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OPTIMAL ERROR ESTIMATES FOR CHEBYSHEV

APPROXIMATIONS OF FUNCTIONS WITH LIMITED

REGULARITY IN FRACTIONAL SOBOLEV-TYPE SPACES

WENJIE LIU, LI-LIAN WANG, AND HUIYUAN LI

Abstract. In this paper, we introduce a new theoretical framework built

upon fractional Sobolev-type spaces involving Riemann-Liouville fractional
integrals/derivatives for optimal error estimates of Chebyshev polynomial ap-
proximations to functions with limited regularity. It naturally arises from
exact representations of Chebyshev expansion coefficients. Here, the essential
pieces of the puzzle for the error analysis include (i) fractional integration by
parts (under the weakest possible conditions), and (ii) generalised Gegenbauer
functions of fractional degree (GGF-Fs): a new family of special functions
with notable fractional calculus properties. Under this framework, we are
able to estimate the optimal decay rate of Chebyshev expansion coefficients
for a large class of functions with interior and endpoint singularities, which
are deemed suboptimal or complicated to characterise in existing literature.
Then we can derive optimal error estimates for spectral expansions and the
related Chebyshev interpolation and quadrature measured in various norms,
and also improve available results in usual Sobolev spaces with integer regular-
ity exponentials in several senses. As a byproduct, this study results in some
analytically perspicuous formulas particularly on GGF-Fs, which are poten-
tially useful in spectral algorithms. The idea and analysis techniques can be
extended to general Jacobi polynomial approximations.

1. Introduction

It is known that polynomial approximation theory is of fundamental importance
in numerical analysis and algorithm development of many computational methods,
e.g., p/hp finite elements or spectral/spectral-element methods (see, e.g., [9, 15,18,
23, 35, 36] and the references therein). Typically, the documented approximation
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results take the form

(1.1) ‖QNu− u‖Sl
≤ cN−σ|u|Br

, σ ≥ 0,

where QN is an orthogonal projection (or interpolation operator) upon the set of
all polynomials of degree at most N, and c is a positive constant independent of
N and u. In (1.1), Sl is a certain Sobolev space, Br is a related Sobolev or Besov
space, and σ depends on the regularity exponentials of both Br and Sl. In practice,
one would expect (a) the space Br should contain the classes of functions as broad
as possible; and (b) the space Br can best characterise their regularity leading to
optimal order of convergence. In general, the space Br is of the following types:

(i) Br is the standard weighted Sobolev space Hm
ω (Ω) with integer m ≥ 0 and

certain weight function ω(x) on Ω = (−1, 1) (see, e.g., [9,15,23]). However,
it could not lead to optimal order for functions with endpoint singularities
(see, e.g., [9, 22]) or with interior singularities, e.g., |x| (see [38]).

(ii) Br is the non-uniformly Jacobi-weighted Sobolev space (see, e.g., [5, 6, 18,
20, 22, 36]). For example, Br = Hm,β(Ω) with integer m ≥ 0 and β > −1,
is defined as a closure of C∞-functions endowed with the weighted norm

(1.2) ‖u‖Hm,β(Ω) =

{ m∑
k=0

∫ 1

−1

|u(k)(x)|2(1− x2)β+kdx

}1/2

.

Compared with the standard Sobolev space in (i), such spaces can better
describe the endpoint singularities, but still produce suboptimal estimates
for (1+x)α-type singular functions with non-integer α > 0 (cf. [16, p. 474]).
Indeed, for the Chebyshev approximation, we find that u = (1 + x)α ∈
Hm,−1/2(Ω) with integer m < 2α+ 1/2, and

(1.3) ‖πC
Nu− u‖L2

ω(Ω) ≤ cN−m|u|Hm,−1/2(Ω),

where πC
Nu is the L2

ω-orthogonal projection of u (with ω = (1 − x2)−1/2).

However, the expected optimal order is O(N−2α−1/2), so the loss of an
order of the fractional part of 2α + 1/2 or one order (when 2α = k + 1/2
with integer k ≥ 0), is inevitable under this framework. This is due to the
space Hm,β(Ω) is only defined for integer m ≥ 0.

(iii) In a series of works [5–7], Babuška and Guo introduced the Jacobi-weighted
Besov space defined by space interpolation based on the so-called K-method.
One commonly used Besov space for (1 + x)α-type corner singularities is

Bs,β
2,2 (Ω) = (H l,β(Ω), Hm,β(Ω))ϑ,2 with integers l < m and s = (1 − ϑ)l +

ϑm, ϑ ∈ (0, 1), equipped with the norm

‖u‖Bs,β
2,2 (Ω) =

( ∫ ∞

0

t−2ϑ|K(t, u)|2 dt
t

)1/2

, where

K(t, u) = inf
u=v+w

(
‖v‖Hl,β(Ω) + t‖w‖Hm,β(Ω)

)
.

(1.4)

However, to deal with (1+x)α logν(1+x)-type corner singularities, Babuška
and Guo had to further modify the K-method by incorporating a log-factor
into the norm.

The aforementioned framework might lead to suboptimal estimates for functions
with interior singularities. For example, we consider u(x) = |x| for x ∈ (−1, 1).
Note that u′(x) = 2H(x) − 1 and u′′(x) = 2δ(x) (where H, δ are, respectively, the
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Heaviside function and the Dirac delta function). Since u′′ �∈ L2(Ω), the Chebyshev
approximation of |x| has a convergence:

(1.5) ‖πC
Nu− u‖L2

ω(Ω) ≤ cN−1|u|H1,−1/2(Ω),

but the expected optimal order is O(N−3/2) (cf. [38,39]). In fact, as shown in [38,
Thms 4.2-4.3] and [39, Thms 7.1-7.2] (also see Lemma 5.1 below), one should choose
Br ⊆ BV(Ω̄) (the space of functions of bounded variation) to achieve optimality (see
Section 5, and refer to [27, 38, 39, 42] for more details). Unfortunately, the Sobolev
spaces therein were defined through integer-order derivatives, so they could not best
characterise the regularity of, e.g., u(x) = |x|α with non-integer α > 0. In other
words, the order of convergence is suboptimal.

In this paper, we intend to introduce a new framework of fractional Sobolev-type
spaces that can meet the two requirements (a)-(b) and overcome the deficiencies
mentioned above. We focus on the Chebyshev approximation but the analysis tech-
niques are extendable to general Jacobi approximations. Here, we put emphasis on
estimating the decay rate of expansion coefficients for the reason that the errors
of spectral expansions in various norms, and the related interpolation and quadra-
tures, can be estimated directly from the sums of the coefficients (cf. [27,38]). The
essential ideas and main contributions of this study are summarised as follows:

(i) We derive the exact representation of the Chebyshev expansion coefficients
(see Theorem 4.1) by using the fractional calculus properties of GGF-Fs and
fractional integration by parts (under the weakest possible conditions). This
allows us to naturally define the fractional Sobolev spaces to characterise
the regularity of a large class of singular functions, leading to optimal order
of convergence.

(ii) As a byproduct, our estimates for the functions in this framework with
integer regularity exponential can improve the existing bounds in usual
Sobolev spaces (see, e.g., [27, 38, 39, 42]).

(iii) We present some useful analytical formulas on fractional calculus of GGF-
Fs, and the Chebyshev expansions of some specific singular functions. Some
of them are new or difficult to be derived by other means (cf. [11, 19, 41]).
They are also useful for the design of spectral algorithms.

The paper is organised as follows. In Sections 2-3, we introduce the GGF-Fs, and
present their important properties, including the uniform bounds and Riemann-
Liouville fractional integral/derivative formulas. We derive the main results in
Section 4, and improve the existing estimates in Sobolev spaces with integer-order
derivatives in Section 5. We discuss in Section 6 the extension of the main results
to the analysis of interpolation, quadrature, and endpoint singularities.

2. Generalised Gegenbauer functions of fractional degree

In this section, we collect some relevant properties of the hypergeometric func-
tions and Gegenbauer polynomials, upon which we define the GGF-Fs and derive
their relevant properties. These pave the way for the forthcoming error analysis.

2.1. Hypergeometric functions and Gegenbauer polynomials. Let Z and R

be the sets of all integers and real numbers, respectively, and denote
(2.1)
N =

{
k ∈ Z : k ≥ 1

}
, N0 := {0} ∪ N, R+ :=

{
a ∈ R : a > 0

}
, R+

0 := {0} ∪ R+.
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For a ∈ R, the rising factorial in the Pochhammer symbol is defined by

(2.2) (a)0 = 1; (a)j = a(a+ 1) · · · (a+ j − 1) ∀ j ∈ N.

The hypergeometric function is a power series, defined by (cf. [4])

2F1(a, b; c; z) =
∞∑
j=0

(a)j(b)j
(c)j

zj

j!

= 1 +
∞∑
j=1

a(a+ 1) · · · (a+ j − 1)

1 · 2 · · · j
b(b+ 1) · · · (b+ j − 1)

c(c+ 1) · · · (c+ j − 1)
zj ,

(2.3)

where a, b, c ∈ R and −c �∈ N0. The series converges absolutely for all |z| < 1.
Clearly, we have

(2.4) 2F1(a, b; c; 0) = 1, 2F1(a, b; c; z) = 2F1(b, a; c; z).

If a = −n with n ∈ N0, then (a)j = 0 for all j ≥ n + 1, so 2F1(−n, b; c;x) reduces
to a polynomial of degree not more than n.

The following properties can be found in [4, Ch. 2], if not stated otherwise.

• If c− a− b > 0, the series (2.3) converges absolutely at z = ±1, and

(2.5) 2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)
.

Here, the Gamma function with negative non-integer arguments should be
understood by the Euler’s reflection formula:

(2.6) Γ(1− a)Γ(a) =
π

sin(πa)
, a �∈ Z.

Note that Γ(−a) = ∞ if a ∈ N.
• If −1 < c − a − b ≤ 0, the series (2.3) converges conditionally at z = −1,
but diverges at z = 1; while for c− (a+ b) ≤ −1, it diverges at z = ±1. In
fact, it has the following singular behaviours at z = 1:

(2.7) lim
z→1−

2F1(a, b; c; z)

− ln(1− z)
=

Γ(c)

Γ(a)Γ(b)
if c = a+ b

and

(2.8) lim
z→1−

2F1(a, b; c; z)

(1− z)c−a−b
=

Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
if c < a+ b.

Recall the transform identity: for a, b, c ∈ R and −c �∈ N0,

2F1(a, b; c; z) = (1− z)c−a−b
2F1(c− a, c− b; c; z), |z| < 1.(2.9)

The hypergeometric function satisfies the differential equation (cf. [4, p. 98]):

{
zc(1− z)a+b−c+1y′(z)

}′
= abzc−1(1− z)a+b−cy(z), y(z) = 2F1(a, b; c; z).

(2.10)

We shall use the value at z = 1/2 (cf. [31, (15.4.28)]):

2F1

(
a, b;

a+ b+ 1

2
;
1

2

)
=

√
π Γ((a+ b+ 1)/2)

Γ((a+ 1)/2)Γ((b+ 1)/2)
.(2.11)
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Many functions are associated with the hypergeometric function. For example,
the Jacobi polynomial of degree n ∈ N0 with α, β > −1 (cf. Szegő [37]) is defined by

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
− n, n+ α+ β + 1;α+ 1;

1− x

2

)
= (−1)n

(β + 1)n
n!

2F1

(
− n, n+ α+ β + 1;β + 1;

1 + x

2

)(2.12)

for x ∈ (−1, 1), which satisfies

(2.13) P (α,β)
n (−x) = (−1)nP (β,α)

n (x), P (α,β)
n (1) =

(α+ 1)n
n!

.

For α, β > −1, the Jacobi polynomials are orthogonal with respect to the Jacobi
weight function: ω(α,β)(x) = (1− x)α(1 + x)β, namely,

(2.14)

∫ 1

−1

P (α,β)
n (x)P

(α,β)
n′ (x)ω(α,β)(x) dx = γ(α,β)

n δnn′ ,

where δnn′ is the Kronecker Delta symbol, and

(2.15) γ(α,β)
n =

2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)n! Γ(n+ α+ β + 1)
.

Remark 2.1. According to Szegő [37, pp. 63-67], the formula (2.12) furnishes the
extension of the classical Jacobi polynomials to arbitrary real values of the param-
eters α and β. It is a polynomial in x. In fact, many properties of the classical
Jacobi polynomials still hold, but the orthogonality is lacking in general.

Throughout this paper, the Gegenbauer polynomial with λ > −1/2 is defined by

G(λ)
n (x) =

P
(λ−1/2,λ−1/2)
n (x)

P
(λ−1/2,λ−1/2)
n (1)

= 2F1

(
− n, n+ 2λ;λ+

1

2
;
1− x

2

)

= (−1)n 2F1

(
− n, n+ 2λ;λ+

1

2
;
1 + x

2

)
, x ∈ (−1, 1),

(2.16)

which has a normalisation different from that in Szegő [37]. If λ = 0, it reduces to
the Chebyshev polynomial

(2.17) Tn(x) = G(0)
n (x) = 2F1

(
− n, n;

1

2
;
1− x

2

)
= cos(n arccos(x)).

Note that under the above normalisation, we derive from (2.14)-(2.15) the orthog-
onality:

(2.18)

∫ 1

−1

G(λ)
n (x)G(λ)

m (x)ωλ(x) dx = γ(λ)
n δnm; γ(λ)

n =
22λ−1Γ2(λ+ 1/2)n!

(n+ λ)Γ(n+ 2λ)
,

where ωλ(x) = (1 − x2)λ−1/2. In the analysis, we shall use the derivative relation
derived from the generalised Rodrigues’ formula (see [37, (4.10.1)] with α = β =
λ− 1/2 > −1 and m = 1):

ωλ(x)G
(λ)
n (x) = − 1

2λ+ 1

d

dx

{
ωλ+1(x)G

(λ+1)
n−1 (x)

}
, n ≥ 1.(2.19)
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2.2. Generalised Gegenbauer functions of fractional degree. As an indis-
pensable tool for the error analysis, we introduce the GGF-Fs by allowing the degree
n of the Gegenbauer polynomials in (2.16) to be real.

Definition 2.1. For real λ > −1/2 and real ν ≥ 0, the right GGF-F of degree ν is
defined by

rG(λ)
ν (x) = 2F1

(
− ν, ν + 2λ;λ+

1

2
;
1− x

2

)
= 1 +

∞∑
j=1

(−ν)j(ν + 2λ)j
j! (λ+ 1/2)j

(1− x

2

)j(2.20)

for x ∈ (−1, 1); while the left GGF-F of degree ν is defined by

lG(λ)
ν (x) = (−1)[ν] 2F1

(
− ν, ν + 2λ;λ+

1

2
;
1 + x

2

)
= (−1)[ν]

{
1 +

∞∑
j=1

(−ν)j(ν + 2λ)j
j! (λ+ 1/2)j

(1 + x

2

)j
}
,

(2.21)

where [ν] is the largest integer ≤ ν. �

Remark 2.2. For λ = 1/2, the right GGF-F turns out to be the Legendre function

(cf. [4]): Pν(x) =
rG

(1/2)
ν (x). In [31, (15.9.15)], rG

(λ)
ν (x) (with a different normalisa-

tion) is defined as the Gegenbauer function. However, there is nearly no discussion
on its properties.

Observe from (2.16) and Definition 2.1 that the GGF-Fs reduce to the classical
Gegenbauer polynomials when ν ∈ N0, but they are non-polynomials when ν is not
an integer.

Proposition 2.1. The GGF-Fs defined in Definition 2.1 satisfy

(2.22a) rG(λ)
n (x) = lG(λ)

n (x) = G(λ)
n (x), n ∈ N0;

(2.22b) rG(λ)
ν (−x) = (−1)[ν] lG(λ)

ν (x), rG(λ)
ν (1) = 1, lG(λ)

ν (−1) = (−1)[ν].

The special GGF-Fs
{
rG

(α+1/2)
n−α (x)

}
and

{
lG

(α+1/2)
n−α (x)

}
are closely related to

the Jacobi polynomials with the parameters ≤ −1 (cf. Remark 2.1).

Proposition 2.2. For α > −1 and n ≥ α with n ∈ N0, we have

P
(α,−α)
n (x)

P
(α,−α)
n (1)

=
(1 + x

2

)α
rG

(α+1/2)
n−α (x);

P
(−α,α)
n (x)

P
(α,−α)
n (1)

= (−1)[α]
(1− x

2

)α
lG

(α+1/2)
n−α (x) .

(2.23)

Proof. Taking a = −n+ α, b = n+ α+ 1, c = α+ 1, and z = (1− x)/2 in (2.9), we
obtain from (2.4) that

2F1

(
− n+ α, n+ α+ 1;α+ 1;

1− x

2

)
=

(1 + x

2

)−α

2F1

(
− n, n+ 1;α+ 1;

1− x

2

)
.

(2.24)
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By (2.12)-(2.13),

2F1

(
− n, n+ 1;α+ 1;

1− x

2

)
=

P
(α,−α)
n (x)

P
(α,−α)
n (1)

,

and by (2.20) (taking ν = n−α), the hypergeometric function in the left-hand side

of (2.24) equals rG
(α+1/2)
n−α (x). Thus, we derive the first identity in (2.23).

By (2.13) and (2.22b), the second identity in (2.23) follows from the first one
immediately. �

Remark 2.3. If −1 < α < 1, we rewrite (2.23) as

rG
(α+1/2)
n−α (x) = dn,α(1 + x)−αP (α,−α)

n (x);

lG
(α+1/2)
n−α (x) = (−1)[α]dn,α(1− x)−αP (−α,α)

n (x),
(2.25)

where dn,α = 2α/P
(α,−α)
n (1). From (2.14)-(2.15), we immediately obtain the or-

thogonality:

∫ 1

−1

rG
(α+1/2)
n−α (x) rG

(α+1/2)
m−α (x) (1− x2)α dx

= dn,αdm,α

∫ 1

−1

P (α,−α)
n (x)P (α,−α)

m (x)(1− x)α(1 + x)−α dx = d2n,αγ
(α,−α)
n δmm,

(2.26)

and likewise for {lG(α+1/2)
n−α (x)}. It is noteworthy that {(1+x)−αP

(α,−α)
n } are defined

as the Jacobi polyfractonomials in [43] and special generalised Jacobi functions in
[17, 21], which serve as effective (singular) basis functions in accurate solutions of
fractional differential equations (cf. [17, 43]). It is seen from (2.25) that they turn
out to be special GGF-Fs.

It is important to point out that the GGF-Fs may be singular at x = ±1, and
they behave differently in different ranges of λ.

Proposition 2.3. Let ν ∈ R+
0 .

(i) If −1/2 < λ < 1/2, then

(2.27) rG(λ)
ν (−1) =

cos((ν + λ)π)

cos(λπ)
= (−1)[ν] lG(λ)

ν (1) .

(ii) If λ = 1/2 and ν �∈ N0, then

(2.28) lim
x→−1+

rG
(λ)
ν (x)

ln(1 + x)
=

sin(νπ)

π
= lim

x→1−

(−1)[ν] lG
(λ)
ν (x)

ln(1− x)
.

(iii) If λ > 1/2 and ν �∈ N0, then

lim
x→−1+

(1 + x

2

)λ−1/2
rG(λ)

ν (x) = − sin(νπ)

π

Γ(λ− 1/2)Γ(λ+ 1/2)Γ(ν + 1)

Γ(ν + 2λ)

= (−1)[ν] lim
x→1−

(1− x

2

)λ−1/2
lG(λ)

ν (x).

(2.29)

Proof. By virtue of (2.22b), it suffices to prove the results for the right GGF-F
rG

(λ)
ν (x).
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(i) By (2.5), (2.6), and (2.20),

rG(λ)
ν (−1) = 2F1(−ν, ν + 2λ;λ+ 1/2; 1) =

Γ(λ+ 1/2)Γ(1/2− λ)

Γ(ν + λ+ 1/2)Γ(−ν − λ+ 1/2)

=
π

sin((λ+ 1/2)π)

sin((ν + λ+ 1/2)π)

π
=

cos((ν + λ)π)

cos(λπ)
,

(2.30)

which yields (2.27).
(ii) Using (2.6), (2.7), and (2.20), and noting that

ln((1 + x)/2)

ln(1 + x)
=

ln(1 + x)− ln 2

ln(1 + x)
→ 1 as x → −1+,

we obtain (2.28).
(iii) Next, taking a = −ν, b = ν + 2λ, c = λ + 1/2, and z = (1 − x)/2 in (2.9),

and using (2.4), we obtain

2F1

(
− ν, ν + 2λ;λ+

1

2
;
1− x

2

)
=

( 2

1 + x

)λ−1/2

2F1

(
ν + λ+

1

2
,−ν − λ+

1

2
;λ+

1

2
;
1− x

2

)
.

For λ > 1/2, we find from (2.5) and (2.6) that

2F1

(
ν + λ+

1

2
,−ν − λ+

1

2
;λ+

1

2
; 1

)
= − sin(νπ)

π

Γ(λ− 1/2)Γ(λ+ 1/2)Γ(ν + 1)

Γ(ν + 2λ)
,

so we derive (2.29) from (2.20) and the above. �

To illustrate, we depict in Figure 2.1 the right generalised Chebyshev/Legendre

functions, i.e., rG
(λ)
ν (x) with λ = 0, 1/2 and for various ν. Note that the left coun-

terparts lG
(λ)
ν (x) = (−1)[ν] rG

(λ)
ν (−x) (cf. (2.22b)). Observe that in the Legendre

case (the figure on the right), rG
(1/2)
ν (x) with non-integer degree has a logarithmic

singularity at x = −1 (cf. (2.28)), while the generalised Chebyshev functions (left)
are well defined at x = −1.
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Figure 2.1. Graphs of rG
(λ)
ν (x) with λ = 0 (left) and λ = 1/2

(right) for various ν.

Licensed to Nanyang Technological University. Prepared on Mon Sep  9 23:15:43 EDT 2019 for download from IP 3.0.220.147.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATION BY CHEBYSHEV EXPANSIONS 2865

2.3. Uniform upper bounds. The uniform bounds of the GGF-Fs stated in the
following two theorems are of paramount importance in the forthcoming error anal-
ysis.

Theorem 2.1. For λ ≥ 1 and real ν ≥ 0, we have

(2.31) max
|x|≤1

{
ωλ(x)|rG(λ)

ν (x)|, ωλ(x)|lG(λ)
ν (x)|

}
≤ κ(λ)

ν ,

where ωλ(x) = (1− x2)λ−1/2 and

κ(λ)
ν =

Γ(λ+ 1/2)√
π

(
cos2(πν/2)Γ2((ν + 1)/2)

Γ2((ν + 1)/2 + λ)
+

4 sin2
(
πν/2

)
2λ− 1 + ν(ν + 2λ)

Γ2(ν/2 + 1)

Γ2(ν/2 + λ)

)1/2

.

(2.32)

Proof. By virtue of (2.22b), it suffices to prove the result for rG
(λ)
ν (x). For notational

simplicity, we denote

G(x) := rG(λ)
ν (x); M(x) := ωλ(x)G(x);

H(x) := M2(x) + 
−1(1− x2)
(
M ′(x)

)2
,

(2.33)

where the constant 
 := 2λ− 1 + ν(ν + 2λ).
We take three steps to complete the proof.

Step 1. Show that H(x) is continuous on [−1, 1], that is, H(±1) are well defined.
It is evident that by (2.22b), M(1) = 0; and from (2.29), we find that M(−1) is a
finite value when λ ≥ 1. Next, from (3.13a) with s = 1, we derive

(2.34) (1− x2)1/2M ′(x) = (1− 2λ) (1− x2)λ−1 rG
(λ−1)
ν+1 (x).

Similarly, by (2.22b), (1− x2)1/2M ′(x)|x=1 = 0 for λ > 1, and it’s finite for λ = 1.
We now justify (1−x2)1/2M ′(x)|x=−1 is also well defined. We infer from Proposition

2.3 that (a) if 1 ≤ λ < 3/2, rG
(λ−1)
ν+1 (x) is finite at x = −1; (b) if λ = 3/2,

rG
(λ−1)
ν+1 (−1) = 0; and (c) if λ > 3/2, rG

(λ−1)
ν+1 (x) tends to a finite value as x → −1.

Hence, by (2.33), H(±1) are well defined.

Step 2. Derive the identity:

(2.35) H ′(x) = −4(λ− 1)x




(
M ′(x)

)2
, x ∈ (−1, 1).

Indeed, taking a = −ν, b = ν+2λ, c = λ+1/2, and z = (1±x)/2 in (2.10), we find
that G(x) satisfies the Sturm-Liouville problem{

ωλ+1(x)G
′(x)

}′
+ ν(ν + 2λ)ωλ(x)G(x) = 0.(2.36)

Substituting G(x) = ω−1
λ (x)M(x) into (2.36), we obtain by direct calculations that

(2.37) (1− x2)M ′′(x) + (2λ− 3)xM ′(x) + 
M(x) = 0.

Differentiating H(x) and using (2.37), leads to

H ′(x) =
2



M ′(x)

{
(1− x2)M ′′(x) + 
M(x)

}
− 2x



(M ′(x))2

= −4(λ− 1)x




(
M ′(x)

)2
.

(2.38)
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Step 3. Prove the following bounds and calculate the values at x = 0:

(2.39) M2(x) ≤ H(x) ≤ H(0) = M2(0) + 
−1
(
M ′(0)

)2 ∀x ∈ [−1, 1].

By (2.35), we have H ′(x) ≡ 0 if λ = 1, so H(x) is a constant and H(x) = H(0).
In other words, (2.39) is true for λ = 1.

If λ > 1, we deduce from (2.35) that the stationary points of H(x) are x = 0 or
zeros of M ′(x) (if any). Let 0 �= x̃ ∈ (−1, 1) be any zero of M ′(x) (note: M(x̃) �= 0).
Evidently, by (2.35), H ′(x) does not change sign in the neighbourhood of x̃, which
means x̃ cannot be an extreme point of H(x). In fact, x = 0 is the only extreme
point in (−1, 1). We also see from (2.35) that H ′(x) ≥ 0 (resp., H ′(x) ≤ 0) for
x ∈ (0, 1) (resp., x ∈ (−1, 0)). Note that H(x) attains its maximum at x = 0, since
H(x) is ascending when x < 0, and is descending when x > 0. Therefore, we obtain
(2.39) from (2.33) and the above reasoning.

Now, we calculate H(0). From (2.6) and (2.11), we obtain that for λ ≥ 0,

M(0) =rG(λ)
ν (0) = 2F1

(
− ν, ν + 2λ;λ+

1

2
;
1

2

)
=

√
π Γ(λ+ 1/2)

Γ(−ν/2 + 1/2)Γ(ν/2 + λ+ 1/2)

= sin
(
π(ν + 1)/2

)Γ(λ+ 1/2)Γ(ν/2 + 1/2)√
π Γ(ν/2 + λ+ 1/2)

,

(2.40)

which, together with (3.13b), implies{
(1− x2)1/2M ′(x)

}
|x=0 = (1− 2λ)rG

(λ−1)
ν+1 (0)

= (1− 2λ) sin
(
π(ν + 2)/2

)Γ(λ− 1/2)Γ(ν/2 + 1)√
π Γ(ν/2 + λ)

= 2 sin
(
πν/2

)Γ(λ+ 1/2)Γ(ν/2 + 1)√
π Γ(ν/2 + λ)

.

(2.41)

In the last step, we used the identity: Γ(z + 1) = zΓ(z).
Substituting (2.40)-(2.41) into (2.39), we obtain the bound in (2.31). �

As a direct consequence of Theorem 2.1, we have the following bound for the
Gegenbauer polynomials.

Corollary 2.1. For real λ ≥ 1 and integer l ≥ 0, we have

(2.42a) max
|x|≤1

{
ωλ(x)|G(λ)

2l (x)|
}
≤ Γ(λ+ 1/2)Γ(l + 1/2)√

π Γ(l + λ+ 1/2)
;

(2.42b)

max
|x|≤1

{
ωλ(x)|G(λ)

2l+1(x)|
}
≤ 2l + 1√

2λ− 1 + (2l + 1)(2l + 2λ+ 1)

Γ(λ+ 1/2)Γ(l + 1/2)√
π Γ(l + λ+ 1/2)

.

Remark 2.4. The bounds for Gegenbauer polynomials multiplied by a different
weight function: (1−x2)λ/2−1/4 can be found in [28]. To the best of our knowledge,
the bounds herein are new.

The upper bound in Theorem 2.1 is valid for λ ≥ 1. In the analysis, we also
need to use the upper bound for 0 < λ < 1. In this case, we have to multiply
the GGF-Fs by a different weight function, and conduct the analysis in a slightly
different manner.
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Theorem 2.2. For real 0 < λ < 1 and real ν ≥ 0, we have

(2.43) max
|x|≤1

{
(1− x2)λ/2|rG(λ)

ν (x)|, (1− x2)λ/2|lG(λ)
ν (x)|

}
≤ κ̂(λ)

ν ,

where

κ̂(λ)
ν =

Γ(λ+ 1/2)√
π

(
cos2(πν/2)Γ2(ν/2 + 1/2)

Γ2((ν + 1)/2 + λ)

+
4 sin2

(
πν/2

)
ν2 + 2λν + λ

Γ2(ν/2 + 1)

Γ2(ν/2 + λ)

)1/2

.

(2.44)

Proof. Once again, by virtue of (2.22b), it suffices to prove the result for rG
(λ)
ν (x).

Here, we denote

M̂(x) := (1− x2)λ/2rG(λ)
ν (x); Ĥ(x) := M̂2(x) +

1

ρ(x)

(
M̂ ′(x)

)2
,

ρ(x) :=
(
(ν + λ)2(1− x2)− λ(λ− 1)

)
(1− x2)−2.

(2.45)

Using Proposition 2.3, we can justify that Ĥ(x) is continuous on [−1, 1] in the
same manner as Step 1 in the proof of Theorem 2.1. Indeed, direct calculations
from (2.36) lead to

(2.46) (1− x2)M̂ ′′(x)− xM̂ ′(x) + (1− x2)ρ(x)M̂(x) = 0, x ∈ (−1, 1).

Like (2.35), we can show that

Ĥ ′(x) =
2λ(λ− 1)x

(λ+ ν)2(1− x2)2 − λ(λ− 1)(1− x2)

(
M̂ ′(x)

)2
, x ∈ (−1, 1).(2.47)

For 0 < λ < 1, Ĥ(x) is increasing for x < 0, and decreasing for x > 0, so H(x)
attains its maximum at x = 0. Thus,

(2.48) M̂2(x) ≤ Ĥ(x) ≤ Ĥ(0) = M̂2(0) + ρ−1(0)
(
M̂ ′(0)

)2 ∀x ∈ [−1, 1].

By (2.40),

M̂(0) = cos
(
πν/2

)Γ(λ+ 1/2)Γ(ν/2 + 1/2)√
π Γ(ν/2 + λ+ 1/2)

.(2.49)

Recall the identity (cf. [31, (15.5.1)]):

(2.50)
d

dx
2F1(a, b; c; z) =

ab

c
2F1(a+ 1, b+ 1; c+ 1; z).

From (2.20) and (2.50), we obtain

d

dx
rG(λ)

ν (x) =
d

dx
2F1

(
− ν, ν + 2λ;λ+

1

2
;
1− x

2

)
=
ν(ν + 2λ)

2λ+ 1
2F1

(
− ν + 1, ν + 2λ+ 1;λ+

3

2
;
1− x

2

)
.

(2.51)

In view of

M̂ ′(x) = −λx(1− x2)λ/2−1 rG(λ)
ν (x) + (1− x2)λ/2

d

dx
rG(λ)

ν (x),

we deduce from (2.6), (2.11), and (2.51) that

{ρ−1/2(x)M̂ ′(x)}|x=0 =
2 sin(πν/2)√

π

Γ(ν/2 + 1) Γ(λ+ 1/2)√
ν2 + 2λν + λ Γ(λ+ ν/2)

.(2.52)

From (2.48)-(2.49) and (2.52), we derive (2.43)-(2.44). �
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3. Fractional integral/derivative formulas of GGF-Fs

In this section, we show that GGF-Fs enjoy some remarkable fractional calculus
properties, which are important for the error analysis.

3.1. Fractional integrals/derivatives and related spaces of functions. Let
Ω = (a, b) ⊂ R be a finite open interval. For real p ∈ [1,∞], let Lp(Ω) (resp.,
Wm,p(Ω) with m ∈ N) be the usual p-Lebesgue space (resp., Sobolev space),
equipped with the norm ‖ · ‖Lp(Ω) (resp., ‖ · ‖Wm,p(Ω)), as in Adams [1].

Let C(Ω̄) be the classical space of continuous functions on [a, b]. Denote by
AC(Ω̄) the space of absolutely continuous functions on [a, b]. According to [26, Ch.
3] (also see [13, p. 206] or [34, Ch. 1]), a real function f(x) ∈ AC(Ω̄), if for any
ε > 0, there exists δ > 0, such that for every finite sequence of disjoint intervals
(ak, bk) ⊂ Ω such that

∑
k |bk − ak| < δ, we have

∑
k |f(bk) − f(ak)| < ε. Recall

that (cf. [34, Ch. 1] or [24, p. 285]): a real function f(x) ∈ AC(Ω̄) if and only
if f(x) ∈ L1(Ω), f(x) has a derivative f ′(x) almost everywhere on [a, b] such that
f ′(x) ∈ L1(Ω), and f(x) has the integral representation:

(3.1) f(x) = f(a) +

∫ x

a

f ′(t) dt ∀x ∈ [a, b].

Let BV(Ω̄) be the space of functions of bounded variation on [a, b]. According to
[13, p. 207] (also see [32, Ch. 11] and [24, Ch. X]), a real function f(x) ∈ BV(Ω̄),

if there exists a constant C > 0 such that V (P, f) :=
∑k−1

i=0 |f(xi+1)− f(xi)| ≤ C
for every partition P : x0 < x1 < . . . < xk of [a, b]. Define the total variation of f
on [a, b] as Vf [a, b] := sup{V (P, f)}, where the supreme is taken over all partitions.
An important characterisation of functions of bounded variation is the Jordan de-
composition (cf. [32, Thm. 11.19]): a function is of bounded variation if and only
if it can be expressed as the difference of two increasing functions on [a, b]. As a
result, every function in BV(Ω̄) has at most a countable number of discontinuities,
which are either jump or removable discontinuities, so it is differentiable almost
everywhere. In view of this, the Riemann-Stieltjes (RS) integral can be defined on

functions of bounded variation (see, e.g., [24, Ch. X]). In general, if
∫ b

a
fdg < ∞,

we say f is RS(g)-integrable. According to [24, Prop. 1.3], we have the following
important property: if f is RS(g)-integrable, and g ∈ BV(Ω̄), then

(3.2)
∣∣∣ ∫ b

a

fdg
∣∣∣ ≤ ‖f‖∞ Vg[a, b],

where ‖f‖∞ is the L∞-norm of f on [a, b].
We recall the definitions of the Riemann-Liouville fractional integrals and deriva-

tives (cf. [34, p. 33, p. 44]), and also follow the notation therein. Denote the
ordinary derivatives by D = d/dx and Dk = dk/dxk with integer k ≥ 2.

Definition 3.1. For any u∈L1(Ω), the left-sided and right-sided Riemann-Liouville
fractional integrals of order s ∈ R+ are defined by

(Isa+u)(x) =
1

Γ(s)

∫ x

a

u(y)

(x− y)1−s
dy;

(Isb−u)(x) =
1

Γ(s)

∫ b

x

u(y)

(y − x)1−s
dy, x ∈ Ω.

(3.3)
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A function u ∈ L1(Ω) is said to possess a left-sided (resp., right-sided ) Riemann-
Liouville fractional derivative Ds

a+u (resp., Ds
b−u) of order s ∈ (0, 1), if I1−s

a+ u ∈
AC(Ω̄) (resp., I1−s

b− u ∈ AC(Ω̄)). Moreover, we have

(3.4) (Ds
a+u)(x) = D

{
I1−s
a+ u

}
(x), (Ds

b−u)(x) = −D
{
I1−s
b− u

}
(x), x ∈ Ω.

Similarly, for s ∈ [k − 1, k) with k ∈ N, the higher order left-sided and right-sided
Riemann-Liouville fractional derivatives for u ∈ L1(Ω) satisfying I1−s

a+ u, I1−s
b− u ∈

ACk(Ω̄) (i.e., the space of all f(x) having continuous derivatives up to order k − 1
on Ω̄, and f (k−1) ∈ AC(Ω̄)) are defined by

(3.5) (Ds
a+u)(x) = Dk

{
Ik−s
a+ u

}
(x); (Ds

b−u)(x) = (−1)kDk
{
Ik−s
b− u

}
(x).

As a generalisation of (3.1), we have the following fractional integral representa-
tion, which can also be regarded as the definition of Riemann-Liouville fractional
derivatives alternative to Definition 3.1 (see [10, Prop. 5] and [34, p. 45]).

Proposition 3.1. A function u ∈ L1(Ω) possesses a left-sided Riemann-Liouville
fractional derivative Ds

a+u of order s ∈ (0, 1) if and only if there exist Ca ∈ R and
φ ∈ L1(Ω) such that

(3.6) u(x) =
Ca

Γ(s)
(x− a)s−1 + (Isa+ φ)(x) a.e. on [a, b],

where Ca = (I1−s
a+ u)(a) and φ(x) = (Ds

a+u)(x) a.e. on [a, b].
Similarly, a function u ∈ L1(Ω) has a right-sided Riemann-Liouville fractional

derivative Ds
b−u of order s ∈ (0, 1) if and only if there exist Cb ∈ R and ψ ∈ L1(Ω)

such that

(3.7) u(x) =
Cb

Γ(s)
(b− x)s−1 + (Isb− ψ)(x) a.e. on [a, b],

where Cb = (I1−s
b− u)(b) and ψ(x) = (Ds

b−u)(x) a.e. on [a, b].

Remark 3.1. We infer from Proposition 3.1 the equivalence of these two fractional
spaces:

W s,1
RL,a+(Ω) :=

{
u ∈ L1(Ω) : I1−s

a+ u ∈ AC(Ω̄)
}

≡
{
u ∈ L1(Ω) : Ds

a+u ∈ L1(Ω)
}(3.8)

for s ∈ (0, 1). The inclusion “⊆ ” follows immediately from u ∈ L1(Ω), I1−s
a+ u ∈

AC(Ω̄) and Definition 3.1. To show the opposite inclusion “⊇ ”, we find∫ b

a

|(I1−s
a+ u)(x)|dx =

1

Γ(1− s)

∫ b

a

∣∣∣ ∫ x

a

(x− y)−su(y)dy
∣∣∣dx

≤ 1

Γ(1− s)

∫ b

a

∫ x

a

(x− y)−s|u(y)|dydx =
1

Γ(1− s)

∫ b

a

( ∫ b

y

(x− y)−sdx
)
|u(y)|dy

=
1

Γ(2− s)

∫ b

a

(b− y)1−s|u(y)|dy ≤ (b− a)1−s

Γ(2− s)

∫ b

a

|u(y)|dy .

Since u ∈ L1(Ω), we conclude I1−s
a+ u ∈ L1(Ω). As Ds

a+u = D{I1−s
a+ u} ∈ L1(Ω), we

infer that I1−s
a+ u ∈ W 1,1(Ω)(= AC(Ω̄)). Therefore, the equivalence in (3.8) follows.

The same property for W s,1
RL,b−(Ω) with I1−s

b− u, Ds
b−u in place of I1−s

a+ u,Ds
a+u, re-

spectively, holds. We refer to [8] for insightful discussions of the relation between

W s,1
RL,a+(Ω) and the fractional Sobolev space in the sense of Gagliardo [29].
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Recall the explicit formulas (cf. [34]): for real η > −1 and s > 0,

Isa+ (x− a)η =
Γ(η + 1)

Γ(η + s+ 1)
(x− a)η+s;

Ds
a+ (x− a)η =

Γ(η + 1)

Γ(η − s+ 1)
(x− a)η−s.

(3.9)

We have similar formulas for right-sided Riemann-Liouville fractional integral/de-
rivative of (b− x)η. In particular,

(3.10) I1−s
a+ (x− a)s−1 = Γ(s); I1−s

b− (b− x)s−1 = Γ(s), s ∈ (0, 1),

which implies the boundary values Ca and Cb in Proposition 3.1 are not always
zero as x → a+ and x → b−, respectively. On the other hand, if η − s + 1 = −n
with n ∈ N0 in the second formula of (3.9) (note: Γ(−n) = ∞), then

(3.11) Ds
a+ (x− a)s−n−1 = Ds

b− (b− x)s−n−1 = 0 for s > n ∈ N0.

We see that the first term in the integral representations in (3.6)-(3.7) actually
plays the same role as a “constant” in (3.1).

3.2. Important formulas.

Theorem 3.1. For real ν ≥ s > 0 and real λ > −1/2, the GGF-Fs on (−1, 1)
satisfy the Riemann-Liouville fractional integral formulas:

Is1−
{
ωλ(x)

rG(λ)
ν (x)

}
=h

(−s)
λ ωλ+s(x)

rG
(λ+s)
ν−s (x),(3.12a)

Is−1+

{
ωλ(x)

lG(λ)
ν (x)

}
=(−1)[ν]+[ν−s] h

(−s)
λ ωλ+s(x)

lG
(λ+s)
ν−s (x).(3.12b)

For real λ > s − 1/2 and real ν ≥ 0, the GGF-Fs on (−1, 1) satisfy the Riemann-
Liouville fractional derivative formulas:

Ds
1−

{
ωλ(x)

rG(λ)
ν (x)

}
=h

(s)
λ ωλ−s(x)

rG
(λ−s)
ν+s (x),(3.13a)

Ds
−1+

{
ωλ(x)

lG(λ)
ν (x)

}
=(−1)[ν]+[ν+s] h

(s)
λ ωλ−s(x)

lG
(λ−s)
ν+s (x).(3.13b)

In the above, we denote

(3.14) ωα(x) = (1− x2)α−
1
2 , h

(β)
λ =

2β Γ(λ+ 1/2)

Γ(λ− β + 1/2)
.

Proof. Recall the Bateman’s fractional integral formula (cf. [4, p. 313]): for c, s > 0
and |z| < 1,

2F1(a, b; c+ s; z) = z1−(c+s) Γ(c+ s)

Γ(c)Γ(s)

∫ z

0

tc−1(z − t)s−1
2F1(a, b; c; t) dt,(3.15)

which, together with (2.9), yields

zc+s−1(1− z)c+s−a−b
2F1(c− a+ s, c− b+ s; c+ s; z)

=
Γ(c+ s)

Γ(c)Γ(s)

∫ z

0

tc−1(z − t)s−1(1− t)c−a−b
2F1(c− a, c− b; c; t) dt.

(3.16)
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Applying the variable substitutions: z = (1− x)/2 and t = (1− y)/2 to (3.16),
leads to

(1− x)c+s−1(1 + x)c+s−a−b
2F1

(
c− a+ s, c− b+ s; c+ s;

1− x

2

)
=

2s Γ(c+ s)

Γ(c)Γ(s)

∫ 1

x

(1− y)c−1(1 + y)c−a−b(y − x)s−1
2F1

(
c− a, c− b; c;

1− y

2

)
dy.

(3.17)

Taking a = ν + λ+ 1/2, b = −ν − λ+ 1/2, and c = λ+ 1/2 in (3.17), we obtain

(1− x2)λ+s+1/2
2F1

(
s− ν, ν + s+ 2λ;λ+ s+

1

2
;
1− x

2

)
=

2s Γ(λ+ s+ 1/2)

Γ(λ+ 1/2)Γ(s)

∫ 1

x

(1− y2)λ−1/2(y − x)s−1
2F1

(
− ν, ν + 2λ;λ+

1

2
;
1− y

2

)
dy.

From (3.3) and (2.20), we derive (3.12a) immediately.
Similarly, performing the variable substitutions: z = (1 + x)/2 and t = (1 + y)/2

to (3.16), we can obtain (3.12b) in the same manner.
Applying Ds

1− to both sides of (3.12a) and noting that Ds
1− Is1− is an identity

operator (cf. [34]), we obtain for real ν ≥ s > 0 and real λ > −1/2,

ωλ(x)
rG(λ)

ν (x) =h
(−s)
λ Ds

1−
{
ωλ+s(x)

rG
(λ+s)
ν−s (x)

}
.(3.18)

Replacing λ, ν in the above equation by λ− s, ν + s, and noting that

(3.19)
(
h
(−s)
λ−s

)−1
=

2s Γ(λ+ 1/2)

Γ(λ− s+ 1/2)
= h

(s)
λ ,

we obtain (3.13a). Similarly, applying Ds
−1+ to both sides of (3.12b), we can derive

(3.13b). �

4. Chebyshev approximations of functions

in fractional Sobolev-type spaces

In this section, we introduce a new theoretical framework and present the main
results on Chebyshev approximations. Here, we focus on the approximation of
functions with interior singularities, and shall extend the estimates to deal with
functions with endpoint singularities in Subsection 6.2.

4.1. Fractional Sobolev-type spaces. For a fixed θ ∈ Ω = (−1, 1), we denote
Ω−

θ := (−1, θ) and Ω+
θ := (θ, 1). For m ∈ N0 and s ∈ (0, 1), we define the fractional

Sobolev-type space:

Wm+s
θ (Ω) :=

{
u ∈ L1(Ω) : u, u′, · · · , u(m−1) ∈ AC(Ω̄) and

I1−s
θ− u(m) ∈ BV(Ω̄−

θ ), I1−s
θ+ u(m) ∈ BV(Ω̄+

θ )
}
,

(4.1)

equipped with the norm:

(4.2) ‖u‖
W

m+s
θ (Ω) =

m∑
k=0

‖u(k)‖L1(Ω) + Um,s
θ ,
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where the semi-norm is defined by

• for m = 1, 2, · · · , and s ∈ (0, 1),

Um,s
θ :=

∫ θ

−1

∣∣Ds
θ− u(m)(x)

∣∣ dx+

∫ 1

θ

|Ds
θ+u

(m)(x)|dx

+
∣∣{I1−s

θ− u(m)
}
(θ+)

∣∣ + ∣∣{I1−s
θ+ u(m)

}
(θ−)

∣∣;(4.3)

• for m = 0 and s ∈ (1/2, 1),

U0,s
θ :=

∫ θ

−1

∣∣Ds
θ− u(x)

∣∣ωs/2(x)dx+

∫ 1

θ

|Ds
θ+u(x)|ωs/2(x)dx

+
∣∣{ωs/2 I

1−s
θ− u

}
(θ+)

∣∣ + ∣∣{ωs/2 I
1−s
θ+ u

}
(θ−)

∣∣.(4.4)

Analogous to the integer derivative case (see [38, 39] or (5.1) below), the integrals
in (4.3)-(4.4) are in the Riemann-Stieltjes sense. For example, for I1−s

θ− u(m) ∈
BV(Ω̄−

θ ), we understand∫ θ

−1

∣∣Ds
θ− u(m)(x)

∣∣ dx =

∫ θ

−1

∣∣d(I1−s
θ− u(m))

∣∣.
By virtue of (3.2), it can be bounded by the total variation of I1−s

θ− u(m) on Ω̄−
θ .

Remark 4.1. The parameter θ is related to the location of the singular point of
u(x). For example, if u = |x|, then θ = 0 (also see the examples in Subsection
4.4). For a function of multiple interior singular points, we partition (−1, 1) into
multiple subintervals and introduce the same number of parameters accordingly.

To deal with endpoint singularities, we define the fractional Sobolev-type spaces
corresponding to θ = ±1 by

Wm+s
1− (Ω) :=

{
u ∈ L1(Ω) : u, u′, · · · , u(m−1) ∈ AC(Ω̄), I1−s

1− u(m) ∈ BV(Ω̄)
}
,

Wm+s
−1+(Ω) :=

{
u ∈ L1(Ω) : u, u′, · · · , u(m−1) ∈ AC(Ω̄), I1−s

−1+u
(m) ∈ BV(Ω̄)

}
.

(4.5)

Accordingly, the semi-norm Um,s
+ (resp., Um,s

− ) only involves the right (resp., left)
Riemann-Liouville fractional integrals/derivatives. For example, when θ = −1, the
semi-norm corresponding to (4.3) becomes

Um,s
−1+ :=

∫ 1

−1

|Ds
−1+u

(m)(x)|dx+
∣∣{I1−s

−1+u
(m)

}
(−1+)

∣∣.(4.6)

We remark that for s ∈ (0, 1), Ws
−1+(Ω) � W s,1

RL,−1+(Ω) defined in (3.8).

4.2. Exact formulas and decay rate of Chebyshev expansion coefficients.
Let ω(x) = (1 − x2)−1/2 = ω0(x) be the Chebyshev weight function. For any
u ∈ L2

ω(Ω), we expand it in Chebyshev series and denote the partial sum by

(4.7) u(x) =

∞∑
n=0

′ ûC
n Tn(x), πC

Nu(x) =

N∑
n=0

′ ûC
n Tn(x),

where the prime denotes a sum whose first term is halved, and

(4.8) ûC
n =

2

π

∫ 1

−1

u(x)
Tn(x)√
1− x2

dx =
2

π

∫ π

0

u(cos θ) cos(nθ)dθ.
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Recall the formula of integration by parts involving the Riemann-Stieltjes inte-
grals (cf. [25, (1.20)]).

Lemma 4.1. For any u, v ∈ BV(Ω̄), we have

∫ b

a

u(x) dv(x) = {u(x)v(x)}
∣∣b−
a+

−
∫ b

a

v(x) du(x),(4.9)

where the notation u(x±) stands for the right- and left-limit of u at x, respectively.
In particular, if u, v ∈ AC(Ω̄), we have

∫ b

a

u(x)v′(x) dx+

∫ b

a

u′(x)v(x) dx = {u(x)v(x)}
∣∣b
a
.(4.10)

Remark 4.2. As highlighted in [27,39], the error analysis of Chebyshev expansions
in various norms, and the related interpolation and quadrature errors, essentially
depends on estimating the decay rate of |ûC

n |.

We present the main results below.

Theorem 4.1. Given θ ∈ (−1, 1), if u ∈ Wm+s
θ (Ω) with s ∈ (0, 1) and integer

m ≥ 0, then for n > m+ s > 1/2,

ûC
n = − 1√

π 2m+s−1Γ(m+ s+ 1/2)

{∫ θ

−1

lG
(m+s)
n−m−s(x)ωm+s(x) d

{
I1−s
θ− u(m)(x)

}
+

{
I1−s
θ− u(m)(x) lG

(m+s)
n−m−s(x)ωm+s(x)

}∣∣
x=θ−

−
∫ 1

θ

rG
(m+s)
n−m−s(x)ωm+s(x) d

{
I1−s
θ+ u(m)(x)

}
−

{
I1−s
θ+ u(m)(x) rG

(m+s)
n−m−s(x)ωm+s(x)

}∣∣
x=θ+

}
,

(4.11)

where ωλ(x) = (1− x2)λ−1/2. Moreover, we have the following bounds:

(i) For m = 0, s ∈ (1/2, 1) and n > s, we have

|ûC
n | ≤

U0,s
θ

2s−1π
max

{
Γ((n− s+ 1)/2)

Γ((n+ s+ 1)/2)
,

2√
n2 − s2 + s

Γ((n− s)/2 + 1)

Γ((n+ s)/2)

}
.(4.12)

(ii) For m ≥ 1, s ∈ (0, 1) and n > m+ s, we have

|ûC
n | ≤

Um,s
θ

2m+s−1π

Γ((n−m− s+ 1)/2)

Γ((n+m+ s+ 1)/2)
.(4.13)

Proof. Substituting n → n− k, λ → k in (2.19), leads to

ωk(x)G
(k)
n−k(x) = − 1

2k + 1

{
ωk+1(x)G

(k+1)
n−k−1(x)

}′
, n ≥ k + 1.(4.14)
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For u, u′, · · · , u(m−1) ∈ AC(Ω̄), using (4.14) with k = 0, 1, · · · ,m − 1, and the
integration by parts in Lemma 4.1, we obtain that for n ≥ m,

ûC
n =

2

π

∫ 1

−1

u(x)G(0)
n (x)ω0(x) dx = − 2

π

∫ 1

−1

u(x)
{
G

(1)
n−1(x)ω1(x)

}′
dx

=
2

π

∫ 1

−1

u′(x)G
(1)
n−1(x)ω1(x)dx = − 2

3π

∫ 1

−1

u′(x)
{
G

(2)
n−2(x)ω2(x)

}′
dx

=
1

3

2

π

∫ 1

−1

u′′(x)G
(2)
n−2(x)ω2(x)dx = − 1

3 · 5
2

π

∫ 1

−1

u′′(x)
{
G

(3)
n−3(x)ω3(x)

}′
dx

= · · · = 1

(2m− 1)!!

2

π

∫ 1

−1

u(m)(x)G
(m)
n−m(x)ωm(x) dx.

(4.15)

Using the identity (cf. [31]):

(4.16) Γ(k + 1/2) =

√
π (2k − 1)!!

2k
, k ∈ N0,

we can rewrite the expansion coefficient as

ûC
n =

1√
π 2m−1Γ(m+ 1/2)

∫ 1

−1

u(m)(x)G
(m)
n−m(x)ωm(x) dx.(4.17)

We proceed with the proof by fractional integration by parts. Then it is necessary
to use the following identities: for n > m+ s > 1/2,

ωm(x)G
(m)
n−m(x) =− Γ(m+ 1/2)

2s Γ(m+ s+ 1/2)
I1−s
1−

{
ωm+s(x)

rG
(m+s)
n−m−s(x)

}′

=− Γ(m+ 1/2)

2s Γ(m+ s+ 1/2)
I1−s
−1+

{
ωm+s(x)

lG
(m+s)
n−m−s(x)

}′
.

(4.18)

To derive (4.18), we substitute s, λ, ν in (3.12a)-(3.12b) by 1− s,m− s, n−m+ s,
respectively, leading to

ωm(x)G
(m)
n−m(x) =

21−sΓ(m+ 1/2)

Γ(m+ s− 1/2)
I1−s
1−

{
ωm+s−1(x)

rG
(m+s−1)
n−m−s+1(x)

}
=

21−sΓ(m+ 1/2)

Γ(m+ s− 1/2)
I1−s
−1+

{
ωm+s−1(x)

lG
(m+s−1)
n−m−s+1(x)

}
.

(4.19)

Taking s = 1, λ = m+ s and ν = n −m− s in (3.13a)-(3.13b), we obtain that for
m+ s > 1/2,

ωm+s−1(x)
rG

(m+s−1)
n−m−s+1(x) =− Γ(m+ s− 1/2)

2 Γ(m+ s+ 1/2)

{
ωm+s(x)

rG
(m+s)
n−m−s(x)

}′
,

ωm+s−1(x)
lG

(m+s−1)
n−m−s+1(x) =− Γ(m+ s− 1/2)

2 Γ(m+ s+ 1/2)

{
ωm+s(x)

lG
(m+s)
n−m−s(x)

}′
.

(4.20)

Substituting (4.20) into (4.19) leads to (4.18).
For notational convenience, we denote

f(x) = u(m)(x), g(x) = −ωm+s(x)
lG

(m+s)
n−m−s(x),

h(x) = −ωm+s(x)
rG

(m+s)
n−m−s(x).

(4.21)
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By (4.18), we can rewrite (4.17) as

ûC
n =

1√
π 2m−1Γ(m+ 1/2)

{∫ θ

−1

u(m)G
(m)
n−m ωm dx+

∫ 1

θ

u(m) G
(m)
n−m ωm dx

}

=
1√

π 2m+s−1Γ(m+ s+ 1/2)

{∫ θ

−1

f(x) I1−s
−1+g

′(x) dx+

∫ 1

θ

f(x) I1−s
1− h′(x) dx

}
.

(4.22)

We find from (2.22b) and (4.20), g′(x) (resp., h′(x)) is continuous on (−1, θ] (resp.,
[θ, 1)), and they are also integrable when m + s > 1/2. Thus, for f ∈ L1(Ω),
changing the order of integration by Fubini’s Theorem, we derive from (3.3) that∫ θ

−1

f(x)I1−s
−1+g

′(x) dx =
1

Γ(1− s)

∫ θ

−1

{∫ x

−1

g′(y)

(x− y)s
dy

}
f(x) dx

=
1

Γ(1− s)

∫ θ

−1

{∫ θ

y

f(x)

(x− y)s
dx

}
g′(y) dy

=
1

Γ(1− s)

∫ θ

−1

{∫ θ

x

f(y)

(y − x)s
dy

}
g′(x) dx =

∫ θ

−1

g′(x) I1−s
θ− f(x) dx.

(4.23)

Similarly, we can show

(4.24)

∫ 1

θ

f(x) I1−s
1− h′(x) dx =

∫ 1

θ

h′(x) I1−s
θ+ f(x) dx.

Thus, if I1−s
θ− f(x) ∈ BV(Ω̄−

θ ) and I1−s
θ+ f(x) ∈ BV(Ω̄+

θ ), we use Lemma 4.1, and
derive ∫ θ

−1

f(x) I1−s
−1+g

′(x) dx =

∫ θ

−1

g′(x) I1−s
θ− f(x) dx

=
{
g(x) I1−s

θ− f(x)
}∣∣θ−

−1+
−

∫ θ

−1

g(x) d
{
I1−s
θ− f(x)

}
=

{
g(x) I1−s

θ− f(x)
}∣∣

x=θ− +

∫ θ

−1

g(x) d
{
I1−s
θ− f(x)

}
,

(4.25)

where we used the fact g(−1) = 0 for m + s > 1/2 due to (2.22b), and also used
(3.5).

Similarly, we can show that for m+ s > 1/2,

(4.26)

∫ 1

θ

f(x) I1−s
1− h′(x) dx = −

{
h(x) I1−s

θ+ f(x)
}∣∣

x=θ+
−

∫ 1

θ

h(x) d
{
I1−s
θ+ f(x)

}
.

Substituting (4.21) and (4.25)-(4.26) into (4.22), we obtain (4.11).
We next derive the bounds in (4.12)-(4.13).
(i) For m = 0 and s ∈ (1/2, 1), we take λ = s and ν = n− s in Theorem 2.2, and

then obtain from (4.11) and the bound (4.12) directly.
(ii) We now turn to the proof of (4.13). We first show the inequality:

2√
2λ− 1 + ν(ν + 2λ)

Γ(ν/2 + 1)

Γ(ν/2 + λ)
≤ Γ((ν + 1)/2)

Γ((ν + 1)/2 + λ)
, ν ≥ 0, λ ≥ 1.(4.27)

To prove (4.27), we use the property in [14, Corollary 2], that is, the ratio

f(z) :=
1√
z

Γ(z + 1)

Γ(z + 1/2)
, z > 0,
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is decreasing. Then using the facts:

(ν − 1)/2 + λ > 0, (ν − 1)/2 + λ > (ν + 1)/2,

we can derive that

1√
(ν − 1)/2 + λ

Γ((ν + 1)/2 + λ)

Γ(ν/2 + λ)
≤ 1√

ν/2 + 1/2

Γ((ν + 3)/2)

Γ(ν/2 + 1)

=

√
ν + 1

2

Γ((ν + 1)/2)

Γ(ν/2 + 1)
,

(4.28)

where in the last step we used the identity: Γ(z + 1) = zΓ(z). Next, we rewrite
(4.28) as

2√
(ν + 2λ− 1)(ν + 1)

Γ(ν/2 + 1)

Γ(ν/2 + λ)
≤ Γ((ν + 1)/2)

Γ((ν + 1)/2 + λ)
.(4.29)

Noting that
2√

2λ− 1 + ν(ν + 2λ)
=

2√
(ν + 2λ− 1)(ν + 1)

,

we obtain (4.27) from (4.29) immediately. Using (4.27), we derive from Theorem
2.1 that

max
|x|≤1

{
ωλ(x)

∣∣rG(λ)
ν (x)

∣∣, ωλ(x)
∣∣lG(λ)

ν (x)
∣∣} ≤Γ(λ+ 1/2)√

π

Γ((ν + 1)/2)

Γ((ν + 1)/2 + λ)
,(4.30)

so the bound in (4.13) follows from (4.11) with λ = m + s and ν = n − m − s in
(4.30). �

In Theorem 4.1, we only presented the formulas for functions with fractional
regularity index s ∈ (0, 1). For the integer case with s = 1, we stop at the step (4.17)
and then estimate the bound of the Chebyshev expansion coefficients. Accordingly,
we define the corresponding space as

Wm+1(Ω) :=
{
u ∈ L1(Ω) : u′, · · · , u(m−1) ∈ AC(Ω̄), u(m) ∈ BV(Ω̄)

}
,(4.31)

as in [27, 39]. We show in Section 5 that the analysis under this framework can
improve the existing estimates in [27, 38, 39, 42].

4.3. L∞- and L2-estimates of Chebyshev expansions. With Theorem 4.1 at
our disposal, we can analyse all related orthogonal projections, interpolations, and
quadratures (cf. [27]). Here, we first estimate the Chebyshev expansion errors in
the L∞-norm and L2

ω-norm for functions with interior singularities, i.e., θ ∈ (−1, 1)
and with s ∈ (0, 1). We consider the analysis of endpoint singularities with θ = ±1
in Section 6.

Theorem 4.2. Given θ ∈ (−1, 1), if u ∈ Wm+s
θ (Ω) with s ∈ (0, 1) and integer

m ≥ 0, we have the following estimates:

(i) For 1 < m+ s < N + 1,

‖u− πC
Nu‖L∞(Ω) ≤

Um,s
θ

2m+s−2(m+ s− 1)π

Γ((N −m− s)/2 + 1)

Γ((N +m+ s)/2)
.(4.32)

(ii) For 1/2 < m+ s < N + 1,

‖u− πC
Nu‖L2

ω(Ω) ≤
{

23

(2m+ 2s− 1)π

Γ(N −m− s+ 1)

Γ(N +m+ s)

}1/2

Um,s
θ .(4.33)
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Proof. (i) We first prove (4.32). For simplicity, we denote

(4.34) Sσ
n :=

Γ((n− σ + 1)/2)

Γ((n+ σ + 1)/2)
, T σ

n :=
Γ((n− σ + 1)/2)

Γ((n+ σ − 1)/2)
, σ := m+ s.

A direct calculation leads to the identity:

T σ
n − T σ

n+2 =
n+ σ − 1

2

Γ((n− σ + 1)/2)

Γ((n+ σ + 1)/2)
− n− σ + 1

2

Γ((n− σ + 1)/2)

Γ((n+ σ + 1)/2)

=(σ − 1)
Γ((n− σ + 1)/2)

Γ((n+ σ + 1)/2)
= (σ − 1)Sσ

n ,

(4.35)

where we used the identity zΓ(z) = Γ(z + 1). As σ > 1, we obtain from (4.13) and
(4.34) that

∣∣u(x)− πC
Nu(x)

∣∣ ≤ ∞∑
n=N+1

|ûC
n | ≤

Um,s
θ

2σ−1π

∞∑
n=N+1

Sσ
n

=
Um,s
θ

2σ−1(σ − 1)π
lim

K→∞

K∑
n=N+1

{
T σ
n − T σ

n+2

}

=
Um,s
θ

2σ−1(σ − 1)π
lim

K→∞

{
T σ
N+1 + T σ

N+2 −
(
T σ
K+1 + T σ

K+2

)}
=

Um,s
θ

2σ−1(σ − 1)π

{
T σ
N+1 + T σ

N+2

}
.

(4.36)

We find from [2, (1.1) and Theorem 10] that for 0 ≤ a ≤ b, the ratio

(4.37) Ra
b (z) :=

Γ(z + a)

Γ(z + b)
, z ≥ 0,

is decreasing with respect to z. As σ − 1 > 0, we have

(4.38) T σ
N+2 = R0

σ−1(1 + (N − σ + 1)/2) ≤ R0
σ−1(1 + (N − σ)/2) = T σ

N+1.

Therefore, the estimate (4.32) follows from (4.36) and (4.38).
(ii) We now turn to the estimate (4.33) with 1 < m + s < N + 1. Similar to

(4.38), we can use (4.37) to show that Sσ
n ≤ Sσ

n−1. Thus, using the identity

Γ(2z) = π−1/222z−1Γ(z)Γ(z + 1/2),(4.39)

we derive

(Sσ
n)

2 ≤ Sσ
nSσ

n−1 =
Γ((n− σ + 1)/2)

Γ((n+ σ + 1)/2)

Γ((n− σ)/2)

Γ((n+ σ)/2)
= 22σ

Γ(n− σ)

Γ(n+ σ)

=
22σ

2σ − 1

(
Γ(n− σ)

Γ(n− 1 + σ)
− Γ(n+ 1− σ)

Γ(n+ σ)

)
.

(4.40)

Then, for σ > 1,

∥∥u− πC
Nu

∥∥2

L2
ω(Ω)

=
π

2

∞∑
n=N+1

∣∣ûC
n

∣∣2 ≤ (Um,s
θ )2

22σ−3π

∞∑
n=N+1

(Sσ
n)

2

≤23(Um,s
θ )2

(2σ − 1)π

Γ(N − σ + 1)

Γ(N + σ)
.

(4.41)
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Finally, we prove (4.33) with m = 0 and s ∈ (1/2, 1) by using (4.12). Note that
(4.40) is valid for σ = s ∈ (1/2, 1), so we have

(Ss
n)

2 ≤ 22s

2s− 1

(
Γ(n− s)

Γ(n− 1 + s)
− Γ(n+ 1− s)

Γ(n+ s)

)
.(4.42)

We now estimate the second factor in the upper bound (4.12). Using the property
zΓ(z) = Γ(z + 1), we obtain from (4.37) that for n ≥ 1 and s ∈ (1/2, 1),

Γ((n− s)/2 + 1)

Γ((n+ s)/2)
=

n+ s

2

Γ((n− s)/2 + 1)

Γ((n+ s)/2 + 1)
=

n+ s

2

Γ((n+ s)/2 + 1− s)

Γ((n+ s)/2 + 1)

≤ n+ s

2

Γ((n− 1 + s)/2 + 1− s)

Γ((n− 1 + s)/2 + 1)

=
n+ s

2

Γ((n− s)/2 + 1/2)

(n− 1 + s)/2Γ((n− 1 + s)/2)

=
n+ s

n+ s− 1

Γ((n− s)/2 + 1/2)

Γ((n+ s)/2− 1/2)
.

(4.43)

Then by (4.39) and (4.43),

4

n2 − s2 + s

Γ2((n− s)/2 + 1)

Γ2((n+ s)/2)

≤ 4

n2 − s2 + s

n+ s

n+ s− 1

Γ((n− s)/2 + 1/2)

Γ((n+ s)/2− 1/2)

Γ((n− s)/2 + 1)

Γ((n+ s)/2)

=
22s

n2 − s2 + s

n+ s

n− 1 + s

Γ(n− s+ 1)

Γ(n+ s− 1)
= 22s

n2 − s2

n2 − s2 + s

Γ(n− s)

Γ(n+ s)

≤ 22s
Γ(n− s)

Γ(n+ s)
=

22s

2s− 1

(
Γ(n− s)

Γ(n+ s− 1)
− Γ(n+ 1− s)

Γ(n+ s)

)
,

(4.44)

where in the last step, we used the property: zΓ(z) = Γ(z + 1) again to show that

Γ(n− s)

Γ(n+ s− 1)
= (n+ s− 1)

Γ(n− s)

Γ(n+ s)
,

Γ(n+ 1− s)

Γ(n+ s)
= (n− s)

Γ(n− s)

Γ(n+ s)
.

Thus, we obtain from (4.12), (4.34), (4.42), and (4.44) that

|ûC
n |2 ≤ 4(U0,s

θ )2

(2s− 1)π2

(
Γ(n− s)

Γ(n− 1 + s)
− Γ(n+ 1− s)

Γ(n+ s)

)
.(4.45)

Consequently, we can derive

∥∥u− πC
Nu

∥∥2

L2
ω(Ω)

=
π

2

∞∑
n=N+1

∣∣ûC
n

∣∣2 ≤ 23(U0,s
θ )2

(2s− 1)π

Γ(N − s+ 1)

Γ(N + s)
.(4.46)

This completes the proof. �

Remark 4.3. Recall that (cf. [31, (5.11.13)]): for a < b,

(4.47)
Γ(z + a)

Γ(z + b)
= za−b +

1

2
(a− b)(a+ b− 1)za−b−1 +O(za−b−2), z � 1.
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Thus, under the conditions of Theorem 4.2 and for fixed m and large n or N, we
have

|ûC
n | ≤ Cn−(m+s)Um,s

θ , ‖u− πC
Nu‖L∞(Ω) ≤ CN1−(m+s)Um,s

θ ,

‖u− πC
Nu‖L2

ω(Ω) ≤ CN
1
2−(m+s)Um,s

θ ,
(4.48)

where C is a positive constant independent of n,N , and u.

4.4. Applications to functions with interior singularities. In what follows,
we apply the main results to two typical types of singular functions, and provide
numerical illustrations of the optimal convergence order.

• Type-I: Consider

(4.49) u(x) = |x− θ|α, α > −1/2, x, θ ∈ (−1, 1),

where α is not an even integer.
• Type-II: Consider

(4.50) u(x) = |x− θ|α ln |x− θ|, α > −1/2, x, θ ∈ (−1, 1).

4.4.1. Type-I singularity in (4.49).

Theorem 4.3. Given the function in (4.49) (where α is not an even integer), we
have that (i) if α is an odd integer, then u ∈ Wα+1(Ω) (defined in (4.31)); and (ii)
if α is not an integer, then u ∈ Wα+1

θ (Ω) (defined in (4.1)).
For all real α > −1/2 and each n ≥ α + 1, the Chebyshev expansion coefficient

can be expressed as

ûC
n =

Γ(α+ 1)

2αΓ(α+ 3/2)
√
π

{
rG

(α+1)
n−α−1(θ)− (−1)n+[n−α] lG

(α+1)
n−α−1(θ)

}
ωα+1(θ),(4.51)

and we have

(a) for −1/2 < α < 0,

|ûC
n | ≤

Γ(α+ 1)

2α−1π
(1− θ2)α/2

×max

{
Γ((n− α)/2)

Γ((n+ α)/2 + 1)
,

2√
n2 − α(α+ 1)

Γ((n− α+ 1)/2)

Γ((n+ α+ 1)/2)

}
;

(4.52)

(b) for α > 0,

|ûC
n | ≤

Γ(α+ 1)

2α−1π

Γ((n− α)/2)

Γ((n+ α)/2 + 1)
.(4.53)

Proof. We first identify the space that can optimally characterise the regularity of
u, and derive the formula (4.51).

(i) If α is an odd integer, we find

u(k) = dkα |x− θ|α−k (sgn(x− θ))k ∈ AC(Ω̄), 0 ≤ k ≤ α− 1;

u(α) = dαα (2H(x− θ)− 1) ∈ BV(Ω̄),
(4.54)

where sign(z), H(z), δ(z) are the sign, Heaviside, and Dirac Delta functions, respec-
tively, and

(4.55) dkα := α(α− 1) · · · (α− k + 1) =
Γ(α+ 1)

Γ(α− k + 1)
.

From (4.31), we claim that u ∈ Wα+1(Ω).
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Moreover, by (2.22a), (5.8) (with m = α), (4.16), and (4.54),

ûC
n =

1

(2α+ 1)!!

2

π

∫ 1

−1

G
(α+1)
n−α−1(x)ωα+1(x) d{u(α)(x)}

=
Γ(α+ 1)

2α−1Γ(α+ 3/2)
√
π
G

(α+1)
n−α−1(θ)ωα+1(θ),

which is identical to (4.51) with α being an odd integer.
(ii) Let m = [α] + 1 and s = {α + 1} ∈ (0, 1). Note that if −1/2 < α < 0, we

have m = 0 and s = α + 1. If α > 0, then m = [α] + 1 and s = {α}, so like (4.54),
we can show u, · · · , u(m−1) ∈ AC(Ω̄). If α is not an even integer, we infer from (3.9)
and direct calculations that for x ∈ (−1, θ),

I1−s
θ− u(m) = (−1)m dmα Im−α

θ− (θ − x)α−m = (−1)m dmα Γ(s)

= (−1)[α]+1 Γ(α+ 1),
(4.56)

while for x ∈ (θ, 1),

I1−s
θ+ u(m) = dmα Im−α

θ+ (x− θ)α−m = dmα Γ(s) = Γ(α+ 1).(4.57)

Therefore, by the definition (4.1), we have u ∈ Wα+1
θ (Ω).

It is clear that by (4.56)-(4.57),

Ds
θ− u(m)(x) = Ds

θ+ u(m)(x) = 0,

so we can derive the exact formula (4.51) from (4.11) straightforwardly.
(a) For −1/2 < α < 0, taking s = α+ 1 in (4.12), leads to

|ûC
n | ≤

Γ(α+ 1)

2α−1π
(1− θ2)α/2

×max

{
Γ((n− α)/2)

Γ((n+ α)/2 + 1)
,

2√
n2 − α(α+ 1)

Γ((n− α+ 1)/2)

Γ((n+ α+ 1)/2)

}
,

where we used the fact

U0,α+1 = 2(1− θ2)α/2Γ(α+ 1).

(b) Similarly, we can obtain (4.53) directly from (4.13). �

Remark 4.4. As a special case of (4.51) with θ = 0, we obtain from (2.22b) and
(2.40) that the Chebyshev expansion coefficients of |x|α have the exact representa-
tion for each integer n ≥ 0,

ûC
n =

(
(−1)n + 1

)Γ(α+ 1)Γ((n− α)/2)

2απΓ((n+ α)/2 + 1)
sin

( (n− α)π

2

)
,(4.58)

which implies that for integer k ≥ 0,

ûC
2k+1 = 0, ûC

2k = (−1)k sin
απ

2

Γ(α+ 1)

2α−1π

Γ(k − α/2)

Γ(k + α/2 + 1)
.(4.59)

It is noteworthy that the following asymptotic estimate for large k was obtained in
[30, Sec. 3.11]:

(4.60) ûC
2k � (−1)k sin

απ

2

Γ(α+ 1)

2α−1π
k−α−1,

but by different means. Indeed, our approach leads to exact representations for
all n.
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Note that we can directly apply Theorem 4.2 (also see Remark 4.3) to bound
the errors of the Chebyshev expansion of the above type of singular functions. For
example, if α is not an integer, we know u ∈ Wα+1

θ (Ω), so we have

‖u− πC
Nu‖L∞(Ω) ≤ CN−α , ‖u− πC

Nu‖L2
ω(Ω) ≤ CN−α−1/2 .(4.61)

We tabulate in Table 4.1 the errors and convergence order of Chebyshev approxi-
mations to u(x) = |x− θ|α with various α and θ = 0, 1/2.

Table 4.1. Convergence order of u = |x− θ|α with θ = 0, 1/2.

N
u = |x|α (error in L∞-norm)

α = 0.1 order α = 1.2 order α = 2.6 order
25 6.68e-1 – 8.37e-3 – 8.32e-5 –
26 6.24e-1 0.10 3.71e-3 1.17 1.42e-5 2.55
27 5.83e-1 0.10 1.63e-3 1.19 2.40e-6 2.57
28 5.44e-1 0.10 7.13e-4 1.19 3.99e-7 2.59
29 5.08e-1 0.10 3.11e-4 1.20 6.62e-8 2.59
210 4.74e-1 0.10 1.36e-4 1.20 1.09e-8 2.60

N
u = |x− 1/2|α (error in L∞-norm)

α = 0.1 order α = 1.2 order α = 2.6 order
25 6.60e-1 – 7.31e-3 – 6.18e-5 –
26 6.16e-1 0.10 3.15e-3 1.21 1.00e-5 2.63
27 5.75e-1 0.10 1.38e-3 1.19 1.68e-6 2.57
28 5.36e-1 0.10 6.01e-4 1.20 2.76e-7 2.61
29 5.00e-1 0.10 2.62e-4 1.20 4.58e-8 2.59
210 4.67e-1 0.10 1.14e-4 1.20 7.54e-9 2.60

N
u = |x|α (error in L2

ω-norm)
α = 0.1 order α = 1.2 order α = 2.6 order

25 1.88e-2 – 1.68e-3 – 2.68e-5 –
26 1.25e-2 0.59 5.31e-4 1.66 3.27e-6 3.03
27 8.29e-3 0.59 1.66e-4 1.68 3.91e-7 3.07
28 5.48e-3 0.60 5.13e-5 1.69 4.61e-8 3.08
29 3.61e-3 0.60 1.58e-5 1.70 5.41e-9 3.09
210 2.37e-3 0.61 4.88e-6 1.70 6.33e-10 3.10

N
u = |x− 1/2|α (error in L2

ω-norm)
α = 0.1 order α = 1.2 order α = 2.6 order

25 1.89e-2 – 1.49e-3 – 2.02e-5 –
26 1.24e-2 0.61 4.53e-4 1.72 2.31e-6 3.13
27 8.22e-3 0.59 1.41e-4 1.68 2.75e-7 3.07
28 5.42e-3 0.60 4.33e-5 1.70 3.19e-8 3.11
29 3.58e-3 0.60 1.34e-5 1.70 3.74e-9 3.09
210 2.36e-3 0.60 4.11e-6 1.70 4.36e-10 3.10
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4.4.2. Type-II singularity in (4.50). We first present the following useful formulas.

Lemma 4.2. For real η > −1, s ≥ 0 and x > a,

Isa+{(x− a)η ln(x− a)}

=
Γ(η + 1)

Γ(η + s+ 1)

{
ln(x− a) + ψ(η + 1)− ψ(η + s+ 1)

}
(x− a)η+s,

(4.62)

and the same formula holds for Isb−{(b − x)η ln(b − x)} (for x < b) with b − x in
place of x− a. Here,

(4.63) ln z − 1

2z
< ψ(z) =

Γ′(z)

Γ(z)
< ln z − 1

z
, z > 0.

Proof. The formula (4.62) is a direct consequence of [34, (2.50)]. The property of
the ψ-function in (4.63) can be found in [2, (2.2)]. Note that we can derive the
formula for Isb−{(b− x)η ln(b− x)} in the same manner. �

Theorem 4.4. For any α ≥ 0 and θ ∈ (−1, 1), we have

(4.64) u(x) = |x− θ|α ln |x− θ| ∈ Wα+1−ε
θ (Ω) ∀ ε ∈ (0, 1).

Moreover, we have the following uniform bound of the Chebyshev expansion coeffi-
cients:

|ûC
n | ≤

U
[σ],{σ}
θ

2σ−1π

Γ((n− σ − 1)/2)

Γ((n+ σ + 1)/2)
,(4.65)

where σ := α+ 1− ε, and |ûC
n | ≤ Cn−σ for large n.

If θ = 0, then we have ûC
2k+1 = 0, and the exact formula:

ûC
2k =

Γ(α+ 1)

2α−2π

Γ(k − α/2)

Γ(k + α/2 + 1)

{
π cos

απ

2
+ sin

απ

2

(
2ψ(α+ 1)

− 2 ln 2− ψ(k − α/2)− ψ(k + α/2 + 1)
)}

∀ k ∈ N0,

(4.66)

which enjoys the asymptotic behaviour

ûC
2k =

Γ(α+ 1)

2α−3π
k−α−1

{π

2
cos

απ

2
+ sin

απ

2

(
ψ(α+ 1)− ln 2− ln k

)}
+O(k−α−3 ln k) sin

απ

2
+O(k−α−3), k � 1.

(4.67)

Proof. Let m = [α] + 1 and ν = α−m. We derive from a direct calculation that

u(k)(x) = (sgn(x− θ))k|x− θ|α−k
(
dkα ln |x− θ|+ fk

α), k ≥ 0,(4.68)

where dkα is the same as in (4.55), and

fk
α :=

k∑
j=1

(−1)j−1Γ(k + 1)Γ(α+ 1)

jΓ(k − j + 1)Γ(α− k + j + 1)
.
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We see that u ∈ L1(Ω) and u, · · · , u(m−1) ∈ AC(Ω̄). Next, using Lemma 4.2, we
obtain that for x ∈ (θ, 1),

I1−s
θ+ u(m) =dmα I1−s

θ+

{
(x− θ)α−m ln(x− θ)

}
+ fm

α I1−s
θ+

{
(x− θ)α−m

}
=dmα

Γ(ν + 1)

Γ(ν + 2− s)
ln(x− θ)(x− θ)ν+1−s

+
Γ(ν + 1)

Γ(ν + 2− s)

(
ψ(ν + 1)− ψ(ν + 2− s) + fm

α

)
(x− θ)ν+1−s.

Thus, if ν + 1 − s > 0, i.e., s < α + 1 − m, then I1−s
θ+ u(m) ∈ BV(Ω̄+

θ ). Similarly,

under the same condition, we have I1−s
θ− u(m) ∈ BV(Ω̄−

θ ). By the definition (4.1), we

obtain u ∈ W
μ
θ (Ω), where μ = m + s < α + 1. This implies (4.64). The bound in

(4.65) follows from (4.13) straightforwardly.
If θ = 0, then u(x) is an even function, so ûC

2k+1 = 0. It is known that

(4.69) ln z = lim
ε→0

zε − 1

ε
, z > 0.

Using (4.69), we derive from (4.59) that

ûC
2k =

2

π

∫ 1

−1

{
lim
ε→0

|x|ε+α − |x|α
ε

} T2k(x)√
1− x2

dx

= (−1)k lim
ε→0

1

ε

{
sin

(ε+ α)π

2

Γ(ε+ α+ 1)

2ε+α−1π

Γ(k − (ε+ α)/2)

Γ(k + (ε+ α)/2 + 1)

− sin
απ

2

Γ(α+ 1)

2α−1π

Γ(k − α/2)

Γ(k + α/2 + 1)

}
.

(4.70)

Noting that

d

dε

{
sin

(ε+ α)π

2

Γ(ε+ α+ 1)

2ε
Γ(k − (ε+ α)/2)

Γ(k + (ε+ α)/2 + 1)

}
=
Γ(ε+ α+ 1)

2ε
Γ(k − (ε+ α)/2)

Γ(k + (ε+ α)/2 + 1)

{π

2
cos

(ε+ α)π

2
+ sin

(ε+ α)π

2

×
(
ψ(ε+ α+ 1)− ln 2− ψ(k − (ε+ α)/2)/2− ψ(k + (ε+ α)/2 + 1)/2

)}
,

we obtain (4.66) from (4.70) and l’Hôpital’s rule immediately.
Taking z = k − α/2 in (4.63), we obtain

ln(k − α/2)− 1

2k − α
< ψ(k − α/2) < ln(k − α/2)− 1

k − α/2
,

which implies that for k � 1,

(4.71) ψ(k − α/2) = ln k +O(k−1); ψ(k + α/2 + 1) = ln k +O(k−1).

Using (4.47) leads to

(4.72)
Γ(k − α/2)

Γ(k + α/2 + 1)
= k−α−1

(
1 +O(k−2)

)
, k � 1.

From (4.66) and (4.71)-(4.72), we obtain (4.67). �
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Remark 4.5. Consider the Chebyshev expansion of u = |x|α ln |x|, we observe from
(4.67) that for n � 1, |ûC

n | ≤ C(lnn)n−(α+1). Therefore, we obtain directly the
optimal estimates:

‖u− πC
Nu‖L∞(Ω) ≤

∞∑
n=N+1

|ûC
n | ≤ C(lnN)N−α;

‖u− πC
Nu‖L2

ω(Ω) ≤ C(lnN)N−α−1/2.

(4.73)

However, we find from (4.64) that the space Wα+1−ε
θ (Ω) is suboptimal to char-

acterise this type of singularity. Indeed, by Theorem 4.2, we only have ‖u −
πC
Nu‖L∞(Ω) = O(N ε−α) and ‖u − πC

Nu‖L2
ω(Ω) = O(N ε−α−1/2). The situation is

reminiscent of the Besov framework in [5], where the spaces of Type-I and Type-II
are defined through different space interpolation. The question of how to modify
the fractional space to best characterise Type-II singularity in our setting appears
non-trivial and is still open.

5. Improving existing results

In this section, we estimate the Chebyshev approximation of functions in the
space Wm+1(Ω) defined in (4.31), and derive sharper bounds than the existing
results (see, e.g., [27, 38, 39, 42]).

5.1. Existing estimates. As in [38], let ‖·‖T be the Chebyshev-weighted 1-norm:

(5.1) ‖u‖T =
∥∥∥ u′(x)√

1− x2

∥∥∥
1
,

which is defined via a Riemann-Stieltjes integral for any u of bounded variation.

Lemma 5.1 (See [38, Thms 4.2-4.3]). If u, u′, · · · , u(m−1) are absolutely continuous
on [−1, 1], and if ‖u(m)‖T = VT < ∞ with integer m ≥ 0, then for each n ≥ m+1,

(5.2)
∣∣ûC

n

∣∣ ≤ 2VT

πn(n− 1) · · · (n−m)
,

and for integer m ≥ 1, and integer N ≥ m+ 1,

(5.3)
∥∥u− πC

Nu
∥∥
L∞(Ω)

≤ 2VT

πm (N −m)m
.

We remark that the Chebyshev weight is removed in Trefethen [39, Thms 7.1-
7.2], i.e., VT is replaced by the total variation of u(m).

Following the argument of summation by certain telescoping series in [42], Ma-
jidian (cf. [27, Thm 2.1]) derived sharper bounds. For comparison, we quote the
estimates therein below.

Lemma 5.2 (See [27, Thm 2.1]). If u, u′, · · · , u(m−1) are absolutely continuous on
[−1, 1], and if ‖u(m)‖T = VT < ∞ with integer m ≥ 0, then for each n ≥ m+ 1,

(5.4)
∣∣ûC

n

∣∣ ≤ 2VT

π

m∏
j=0

1

n−m+ 2j
.
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5.2. Improved estimates.

Theorem 5.1. Suppose that for integer m ≥ 0, u, u′, · · · , u(m−1) are absolutely
continuous on [−1, 1], and u(m) is of bounded variation with the total variation

denoted by V
(m)
L .

(i) If n ≥ m+ 1 and n−m is odd, then

(5.5)
∣∣ûC

n

∣∣ ≤ 2V
(m)
L

π

m∏
j=0

1

n−m+ 2j
.

(ii) If n ≥ m+ 1 and n−m is even, then

(5.6)
∣∣ûC

n

∣∣ ≤ 2V
(m)
L

π
√
n2 −m2

m−1∏
j=0

1

n−m+ 2j − 1
.

(iii) If 0 ≤ n ≤ m+ 1, then

(5.7) |ûC
n | ≤

2V
(n)
L

π(2n− 1)!!
.

Proof. We find from (4.11) (or (4.15) with one more step of integration by parts)
that for n ≥ m+ 1,

ûC
n =

1

(2m+ 1)!!

2

π

∫ 1

−1

G
(m+1)
n−m−1(x)ωm+1(x) d{u(m)(x)}.(5.8)

Thus, by (3.2) and (5.8),

∣∣ûC
n

∣∣ ≤ V
(m)
L

(2m+ 1)!!

2

π
max
|x|≤1

{
ωm+1(x)|G(m+1)

n−m−1(x)|
}
.(5.9)

If n = m + 2p + 1 with p ∈ N0, we derive from (2.42a) with l = p and λ = m + 1
that

max
|x|≤1

{
ωm+1(x)|G(m+1)

n−m−1(x)|
}
≤ Γ(m+ 3/2)Γ(p+ 1/2)√

π Γ(m+ p+ 3/2)

=
(2m+ 1)!! (2p− 1)!!

(2m+ 2p+ 1)!!
.

(5.10)

Consequently, for n = m+ 2p+ 1 with p ∈ Nn, we obtain from (5.9)-(5.10) that

∣∣ûC
n

∣∣ ≤ 2

π

(2p− 1)!!V
(m)
L

(2p+ 2m+ 1)!!
=

2

π

V
(m)
L

(2p+ 1) · (2p+ 3) · · · (2p+ 2m+ 1)

=
2

π

V
(m)
L

(n−m) · (n−m+ 2) · · · (n+m)
,

(5.11)

which implies (5.5).
Similarly, if n = m+ 2p+ 2 with p ∈ N0, we derive from (2.42b) with l = p and

λ = m+ 1 that

max
|x|≤1

{
ωm+1(x)|G(m+1)

n−m−1(x)|
}
≤ 1√

(2p+ 2)(2m+ 2p+ 1)

(2m+ 1)!! (2p+ 1)!!

(2m+ 2p+ 1)!!
,

(5.12)
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so by (5.9), we have∣∣ûC
n

∣∣ ≤ 2

π

1√
(2p+ 2)(2m+ 2p+ 1)

VL

(2p+ 3) · (2p+ 5) · · · (2p+ 2m+ 1)

=
2

π

1√
n2 −m2

VL

(n−m+ 1) · (n−m+ 3) · · · (n+m− 1)
.

(5.13)

This leads to (5.6).
In case of 0 ≤ n ≤ m+ 1, we derive from (5.8) (with n = m+ 1) and the factor

G
(n)
0 (x) ≡ 1 that

ûC
n =

1

(2n− 1)!!

2

π

∫ 1

−1

ωn(x) d{u(n−1)(x)}.(5.14)

Then we obtain (5.7) immediately. �

Next, we unify the bounds in (i)-(ii) of Theorem 5.1 without loss of the rate of
convergence. In fact, this relaxation leads to the estimate (5.4) in [27, Thm 2.1],

but with V
(m)
L in place of VT . In other words, the bounds in Theorem 5.1 indeed

improve the best available results.

Corollary 5.1. Under the same conditions as in Theorem 5.1, we have that for
all n ≥ m+ 1,

(5.15) |ûC
n | ≤

2V
(m)
L

π

m∏
j=0

1

n−m+ 2j
.

Proof. It is evident that by (5.5)-(5.6), we only need to prove this bound for n−m
being even. One verifies readily the fundamental inequality:

n2 − (p− 1)2 ≥
√
(n2 − p2)(n2 − (p− 2)2) for 2 ≤ p ≤ n.

If m is even, we can pair up the factors and use the above inequality with p =
m,m− 2, · · · , 2 to derive

(n−m+ 1)(n−m+ 3) · · · (n− 1)(n+ 1) · · · (n+m− 3)(n+m− 1)

= (n− (m− 1)2)(n2 − (m− 3)2) · · · (n2 − 1)

≥
√
n2 −m2

√
n2 − (m− 2)2

√
n2 − (m− 2)2

√
n2 − (m− 4)2 · · ·

=
√
n2 −m2 (n−m+ 2) · · · (n+m− 2).

(5.16)

Similarly, if m is odd, we remain the middle most factor intact and pair up the fac-
tors to derive the above. Therefore, multiplying both sides of (5.16) by

√
n2 −m2,

we obtain

(5.17)
1√

n2 −m2

m−1∏
j=0

1

n−m+ 2j − 1
≤

m∏
j=0

1

n−m+ 2j
.

Then (5.15) follows from (5.17) and (i)-(ii) of Theorem 5.1 directly. �

To show the sharpness of our improved bounds, we consider u = |x − θ|, θ ∈
(−1, 1) to compare upper bounds of ûC

n . In this case, we havem = 1, u′′ = 2δ(x−θ),

V
(1)
L = 2, and VT = 2(1 − θ2)−1/2. Let Ratio1 and Ratio2 be the ratios of upper

bounds in [27, 39] (cf. (5.2) with VT being replaced by the bounded variation of
u′, and the bound in (5.4)) and our improved bound in Theorem 5.1, respectively.

Licensed to Nanyang Technological University. Prepared on Mon Sep  9 23:15:43 EDT 2019 for download from IP 3.0.220.147.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



APPROXIMATION BY CHEBYSHEV EXPANSIONS 2887

In Figure 5.1, we depict two ratios against various n for two values of θ. We see
that the improved bound is sharper than the existing ones, and the removal of the
Chebyshev weight in VT is also significant for the sharpness of the bounds.

10 20 30 40 50 60 70 80 90 100
n

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio1

Ratio2

10 20 30 40 50 60 70 80 90 100
n

0.4

0.5

0.6

0.7

0.8

0.9

1

Ratio1

Ratio2

Figure 5.1. Ratios of the existing bounds and improved bound
herein for u = |x − θ| and θ ∈ (−1, 1). Left: θ = 1/2. Right:
θ = 4/5.

To conclude this section, we state below the improved L∞-estimates, and remark
on the improvements in Remark 5.1 below.

Theorem 5.2. Let u ∈ Wm+1(Ω) with integer m ≥ 0, and denote by V
(m)
L the

total variation of u(m)(x).

(i) If 1 ≤ m ≤ N, then

(5.18) ‖u− πC
Nu‖L∞(Ω) ≤

2

mπ

( m∏
j=1

1

N −m+ 2j − 1

)
V

(m)
L .

(ii) If m = 0, then for all integer N ≥ 1,

(5.19)
∥∥u− πC

Nu
∥∥
L∞(Ω)

≤ V
(0)
L .

(iii) If m ≥ N + 1, then

(5.20) ‖u− πC
Nu‖L∞(Ω) ≤

2

(2N + 1)!!π

m∑
n=N

cn
(2N + 1)!!

(2n+ 1)!!
V

(n)
L ,

where cn = 1 for all N ≤ n ≤ m− 1 and cm = 2.

Proof. From Theorem 4.2 with s → 1 and (4.16), we obtain that for 1 ≤ m ≤ N+1,

‖u− πC
Nu‖L∞(Ω) ≤

1

2m−1mπ

Γ((N −m+ 1)/2)

Γ((N +m+ 1)/2)
V

(m)
L

=
2

mπ

(N −m− 1)!!

(N +m+ 1)!!
V

(m)
L =

2

mπ

( m∏
j=1

1

N −m+ 2j − 1

)
V

(m)
L .

(5.21)
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This gives (5.18). We now prove (5.19). Using integration by parts leads to

(u− πC
Nu)(x) =

∞∑
n=N+1

ûC
n Tn(x)

=
∞∑

n=N+1

(∫ π

0

u(cosϕ) cos(nϕ)dϕ
)
cos(nθ)

=
2

π

∞∑
n=N+1

( ∫ π

0

sin(nϕ)d{u(cosϕ)}
)cos(nθ)

n

=
2

π

∫ π

0

Ψ∞
N (ϕ, θ) d{u(cosϕ)},

(5.22)

where

(5.23) Ψ∞
N (ϕ, θ) =

∞∑
n=N+1

sin(nϕ) cos(nθ)

n
=

∞∑
n=N+1

sin(n(ϕ+ θ)) + sin(n(ϕ− θ))

2n
.

Thus, we have from (3.2) that

∣∣(u− πC
Nu)(x)

∣∣ ≤ 2

π
max

ϕ∈[0,π]

∣∣Ψ∞
N (ϕ, θ)

∣∣V (0)
L , θ ∈ [0, π].(5.24)

We next show that for ϑ ∈ R,

(5.25)

∣∣∣∣
∞∑

n=N+1

sin(nϑ)

n

∣∣∣∣ ≤ π

2
.

In fact, it suffices to derive this bound for ϑ ∈ (0, π), as the series defines an odd,
2π-periodic function which vanishes at ϑ = 0, π. It is known that

(5.26)

∞∑
n=1

sin(nϑ)

n
=

π − ϑ

2
, ϑ ∈ (0, π).

According to [3], we have that for N ≥ 2,

(5.27) 0 <
N∑

n=1

sin(nϑ)

n
≤ α(π − ϑ), ϑ ∈ (0, π),

with the best possible constant α = 0.66395 · · · . Then by (5.26)-(5.27),

(5.28)
(1

2
− α

)
(π − ϑ) ≤

∞∑
n=N+1

sin(nϑ)

n
<

π − ϑ

2
;

∣∣∣∣
∞∑

n=N+1

sin(nϑ)

n

∣∣∣∣ < π − ϑ

2

for N ≥ 2 and ϑ ∈ (0, π). In fact, the bound (5.28) also holds for N = 1, since by
(5.26),

∞∑
n=2

sin(nϑ)

n
=

π − ϑ

2
− sinϑ <

π − ϑ

2
.

Hence, we complete the proof of (5.25). The estimate (5.19) is a direct consequence
of (5.24)-(5.25).
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Finally, we turn to the proof of the estimate (5.20). For m ≥ N +1, we use (5.7)
to bound {ûC

n }mn=N+1, and use (5.18) (with N → m) to derive∣∣u(x)− πC
Nu(x)

∣∣ ≤ ∣∣πC
mu(x)− πC

Nu(x)
∣∣ + ∣∣u(x)− πC

mu(x)
∣∣

≤
m∑

n=N+1

2

π(2n− 1)!!
V

(n−1)
L +

2

m(2m− 1)!!π
V

(m)
L

≤ 2

π(2N + 1)!!

{ m∑
n=N+1

(2N + 1)!!

(2n− 1)!!
V

(n−1)
L +

2m+ 1

m

(2N + 1)!!

(2m+ 1)!!
V

(m)
L

}

≤ 2

π(2N + 1)!!

m∑
n=N

cn(2N + 1)!!

(2n+ 1)!!
V

(n)
L ,

(5.29)

where cn = 1 for all N ≤ n ≤ m− 1 and cm = 2. �

Remark 5.1. Taking a different route, we improve the existing bounds in the fol-
lowing senses:

(i) The Chebyshev-weighted 1-norm in Lemma 5.2 is replaced by the Legendre-
weighted 1-norm.

(ii) Sharper bound is obtained than the best one in [27, Thm 2.1].
(iii) We obtain the “stability” result, that is, m = 0 in (5.3), and the estimate

for the case n ≤ m+ 1 in (5.7), which are new.

6. Analysis of interpolation, quadrature, and endpoint singularities

In this section, we discuss the extension of our main results to error estimates
of the related interpolation, quadratures, and also special types of functions with
endpoint singularities. We then conclude the paper with some final remarks.

6.1. Analysis of interpolations and quadrature. As remarked in [27, 39, 42],
the error analysis of several widely used interpolations and quadrature boils down
to estimating the coefficients {ûC

n } and their partial sums. We refer to [27] for a
list of more than six examples. Here, we just consider two cases and present sharp
bounds by using our new estimates on the decay of expansion coefficients.

(i) Interpolation and quadrature at Chebyshev-Gauss (CG) points {xj}Nj=0,
i.e., zeros of TN+1(x):

(IC
Nu)(x) =

N∑
n=0

′bnTn(x), bn =
2

N + 1

N∑
j=0

u(xj)Tn(xj),(6.1)

and

(6.2)

∫ 1

−1

u(x)(1− x2)−1/2dx =
π

N + 1

N∑
j=0

u(xj) +RC
N [u].

Then we have (cf. [42] and [33, (6)])

(6.3) ‖IC
Nu− u‖L∞(Ω) ≤ 2

∞∑
n=N+1

|ûC
n |; RC

N [u] = π

∞∑
k=1

(−1)kûC
2k(N+1).
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(ii) Legendre-Gauss quadrature rule at the zeros {xj}Nj=0 of the Legendre poly-

nomial PN+1(x) and with quadrature weights {ωj}Nj=0 (cf. [36, p. 96] and
[27]):

(6.4)

∫ 1

−1

u(x)dx =

N∑
j=0

u(xj)ωj +RL
N [u].

Then we have (cf. [27, 38]):

(6.5)
∣∣RL

N [u]
∣∣ ≤ 32

15

∞∑
n=N+1

|ûC
2n|.

Using Theorem 4.1 and the argument similar to Theorem 4.2 (also see Remark
4.3), we can obtain the following estimates.

Theorem 6.1. Given θ ∈ (−1, 1), if u ∈ Wm+s
θ (Ω) with s ∈ (0, 1) and integer

m ≥ 0, then for m+ s > 1, we have

‖u− IC
Nu‖L∞(Ω) ≤ CN1−m−sUm,s

θ ; ‖u− IC
Nu‖L2

ω(Ω) ≤ CN
1
2−m−sUm,s

θ ,(6.6)

and

|RC
N [u]| ≤ CN−(m+s)Um,s

θ ; |RL
N [u]| ≤ CN−(m+s)Um,s

θ ,(6.7)

where C is a positive constant independent of N and u.

Proof. We just provide the proof of the L2
ω-error of the CG interpolation, since the

others can be proved by summing up the bounds of {|ûC
n |} in Theorem 4.1 and

Remark 4.3. Note that

IC
Nu(x)− u(x) = IC

Nu(x)− πC
Nu+ πC

Nu− u

=

N∑
n=0

′(bn − ûC
n )Tn(x) + πC

Nu− u.
(6.8)

Hence, we obtain

‖u− IC
Nu‖2L2

ω(Ω) ≤
π

2

N∑
n=0

′|bn − ûC
n |2 + ‖u− πC

Nu‖2L2
ω(Ω).(6.9)

Recall that (cf. [12, (4.56)]):

bn − ûC
n =

∞∑
k=1

(−1)k(ûC
2k(N+1)−n + ûC

2k(N+1)+n), n = 0, · · · , N.(6.10)

Using (4.13) and (4.47), we find that for N � 1, σ = m+ s > 1, and n = 0, · · · , N,

|bn − ûC
n | ≤

∞∑
k=1

{
|ûC

2k(N+1)−n|+ |ûC
2k(N+1)+n|

}

≤ Um,s
θ

2σ−1π
2

∞∑
k=1

Γ((2k(N + 1)− n− σ + 1)/2)

Γ((2k(N + 1)− n+ σ + 1)/2)

≤ Um,s
θ

2σ−1π
2

∞∑
k=1

Γ((2k(N + 1)−N − σ + 1)/2)

Γ((2k(N + 1)−N + σ + 1)/2)
≤ CN−σUm,s

θ .

(6.11)

By (6.9), we obtain from direct calculations and Remark 4.3 the L2
ω-estimate. �
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6.2. Analysis of endpoint singularities. The previous discussions were centred
around the Chebyshev expansions and approximation of singular functions with
interior singularities. In what follows, we extend the results to the cases with
θ = ±1, and study endpoint singularities. To fix the idea, we shall focus on the
exact formulas and decay rate of the Chebyshev expansion coefficients, since it is
the basis to derive many other related error bounds.

Let Wm+s
1− (Ω) and Wm+s

−1+(Ω) be the fractional Sobolev-type spaces defined in

(4.5). The following representation of ûC
n is a direct consequence of Theorem 4.1.

Theorem 6.2. If u ∈ Wσ
1−(Ω) with σ := m + s, s ∈ (0, 1) and m ∈ N0, then for

n > σ > 1/2,

ûC
n = −Cσ

{ ∫ 1

−1

lG
(σ)
n−σ(x)ωσ(x) d

{
I1−s
1− u(m)(x)

}
+

{
I1−s
1− u(m)(x) lG

(σ)
n−σ(x)ωσ(x)

}∣∣
x=1−

}
.

(6.12)

Similarly, if u ∈ Wσ
−1+(Ω) with σ := m + s, s ∈ (0, 1) and m ∈ N0, then for

n > σ > 1/2,

ûC
n = Cσ

{∫ 1

−1

rG
(σ)
n−σ(x)ωσ(x) d

{
I1−s
−1+u

(m)(x)
}

+
{
I1−s
−1+u

(m)(x) rG
(σ)
n−σ(x)ωσ(x)

}∣∣
x=−1+

}
.

(6.13)

Here, ωλ(x) = (1− x2)λ−1/2 and Cσ := (
√
π 2σ−1Γ(σ + 1/2))−1.

We next apply the formulas to several typical types of singular functions. We first
consider u(x) = (1 + x)α with α > −1/2 and α �∈ N0 (see, e.g., [19, 40]). Following
the proof of Proposition 4.3, we have u ∈ Wα+1

−1+(Ω). Then using (6.13), one obtains
the exact formula of the Chebyshev expansion coefficient. Equivalently, one can
derive it by taking θ → −1+ in (4.51). More precisely, by (2.22b) and (4.51),

ûC
n =

Γ(α+ 1)

2αΓ(α+ 3/2)
√
π

lim
θ→−1+

{
rG

(α+1)
n−α−1(θ)ωα+1(θ)

− (−1)n+[n−α] lG
(α+1)
n−α−1(θ)ωα+1(θ)

}
=

Γ(α+ 1)

2αΓ(α+ 3/2)
√
π

lim
θ→−1+

rG
(α+1)
n−α−1(θ)ωα+1(θ).

(6.14)

Using (2.29) leads to that for λ > 1/2,

lim
x→−1+

ωλ(x)
rG(λ)

ν (x) = −22λ−1 sin(νπ)

π

Γ(λ− 1/2)Γ(λ+ 1/2)Γ(ν + 1)

Γ(ν + 2λ)
.(6.15)

Therefore, from (4.39) and (6.14)-(6.15), we obtain the formula:

ûC
n =

(−1)n+1 sin(πα)Γ(2α+ 1)

2α−1π

Γ(n− α)

Γ(n+ α+ 1)
, n ≥ α+ 1,(6.16)

and for large n, we have |ûC
n | = O(n−2α−1).

With the aid of (6.16), we next consider a more general case: u(x) = (1+x)αg(x)
with g(x) being a sufficiently smooth function. Here, we need to use the formula
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of ûC
n for (1 + x)α with n < α+ 1. Taking m = n in (4.17) and using the property

of the Beta function, yields

ûC
n =

1√
π 2n−1Γ(n+ 1/2)

∫ 1

−1

u(n)(x)G
(n)
0 (x)ωn(x) dx

=
1√

π 2n−1Γ(n+ 1/2)

Γ(α+ 1)

Γ(α− n+ 1)

∫ 1

−1

(1 + x)α−n(1− x2)n−1/2 dx

=
2α+1Γ(α+ 1)Γ(α+ 1/2)√
πΓ(α− n+ 1)Γ(α+ n+ 1)

.

(6.17)

Using the Taylor expansion of g(x) at x = −1, we obtain from (6.16)-(6.17) that

ûC
n =

[n−1−α]∑
l=0

g(l)(−1)

l!

(−1)n+1 sin(π(α+ l))Γ(2α+ 2l + 1)

2α+l−1π

Γ(n− α− l)

Γ(n+ α+ l + 1)

+

∞∑
l=[n−α]

g(l)(−1)

l!

2α+l+1Γ(α+ l + 1)Γ(α+ l + 1/2)√
πΓ(α+ l − n+ 1)Γ(α+ l + n+ 1)

=
(−1)n+1g(−1) sin(πα)Γ(2α+ 1)

2α−1π
n−2α−1 +O(n−2α−3),

(6.18)

where we used (4.47).
Finally, we consider the singular function: u(x) = (1 + x)α ln(1 + x). Using

(4.69), we derive from (4.59) and l’Hôpital’s rule that

ûC
n =

2

π

∫ 1

−1

{
lim
ε→0

(1 + x)ε+α − (1 + x)α

ε

} Tn(x)√
1− x2

dx

= (−1)n+1 2

π
lim
ε→0

1

ε

{ sin(π(α+ ε))Γ(2α+ 2ε+ 1)Γ(n− α− ε)

2α+εΓ(n+ α+ ε+ 1)

− sin(πα)Γ(2α+ 1)Γ(n− α)

2αΓ(n+ α+ 1)

}

=
(−1)n+1Γ(2α+ 1)Γ(n− α)

π2α−1Γ(n+ α+ 1)

{
π cos(απ) + sin(απ)

(
2ψ(2α+ 1)

− ln 2− ψ(n+ α+ 1)− ψ(n− α)
)}

.

In view of (4.63), we can obtain the asymptotic behaviour

ûC
n =

(−1)n+1Γ(2α+ 1)

π2α−1
n−2α−1

{
π cos(απ) + sin(απ)

(
2ψ(2α+ 1)− ln 2

− 2 lnn
)}

+O(n−2α−3 lnn) sin(απ) +O(n−2α−3).

Remark 6.1. With the above analysis of the expansion coefficients, we can then
obtain directly the optimal estimates for the Chebyshev approximation to these
specific singular functions. More precisely, for u(x) = (1+ x)αg(x) with g(x) being
a sufficiently smooth function, we have

(6.19) ‖u− πC
Nu‖L∞(Ω) ≤ CN−2α, ‖u− πC

Nu‖L2
ω(Ω) ≤ CN−2α−1/2,

and for u(x) = (1 + x)α ln(1 + x), we have

(6.20) ‖u− πC
Nu‖L∞(Ω) ≤ C(lnN)N−2α, ‖u− πC

Nu‖L2
ω(Ω) ≤ C(lnN)N−2α−1/2.
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Compared with the interior singularities (see (4.61) and (4.73)), a higher conver-
gence order O(N−α) is observed which is as expected.

6.3. Concluding remarks. Broadly speaking, we position this work as our first
attempt to show how the Riemann-Liouville fractional calculus can alter the fun-
damental polynomial approximation theory. Some estimates and bounds herein are
completely new, or significantly improve the existing results.

More precisely, we introduce a new theoretical framework of fractional Sobolev-
type spaces for orthogonal polynomial approximations to functions with limited
regularities (or interior/endpoint singularities). The proposed spaces are natu-
rally arisen from the analytic representations of the expansion coefficients involv-
ing Riemann-Liouville fractional integrals/derivatives and GGF-Fs. We present a
collection of notable properties of the new family of GGF-Fs, and derive optimal
estimates of Chebyshev approximations in various norms for a wide class of singular
functions. The analysis techniques can be extended to general Jacobi approxima-
tions. We are confident that this study, together with our follow-up works, will have
far-reaching impact on numerical analysis of p-version and hp-version for singular
problems.
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[19] W. Gui and I. Babuška, The h, p and h-p versions of the finite element method in 1 dimen-
sion. I. The error analysis of the p-version, Numer. Math. 49 (1986), no. 6, 577–612, DOI
10.1007/BF01389733. MR861522

[20] B.-Y. Guo, J. Shen, and L.-L. Wang, Optimal spectral-Galerkin methods using generalized
Jacobi polynomials, J. Sci. Comput. 27 (2006), no. 1-3, 305–322, DOI 10.1007/s10915-005-
9055-7. MR2285783

[21] B.-Y. Guo, J. Shen, and L.-L. Wang, Generalized Jacobi polynomials/functions
and their applications, Appl. Numer. Math. 59 (2009), no. 5, 1011–1028, DOI
10.1016/j.apnum.2008.04.003. MR2495135

[22] B.-y. Guo and L.-l. Wang, Jacobi approximations in non-uniformly Jacobi-weighted
Sobolev spaces, J. Approx. Theory 128 (2004), no. 1, 1–41, DOI 10.1016/j.jat.2004.03.008.
MR2063010

[23] J. S. Hesthaven, S. Gottlieb, and D. Gottlieb, Spectral Methods for Time-Dependent Prob-
lems, Cambridge Monographs on Applied and Computational Mathematics, vol. 21, Cam-
bridge University Press, Cambridge, 2007. MR2333926

[24] S. Lang, Real and Functional Analysis, 3rd ed., Graduate Texts in Mathematics, vol. 142,
Springer-Verlag, New York, 1993. MR1216137

[25] F. C. Klebaner, Introduction to Stochastic Calculus with Applications, 2nd ed., Imperial

College Press, London, 2005. MR2160228
[26] G. Leoni, A First Course in Sobolev Spaces, Graduate Studies in Mathematics, vol. 105,

American Mathematical Society, Providence, RI, 2009. MR2527916
[27] H. Majidian, On the decay rate of Chebyshev coefficients, Appl. Numer. Math. 113 (2017),

44–53, DOI 10.1016/j.apnum.2016.11.004. MR3588586
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