx =
∫ 1

−1
ψ

(1)
j (x)ψ(1)

l (x)(1 − x2)2dx

=
∫ 1

−1
ψ

(1)
j (x)ψ(1)

l (x)(1 − x2)dx −
∫ 1

−1
x2ψ(1)

j (x)ψ(1)
l (x)(1 − x2)dx

= δl j −
∫ 1

−1

{
xψ(1)

j (x)
} {

xψ(1)
l (x)

}
(1 − x2)dx .

(3.11)

Using (2.14) and (2.21), we can compute xψ(1)
n (x) via

xψ (1)(x) = BT P (1)(x), (3.12)

where T is a tridiagonal matrix of order M + 1 associated with (2.14)–(2.15).
In view of (3.12), we can derive the second identity of (3.8) from (3.11) and the orthog-

onality of {P(1)
n } immediately. 
�

Thanks to Theorem 3.1, we obtain the “explicit” form of the numerical solution in (3.4).

Proposition 3.1 Let uN be the solution of (3.4). Then we have

uN (x) =
N−2∑
n=0

f̆n
σn

ψ(−1)
n (x), x ∈ I, σn = χ(1)

n (c) + 2 − c2, (3.13)

with

f̆n =
L∑

l=0

f̃l β
n
l , f̃l =

L∑
j=0

f (ξ j )P
(1)
l (ξ j )ω j , (3.14)

where {ξ j , ω j }Lj=0 are the Gegenbauer–Gauss quadrature points and weights with respect

to the weight function ω1 = 1 − x2, and {βn
l } are the same as in (2.16).

Proof We have the expansion (cf. [15, Ch. 3]):

(I
(1)
L f )(x) =

L∑
l=0

f̃l P
(1)
l (x), f̃l =

L∑
j=0

f (ξ j )P
(1)
l (ξ j )ω j , (3.15)

Writing the numerical solution as uN (x) =∑N−2
n=0 ũnψ

(−1)
n (x), and substituting it into (3.4),

we derive from the orthogonality (3.5) and (2.16) immediately that

ũn = 1

σn
(I

(1)
L f, ψ(−1)

n ) = 1

σn
(I

(1)
L f, ψ(1)

n )ω1 = 1

σn

L∑
l=0

f̃l (P(1)
l , ψ(1)

n )ω1

= 1

σn

L∑
l=0

f̃l β
n
l := f̆n

σn
, 0 ≤ n ≤ N − 2.

(3.16)

This ends the derivation. 
�
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3.2 Treatment of Nonhomogeneous Boundary Conditions

In order to approximate general functions in H1(I ), we introduce two “bubble” functions
(or boundary modes). It is evident that by (2.1),

D (−1)
c [sin(cx)] = c2 sin(cx), D (−1)

c [cos(cx)] = c2 cos(cx). (3.17)

Thus, sin(cx) and cos(cx) are eigenfunctions of D (−1)
c , which do not vanish at x = ±1, so

they can supplement the generalized PSWFs {ψ(−1)
n (x)} to approximate general functions.

For this purpose, we define

ψ
(−1)
− (x) := 1

2

(
cos(cx)

cos c
− sin(cx)

sin c

)
, ψ

(−1)
+ (x) := 1

2

(
cos(cx)

cos c
+ sin(cx)

sin c

)
. (3.18)

Then we have

ψ
(−1)
− (−1) = 1, ψ

(−1)
− (1) = 0, ψ

(−1)
+ (−1) = 0, ψ

(−1)
+ (1) = 1, (3.19)

and by (3.9) and (3.17),

Hc

[
ψ

(−1)
±

]
(x) = 0, D (−1)

c

[
ψ

(−1)
±

]
(x) = c2 ψ

(−1)
± (x). (3.20)

Moreover, one verifies readily that

Ac

(
ψ

(−1)
± , ψ

(−1)
±

)
= c cot(2c), Ac

(
ψ

(−1)
∓ , ψ

(−1)
±

)
= −c csc(2c),

Ac

(
ψ

(−1)
± , ψ(−1)

n

)
= 0, ∀ n ≥ 0, c > 0.

(3.21)

We next consider the Helmholtz equation as a scattering problem with the exact Dirichlet-
to-Neumann (DtN) boundary condition at x = 1 (cf. [4]):{

Hc[u](x) = −u′′(x) − c2u(x) = f (x), x ∈ I ;
u(−1) = 0, u′(1) − ic u(1) = h.

(3.22)

Note that if u(−1) = u− �= 0, we can subtract u−ψ
(−1)
− from u which only affects the

value of h. Define 0VN := {ψ(−1)
+ }∪V0

N . Let uR and uI be the real and imaginary parts of u,

respectively, and likewise for f R, f I , hR, hI etc.. The generalized PSWF-Galerkin scheme
for (3.22) is to find uN = uR

N + iuI
N with uR

N , uI
N ∈ 0VN such that⎧⎪⎨

⎪⎩
Ac(u

R
N , v) + c uI

N (1)v(1) =
(
I
(1)
L f R, v

)
+ hRv(1), ∀ v ∈ 0VN ,

Ac(u
I
N , w) − c uR

N (1)w(1) =
(
I
(1)
L f I , w

)
+ hIw(1), ∀ w ∈ 0VN .

(3.23)

For notational convenience, we denote

f̂ Zn =
(
I
(1)
L f Z , ψ(−1)

n

)
, f̂ Z+ =

(
I
(1)
L f Z , ψ

(−1)
+

)
, Z = R, I. (3.24)

Proposition 3.2 The solution of (3.23) can be explicitly expressed as

{
uR
N (x), uI

N (x)
}

=
{
uR
N (1), uI

N (1)
}

ψ
(−1)
+ (x) +

N−2∑
n=0

{
f̂ Rn
σn

,
f̂ In
σn

}
ψ(−1)
n (x), (3.25)
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where

uR
N (1) = sin2(2c)

c

{
( f̂ R+ + hR) cot(2c) − ( f̂ I+ + hI )

}
,

uI
N (1) = sin2(2c)

c

{
( f̂ I+ + hI ) cot(2c) + ( f̂ R+ + hR)

}
.

(3.26)

Proof Since uR
N , uI

N ∈ 0VN , we have

uZ
N (x) = uZ

N (1)ψ(−1)
+ (x) +

N−2∑
n=0

ũ Z
n ψ(−1)

n (x), Z = R, I. (3.27)

We next determine the expansion coefficients. Thanks to the fact ψ(−1)
n (±1) = 0, (3.5) and

(3.21), we insert (3.27) into (3.23), and take v,w = ψ
(−1)
k , that yields

ũ Z
n = f̂ Zn

σn
, Z = R, I, 0 ≤ n ≤ N − 2.

Taking v,w = ψ
(−1)
+ in (3.23) and using (3.21), we obtain the linear system:

{
c cot(2c) uR

N (1) + c uI
N (1) = f̂ R+ + hR,

− c uR
N (1) + c cot(2c) uI

N (1) = f̂ I+ + hI ,
(3.28)

whose solution is given by (3.26). Then we have the solution in (3.25). 
�
Remark 3.1 Note that f̂ Rn and f̂ In in (3.25) can be evaluated as in (3.14). This can avoid the use
of numerical quadrature rules related to PSWFs, whose nodes and weights are complicated
to evaluate. On the other hand, we see from (3.18) that f̂ R+ , f̂ I+ involve highly oscillatory
integrands when c � 1. In fact, they can be computed exactly by using an explicit formula
(cf. [3]): ∫ 1

−1
Pn(x)e

ixy dx = in(2n + 1)

√
π

2

Jn+1/2(y)√
y

, y > 0, (3.29)

where Jn+1/2 is the Bessel function, and Pn is the normalized Legendre polynomial of degree
n. Recall the formula (cf. [15]):

P(1)
l (x) = dl P

′
l+1(x), dl =

√
2

(l + 1)(l + 2)
.

By (3.15),

f̂ Z+ =
(
I
(1)
L f Z , ψ

(−1)
+

)
=

L∑
l=0

dl f̃
Z
l

(
P ′
l+1, ψ

(−1)
+

)
, Z = R, I,

where by (3.18)–(3.19) and integration by parts, we derive from (3.29) that(
P ′
l+1, ψ

(−1)
+

)
=1−

(
Pl+1, (ψ

(−1)
+ )′

)
=1 − c

2 sin c
(Pl+1, cos cx) + c

2 cos c
(Pl+1, sin cx)

= 1 +
(
l + 3

2

)√
πc

2
Jl+3/2(c) ×

{
(−1)l/2

cos c , if l is even,
(−1)(l−1)/2

sin c , if l is odd.

With this, we can compute the highly oscillatory integrals accurately. 
�
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Fig. 1 Test for (3.30). Left c = 35π , right c = 50π

Remark 3.2 We point out that the Legendre–Galerkin method using the basis form by the
integrated Legendre polynomials in (2.11), leads to sparse linear system, whose condition
number behaves like O(c2), to solve (cf. [16]). However, the use of generalized PSWFs leads
to a direct solution. Moreover, the new approximation enjoys spectral accuracy (see Sect. 4)
and has a much faster convergence rate than the Legendre approximation (see Fig. 1).

We also remark that the use of the differentiation scheme in [13] results in dense matrix
systems, and also additional efforts are needed to precompute the basis functions to incor-
porate boundary conditions. 
�
3.3 Numerical Results

In what follows, we present some numerical results obtained by the “explicit” formulas in
Proposition 3.1 and Proposition 3.2. We also consider an example of the Helmholtz problem
with variable coefficients. Here, we put the emphasis on the comparison with the spectral
scheme using integrated Legendre polynomials.

We first consider (3.1) with f (x) = sin x, which has the exact solution:

u(x) = cos(cx) + sin(cx) − c sin(x)

c3 − c
, c > 1. (3.30)

Note that it does not meet the homogeneous Dirichlet boundary conditions, so we subtract
u∗(x) = u(−1)ψ(−1)

− (x)+u(1)ψ(−1)
+ (x), from the solution and then derive fromProposition

3.1 the numerical solution:

uN (x) = u∗(x) +
N−2∑
n=0

f̆n
σn

ψ(−1)
n (x). (3.31)

In Fig. 1, we plot the logarithm of the maximum point-wise errors for the usual Legendre–
Galerkin method, and the new generalized PSWF-Galerkin method for c = 35π (left) and
c = 50π (right). Here, N is paired up with c by the rule in Sect. 2.3 (cf. (2.29)) with different
ε ∈ [10−14, 10−2], and the number of integrated Legendre basis functions is N − 1.

Some observations from Fig. 1 are in order.

(i) The new generalized PSWFs offer a much more accurate approximation than the Legen-
dre polynomials. As expected, the error curve of Legendre approximation plunges into
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Fig. 2 Test for (3.32) with c = 30π . Left Logarithm of the maximum point-wise errors of Legendre and
generalizedPSWF-Galerkinmethods.RightThe real part of the numerical solutionwith N = 70 bygeneralized
PSWF approximation against the exact solution

the exponential decaying region roughly when N > c.However, the generalized PSWFs
decays exponentially even for much smaller N .

(ii) The errors of the generalized PSWF approximation is controlled by the error tolerance
ε. We shall make a rigorous justification of this in the forthcoming section.

We next test an example related to (3.22):

− u′′ − c2u = e−x2/100e25x i, x ∈ (a, b); u(a) = e−ic, u′(b) − ic u(b) = 0,
(3.32)

whose exact solution can be evaluated by the solution formula for a second-order ordinary
differential equation. Then we can directly compute the numerical solution by using (3.25)–
(3.26).

In Fig. 2 (left), we make a comparison of convergence behaviour as in Fig. 1, where
a = 0.5, b = 2.5, c = 30π, and the optimal N corresponding to various ε ∈ [10−14, 10−2]
is identified by the rule in (2.29) as before. In Fig. 2 (right), we plot the real part of the
numerical solution by generalized PSWFs with N = 70 (note: the maximum point-wise
error is 4.91 × 10−10) against the exact solution. Once again, we observe that one needs
significantly smaller N to achieve a similar accuracy, and the error of the new scheme is
actually controlled by ε. Thus, the generalized PSWFs enjoy a much higher resolution for
highly oscillatory waves.

Finally, we consider the Bessel-type equation:

− r2
d2v

dr2
− r

dv

dr
+ (n2 − k2r2)v = f (r), r ∈ (a, b),

v(a) = va, v′(b) − ik v(b) = h,

(3.33)

where a > 0 and n = 0,±1, . . .. It arises from acoustic scattering problemswith a cylindrical
scatterer (cf. [16,21]). We make a change of variable to remove the first-order derivative (cf.
[21]), that is,

r = a + x + 1

2
(b − a), u(x) = √

r v(r), r ∈ (a, b), x ∈ (−1, 1). (3.34)
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Fig. 3 Test for (3.33) with c = 111π. Left Logarithm of the maximum point-wise error of Legendre spectral
and generalized PSWFs-Galerkin methods. Right The numerical solution uN (with N = 248) of the general-
ized PSWF-Galerkin method against the exact solution in [0.2, 1.2]. Note that the maximum point-wise error
is 2.99 × 10−12

Then, we can convert (3.33) into

− u′′(x) − c2u(x) + s(x)u(x) = f̃ , x ∈ (−1, 1),

u(−1) = u−, u′(1) − η u(1) = h̃,
(3.35)

where f̃ (x) = f (r), and

c = b − a

2
k, s =

(
b − a

2

)2 4n2 − 1

4r2
, u− = √

a va, h̃ = b − a

2

√
b h,

η =
(
ik + 1

2b

)
b − a

2
.

It is clear that we can subtract u−ψ
(−1)
− from the solution u and then the boundary condition

at x = −1 becomes homogeneous. Assuming u− = 0, we can obtain a Galerkin scheme
similar to (3.23) but with the extra term from s(x)u, which can be accurately evaluated by a
Jacobi–Gauss quadrature rule with the weight function (1− x2). Thanks to Theorem 2.2, the
matrix in the Galerkin scheme of the “leading” part: −v′′ − c2v is diagonal like the previous
two cases. Thus, robust iterative solvers can be applied.

In the computation, we take the exact solution: v(r) = J (1)
n (cr) in (3.33), and set n =

1, a = 0, b = 2.2 and c = 111π. We report the results in Fig. 3 with a setting very
similar to that in Fig. 2. Note that in the right figure, we only depict the solutions over the
interval [0.2, 1.2] for better zooming in the oscillatory solutions. Indeed, we observe the same
convergence behaviour as the previous two cases, even for variable coefficient problems and
high wavenumbers.

3.4 Approximability to Spectrum of Laplacian

To have some insights into the approximability of the new basis (in comparison with polyno-
mials again), we next study the generalized PSWF approximation of the Laplacian eigenvalue
problems as in [13,25]. Consider

− �u = μ u in � = (−1, 1)d , d = 1, 2; u|∂� = 0, (3.36)
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which has the eigen-pairs (μk, uk) or (μi j , ui j ), respectively:

(i) for d = 1,

μk = k2π2

4
, uk(x) = sin

kπ(x + 1)

2
, k ≥ 1; (3.37)

(ii) for d = 2,

μi j = (i2 + j2)π2

4
, ui j (x, y) = sin

iπ(x + 1)

2
sin

jπ(y + 1)

2
, i, j ≥ 1. (3.38)

The corresponding discrete eigen-problems are

(i) for d = 1,

Find (μ̃, û) such that Sû = μ̃Mû or �û = (μ̃ − c2)Mû, (3.39)

where û = (û0, . . . , ûN−2)
t and the (discrete) eigenfunctions are computed by

uN (x) =
N−2∑
n=0

ûnψ
(−1)
n (x). (3.40)

(ii) for d = 2,
Find (μ̃, ̂U) such that ŜUM + M̂US = μ̃M̂UM,

or �̂UM + M̂U� = (μ̃ − 2c2)M̂UM,
(3.41)

where ̂U = (ûi j )0≤i, j≤N−2 and the (discrete) eigenfunctions are computed by

uN (x, y) =
N−2∑
i, j=0

ûi jψ
(−1)
i (x)ψ(−1)

j (y). (3.42)

We compare the new schemewith the Legendre–Galerkinmethod and examine the relative
errors:

ek = |μ̃k − μk |
|μk | , 1 ≤ k ≤ (N − 1)d , d = 1, 2,

where in the two-dimensional case, we arrange the eigenvalues in ascending order.
In Fig. 4 (left), we depict the relative errors between the discrete and continuous eigenval-

ues obtained by two methods for d = 1, where c = 600π and the corresponding N = 1307
(obtained by the rule with ε = 10−14 in Sect. 2.3). According to [25,27], there are about 2/π
portion of “trusted” eigenvalues for the polynomial spectral method in 1D, where “trusted”
means at least O(N−1) accuracy. In a striking contrast, the generalized PSWF approximation
leads to a portion of about 94% “trusted” eigenvalues. In Table 1, we tabulate the percent-
ages of “trusted” discrete eigenvalues obtained by two methods for many more N . Observe
again that the generalized PSWF method leads to a significant higher portion of “trusted”
eigenvalues. Based on the argument in [25], the generalized PSWFs have a better resolution
of waves with fewer number of points per wavelength than polynomials.

In Fig. 4 (right), we plot {ek} against k for d = 2, where (c, N ) = (2980, 2048) with
a total of about 106 discrete eigenvalues. As with [27], about 40.62% discrete eigenvalues
are “trustable” for the Legendre approximation. The portion increases to 89.99% for the
generalized PSWF approximation.
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Fig. 4 Relative errors {ek } for k = 1, 2, . . . , (N −1)d between the discrete and exact eigenvalues. Left d = 1
and (c, N ) = (600π, 1307). Right d = 2 and (c, N ) = (2980, 2048). Here, ε = 10−14 in the rule of pairing
up (c, N )

Table 1 Comparison of
percentage of “trusted”
eigenvalues

N Generalized PSWFs Legendre

c Percentage Percentage (≈ 2/π)

67 20π 52/67 ≈ 77.6% 42/67 ≈ 62.7%

101 35π 82/101 ≈ 81.1% 62/98 ≈ 63.3%

454 200π 417/454 ≈ 91.9% 289/454 ≈ 63.6%

668 300π 621/668 ≈ 93.0% 425/668 ≈ 63.6%

882 400π 825/882 ≈ 93.5% 561/882 ≈ 63.6%

987 450π 926/987 ≈ 93.8% 628/987 ≈ 63.6%

1093 500π 1028/1093 ≈ 94.0% 696/1093 ≈ 63.6%

1307 600π 1232/1307 ≈ 94.3% 832/1307 ≈ 63.6%

Remark 3.3 The generalized PSWF-Galerkin approximation enjoys a performance very
similar to the PSWF-based differentiation scheme in Kong and Rokhlin [13] for the
one-dimensional eigenvalue problem. However, it is noteworthy that the modal PSWF
basis in [13] was constructed by using more points than the number of modes, and a
Gram–Schmidt orthogonalization was implemented to incorporate homogeneous boundary
conditions. 
�

4 Error and Convergence Analysis

In this section,we conduct error estimates of approximation by generalized PSWFswhich can
provide theoretical justification of convergence behaviours observed in the previous section.

The following bound of {βn
k } (defined in (2.16)) plays an important role in the analysis. It

is noteworthy that the argument of the analysis follows that of [12, Thm 1], but we correct
the bound in [12, (52)] from (2/qn)k to (2/

√
qn)k , and improve the constant in the upper

bound for α = 1. In view of this, we therefore provide its proof in Appendix 1.
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Lemma 4.1 Denote

qn := q(n, c) = c2
/
χ(1)
n (c), n ≥ 0, c > 0. (4.1)

If qn ≤ 1, then for all positive integer k such that k(k + 3) ≤ χ
(1)
n (c) and n + k is even, we

have

|βn
0 | ≤

√
3

2
λ(1)
n (c); |βn

k | ≤ ϒ
5/2,1
k

2√
π

(
2√
qn

)k

λ(1)
n (c), k ≥ 1, (4.2)

where ϒ
5/2,1
k is defined in (4.4). Note that if n + k is odd, then βn

k = 0.

Remark 4.1 In the proofs, we need to use the property of the Gamma function ([1,28]): for
any constants a, b, we have that for n ≥ 1, n + a > 1 and n + b > 1,

�(n + a)

�(n + b)
≤ ϒa,b

n na−b, (4.3)

where

ϒa,b
n = exp

(
a − b

2(n + b − 1)
+ 1

12(n + a − 1)
+ (a − b)2

n

)
. (4.4)

4.1 Main Result

We state the main result as follows.

Theorem 4.2 Let u and uN be the solutions of (3.1) and (3.4), respectively. For c > 0, let
qN−1 := c2/χ(1)

N−1(c) ≤ 1, and M(≤ N − 1) be the largest integer such that

M(M + 3) + c2 ≤ χ
(1)
N−1(c). (4.5)

If (1 − x2)l/2 f (l) ∈ L2
ω1

(I ) for 1 ≤ l ≤ r ∈ N, then we have that for 1 ≤ r ≤ M,

‖u−uN‖ω−1 ≤C

⎧⎨
⎩L−r

(
N−2∑
n=0

1

|σn |2
)1/2

+M−r

( ∞∑
n=N−1

1

|σn |2
)1/2

⎫⎬
⎭
∥∥∥(1 − x2)r/2 f (r)

∥∥∥
ω1

+ C

⎧⎨
⎩

∞∑
n=N−1

(
λ

(1)
n (c)

σn

)2 (
2√
qn

)2M
⎫⎬
⎭

1/2

‖ f ‖ω1 ,

(4.6)
where L + 1 is the number of quadrature nodes used in the interpolation of f (cf. (3.15)),
σn = χ

(−1)
n (c) − c2 (�= 0) is as defined in (3.9), and C is a generic positive constant

independent of L , N , M, c, f and u.

Proof Like (3.13), we can write the solution u of (3.1) as

u(x) =
∞∑
n=0

f̂n
σn

ψ(−1)
n (x), where f̂n := ( f, ψ(−1)

n ) = ( f, ψ(1)
n )ω1 . (4.7)
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Then by (3.13) and the orthogonality (2.5), we have

‖u − uN‖2ω−1
=
∥∥∥∥∥
N−2∑
n=0

f̂n − f̆n
σn

ψ(−1)
n (x) +

∞∑
n=N−1

f̂n
σn

ψ(−1)
n (x)

∥∥∥∥∥
2

ω−1

=
N−2∑
n=0

∣∣∣∣∣
f̂n − f̆n

σn

∣∣∣∣∣
2

+
∞∑

n=N−1

∣∣∣∣∣
f̂n
σn

∣∣∣∣∣
2

:= I1 + I2,

(4.8)

where f̆n := (I
(1)
L f, ψ(1)

n )ω1 (cf. (3.16)). Next, we estimate the two terms I1 and I2 in (4.8),
separately.

Firstly, using the Cauchy–Schwarz inequality, (2.7) and the fundamental approximation
result on Jacobi–Gauss interpolation (cf. [15, Thm. 3.41]), we derive that for 1 ≤ r ≤ N ,

I1 =
N−2∑
n=0

∣∣∣∣∣
f̂n − f̆n

σn

∣∣∣∣∣
2

=
N−2∑
n=0

∣∣∣( f − I
(1)
L f, ψ(1)

n )ω1

∣∣∣2
|σn |2 ≤

N−2∑
n=0

‖ f − I
(1)
L f ‖2ω1

‖ψ(1)
n ‖2ω1

|σn |2

=
(
N−2∑
n=0

1

|σn |2
)

‖ f − I
(1)
L f ‖2ω1

≤ CL−2r

(
N−2∑
n=0

1

|σn |2
)

‖(1 − x2)r/2 f (r)‖2ω1
.

(4.9)
Now, we estimate | f̂n | (with n ≥ N −1) involved in I2 in (4.8). Given M satisfying (4.5),

let fM be the truncated Gegenbauer series:

fM (x) := (π
(1)
M f )(x) =

M∑
k=0

ĝk P
(1)
k (x), where ĝk =

∫ 1

−1
f (x)P(1)

k (x)ω1(x) dx . (4.10)

Then we have

| f̂n | ≤
∣∣∣∣
∫ 1

−1
( f − fM )ψ(1)

n ω1dx

∣∣∣∣+
∣∣∣∣
∫ 1

−1
fMψ(1)

n ω1dx

∣∣∣∣ := J
(1)
n,M + J

(2)
n,M , n ≥ N − 1.

(4.11)
We obtain from the Cauchy–Schwartz inequality and Jacobi polynomial approximation result
(cf. [15, Thm. 3.35]),

J
(1)
n,M =

∣∣∣∣
∫ 1

−1
( f − fM )ψ(1)

n ω1 dx

∣∣∣∣≤‖ f −π
(1)
M f ‖ω1‖ψ(1)

n ‖ω1 ≤CM−r
∥∥∥(1 − x2)r/2 f (r)

∥∥∥
ω1

.

(4.12)
Thus, it remains to estimate J(2)

n,M in (4.11). By (4.10), (2.7) and (2.16),

J
(2)
n,M =

∣∣∣∣
∫ 1

−1
fMψ(1)

n ω1dx

∣∣∣∣ =
∣∣∣∣∣
M∑
k=0

ĝk

∫ 1

−1
P(1)
k ψ(1)

n ω1dx

∣∣∣∣∣

≤
(

M∑
k=0

(ĝk)
2

) 1
2
(

M∑
k=0

(∫ 1

−1
P(1)
k ψ(1)

n ω1dx

)2
) 1

2

≤ ‖ f ‖ω1

(
M∑
k=0

(βn
k )2

) 1
2

.

For fixed c > 0, we know that χ(1)
n (c) increases with respect to n, so we have from (4.5)

that

M(M + 3) ≤ χ
(1)
N−1 − c2 ≤ χ(1)

n (c) − c2, ∀ n ≥ N − 1.
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Wefirst assume that both n andM are even. Then by (2.16), {βn
2k}M/2

k=0 (note thatM ≤ N−1 ≤
n) are non-zero, so we have from Lemma 4.1 that for all n ≥ N − 1,

M∑
k=0

(βn
k )2 =

M/2∑
k=0

(βn
2k)

2 ≤ C
{
λ(1)
n (c)

}2 M/2∑
k=0

(
16

q2n

)k

≤ C
{
λ(1)
n (c)

}2 1 − (16/q2n )
M/2+1

1 − (16/q2n )

= C
{
λ(1)
n (c)

}2 ( 4

qn

)M
(16/q2n ) − (q2n/16)

M/2

(16/q2n ) − 1
≤ C

{
λ(1)
n (c)

}2 ( 2√
qn

)2M

,

(4.13)
where we have used the condition qn ≤ 1 to derive the last inequality. Similarly, we can show
(4.13) is valid when both n and M are odd.

With the above bounds for (4.11), we can estimate I2 in (4.8) as follows:

I2 =
∞∑

n=N−1

∣∣∣∣∣
f̂n
σn

∣∣∣∣∣
2

≤ 2
∞∑

n=N−1

∣∣∣∣∣
J
(1)
n,M

σn

∣∣∣∣∣
2

+ 2
∞∑

n=N−1

∣∣∣∣∣
J
(2)
n,M

σn

∣∣∣∣∣
2

≤ CM−2r

( ∞∑
n=N−1

1

σ 2
n

)∥∥∥(1 − x2)r/2 f (r)
∥∥∥2

ω1

+ C

⎧⎨
⎩

∞∑
n=N−1

(
λ

(1)
n (c)

σn

)2 (
2√
qn

)2M
⎫⎬
⎭ ‖ f ‖2ω1

.

(4.14)

Then the estimate (4.6) follows from (4.8), (4.9) and (4.14). 
�
4.2 Asymptotic Estimates

Observe from (4.6) that the upper bound depends on M, qn, λ
(1)
n etc.. In order to have more

insights into the estimates, it is of practical interest to consider

c = κn with 0 < κ <
4

e
(≈ 1.4715) <

π

2
, (4.15)

within the “transition bandwidth” (cf. Remark 2.2), andλ
(1)
n (c) begins to plunge into the range

of exponential decay (cf. (2.31)). It is noteworthy that the constant 4
e is in fact the optimal

constant ensuring the super-exponential decay rate of the λ
(1)
n (c) (cf. [11, Corollary 5]).

Note that for fixed c and large n, we have the asymptotic estimate (cf. [23, (3.59)]):

χ(1)
n (c) = χ̃ (1)

n (c) + O

(
c2

n3

)
, χ̃ (1)

n (c) := n(n + 3) + c2

2
+ c2(c2 + 28)

32n2
. (4.16)

In fact, under (4.15), χ̃ (1)
n (c) offers a quite satisfactory approximation to χ

(1)
n (c) for large n.

As some numerical illustrations, we tabulate in Table 2 the order in c:

χ(1)
n (c) = χ̃ (1)

n (c) + O(cτ ), (4.17)

and the quantity qn in (4.1) for several n and various κ , satisfying (4.15). Observe that τ < 2
and qn < 1 in all cases.

For 0 < κ < 4
e , we obtain from (4.17) that

χ(1)
n (c) = W (κ)n2 + O(nτ ), 1 ≤ τ < 2; W (t) = 1 + t2

2
+ t4

32
, (4.18)
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Table 2 The order τ with
different n and κ

n κ qn τ n κ qn τ

64 1 0.63 0.38 1024 1 0.65 0.91

64 1.1 0.71 0.39 1024 1.1 0.73 1.03

64 1.2 0.79 0.31 1024 1.2 0.84 1.12

64 1.4 0.91 0.59 1024 1.4 0.93 1.29

512 1 0.65 0.76 2048 1 0.65 1.03

512 1.1 0.73 0.90 2048 1.1 0.73 1.12

512 1.2 0.80 1.01 2048 1.2 0.80 1.20

512 1.4 0.93 1.21 2048 1.4 0.92 1.36

for large n, so we have

σn = χ(1)
n (c) + 2 − c2 = S(κ)n2 + O(nτ ); S(t) := 1 − t2

2
+ t4

32
. (4.19)

Note that S(t) is monotonically decreasing for 0 < t = κ < 4/e, so we have

0.065 ≈ S(4/e) < S(κ) < S(0) = 1, for 0 < κ <
4

e
. (4.20)

Moreover, by (2.31) and (4.15), we have that for n ≥ N − 1,

λ(1)
n (c) ≈ e

4

√
2π

c

(
ce

4n + 6

)n+ 1
2 ≈ e

4

√
2π

κn

(κe

4

)n+ 1
2 =

( e
4

)3/2√2π

n

(κe

4

)n
.

(4.21)
We are now ready to estimate the last term in (4.6). Letting M ≤ δ(N − 1) for some

δ < 1, we have that for all n ≥ N − 1,
(

λ
(1)
n (c)

σn

)2 (
2√
qn

)2M

≤
( e
4

)3 2π

S2(κ)n5

(
κ2e2

16

)n (
4W (κ)

κ2

)M

≤
( e
4

)3 2π

S2(κ)n5

{
κ2e2

16

(
4W (κ)

κ

)δ
}n

=
( e
4

)3 2π

S2(κ)n5
{G(κ, δ)}n ,

(4.22)

where we denoted

G(κ, δ) := κ2e2

16

(
4W (κ)

κ2

)δ

= e24δ−2κ2(1−δ)W δ(κ), (4.23)

for κ ∈ (0, 4/e) and δ ∈ (0, 1).
In Fig. 5, we depict G(κ, δ) for various κ and δ ∈ (0, 1), which is an increasing function

of δ. We also observe that for fixed δ, G(κ, δ) is ascending with respect to κ. In Table 3, we
list the values of δ∗ solved from G(κ, δ∗) = 1 for various κ < 4/e(≈ 1.4715). Note that for
κ = 4/e,G(κ, δ∗) = 1 implies δ∗ = 0. Thus, for 0 < κ < 4/e, we choose δ < δ∗ < 1 (so
M < δ(N − 1)), and by (4.23), there exists 0 < p < 1, such that G(k, δ) ≤ p2. Then by
(4.22), (

λ
(1)
n (c)

σn

)2 (
2√
qn

)2M

≤ C

n5
p2n, n ≥ N − 1. (4.24)
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Fig. 5 Graphs of G(κ, δ) for various κ

Table 3 Various (κ, δ∗) such
that G(κ, δ∗) = 1

G(κ, δ∗) κ δ∗

1 0.5 0.75

1 0.7 0.64

1 0.8 0.58

1 0.9 0.50

1 1 0.43

1 1.1 0.34

1 1.2 0.25

1 1.3 0.16

1 1.4 0.07

Using (4.19), we can estimate the bound of the following factor in (4.6) as

∞∑
n=N−1

1

|σn |2 ≤ C
∞∑

n=N−1

1

n4
≤ CN−3. (4.25)

In summary, with the above analysis, we can obtain from Theorem 4.2 the following more
explicit estimate.

Corollary 4.3 Let c = κN with 0 < κ < 4/e. Then there exists a constant 0 < p < 1, such
that

‖u − uN‖ω−1 ≤ C

⎧⎨
⎩L−r

(
N−2∑
n=0

1

|σn |2
)1/2

+ N−3/2−r

⎫⎬
⎭

×
∥∥∥(1 − x2)r/2 f (r)

∥∥∥
ω1

+ CN−2 pN‖ f ‖ω1 ,
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Fig. 6 The maximum and minimum eigenvalues of the stiffness matrix S and mass matrix M with c = κN
for various κ

where σn = χ
(−1)
n (c) − c2(�= 0) is as defined in (3.9), and C is a generic positive constant

independent of N , L , c, f and u.

4.3 Concluding Remarks

To conclude the paper, we reiterate some important contributions of the paper, and touch on
the extension to generalized PSWFs of negative integer order.

It is seen that the use of generalized PSWFs of order −1 leads to optimal and spectrally
accurate schemes for 1D Helmholtz problems with arbitrary high wave-numbers. Compared
with the spectral differentiation approach based on PSWFs of order zero in [13], our approach
can naturally build in boundary conditions, leads to a diagonal linear system for theHelmholtz
operator, and enjoys much higher percentage of “trusted” discrete eigenvalues than the poly-
nomial approach (so the approximability of the newbasis as good as that in [13]). The stiffness
and mass matrices have the attractive relation (3.8), so the algorithm can be simplified with
a much better conditioning. In fact, the conditioning of both the stiffness matrix and mass
matrix is O(c2).As an illustration, we plot in Fig. 6 (left) the smallest and largest eigenvalues
of stiffness matrix S in (3.8) for various c = κN . Observe that for each κ , the largest eigen-
value grows like c2, while the smallest one remains a constant. In view of the relation (3.8),
the largest eigenvalue of the mass matrix M should remain a constant, while the smallest
eigenvalue decays at a rate of c−2. Indeed, we can observe this from Fig. 6(right). As a result,
the condition numbers of the stiffness matrix S and mass matrix M behave like O(c2) for
c = κN .

In fact, we can define the generalized PSWFs of negative integer order −k with k ≥ 1,
denoted by {ψ(−k)

n (x; c)}, as the eigenfunctions of the operator in (2.6) (but with α = −k):

D (−k)
c [u](x) = χ u(x), x ∈ (−1, 1); u(l)(±1) = 0, l = 0, 1, . . . , k − 1.

Then we can employ the basis for the 2k-th order BVPs. In particular, when c = 0, it reduces
to the optimal spectral algorithms based on generalized Jacobi polynomials in [9]. Moreover,
we can extend the idea to introduce (anisotropic) generalized PSWFs ψ

(−k,−l)
n (x; c) from

the Jacobi polynomials with negative integer parameters for odd-order BVPs as in [9]. We
leave these extensions to the interested readers.
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Appendix 1: Proof of Lemma 4.1

We first recall the following bound in [12, Appendix].

Proposition 4.1 Let qn be defined as in (4.1). If qn ≤ 1, then for all positive integer k such
that k(k + 3) ≤ χ

(1)
n (c) and n + k is even, we have

|∂kxψ(1)
n (0)| ≤ √

2
(
χ(1)
n (c)

)k/2
. (4.26)

Note that if n + k is odd, then ∂kxψ
(1)
n (0) = 0.

Proposition 4.2 Let {βn
k } be defined in (2.16). For given c > 0 and n ∈ N, let

k(k + 3) + c2 ≤ χ(1)
n (c). (4.27)

We have

(i) If both n and k are even, then βn
0 , βn

2 , βn
4 , . . . have the same sign, and |βn

k | ≤ |βn
k+2| for

all k = 0, 2, 4, . . . , satisfying (4.27);
(ii) If both n and k are odd, then βn

1 , βn
3 , βn

5 , . . . have the same sign, and |βn
k | ≤ |βn

k+2| for
all k = 1, 3, 5, . . . , satisfying (4.27).

Note that if n + k is odd, then βn
k = 0.

Proof From (2.16) and the parity of ψ
(1)
n (x) and P(1)

k (x), we have βn
k = 0, if n + k is odd.

We first justify the statement (i). By (2.18),

βn
k+2 = 1

F(k + 2)c2

{(
χ(1)
n (c) − k(k + 3) − G(k)c2

)
βn
k − F(k)c2βn

k−2

}
, k ≥ 0,

(4.28)
with βn−2 = βn−1 = 0, where

F(k) =
√

(k − 1)k(k + 1)(k + 2)

(2k − 1)(2k + 1)2(2k + 3)
, G(k) = 2k(k + 3) + 1

(2k + 1)(2k + 5)
. (4.29)

One verifies that for k ≥ 2,

1

5
<

(k − 1)(k + 2)

(2k + 1)2
< F(k) =

√
k(k + 1)

(2k + 1)2

√
(k − 1)(k + 2)

(2k − 1)(2k + 3)
<

√
1

4

√
1

4
= 1

4
, (4.30)

and for k ≥ 1,

2

5
≤ k

2k + 1
<

2k(k + 3)

(2k + 1)(2k + 5)
< G(k) <

(2k + 1)(k + 5
2 )

(2k + 1)(2k + 5)
= 1

2
. (4.31)

We proceed with the proof by induction. For k = 0, we find from (4.28) that

βn
2 = 5

2c2

√
7

2

(
χ(1)
n − c2

5

)
βn
0 . (4.32)

It is evident that with a looser condition than (4.27), the factor in front of βn
0 is positive, so

βn
2 has the same sign as βn

0 . Moreover, by (4.27) with k = 0,

|βn
2 | = 5

2c2

√
7

2

(
χ(1)
n − c2

5

)
|βn

0 | ≥ 2

√
7

2
|βn

0 | ≥ |βn
0 |, (4.33)
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We next assume that βn
k−2β

n
k > 0 and |βn

k−2| ≤ |βn
k | for all k ≥ 2. Then we derive from

(4.28), (4.30)–(4.31) and (4.27) that

βn
k βn

k+2 = 1

F(k + 2)c2

{(
χ(1)
n (c) − k(k + 3) − G(k)c2

)
(βn

k )2 − F(k)c2βn
k−2β

n
k

}

≥ 1

F(k + 2)c2

{
χ(1)
n (c) − k(k + 3) − G(k)c2 − F(k)c2

}
(βn

k )2

>
1

F(k + 2)c2

{
χ(1)
n (c) − k(k + 3) − 3

4
c2
}

(βn
k )2 > 0,

(4.34)
which impliesβn

k+2 βn
k > 0.Now,we show that |βn

k | ≤ |βn
k+2|.We show this by contradiction.

Assuming that |βn
k | > |βn

k+2|, we find from (4.34) and (4.30) that

0 >
1

F(k + 2)c2

{
χ(1)
n (c) − k(k + 3) − 3

4
c2
}

|βn
k | − |βn

k+2|

>
1

F(k + 2)c2

{
χ(1)
n − k(k + 3) − 3c2

4
− F(k + 2)c2

}
|βn

k |

>
1

F(k + 2)c2

{
χ(1)
n − k(k + 3) − c2

}
|βn

k |,

(4.35)

which contradicts to (4.27). Thus, we have |βn
k | ≤ |βn

k+2| for even n and k.
The statement (ii) can be justified similarly. In fact, the derivations in (4.34)–(4.35) also

hold for odd n, k, so it suffices to verify the initial of the induction. Like (4.32)–(4.33), we
can show that

βn
3 = 7

2c2

√
3

2

(
χ(1)
n − 4 − 3

7
c2
)

βn
1 ,

and

|βn
3 | = 7

2c2

√
3

2

(
χ(1)
n − 4 − 3

7
c2
)

|βn
1 | ≥ √

6|βn
1 | ≥ |βn

1 |,

which implies βn
3 has the same sign as βn

1 , and |βn
1 | ≤ |βn

3 |. Then, we use (4.34)–(4.35) to
complete the proof of Proposition A.2. 
�

Proof of Lemma 4.1 With the above propositions, we are now ready to prove Lemma 4.1. 
�

The bound for βn
0 follows directly from (2.23) and (4.26) with k = 0.

We carry out the proof by estimating the moment:
∫ 1
−1 t

mψ
(1)
n (t)ω1(t)dt. Note that

t j =
j∑

k=0

p̂ jk P
(1)
k (t), where p̂ jk =

∫ 1

−1
t j P(1)

k (t)(1 − t2)dt, (4.36)

where we can find the formula of p̂ jk from [12, (16)-(17)], and have

p̂ jk = 0, if k + j is odd; p̂ jk > 0, if k + j is even; p̂ j j =
√
2π(2 j + 3) j !( j + 2)!
2 j+2�( j + 5/2)

.

(4.37)
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Thus, we obtain from (2.16) that

∫ 1

−1
t jψ(1)

n (t)ω1(t)dt =
j∑

k=0

p̂ jkβ
n
k =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, if n + j is odd,
j/2∑
k=0

p̂ j,2k βn
2k, if n, j are even,

( j−1)/2∑
k=0

p̂ j,2k+1β
n
2k+1, if n, j are odd,

(4.38)

where we used the property: βn
k = 0, if k + n is odd.

On the other hand, taking the j th derivative at x = 0 on both sides of (2.8) with α = 1,
yields ∫ 1

−1
t j ψ(1)

n (t)(1 − t2) dt = (−1) j in+ j c− j λ(1)
n (c) ∂

j
x ψ(1)

n (0), (4.39)

which vanishes, if j + n is odd.
Thus, we have from Lemma A.2 (i), and (4.37)–(4.39) that for even n, j,∣∣∣∣∣∣

j/2∑
k=0

p̂ j,2k βn
2k

∣∣∣∣∣∣ =
j/2∑
k=0

p̂ j,2k
∣∣βn

2k

∣∣ = c− jλ(1)
n (c)

∣∣∣∂ j
x ψ(1)

n (0)
∣∣∣ , (4.40)

and further by (4.26),

p̂ j j |βn
j | ≤

j/2∑
k=0

p̂ j,2k
∣∣βn

2k

∣∣ = c− jλ(1)
n (c)|∂ j

x ψ(1)
n (0)| ≤ √

2

(
1√
qn

) j

λ(1)
n (c). (4.41)

Similarly, for odd n, j,

p̂ j j |βn
j | ≤

( j−1)/2∑
k=0

p̂ j,2k+1
∣∣βn

2k+1

∣∣ = c− jλ(1)
n (c)|∂ j

x ψ(1)
n (0)| ≤ √

2

(
1√
qn

) j

λ(1)
n (c).

(4.42)
Thus, by (4.37), and (4.3)–(4.4),

p̂−1
j j = 2 j+2√ j√

2π(2 j + 3)

√
ϒ

5/2,1
j ϒ

5/2,3
j ≤ ϒ

5/2,1
j

2 j+1

√
π

. (4.43)

Then we obtain the bound (4.2).
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