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Abstract
It is quite common that a nonlinear partial differential equation (PDE) admitsmultiple distinct
solutions and each solution may carry a unique physical meaning. One typical approach for
finding multiple solutions is to use the Newton method with different initial guesses that
ideally fall into the basins of attraction confining the solutions. In this paper, we propose a
fast and accurate numericalmethod formultiple solutions comprised of three ingredients: (i) a
well-designed spectral-Galerkin discretization of the underlying PDE leading to a nonlinear
algebraic system (NLAS) with multiple solutions; (ii) an effective deflation technique to
eliminate a known (founded) solution from the other unknown solutions leading to deflated
NLAS; and (iii) a viable nonlinear least-squares and trust-region (LSTR) method for solving
the NLAS and the deflated NLAS to find the multiple solutions sequentially one by one. We
demonstrate through ample examples of differential equations and comparison with relevant
existing approaches that the spectral LSTR-Deflation method has the merits: (i) it is quite
flexible in choosing initial values, even starting from the same initial guess for finding all
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multiple solutions; (ii) it guarantees high-order accuracy; and (iii) it is quite fast to locate
multiple distinct solutions and explore new solutions which are not reported in literature.

Keywords Multiple solutions · Trust-region method · Deflation · Legendre–Galerkin
method

Mathematics Subject Classification 65N35 · 65N22 · 65F05 · 65L10

1 Introduction

Many nonlinear differential equations arisen from mathematical modeling in physics,
mechanics, biology, energy and engineering, admit multiple solutions and each may carry its
own physics and unique dynamics (see, e.g., [14, 21, 27]). Most problems, if not all, do not
have explicit solutions, so the development of efficient and accurate numerical methods for
finding multiple solutions becomes a topic of longstanding interest.

In this paper, we intend to identify multiple solutions of the nonlinear ordinary differential
equations

F(x, u, u′, · · · , u(n)) = 0, x ∈ �, (1.1)

and the second-order nonlinear elliptic problems

�u + F(x, y, u) = 0, (x, y) ∈ �, (1.2)

supplementedwith some boundary conditions,where� is a bounded domain inRd , d = 1, 2,
and the nonlinear functional F has a regularity to be specified later. We refer to [3, 20, 22,
24] for the study of the existence and multiplicity of the solutions to such problems.

Before we introduce our approach, we feel compelled to elaborate on the relevant back-
ground andmotivations. Choi andMckenna [8] proposed themountain pass algorithm (MPA)
for (1.2). As commented in Xie, Chen and Yu [31], the MPA is feasible for finding two solu-
tions of mountain pass type with Morse index 1 or 0. However, according to Ding, Costa and
Chen [11], the MPA may fail to locate the sign-changing solutions, so they proposed a high
linking algorithm (HLA) to compute such solutions with some inspirations from [29]. Later,
Li and Zhou [19] developed the minimax algorithm (MNA) for multiple solutions for which
we refer to [7, 35–37, 40] for more recent advancements along this line. It is noteworthy that
these methods are more or less based on the variational structures of the underlying nonlin-
ear differential equations. The second category of the existing methods is to discretize the
differential equation by a numerical method (e.g., finite difference, finite element or spectral
method) and then search for multiple solutions of the resulting nonlinear algebraic system
(NLAS). In this regard, a search-extension method (SEM) was proposed in [5] for the semi-
linear PDEs with some improvements in [32, 33]. Roughly speaking, the SEM searches for
the starter from solving the companion linear problem (e.g., by the eigenfunction expansion
method) and then extend to solve the NLAS, e.g., by Newton iteration with the starter as
initial guess. Noticeably, a homotopy continuation method was introduced by Allgower et
al. [1, 2] for finding multiple solutions of the NLAS obtained from finite difference dis-
cretization of type (1.2). In general, in order to solve the NLAS: F(x) = 0, we consider
Hτ (x) = (1 − τ)F(x) + γ τG(x) = 0, where Hτ (x) is known as the homotopy function,
τ ∈ [0, 1] is the homotopy tracking number, and γ is a randomly chosen complex number.
Here, the starting system H1(x) = G(x) = 0 should be constructed which is expected to
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be easier to solve and closely related to the original NLAS. Then the homotopy systems
Hτ j (x) = 0 should be solved for various τ j from 1 to 0 using a suitable iterative method,
where τ can be viewed as an extra dimension. This technique has inspired some interesting
recent works, see, e.g., [18, 28, 39].

Thiswork ismostlymotivated byFarrell et al. [13]where a deflation technique andNewton
iteration were integrated to solve the NLAS resulted from finite element discretization of the
underlying PDE with multiple distinct solutions. Given a solution x1 of F(x) = 0, the
essence of deflation is to eliminate this known solution x1 and then continue to search for
a new solution by modifying the NLAS as G(x; x1) = 0, where G is properly constructed
so that G(x1; x1) �= 0. In a nutshell, the algorithm in [13] repeated this process and used
the Newton iteration for finding x1 and solving the deflated systems. In fact, the deflation
technique has its root in polynomial root-finding problems [16] and been extended by Brown
and Gearhart [4] for solutions of nonlinear algebraic systems. As we know, the Newton
iteration is sensitive to the initial guess and costly to compute the inverse of the Jacobian
matrix that become even severer when the NLAS are deflated. Indeed, the choice of good
initial inputs becomes ad hoc and problematic, and at times, this integrated algorithm fails
to converge.

We aim to overcome the sensitivity of initial guesses and substantially improve the effi-
ciency and accuracy of the deflation technique. Our proposal consists of the following
ingredients.

(i) We employ well-designed Legendre spectral-Galerkin methods to discretise (1.1) and
(1.2) that can guarantee a good approximability of the resulted NLAS to the original
differential equations with a relatively low computational cost.

(ii) We make use of the deflation technique to sequentially search for multiple solutions of
the NLAS.

(iii) We introduce the nonlinear least-squares trust-region method to solve the NLAS and the
deflated systems.

Accordingly, the proposed algorithm is dubbed as the spectral LSTR-Deflation method.
Compared with the existing methods, the main differences and advantages of our algorithm
reside in the following aspects.

• Finding multiple solutions based on the Newton method typically requires the attempt
of many different initial guesses that lie in different basins of attraction [13]. However,
the use of the LSTR method has a good convergence where the choices of initial inputs
are much more relaxed and fairly flexible at times. As the deflated systems turn out to
be more and more complicated, the LSTR method becomes vitally important to ensure
a good performance of the whole algorithm. This allows us to start even with the same
initial guesses for multiple solutions.

• Compare with several existing methods, the proposed approach is capable of finding new
solutions more efficiently and more quickly (see the examples in Sect. 3).

The remainder of this paper is organized as follows. In Sect. 2, we describe the spectral
LSTR-Deflation method for the model problem (1.2). In Sect. 3, we provide ample numerical
experiments to demonstrate the efficiency and accuracy of the algorithm. We then conclude
the paper with some remarks.
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2 The Legendre Spectral-Galerkin LSTR-DeflationMethod

In this section, we present the spectral LSTR-Deflation method for the model problem (1.2).
We start with its Legendre spectral-Galerkin discretisation that leads to the nonlinear linear
algebraic system to be solved. We then introduce the nonlinear least-squares trust-region
method for the NLAS, followed by the exposition of the deflation technique. Finally, we
summarise the whole algorithm.

2.1 Legendre Spectral-Galerkin Method for a Model Problem

As an illustrative example, we consider the nonlinear elliptic problem:

− �u + F(u) = f (x, y), (x, y) ∈ � := (−1, 1)2; u|∂� = 0, (2.1)

where F(z) is a smooth nonlinear function (e.g., a polynomial as in [?]), and f is continuous.
As the first step, we discretize (2.1) by using the Legendre spectral-Galerkin method [25].

LetPN be the set of the polynomials of degree atmost N , andP0
N = {φ ∈ PN : φ(±1) = 0}.

The spectral-Galerkin approximation is to find uN ∈ X0
N = (P0

N )2 such that

(∇uN ,∇vN ) + (IN F(uN ), vN ) = (IN f , vN ), ∀vN ∈ X0
N , (2.2)

where IN the Legendre–Gauss–Lobatto tensorial interpolation operator with N + 1 points
in each coordinate direction. As in [25], we introduce the basis of P0

N as follows

φk(x) = Lk+2(x) − Lk(x), 0 ≤ k ≤ N − 2,

and write

uN =
N−2∑

k, j=0

ûk jφk(x)φ j (y), U = (ûk j )k, j=0,1,··· ,N−2;

akj =
∫

I
φ′
j (x)φ

′
k(x)dx, A = (akj )k, j=0,1,··· ,N−2;

bkj =
∫

I
φ j (x)φk(x)dx, B = (bkj )k, j=0,1,··· ,N−2;

fk j = (IN f , φk(x)φ j (y)), gkj = (IN F(uN ), φk(x)φ j (y))k, j=0,1,··· ,N−2.

(2.3)

We obtain the nonlinear system

(A ⊗ B + B ⊗ A	)u = f − ĝ(u), (2.4)

where

u = (û00, û10, · · · , ûq0, û01, · · · , ûq1, · · · , û0q , · · · , ûqq)
	;

f = ( f00, f10, · · · , fq0, f01, · · · , fq1, · · · , f0q , · · · , fqq)
	;

ĝ(u) = (g00, g10, · · · , gq0, g01, · · · , gq1, · · · , g0q , · · · , gqq)
	.

Here ⊗ denotes the Kronecker product, i.e. A ⊗ B = (Abi j )i, j=0,1,··· ,q with q = N − 2.
The nonlinear system here in (2.4) will be solved by the trust-region method. Essentially,

we only need to evaluate ĝ(u) for given u that can be implemented efficiently by the pseduo-
spectral technique described in [25, Ch.4].

Remark 2.1 For the problem (1.1) with high-order derivatives, it is advantageous to use
spectral methods, which we shall describe in Sect. 3. 
�
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2.2 Nonlinear Least-Squares and Trust-RegionMethod

Formally, we write (2.4) as the following system of nonlinear equations:

F(x) = 0, F = (
F1, F2, · · · , Fn

)	
, (2.5)

with the unknown vector x = (x1, · · · , xn)	. We reformulate the zero-finding problem as
the optimisation problem:

min
x∈Rn

Q(x), Q(x) := 1

2

∥∥F(x)
∥∥2 = 1

2

n∑

i=1

F2
i (x), (2.6)

where ‖ · ‖ is the vector 2-norm. Denote the gradient and Hessian matrices by

g(x) := ∇Q(x) = J	(x)F(x),

G(x) := ∇2Q(x) = J	(x)J(x) + S(x),

where

J(x) = F′(x) = (∇F1(x),∇F2(x), · · · ,∇Fn(x))	, S(x) =
n∑

i=1

Fi (x)∇2Fi (x).

We resort to the trust-region method to solve the nonlinear least-squares minimization
problem (2.6). For this purpose, we introduce a region around the current best solution, called
the trust region (say of radius hk), and approximate the objective function by a quadratic form
which boils down to solving a sequence of trust-region subproblems:

min
s∈Bhk

q(k)(s) := Q(x(k)) + g(x(k))	s + 1

2
s	G(x(k))s, (2.7)

where the trust regionBhk := {s ∈ R
n : ‖s‖ ≤ hk}, and thematrices g(x(k)) and G(x(k)) are

the gradient and Hessian matrices at current point x(k), respectively. Let sk be the minimizer
of q(k)(s) in the trust-region of radius hk . Then we update x(k+1) = x(k) + sk . It is critical
to choose a proper radius hk . In general, when there is good agreement between q(k)(sk)
and the objective function value Q(x(k+1)), one should choose hk as large as possible. More
precisely, assuming that q(k)(0) �= q(k)(sk) (otherwise, sk is a minimizer), we define

rk = Q(x(k)) − Q(x(k+1))

q(k)(0) − q(k)(sk)
. (2.8)

The ratio rk is an indicator for the expansion and contraction the trust regions. If rk is close to
1, it means there is good agreement, so we can expand the trust-region for the next iteration;
if rk is close to zero or negative, we should shrink the trust-region radius; otherwise, we do
not alter the trust-region.

We remark that as an efficient numerical optimization method for solving nonlinear pro-
gramming (NLP) problems, the TRM enjoys the desirable global convergence with a local
superlinear rate of convergence as follows.

Theorem 2.1 (see [26]) Assume that

(i) the function Q(x) is bounded below on the level set

S := {x ∈ Rn : Q(x) ≤ Q(x(0))}, ∀ x(0) ∈ R
n, (2.9)

and is Lipschitz continuously differentiable in S;
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Fig. 1 A schematic illustration of the deflation process integratedwith the LSTRmethod described in Sect. 2.2.
Starting from the initial guess (marked by reddot),we obtain thefirst solution (alongPath1) viaLSTRmethod.
We then deflate this solution away by the deflation technique and update the objective function accordingly.
As a result, we can find the second solution (along Path 2) via LSTR method with the same initial condition.
Repeating this process, we search for other new solutions along different paths (e.g. Path 3)

(ii) the Hessian matrixes G(x(k)) are uniformly bounded in 2-norm, i.e., ‖G(x(k))‖ ≤ β for
any k and some β > 0.

If g(x(k)) �= 0, then

lim
k→∞ inf ‖g(x(k))‖ = 0. (2.10)

Moreover, if g(x∗) = 0, and G(x∗) is positive definite, then the convergence rate of the TRM
is quadratic.

Remark 2.2 When k is large enough, the TRM becomes the Newton iteration. As a result, it
has the same convergence rate as the Newtonian method. 
�
Remark 2.3 In practice, the gradient and Hessian matrices might be appropriately approx-
imated by some numerical means. We refer to Zhang et al. [38] for such derivative-free
methods for (2.6) with F being twice continuously differentiable, but none of their first-
order or second-order derivatives being explicitly available. 
�

2.3 Deflation Technique for Multiple Solutions

The critical issue in finding multiple solutions is to get away from one identified solution
and search for a new solution based on ideally the same initial input. Motivated by Farrell et
al. [13], we introduce an effective technique rooted in the notion of deflation. As illustrated
in Figure 1, suppose that the first (approximate) solution x∗

1 of F(x) = 0 in (2.5) via the
LSTR method, and we intend to find a second (approximate) root x∗

2 of F. For this purpose,
we consider the modified zero-finding problem F̂(x) = 0 where F̂ is constructed in a way
to deflate the first solution x∗

1, and allow for finding x∗
2 by the LSTR method even with the

same initial data. We then repeat this deflation process to find more solutions.
We next introduce the deflation operator, and highlight the essence of the deflation tech-

nique [4, 13, 30].
Definition of deflation operator.LetX,Y, andZ be Banach spaces, and X̂ be an open subset
of X. Let F : X → Y be a Fréchet differentiable operator with the Fréchet derivative F′.
Suppose that r ∈ X̂ is a root of F, i.e., F(r) = 0, such that F′(r) is nonsingular. For each
x ∈ X̂ \ {r}, let 	(x; r) : Y → Z be an invertible linear operator,
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and define

F̂(x) = 	(x; r)F(x). (2.11)

We call 	 a deflation operator, if for any sequence {xi } ⊆ X̂\{r} converging to r , we have

lim
i→∞ inf ‖F̂(xi )‖Z > 0. (2.12)

It is seen from (2.11)-(2.12) that the role of the deflation operator is to exclude and deflate
the root r, so F̂(x) has common roots as F(x) except for r.

We next present some sufficient conditions for constructing suitable deflation operators.

Theorem 2.2 (see [13]) Let F : X̂ ⊂ X → Y be a Fréchet differentiable operator. Suppose
that the linear operator 	(x; r) : Y → Z has the property that for each r ∈ X̂, and any
sequence xi → r , xi ∈ X̂\{r},

if ‖xi − r‖	(xi ; r)F(xi ) → 0 implies F(xi ) → 0, i → ∞, (2.13)

then 	 defines a deflation operator.

Based on this rule, several deflation operators have been suggested in [13]. In what follows,
we adopt the shifted deflation operator:

	(x; r) = I

‖x − r‖2 + I, (2.14)

where I is the identity operator on Y. Suppose that r1 is a solution of the original nonlinear
system F(x) = 0. Then we solve the deflated nonlinear system: F1(x) := 	(x; r1)F(x) =
0 to obtain the second solution r2. Repeating this process, we search for the (k + 1)-th
solution by solving the nonlinear system:

Fk(x) := F(x)

k∏

i=1

	(x; r i ) = 0. (2.15)

2.4 Summary of the Spectral LSTR-Deflation Algorithm

In summary, we have the following algorithm for finding multiple solutions.
In the above, we have gk = g(x(k)) and Gk = G(x(k)). For the trust-region subproblem

(see Line 5), an efficient implementation for its solution is the so-called dogleg method (see
[15, 26]) with the process:

q(k)(x(k) − lk gk) = Q(x(k)) − lk‖gk‖2 + 1

2
l2k g

	
k Gk gk,

where based on the exact line search, we have

lk = ‖gk‖2
g	
k Gk gk

.

The corresponding step along the steepest descent direction is

ŝk = −lk gk = − g	
k gk

g	
k Gk gk

gk,
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Spectral LSTR-deflation algorithm for computing multiple solutions

Input: Given x(0), ε > 0, 0 < δ1 < δ2 < 1, 0 < τ1 < 1 < τ2, F(x) = 0,and h0 = ‖g0‖
Input: Initial solution set S ← the empty set �
Output: S
1 while the desired multiple solutions are not found do
2 while first-order optimality threshold or failure criterion does not meet do
3 Compute gk and Gk ;
4 If ‖gk‖ ≤ ε and |Q(x(k))| ≤ ε, stop;
5 Approximately solve the subproblem (2.7) for sk ;
6 Compute Q(x(k) + sk ) and rk . If rk ≥ δ1, then x(k+1) = x(k) + sk ; Otherwise,

set x(k+1) = x(k);
7 If rk < δ1, then hk+1 = τ1hk ;

If rk > δ2 and ‖sk‖ = hk , then hk+1 = τ2hk ;
Otherwise, set hk+1 = hk ;

8 Generate Gk , update q
(k), set k := k + 1, go to step 3;

9 end
10 if Convergence threshold met then
11 Add converged solution x̃ to S
12 Set F(x) ← 	(x; x̃)F(x) (i.e. Deflation), and go back to step 2.
13 end
14 end
15 return S

and the Newton step is

s̃k = −G−1
k gk .

If ‖ŝk‖2 = ‖lk gk‖2 ≥ hk , we take

sk = − hk
‖gk‖

gk and x(k+1) = x(k) + sk . (2.16)

If ‖ŝk‖ < hk and ‖s̃k‖ > hk , we take

sk(λ) = ŝk + λ(s̃k − ŝk), 0 ≤ λ ≤ 1. (2.17)

As a result, we have

x(k+1) = x(k) + sk(λ) = x(k) + ŝk + λ(s̃k − ŝk),

where λ is obtained by solving the equation

‖ŝk + λ(s̃k − ŝk)‖ = hk .

Otherwise, we set

sk = s̃k = −G−1
k gk . (2.18)

In summary, combining (2.16), (2.17) and (2.18) yields

sk =

⎧
⎪⎨

⎪⎩

− gk‖gk‖hk, if ‖ŝk‖2 ≥ hk,

ŝk + λ(s̃k − ŝk), if ‖ŝk‖2 < hk and ‖s̃k‖2 > hk,

−G−1
k gk, if ‖ŝk‖2 < hk and ‖s̃k‖2 ≤ hk .

(2.19)

Some additional remarks about the implementation of the Spectral LSTR-Deflation Algo-
rithm are listed as follows.
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• As highlighted previously, the choice of the trust-region radius hk in the LSTR method
is important. The ratio rk in (2.8) is used as the criterion for expansion or contraction of
the region.

• For the original nonlinear algebraic system F (see Line 12 of the Algorithm), the solution
x̃ is found from initial guess x(0) with the Fréchet derivative F′(x̃) being nonsingular.
While here the deflation operator 	 plays a key role in finding multiple solutions other
than x̃. Let F̂(x) = 	(x; x̃)F(x), then this deflated problem F̂(x) satisfies two proper-
ties: (i) The preservation of solutions of F̂ should be hold, i.e. for x �= x̃, F̂(x) = 0 iff
F(x) = 0; (ii) In view of Theorem 2.2, the iterative algorithm applied to F̂(x) will not
find x̃ again, when

lim
x→x̃

inf ‖F̂(x)‖ > 0,

i.e., the deflated function F̂(x) does not vanish at the known solution x̃.
• In general, based on the deflation technique, the same initial guess allows us to find

new solutions in most cases. However, it is noteworthy that the deflation procedure may
diverge with the same initial guess in some cases. We find out that choosing a random
perturbation of an obtained solution as the initial guess for the deflated problems turns
out sufficient for finding all other solutions (see Sect. 3).

• Although the original and deflated nonlinear systems can be solved by other methods,
e.g., Newton iteration, the trust-region method is deemed as the method of choice for
its flexibility in initial inputs and efficiency in dealing with the increasingly complicated
systems in the course of repeating the deflation technique. We shall testify this in the
forthcoming section.

3 Applications to Differential Equations with Multiple Solutions

In this section, we apply the spectral LSTR-Deflation algorithm to various differential equa-
tions with multiple solutions and compare its performance in efficiency and accuracy with
some related methods. In the numerical experiments, we choose δ1 = 0.25, δ2 = 0.75, τ1 =
0.5, τ2 = 2 and ε = 10−13 in the algorithm described in Sect. 2.4. The codes are carried
out on a server: Intel(R) Core(TM) i7-7500U (2.90 GHz) and 120GB RAM via MATLAB
(version R2015b).

3.1 ODE Examples

3.1.1 Viscous Flow in a Porous Channel with Expanding or ContractingWalls

When concerning systemic circulation in blood circulation, the blood in the left ventricle is
being forced into the aorta by systole and themitral valve between left ventricle and left atrium
is closed. At this juncture the left ventricle forms a vessel with one end closed. Meanwhile,
the mass transfer of the vessel between inside and outside can be achieved by the seepage
across permeable wall of the vessel. The mathematical model established by Majdalani [9]
is as follows

u(4)(y) + α(yu′′′(y) + 3u′′(y)) + Re
(
u(y)u′′′(y) − u′(y)u′′(y)

) = 0, y ∈ (0, 1), (3.1)

123



32 Page 10 of 23 Journal of Scientific Computing (2023) 95 :32

supplemented with the boundary conditions

u(0) = 0, u′′(0) = 0, u(1) = 1, u′(1) = 0, (3.2)

where Re is called as the cross-flow Reynolds number (Re > 0 for injection and Re < 0 for
suction), α is the wall expansion ratio and the prime denotes differentiation with respect to
x . Here u(y) and u′(y) represent the normal and streamwise velocities in a porous channel,
respectively. this problem admits multiple solutions for Re < −12.165 and any α, but so far
there are only three solutions identified in literature [23, 34].
(i) Legendre Spectral Petrov-Galerkin Discretisation. As shown in [25], the spectral
method is advantageous for high-order problems. In view of the non-symmetric boundary
conditions (3.2), we employ the Petrov-Galerkin method using compact combinations of
Legendre polynomials that meet the boundary conditions and the dual counterparts. For
convenience, we make a change of variable: y = (1 + x)/2, and convert (3.1)-(3.2) into

{
ŭ(4) + δ(1 + x)ŭ′′′ + βŭ′′ + γ F(ŭ) = 0, x ∈ (−1, 1),

ŭ(−1) = ŭ′′(−1) = 0, ŭ(1) = 1, ŭ′(1) = 0,
(3.3)

where ŭ(x) = u(y), δ = α
4 , β = 3

2α, γ = Re
2 , and the nonlinear term:

F(ŭ) := ŭŭ′′′ − ŭ′ŭ′′ = 1

2
(ŭ2)′′′ − 2((ŭ′)2)′. (3.4)

To deal with the non-homogeneous boundary conditions, we introduce

p(x) = 3

4
(1 + x) − 1

16
(1 + x)3, s.t., p(−1) = p′′(−1) = p′(1) = 0, p(1) = 1.

Set ŭ = v + p, and note

F(v + p) = F(v) + pv′′′ − p′v′′ − p′′v′ + p′′′v + pp′′′ − p′ p′′.

Then direct calculation leads to
⎧
⎨

⎩
v(4) + A(x)v′′′ + B(x)v′′ + C(x)v′ − 3

8
γ v + γ F(v) = g(x), x ∈ (−1, 1),

v(±1) = v′(1) = v′′(−1) = 0,
(3.5)

where

A(x) = δ(1 + x) + γ p(x) =
(3γ

4
+ δ

)
(1 + x) − γ

16
(1 + x)3,

B(x) = β − γ p′(x) = β − 3γ

4
+ 3γ

16
(1 + x)2, C(x) = 3γ

8
(1 + x),

g(x) = 3

8
(δ + β)(1 + x) − γ pp′′′ + γ p′ p′′ = 3

8
(δ + β)(1 + x) + 3γ

64
(1 + x)3.

(3.6)

Let PN be the set of polynomials of degree ≤ N , and define

VN := {
φ ∈ PN : φ(±1) = φ′(1) = φ′′(−1) = 0

}
,

WN := {
ψ ∈ PN : ψ(±1) = ψ ′(±1) = 0

}
.

(3.7)

The Legendre spectral Petrov-Galerkin scheme for (3.5)-(3.6) is to find vN ∈ VN such that

B(vN , ψ) + N (vN , ψ) = (g, ψ), ∀ψ ∈ WN , (3.8)
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where the bilinear form and the approximation to the nonlinear term are

B(vN , ψ) := (v′′
N , ψ ′′) + (v′

N , (Aψ)′′) − (v′
N , (Bψ)′) + (Cv′

N , ψ) − 3γ

8
(vN , ψ),

N (vN , ψ) := γ

2

([INv2N ]′, ψ ′′) + 2γ
(
IN [v′

N ]2, ψ ′),
(3.9)

with IN being the Legendre–Gauss–Lobatto interpolation operator. Here, we use (3.4) to
formulate N (vN , ψ).

To construct basis functions, we now recall some properties of Legendre polynomials
(cf. [25]):

(2n + 1)Ln(x) = L ′
n+1(x) − L ′

n−1(x) = J ′
n−1(x),

(1 − x2)L ′
n(x) = n(n + 1)

2n + 1

(
Ln−1(x) − Ln+1(x)

) = −n(n + 1)

2n + 1
Jn−1(x),

(3.10)

and

Ln(±1) = (±1)n, L ′
n(±1) = 1

2
(±1)n−1n(n + 1), (3.11)

where we denoted

Jn(x) = Ln+2(x) − Ln(x), n ≥ 0. (3.12)

Direct calculation yields

J ′
n(1) = (2n + 3)Ln+1(1) = 2n + 3,

J ′′
n (−1) = (2n + 3)L ′

n+1(−1) = 1

2
(−1)n(n + 1)(n + 2)(2n + 3).

(3.13)

Now, we construct the basis functions for VN using the compact combination:

ϕk(x) = Jk(x) + ak Jk+1(x) + bk Jk+2(x), 0 ≤ k ≤ N − 4, (3.14)

where {ak, bk} are determined by the homogenous boundary conditions in VN . In view of the
second formula in (3.10), we have ϕk(±1) = 0. From (3.10)-(3.11) and ϕ′

k(1) = ϕ′′
k (−1) =

0, we can obtain

J ′
k+1(1) ak + J ′

k+2(1) bk = −J ′
k(1), J ′′

k+1(−1) ak + J ′′
k+2(−1) bk = −J ′′

k (−1),

which, together with (3.13), implies

ak = J ′
k+2(1)J

′′
k (−1) − J ′

k(1)J
′′
k+2(−1)

J ′
k+1(1)J

′′
k+2(−1) − J ′

k+2(1)J
′′
k+1(−1)

= − 2k + 3

(k + 3)2
,

bk = J ′
k(1)J

′′
k+1(−1) − J ′

k+1(1)J
′′
k (−1)

J ′
k+1(1)J

′′
k+2(−1) − J ′

k+2(1)J
′′
k+1(−1)

= − (k + 2)2(2k + 3)

(k + 3)2(2k + 7)
.

(3.15)

Similarly, we can also construct the basis functions for WN :

ψk(x) = Jk(x) + ck Jk+2(x), ck = −2k + 3

2k + 7
. (3.16)

We expand the numerical solution as

uN (x) := uN (x;α, Re) = p(x) + vN (x) = p(x) +
N−4∑

k=0

ṽkϕk(x). (3.17)
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Table 1 Performance of our spectral LSTR-deflation method

(α, Re) Deflations Solutions Time(s) nit (α, Re) Deflations Solutions Time(s) nit

(0, − 20) 2 I 3.4567 24 (2, − 40) 2 I 3.2326 24

II 2.7378 17 II 5.2305 43

III 2.2060 12 III 4.4526 34

(− 2, − 40) 2 I 4.0644 31 (8, − 40) 3 I 3.0578 22

II 4.1458 31 II 4.1466 35

III 4.4088 33 III 4.1352 34

IV 5.1466 42

Fig. 2 Multiple solutions of (3.1–3.2) with different (α, Re)

Under these basis functions, we can easily show that the matrix of the linear partB(ϕk, ψ j ) in
(3.8) is sparse with a finite bandwidth and its entries can be evaluated explicitly. It is evident
that the righthand sided vector {(g, ψ j )}N−4

j=0 can be computed exactly as well. Then we solve
the nonlinear system by the LSTR-Deflation technique summarized in Sect. 2.4, where we
choose the initial guess

ṽ
(0)
k = 1, 0 ≤ k ≤ N − 4, (3.18)

denoted by IG = ones(N−3).Note that in the iterations, the nonlinear part {N (vN , ψ j )}N−4
j=0

can be treated efficiently by using the pseudospectral technique as in [25, Ch.4].
(ii) Numerical Results. In Table 1, we tabulate the outcomes of our algorithm for four pairs
of parameters (α, Re) and the above initial guess with N = 18, where we list the number
of deflations, solutions (labeled by I,II,· · · ), the computational time and iteration number of
the LSTR method for each solution. Some observations and highlights are as follows.

(i) It is noteworthy that in [23, 34], the plots of the solutions for (α, Re) = (0,−20), (2,−40)
using different methods were reported. Here, we obtain the solutions in Fig. 2 efficiently
in seconds from the same initial guess IG.

(ii) We find a new solution for (α, Re)=(8, -40), see solution-IV in Fig. 2.
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Table 2 Accuracy of our spectral LSTR-Deflation method

(α, Re) N I II III (α, Re) N I II III IV

(0, − 20) 8 7.71e−2 1.06e−1 2.36e−3 (2, − 40) 8 3.15e−2 1.23e−2 4.25e−2 –

16 6.32e−5 1.02e−5 3.16e−7 16 3.67e−5 7.21e−5 3.81e−5 –

24 5.21e−9 1.78e−8 2.08e−10 24 4.31e−8 9.23e−7 3.71e−9 –

(− 2, − 40) 8 2.81e−2 3.61e−1 4.27e−1 (8, − 40) 8 1.49e−1 3.07e−1 2.89e−1 9.31e−1

16 5.31e−5 2.39e−5 3.86e−7 16 1.83e−5 4.31e−5 1.09e−5 4.81e−6

24 3.89e−8 1.84e−8 4.61e−9 24 3.91e−8 3.92e−9 9.18e−9 1.78e−8

Table 3 A comparison between Newton iteration in [13] and the LSTR method

Newton iteration in [13] LSTR method
(α, Re) nit IG 0.1 ∗ IG cos(IG) nit IG 0.1 ∗ IG cos(IG)

(8, −40) 1 4.97e5 2.02e3 3.13e6 10 2.57e−3 3.72e−13 8.87e1

2 3.10e9 8.59e3 9.91e6 15 6.50e−5 – 2.45e−4

3 3.39e10 5.07e4 2.17e9 20 4.41e−13 – 4.98e−6

4 2.64e13 2.16e5 3.03e11 25 – – 6.91e−9

5 1.99e15 1.47e5 5.66e13 30 – – 1.86e−13

(iii) The algorithm is quite accurate with a fast convergence as shown in Table 2, where
we compare the errors in maximum norm with the numerical solution obtained with a
relatively large N .

As a comparison, we replace the LSTR algorithm for solving the nonlinear systems by
the Newton iteration (as in [13] using Newton-Deflation technique). We compute ‖F(x)‖
in (2.6) for three choices of initial guesses IG, 0.1 ∗ IG and cos(IG). As shown in Table 3,
the Newton iterations fail to converge for these initial inputs, while ‖F(x)‖ of the LSTR
method descends very fast. However, it is noteworthy that if we choose the initial inputs to
be a small perturbation of the numerical solution from our algorithm, the Newton-Deflation
method indeed converges.

3.1.2 Models with Polynomial and Exponential Nonlinearities

We consider the model problem:

u′′ + λF(u) = 0, x ∈ (0, 1), λ > 0, (3.19)

with boundary conditions to be specified later. Here, we focus on F(u) = eu, 1+ u p (where
p is a positive integer).
Case 1: The equation (3.19) with F(u) = eu is known as the Bratu-Gelfand model [10],
which together with the boundary conditions u(0) = u(1) = 0, has two solutions when
0 < λ < λ∗(λ∗ = 3.51383), but no solution for λ ≥ λ∗. Here we assume that 0 < λ < λ∗.
The spectral-Galerkin discretisation follows [25, Ch.4].

In Table 4, we list the LSTR iteration number, computational time and numerical errors
compared with the reference solution (obtained from refined grids) with λ = 1, 2 and the ini-
tial guess− cos(IG). It indicates clearly that this method finds these two solutions, illustrated
in Fig. 3, very fast and accurately.
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Table 4 Performance of the spectral LSTR-Deflation methods

First solution Second solution
λ N nit Time(s) L∞- error ‖F(x)‖∞ nit Time(s) L∞- error ‖F(x)‖∞

1 8 3 0.0367 2.6788e− 7 4.9021e− 12 20 0.1623 2.0258e− 4 8.1304e− 12

16 4 0.0492 2.2355e− 9 2.9015e− 13 26 0.1878 1.3531e− 4 5.9026e− 13

24 6 0.0512 5.9229e− 11 1.8935e− 12 28 0.1886 1.1749e− 7 3.9057e− 14

2 8 4 0.0501 1.8093e− 7 5.9038e− 13 26 0.1526 4.9956e− 3 6.2081e− 13

16 5 0.0557 6.4339e− 11 5.9274e− 13 28 0.1643 1.1330e− 5 2.9475e− 14

24 6 0.0581 6.7734e− 12 5.9037e− 14 30 0.1665 3.2785e− 8 8.9360e− 13

Fig. 3 Multiple solutions of the Bratu-Gelfand model with λ = 1, 2

In Fig. 4, we make a similar comparison and record the magnitude of ‖F(x(i))‖ for the
first several iterative steps in the Newton-Deflation method. Again we observe the divergence
and sensitivity of the Newton iteration to the initial guess.

Remark 3.1 Observe from Figure 3 that the two solutions satisfy u′(0) > 0 and u′(1) < 0.
In fact, it is true for all λ ∈ (0, λ∗). It is evident that by (3.19) with F(u) = eu, we have
u′′(x) < 0, so u′(1) < u′(x) < u′(0) for all x ∈ (0, 1). Note that if u′(0) ≤ 0, then u(x) is
strictly decreasing in (0, 1), so u(1) < u(x) < u(0). This leads to the contradiction, which
implies u′(0) > 0. Similarly, we can show u′(1) < 0. 
�
Case 2: We consider (3.19) with F(u) = 1 + u p and the boundary conditions: u′(0) =
u(1) = 0. In the spectral-Galerkin discretization, we use the following basis functions to
meet the boundary conditions

ψk(x) = Lk(x) − k2 + 6k + 7

2(k + 2)2
Lk+1(x) − (k + 1)2

2(k + 2)2
Lk+2(x),

which satisfies ψ ′
k(−1) = ψk(1) = 0 for any k.

We compare the performance of our proposed method with that of the bootstrapping
algorithm composed of the homotopy and two-grid techniques in [18]. We quote [18, Table
1] in the left half of Table 5, where n1 (resp. n2) is the number of grid points of the whole
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Fig. 4 The magnitude of ‖F(x)‖ at various iterative steps of the Newton-Deflation method

Table 5 A comparison between the bootstrapping method and the LSTR-Deflation method with p = 4 and
λ = 1.2

Bootstrapping in [18, Table 1] The LSTR-Deflation method
λ (n1, n2) I soln err II soln err Time(s) N I soln err II soln err Time(s)

1.2 (7, 3) 1.1053e−4 3.7146e−4 4m5s 8 5.6106e−5 2.2891e−5 0.9896s

(21, 2) 3.2364e−5 1.1336e−4 31m16s 16 4.4109e−8 2.4166e−8 0.3212s

(42, 2) 8.3840e−6 3.0290e−5 5h39m58s 24 6.6527e−11 5.2984e−9 0.6717s

interval (resp. number of grid points in each of the n1 − 1 subintervals), together with the
numerical errors and computational time for two solutions for λ = 1.2 and p = 4 in F(u). On
the right half of Table 5, we list the accuracy and computational time using ourmethod, which
shows the distinctive advantages of the latter in terms of time-saving and faster convergence.

Notably, the proposed approach allows us to locate more solutions if p = 3 but λ = 1.2
remains (see Fig. 5 (right)) that seem not been reported in literature. We remark that in
the deflation process (see (2.15)), we have involved the solutions I, II, and IV to obtain the
solution V.

3.2 PDE Examples

3.2.1 Phase Separation: Allen–Cahn Equation

As in Farrell et al. [13] and [12], we consider the steady-state Allen-Cahn equation:

− ε�u + ε−1(u3 − u) = 0 in � = (0, 1) × (0, 1), (3.20)
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Fig. 5 Multiple solutions for λ = 1.2

where the boundary conditions are as follows
{
u = 1 on ∂�1 := {x = 0, 1; 0 < y < 1},
u = −1 on ∂�2 := {y = 0, 1; 0 < x < 1}. (3.21)

Here, ε is a parameter relating the strength of the free surface tension to the potential term
in the free energy. It is evident that u = ±1 are solutions to (3.20), which correspond two
different materials. We can verify that the multiple solutions of (3.20)-(3.21) are invariant
under a rotation and reflection. More precisely, if u(x, y) is a solution of (3.20)-(3.21), so is
−u(1 − y, x).

As shown in (3.21), the boundary conditions are not compatible at four corners of �̄.

To facilitate the spectral-Galerkin discretisation, we properly smooth out the jumps around
the corners and render the boundary conditions compatible. For this purpose, we make a
simple linear mapping: x → 2x − 1, y → 2y− 1 and convert the problem (3.20)-(3.21) into
� = (−1, 1)2. With a little abuse of notation, we still use u to denote the unknown solution.
Setting v = u + 1 leads to

⎧
⎪⎨

⎪⎩

−4ε�v + ε−1((v − 1)3 − v + 1) = 0 in � = (−1, 1) × (−1, 1),

v = 2 on ∂�1 = {x = ±1, −1 < y < 1},
v = 0 on ∂�2 = {y = ±1, −1 < x < 1}.

(3.22)

We smooth out v = 2 by H(y) ∈ C2[−1, 1] defined by

H(y) =

⎧
⎪⎪⎨

⎪⎪⎩

2
[
1
2 + 1

2κ (2y + 2 − κ) + 1
2π sin

(
π
κ
(2y + 2 − κ)

)]
, y ∈ [−1, −1 + κ],

2, y ∈ (−1 + κ, 1 − κ),

2 − 2
[
1
2 + 1

2κ (2y − 2 + κ) + 1
2π sin

(
π
κ
(2y − 2 + κ)

)]
, y ∈ [1 − κ, 1],

(3.23)

where κ > 0 is a small parameter, see Figure 6 (b). As a result, we derive the following
boundary conditions illustrated in Figure 6 (a):

g1(y) = g3(y) = H(y), g2(x) = g4(x) = 0. (3.24)
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Fig. 6 Boundary conditions and H(y) for (3.22)

In order to transform the non-homogeneous boundary conditions into homogeneous condi-
tions, we introduce (see [17] for general non-homogeneous boundary conditions)

G(x, y) = 1

4

{
2(1 − y)g4(x) + 2(1 + y)g2(x) + 2(1 − x)g3(y) + 2(1 + x)g1(y)

− (1 − x)(1 − y)g3(−1) − (1 − x)(1 + y)g2(−1)

− (1 + x)(1 − y)g4(1) − (1 + x)(1 + y)g1(1)
}
,

(3.25)

which satisfies

G(1, y) = g1(y), G(x, 1) = g2(x), G(−1, y) = g3(y), G(x,−1) = g4(x).

Setting v = w + G, we obtain from (3.22) that

{
−4ε�w + ε−1[(w + G − 1)3 − (w + G − 1)] = 4ε�G in �,

w = 0 on ∂�.
(3.26)

Then we can follow the Legendre spectral-Galerkin method in Sect. 2.1 to discretize (3.26).
We omit the details.

In the following tests, we take ε = 0.04 and κ = 0.1. We plot in Fig. 7 the three solutions
obtained by our algorithm,whose shapes and patterns are similar to those in [13, 28] (however
in [28], only types I and II solutions were reported) without smoothing out the boundary
conditions. When N = 24, we list the number of iterations, computational time of the LSTR
method, the accuracy and the equation errors for each solution in Table 6, which shows the
high efficiency of the algorithm. It is seen that the first two solutions are identified very fast
in a few iterations, but the third solution is relatively expensive and harder to locate. We also
see that the obtained solutions verify the rotational and reflectional property of the solution,
where Type-I and Type-II are a pair, and Type-III is invariant under the transforms. Here we
have applied three deflations with the same initial guesses to obtain four solutions.
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Fig. 7 Three solutions of the steady Allen-Cahn equation

Table 6 Performance of the
spectral LSTR-Deflation method

Solutions nit Time(s) L∞- error ‖F(x)‖∞

I 39 5.2710 3.8109e− 10 1.2984e− 13

II 23 4.7952 6.2910e− 11 3.8652e− 13

III 160 15.2973 5.9250e− 11 2.8104e− 12

Table 7 Numerical results for (3.27)

Solutions nit Time(s) Symmetry L∞- error ‖F(x)‖∞

I 25 3.5421 y = x , y = 1 − x x = 1
2 , y = 1

2 2.5672e− 9 1.8945e− 13

II 39 5.2191 y = x 6.2145e− 7 5.8230e− 14

III 28 3.5935 y = x , y = 1 − x x = 1
2 , y = 1

2 1.4905e− 10 4.5212e− 13

IV 30 4.2418 y = x 4.6127e− 9 3.9026e− 14

V 37 4.6829 x = y, y = 1 − x 4.6127e− 9 6.8259e− 14

3.2.2 A Model Problem Analyzed in Breuer, McKenna and Plum [3]

We consider the following problem studied in [3]:

{
�u + u2 = 800 sin(πx) sin(π y) in � = (0, 1) × (0, 1),

u = 0 on ∂�.
(3.27)

Allgower et al. [1] claimed that (3.27) has at least four solutions, and these solutions are
symmetric (i.e. symmetric with respect to reflections about the axes x = 1

2 , y = 1
2 , x = y

and x = 1 − y). Indeed, four solutions (i.e. I, II, III and IV) obtained from our algorithm
in Fig. 8 satisfy such property, which were also presented in [1, 39]. More importantly, we
find the fifth solution (i.e., V in Fig. 8 (e)), which verifies the claim in [1]. Again as shown
in Table 7, the proposed algorithm has a good performance. Here, it is worth pointing out
that when the type-I solution is obtained, the type-II can also be obtained by using the single
deflation operator. With the multiple deflation operator in (2.15), the type-III solution can be
found. While the type-IV and type-V solutions are obtained by using the type-I and type-III
solutions with a random perturbation, respectively.
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Fig. 8 Multiple solutions of (3.27)

3.2.3 The Henon Equation Modeling Spherical Stellar Systems

Finally we consider the Henon equation:

{
�u + u3 = 0 in � = (0, 1)2,

u = 0 on ∂�,
(3.28)

as in [6]. It is known that the Henon equation (3.28) has infinitely many solutions. Clearly,
if u(x, y) is a solution of (3.28), so is−u(x, y); furthermore, if rotating a solution u(x, y) by
an integer times of 90 degrees around the point (1/2, 1/2), then the resulting function, say
rot(u(x, y)), still solves (3.28). Thus, in the following tests, we intend to locate some distinct
solutions.

Using ourmethod, we can actually obtain all themultiple solutions presented in [6], but we
shall not present them. Here we intend to demonstrate some solutions which are reported in
literature. In Fig. 9, we depict six solutions and their contour plots and in Fig. 10, we include
solutions with multiple peaks. It is noteworthy that many more solutions can be obtained
from the symmetric and rotational properties. In Tables 8-9, we present the outcomes of our
algorithm for these solutions with N = 8, 16 and 24, where we list iteration number of the
LSTR method, the computational time, the maximal norms of the numerical solutions and
the equation errors.
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Fig. 9 Six solutions of (3.28)

4 Concluding Remarks

In this paper, we proposed an efficient and accurate Legendre spectral-Galerkin method
to discretise some differential equations with multiple solutions that lead to nonlinear alge-
braic systems, and then we combined the nonlinear least-squares and trust-region method to
solve the nonlinear systems and employ the deflation technique to search for their multiple
solutions. We demonstrated that this integrated algorithm has some advantages over certain
existing approaches in accuracy, efficiency and capability of finding new solutions. Unfor-
tunately, we didn’t provide a rigorous error analysis. Roughly speaking, as the algorithm
suggests, it is quadratically convergent under the conditions in Theorem 2.1 (also applied to
the deflated systems through Theorem 2.2), and the source of the errors is from the spectral-
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Table 8 Performance of the spectral LSTR-Deflation methods to (3.28)

Types N nit Time(s) L∞-error ‖F(x)‖∞ Types N nit Time(s) L∞-error ‖F(x)‖∞

I 8 10 1.4532 2.6082e−5 4.2345e−13 II 8 13 1.5601 2.3497e−5 4.7905e−14

16 15 1.8902 3.4508e−7 9.2409e−13 16 15 1.6012 5.2109e−7 6.1208e−14

24 16 2.0102 4.8921e−9 4.7812e−14 24 17 1.8902 6.0934e−9 9.5630e−14

III 8 20 1.6703 2.6071e−4 7.2409e−13 IV 8 21 1.5608 4.9021e−5 9.2301e−13

16 24 2.0931 3.4088e−6 2.0971e−14 16 28 2.0175 4.0123e−8 4.8704e−13

24 31 2.3018 2.0818e−8 3.0965e−14 24 39 2.3071 6.0155e−10 5.2307e−14

V 8 22 1.7021 2.6021e−6 3.0921e−13 VI 8 24 1.8902 5.0905e−4 8.4302e−14

16 30 2.0367 5.8018e−8 5.7821e−13 16 34 2.3014 4.9023e−7 6.8923e−13

24 35 2.9021 6.2108e−9 4.0927e−14 24 37 2.7906 6.6734e−9 4.0908e−14

Fig. 10 Profiles of multi-peak solutions of (3.28)

Table 9 Performance of the spectral LSTR-Deflation methods for types VII-X solutions

Types N nit Time(s) L∞-error ‖F(x)‖∞ Types N nit Time(s) L∞-error ‖F(x)‖∞

VII 8 18 1.9029 3.9014e−5 8.2305e−14 VIII 8 28 2.4021 7.0231e−5 5.0382e−13

16 25 2.0972 5.0973e−7 4.6820e−13 16 35 2.6081 6.3021e−7 6.0238e−14

24 27 2.4015 5.3128e−9 6.9361e−14 24 39 3.9010 7.0218e−9 7.2401e−14

IX 8 31 2.4017 2.4028e−4 9.4038e−13 X 8 32 2.0340 9.3245e−4 3.9045e−13

16 39 2.9054 4.9072e−6 8.9302e−13 16 39 2.8045 5.3028e−6 5.0834e−14

24 40 3.6051 9.0234e−8 4.8376e−14 24 42 3.4201 6.9038e−9 6.9037e−13
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Galerkin discretisation of the original problem. However, much care is needed to glue them
together which we hope to provide in a future work.
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