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ON SPECTRAL APPROXIMATIONS IN ELLIPTICAL
GEOMETRIES USING MATHIEU FUNCTIONS

JIE SHEN AND LI-LIAN WANG

Abstract. We consider in this paper approximation properties and applica-
tions of Mathieu functions. A first set of optimal error estimates are derived
for the approximation of periodic functions by using angular Mathieu func-
tions. These approximation results are applied to study the Mathieu-Legendre
approximation to the modified Helmholtz equation and Helmholtz equation.
Illustrative numerical results consistent with the theoretical analysis are also
presented.

1. Introduction

The Mathieu functions were first introduced by Mathieu in the nineteenth cen-
tury, when he determined the vibrational modes of a stretched membrane with an el-
liptic boundary [27]. Since then, these functions have been extensively used in many
areas of physics and engineering (cf., for instance, [25, 23, 19, 4, 21, 5, 32, 8, 17]),
and many efforts have also been devoted to analytic, numerical and various other
aspects of Mathieu functions (cf., for instance, [26, 6, 3, 36]). A considerable amount
of mathematical results of Mathieu functions are contained in the books [28, 29, 1].
However, most of these results are concerned with classical properties such as identi-
ties, recursions and asymptotics. To the best of our knowledge, there are essentially
no results on their approximation properties (in Sobolev spaces) which are neces-
sary for the analysis of spectral methods using Mathieu functions. A main objective
of this paper is to derive a first set of optimal approximation results for the Math-
ieu functions. These approximation results will be the basic ingredients for the
numerical analysis of Mathieu approximations to partial differential equations.

Given a PDE in an elliptic or elliptic cylindrical geometry, a spectral method
can be developed using two different approaches. In the first approach, we express
the equation in the elliptic coordinates and then apply a Fourier approximation in
the periodic direction combined with a polynomial approximation in nonperiodic
direction(s), see, e.g., [9, 30]. However, unlike in the polar and spherical geometries,
all Fourier components are usually coupled together by the nonconstant coefficients
in the transformed equation (only the Poisson equation in elliptical geometries
can be decoupled (see [24]) where a mixed Fourier and finite difference solver was
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proposed for this very particular case). The second approach is to use a Mathieu
expansion in the periodic direction which leads to a dimension reduction, as in the
polar and spherical geometries. In this paper, we will explore the second approach,
derive optimal approximation results for the Mathieu expansions and apply them
to study the Mathieu spectral method for the modified Helmholtz equation and the
Helmholtz equation.

The rest of the paper is organized as follows. We first review some properties
of the Mathieu functions in Section 2. The approximations by Mathieu functions
in Sobolev spaces are studied in Sections 3 and 4. The applications of Mathieu
approximations in spectral methods for two model Helmholtz-type equations are
presented in Sections 5 and 6. Section 7 is devoted to some numerical results and
discussions.

We now introduce some notation to be used throughout this paper. Let Ω be
a bounded, open domain in Rd, d = 1, 2, 3, and let � be a generic real weight
function defined in Ω. We denote by L2

�(Ω) a Hilbert space of real- or complex-
valued functions with inner product and norm

(u, v)� =
∫

Ω

u v̄ � dΩ, ‖u‖� = (u, u)1/2
� ,

where v̄ is the complex conjugate of v. The weighted Sobolev spaces Hs
�(Ω) (s =

0, 1, 2, · · · ) can be defined as usual with inner products, norms and semi-norms
denoted by (·, ·)s,�, ‖ · ‖s,� and | · |s,�, respectively. For real s > 0, Hs

�(Ω) is
defined by space interpolation as in [2]. The subscript � will be omitted from the
notation in cases of � = 1. In particular, we have L2

�(Ω) = H0
�(Ω). We will use

‖ · ‖ or ‖ · ‖0 to denote the usual L2-norm, and use ‖ · ‖0,� or ‖ · ‖L2
�(Ω) to denote

the �-weighted L2-norm. We will use ∂k
x to denote the ordinary derivative dk

dxk ,
whenever no confusion may arise.

We will also use Sobolev spaces involving periodic functions. Namely, for m > 0,
we denote by Hm

p (0, 2π) the subspace of Hm(0, 2π) consisting of functions whose
derivatives of order up to m − 1 are 2π−periodic.

For any nonnegative integer N, let PN be the set of all algebraic polynomials
of degree ≤ N. We denote by C a generic positive constant independent of any
function, domain size and discretization parameters. We use the expression A � B
to mean that there exists a generic positive constant C such that A ≤ CB.

2. Mathieu functions

We recall that under the elliptic transform:

(2.1) x = c cosh µ cos θ, y = c sinh µ sin θ

(where 2c is the focal distance), the two-dimensional Helmholtz equation in Carte-
sian coordinates

(2.2) ∆U + k2U = 0

becomes

(2.3)
1

c2

2

(
cosh(2µ) − cos(2θ)

) [
∂2V

∂µ2
+

∂2V

∂θ2

]
+ k2V = 0,

where V (µ, θ) = U(x, y). The Mathieu functions arise from applying the separation
of variables approach in solving (2.3). More precisely, setting V (µ, θ) = R(µ)Φ(θ),
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we find that Φ(θ) satisfies the (angular) Mathieu equation

(2.4)
d2Φ
dθ2

+ (a − 2q cos 2θ)Φ = 0,

and R(µ) satisfies the radial (or modified) Mathieu equation

(2.5)
d2R

dµ2
− (a − 2q cosh 2µ)R = 0,

where a is the separation constant, and the parameter q = c2k2/4. We note that the
radial Mathieu equation (2.5) can be transformed to the Mathieu equation (2.4),
and vice versa, via the mapping θ = ±iµ (where i =

√
−1).

The Mathieu equation (2.4) supplemented with a periodic boundary condition
admits two families of linearly independent periodic solutions (eigenfunctions),
namely the even and the odd Mathieu functions of order m:

(2.6) Φm(θ; q) = cem(θ; q) or sem+1(θ; q), m = 0, 1, · · · ,

with the corresponding eigenvalues classified into two categories: even and odd,
denoted by am(q) and bm(q) for cem and sem, respectively. The notation ce and se,
an abbreviation of “cosine-elliptic” and “sine-elliptic”, were first introduced in [7].
Notice that the Mathieu equation (2.4) becomes a harmonic equation when q = 0,
so the Mathieu functions reduce to the trigonometric functions, namely

(2.7) cem(θ; 0) = cos(mθ), sem(θ; 0) = sin(mθ), am(0) = bm(0) = m2.

The set of Mathieu functions {cem, sem+1}∞m=0 forms a complete orthogonal system
in L2(0, 2π), and they are normalized so that

(2.8)
∫ 2π

0

cem(θ; q)cen(θ; q)dθ =
∫ 2π

0

sem(θ; q)sen(θ; q)dθ =

{
π, if m = n,

0, if m �= n

and

(2.9)
∫ 2π

0

cem(θ; q)sen(θ; q)dθ = 0.

The parity, periodicity and normalization of the Mathieu functions are exactly the
same as their trigonometric counterparts cos and sin, namely, cem is even and sem is
odd, and they have period π when m is even, or period 2π when m is odd. Thanks
to the periodicity and parity, the Mathieu functions can be expanded in the Fourier
series

(2.10) cen(θ; q) =
∞∑

j=0

A
(n)
j cos jθ, sen(θ; q) =

∞∑
j=1

B
(n)
j sin jθ,

where the coefficients {A(n)
j , B

(n)
j } satisfy some five-term recursive relations (see

Appendix A). This motivates most of the algorithms for computing Mathieu func-
tions and their eigenvalues; see, e.g., [28, 1, 26, 36, 5, 3]. A package of Fortran and
Matlab programs for manipulating Mathieu functions is also available (cf. [33]).

For the Helmholtz equation (2.2), the wave number k > 0 so the parameter
q = c2k2/4 in the Mathieu equation is positive. However, for imaginary k in
(2.2), q in (2.4)–(2.5) becomes negative and equation (2.2) becomes elliptic. Hence,
the Mathieu functions with q > 0 are mostly used in applications involving wave
equations, while the Mathieu functions with q < 0 are useful in solving elliptic and
parabolic equations [32, 8, 18]. We see that with a change of variable θ → π/2− θ,
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the Mathieu equation (2.4) is transformed into an equation of the same type with
q < 0. Thus, the Mathieu functions with q < 0 can be defined as follows (see, e.g.,
[28, 29, 1]):

ce2m(θ;−q) = (−1)mce2m(π/2 − θ; q), a2m(−q) = a2m(q),

ce2m+1(θ;−q) = (−1)mse2m+1(π/2 − θ; q), a2m+1(−q) = b2m+1(q),

se2m+1(θ;−q) = (−1)mce2m+1(π/2 − θ; q), b2m+1(−q) = a2m+1(q),

se2m+2(θ;−q) = (−1)mse2m+2(π/2 − θ; q), b2m+2(−q) = b2m+2(q).

(2.11)

While there have been quite a few papers/books devoted to analytic, numerical
and various other aspects of Mathieu functions (cf., for instance, [26, 6, 3, 36]), there
are essentially no results on the approximation of periodic functions using Mathieu
functions (in Sobolev spaces). Such results are necessary for spectral methods for
elliptic geometries.

3. Mathieu approximations with q > 0

In this section, we consider approximation of periodic functions by Mathieu
functions, and establish basic approximation results for Mathieu expansions. For
clarity, we first consider the Mathieu functions with q > 0, and the case with q < 0
will be presented in the proceeding section.

To simplify the presentation, we shall use a uniform notation introduced in [29]
to denote the odd and even Mathieu functions:

(3.1) me2m(θ; q) = cem(θ; q), me2m+1(θ; q) = sem+1(θ; q), m = 0, 1, · · ·
and

(3.2) λ2m(q) = am(q) + 2q, λ2m+1(q) = bm(q) + 2q, m = 0, 1, · · · .

By (2.4), the eigenpairs {(λm, mem)} satisfy the Sturm-Liouville equation:

(3.3) Aq mem = λm mem, m = 0, 1, · · · ,

where the operator

(3.4) Aqv = (−∂2
θ + 4q cos2 θ)v.

Let I := (0, 2π). One verifies that the Sturm-Liouville operator Aq is compact,
symmetric, strictly positive and self-adjoint in the sense that

(Aqu, v) = (v,Aqu) = (u,Aqv), ∀u, v ∈ H2
p (I),

(Aqv, v) = ‖∂θv‖2 + 4q‖v‖2
0,ω > 0, ∀v ∈ H2

p (I) with v �= 0,
(3.5)

where ω = cos2 θ. Hence, we infer from the standard Sturm-Liouville theory (see,
e.g., [11]) that:

• The eigenvalues are all real, positive and distinct, i.e.,

(3.6) 0 < λ0(q) < λ1(q) < · · · < λm(q) < · · · .

• The eigenfunctions, {mem}∞m=0, form a complete orthogonal system in
L2(I), and they are normalized so that

(3.7)
1
π

∫ 2π

0

mem(θ; q)men(θ; q)dθ = δmn,

where δmn is the Kronecker delta.
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• The Mathieu function mem has exactly m zeros, which are real, distinct
and located in [0, 2π].

The following estimate for the eigenvalues is useful in the sequel.

Lemma 3.1. For any q > 0, we have that

(3.8) m2 < λm(q) < m2 + 4q, m = 0, 1, · · · .

Proof. Differentiating the equation (3.3) with respect to q leads to(
Aq − λm

)∂mem

∂q
−

(
λ′

m(q) − 4 cos2 θ
)
mem = 0.

Multiplying the above equation by mem and integrating the resulting equation over
(0, 2π), we deduce from the self-adjoint property of the operator Aq − λm that

0 =
∫ 2π

0

[
(Aq − λm)

∂mem

∂q

]
mem dθ −

∫ 2π

0

(λ′
m(q) − 4 cos2 θ)me2

m dθ

=
∫ 2π

0

[
(Aq − λm)mem

]∂mem

∂q
dθ −

∫ 2π

0

(
λ′

m(q) − 4 cos2 θ
)
me2

m dθ.

Therefore, by (3.3), the first term vanishes, and thanks to the orthogonality (3.7),

(3.9) λ′
m(q) =

4
π

∫ 2π

0

cos2 θ me2
m(θ; q) dθ.

Since 0 ≤ cos2 θ ≤ 1, the above identity implies that

0 < λ′
m(q) < 4 ⇒ 0 < λm(q) − λm(0) < 4q.

Since λm(0) = m2, the desired result (3.8) follows. �

3.1. Inverse inequalities. We first point out that the Mathieu functions are or-
thogonal in H1

p (I) equipped with the inner product

(3.10) aq(u, v) = (∂θu, ∂θv) + 4q(u, v)ω, ω = cos2 θ.

Indeed, by integration by parts, (3.3) and (3.7),

(3.11) aq(mem, men) =
(
Aqmem, men

)
= λm(mem, men) = πλmδmn.

For any integer M ≥ 0, we define the (M + 1)-dimensional space

(3.12) Xq
M = span

{
mem : 0 ≤ m ≤ M

}
.

Thanks to the orthogonality (3.11), we are able to prove the following inequalities.

Lemma 3.2. For any φ, ψ ∈ Xq
M , we have

(3.13) |aq(φ, ψ)| ≤ λM‖φ‖‖ψ‖ ≤ (M2 + 4q)‖φ‖‖ψ‖,

and the following inverse inequality holds

(3.14) ‖∂l
θφ‖ ≤ (M + ck)l‖φ‖, l ≥ 1,

where ck =
√

4q.
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Proof. For any φ, ψ ∈ Xq
M , we write

φ =
M∑

m=0

φ̂m mem, ψ =
M∑

n=0

ψ̂n men.

By the orthogonality (3.7), we have

‖φ‖2 = π
M∑

m=0

|φ̂m|2, ‖ψ‖2 = π
M∑

n=0

|ψ̂n|2.

Using the orthogonality (3.11), the Cauchy-Schwarz inequality and Lemma 3.1
yields ∣∣aq(φ, ψ)

∣∣ =

∣∣∣∣∣
M∑

m=0

M∑
n=0

φ̂mψ̂naq(mem, men)

∣∣∣∣∣ =

∣∣∣∣∣
M∑

m=0

πλmφ̂mψ̂m

∣∣∣∣∣
≤ max

0≤m≤M

{
λm

}(
π

M∑
m=0

|φ̂m|2
)1/2 (

π

M∑
m=0

|ψ̂m|2
)1/2

≤ λM‖φ‖‖ψ‖ ≤ (M2 + 4q)‖φ‖‖ψ‖.

Thus, by the definition (3.10),

aq(φ, φ) = ‖∂θφ‖2 + 4q‖φ‖2
0,ω ≤ (M2 + c2k2)‖φ‖2,

which implies (3.14) with l = 1. The desired result with l > 1 can be derived by
induction. �

Remark 3.1. Compared with the Fourier basis, the factor O(M) in the inverse
inequality is optimal.

3.2. Error estimations of the L2-projection. For any v ∈ L2(I), we write

(3.15) v(θ) =
∞∑

m=0

v̂mmem(θ; q),

where

(3.16) v̂m = v̂m(q) =
1
π

∫ 2π

0

v(θ) mem(θ; q) dθ, m ≥ 0.

Consider the orthogonal projection πq
M : L2(I) → Xq

M such that

(3.17)
(
πq

Mv − v, vM

)
= 0, ∀vM ∈ Xq

M ,

or equivalently,

(3.18)
(
πq

Mv
)
(θ) =

M∑
m=0

v̂mmem(θ; q).

To measure the projection error, we first introduce a Hilbert space associated
with the Sturm-Liouville operator defined in (3.4). Since Aq is a compact, sym-
metric and (strictly) positive self-adjoint operator, the fractional power A1/2

q is well
defined, and there holds (see, e.g., Chapter II of [35]):

(3.19) ‖A1/2
q v‖2 = aq(v, v),
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where aq(·, ·) is the inner product of H1
p (I) given in (3.10). Hence, for any integer

s ≥ 0, we define the Hilbert space

(3.20) H̃s
qp(I) :=

{
v ∈ Hs

p(I) : ‖v‖2
H̃s

qp(I)
:= ‖As/2

q v‖2 =
(
As/2

q v,As/2
q v

)
< ∞

}
.

For real s > 0, the space H̃s
qp(I) and its norm are defined by space interpolation as

in [2].
Formally, one verifies by using (3.3), (3.7) and (3.11) that for any integer n ≥ 0,

‖An
q v‖2 = π

∞∑
m=0

λ2n
m |v̂m|2, ‖An+1/2

q v‖2 = aq(An
q v,An

q v) = π
∞∑

m=0

λ2n+1
m |v̂m|2.

(3.21)

Therefore, as with the Fourier expansion, the norm of the space H̃s
qp(I) with real

s ≥ 0 can be characterized in the frequency space

(3.22) ‖v‖
H̃s

qp(I)
= ‖As/2

q v‖ =
(
π

∞∑
m=0

λs
m|v̂m|2

)1/2

.

We have the following fundamental approximation result.

Theorem 3.1. For any v ∈ H̃s
qp(I) with s ≥ 0,

(3.23) ‖πq
Mv − v‖ ≤ λ

−s/2
M+1‖v‖H̃s

qp(I)
.

Proof. We only need to prove this result with integer s ≥ 0. The general case can
then be derived by space interpolation.

We first assume that s = 2n. By (3.16) and (3.3),

v̂m =
1
π

∫ 2π

0

v(θ) mem(θ; q)dθ =
1

πλn
m

∫ 2π

0

v(θ)
(
An

q mem

)
dθ

=
1

πλn
m

∫ 2π

0

(
An

q v
)
(θ) mem(θ; q)dθ =

1
λn

m

(̂
An

q v
)
m

,

(3.24)

where
{(̂

An
q v

)
m

}
are the coefficients of the Mathieu expansion of An

q v. Therefore,

‖πq
Mv − v‖2 = π

∞∑
m=M+1

|v̂m|2 = π

∞∑
m=M+1

λ−2n
m

∣∣(̂An
q v

)
m

∣∣2
≤ max

m>M

{
λ−2n

m

}
‖An

q v‖2 (3.6)
= λ−s

M+1‖v‖2
H̃s

qp(I)
,

(3.25)

which implies (3.23) with s = 2n.
We now prove (3.23) with s = 2n + 1. By (3.21) and (3.6),

‖πq
Mv − v‖2 = π

∞∑
m=M+1

|v̂m|2 ≤ max
m>M

{
λ−2n−1

m

} ∞∑
m=M+1

πλ2n+1
m |v̂m|2

≤ λ−2n−1
M+1 aq(An

q u,An
q u) ≤ λ−s

M+1‖v‖2
H̃s

qp(I)
.

(3.26)

This completes the proof. �

The norm in the upper bound of the estimate (3.23) is expressed in the fre-
quency space, and implicitly depends on the parameter q. To extract more explicit
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information from (3.23), we shall explore the explicit dependence of the approxi-
mation errors on the parameter q = c2k2/4, and express the norm in terms of the
derivatives of v. It is worthwhile to point out that setting q = 0 in Theorem 3.1, we
recover the classical Fourier approximation results. So, without loss of generality,
we assume that the wave number

(3.27) k ≥ k0 > 0 ⇒ q ≥ q0 = c2k2
0/4 > 0.

It can be shown by induction that for any nonnegative integer n,

An
q v = (−1)n∂2n

θ v +
n∑

j=1

pj(θ; q)∂2n−2j
θ v +

n−1∑
j=1

p̃j(θ; q)∂2n−2j−1
θ v,(3.28)

where pj(θ; q) and p̃j(θ; q) are polynomials of 4q of degree j (without constant term,
i.e., pj(θ; 0) = p̃j(θ; 0) = 0) with coefficients being polynomials of sin 2θ or cos 2θ.
We conclude that An

q is a continuous mapping from H2n
p (I) to L2(I), since

(3.29) ‖An
q v‖ ≤ ‖∂2n

θ v‖ + C
[ n−1∑

j=1

qj
(
‖∂2n−2j

θ v‖ + ‖∂2n−2j−1
θ v‖

)
+ qn‖v‖

]
.

Similarly, using (3.19) and (3.28)–(3.29) leads to

‖An+1/2
q v‖ =

(
aq(An

q v,An
q v)

)1/2

≤ ‖∂θ(An
q v)‖ + 2

√
q‖An

q v‖0,ω

≤ ‖∂2n+1
θ v‖ + C

[ n−1∑
j=1

qj+1/2
(
‖∂2n−2j

θ v‖ + ‖∂2n−2j+1
θ v‖

)
+ qn+1/2‖v‖

]
,

(3.30)

where we recall from (3.10) that ω = cos2 θ. As a consequence, we have the em-
bedding relation Hs

p(I) ⊂ H̃s
qp(I), and

‖v‖
H̃s

qp(I)
= ‖As/2

q v‖ ≤ |v|s + C

s−2∑
j=0

q(s−j)/2|v|j � (1 + q)s/2‖v‖s, s ≥ 2,

‖v‖
H̃s

qp(I)
≤ |v|s + 2

√
q‖v‖0,ω, s = 1, 2.

(3.31)

Notice that the powers of q for derivatives of different order are different; such an
explicit estimate is necessary when the wave number k � 1 (see Remark 3.2).

The following estimate is a direct consequence of Theorem 3.1 and (3.31).

Corollary 3.1. For any v ∈ Hs
p(I) with s ≥ 0,

(3.32) ‖πq
Mv − v‖ ≤ M−s

(
|v|s + C

s−2∑
j=0

q(s−j)/2|v|j + q1/2‖v‖0,ω

)
.

Remark 3.2. As an example, let v(x) = eikx with k � 1, and q = c2k2/4. A direct
calculation leads to

|v|s + C

s−2∑
j=0

q(s−j)/2|v|j + q1/2‖v‖0,ω = O(qs/2);

therefore, we have

‖πq
Mv − v‖ = O

( ks

Ms

)
,
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which will converge if k
M < 1. Notice that if we use the rough upper bound (1+q)s/2

in (3.31), the condition for convergence will be k2

M < 1.

A more general approximation result is stated below.

Theorem 3.2. For any v ∈ H̃s
qp(I), we have that for 0 ≤ r ≤ s,

‖πq
Mv − v‖

H̃r
qp(I)

≤ λ
(r−s)/2
M+1 ‖πq

Mv − v‖
H̃s

qp(I)
≤ λ

(r−s)/2
M+1 ‖v‖

H̃s
qp(I)

.(3.33)

Proof. By (3.22), we have

‖πq
Mv − v‖2

H̃r
qp(I)

= π

∞∑
m=M+1

λr
m|v̂m|2 ≤ max

m>M

{
λr−s

m

} ∞∑
m=M+1

πλs
m|v̂m|2

= λr−s
M+1‖π

q
Mv − v‖2

H̃s
qp(I)

≤ λr−s
M+1

∞∑
m=0

πλs
m|v̂m|2 = λr−s

M+1‖v‖2
H̃s

qp(I)
.

(3.34)

This ends the proof. �

As an important consequence of the above theorem, we have the following esti-
mates in the usual Sobolev space Hr

p(I) with r ≥ 1.

Theorem 3.3. For any v ∈ H̃s
qp(I),

(3.35) |πq
Mv − v|1 ≤ λ

(1−s)/2
M+1

(
1 + 2

√
qλ

−1/2
M+1

)
‖v‖

H̃s
qp(I)

, s ≥ 1

and

(3.36) |πq
Mv − v|2 ≤ λ

1−s/2
M+1

(
1 + 2

√
qλ−1

M+1

)
‖v‖

H̃s
qp(I)

, s ≥ 2.

In general, if k < M and 1 ≤ r ≤ s,

(3.37) |πq
Mv − v|r � Mr−s‖v‖

H̃s
qp(I)

.

Proof. By (3.28), we have that

(3.38) |v|2n ≤ ‖An
q v‖ + C

[ n−1∑
j=1

qj
(
|v|2n−2j + |v|2n−2j−1

)
+ qn‖v‖

]
,

and similarly,

(3.39) |v|2n+1 ≤ ‖An+1/2
q v‖+ C

[ n−1∑
j=1

qj+1/2
(
|v|2n−2j + |v|2n−2j+1

)
+ qn+1/2‖v‖

]
.

Thus, we have that

(3.40) |v|r ≤ ‖v‖
H̃r

qp(I)
+ C

r−2∑
j=0

q(r−j)/2|v|j , r ≥ 2,

and for r = 1, 2,

|v|1 ≤ ‖A1/2
q v‖ + (4q)1/2‖v‖0,ω ≤ ‖v‖

H̃1
qp(I)

+ 2
√

q‖v‖,

|v|2 ≤ ‖Aqv‖ + 2
√

q‖v‖0,ω ≤ ‖v‖
H̃2

qp(I)
+ 2

√
q‖v‖.

(3.41)
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Hence, using Theorems 3.1 and 3.2 leads to
|πq

Mv − v|1 ≤ ‖πq
Mv − v‖

H̃1
qp(I)

+ 2
√

q‖πq
Mv − v‖

≤ λ
(1−s)/2
M+1

(
1 + 2

√
qλ

−1/2
M+1

)
‖v‖

H̃s
qp(I)

, s ≥ 1

and
|πq

Mv − v|2 ≤ λ
1−s/2
M+1

(
1 + 2

√
qλ−1

M+1

)
‖v‖

H̃s
qp(I)

, s ≥ 2,

which yield (3.35) and (3.36).
We now prove (3.37) by induction. Assuming that (3.37) holds for j < r, we

derive from (3.40) and Theorems 3.1 and 3.2 that for k < M,

|πq
Mv − v|r � ‖πq

Mv − v‖
H̃r

qp(I)
+

r−2∑
j=0

q(r−j)/2|πq
Mv − v|j

�
(
λ

(r−s)/2
M+1 +

r−2∑
j=0

q(r−j)/2M j−r
)
‖v‖

H̃s
qp(I)

� Mr−s‖v‖
H̃s

qp(I)

This ends the proof. �
Remark 3.3. As in Corollary 3.1, the estimates with explicit dependence on the
parameter q can be derived by using (3.31). Similar to the Fourier approximations,
the estimate for L2-projection in high-order Sobolev spaces is optimal.

We now estimate the projection error in L∞-norm.

Theorem 3.4. For any v ∈ H̃s
qp(I), with s ≥ 1,

(3.42) ‖πq
Mv − v‖L∞ � λ

(1−2s)/4
M+1

(
1 + 2

√
qλ

−1/2
M+1

)1/2

‖v‖
H̃s

qp(I)
.

Proof. We recall the Sobolev embedding inequality (see, e.g., Appendix A.12 of
[10])

‖v‖L∞ ≤
( 1

2π
+ 2

) 1
2 ‖v‖

1
2
1 ‖v‖

1
2 ,

so the desired result follows directly from Theorems 3.1 and 3.3. �

4. Mathieu approximations with q < 0

In this section, we extend the analysis of Mathieu approximations to the case
with parameter q < 0. Such results play an essential role in the analysis of spectral
methods for elliptic and parabolic PDEs in elliptic geometries.

For clarity, let q = −ρ with ρ > 0, and let {cem, sem} be the Mathieu functions
defined in Section 2. In view of the symmetry (2.11), we define

Me2m(θ; ρ) = (−1)[
m
2 ]cem(π/2 − θ; ρ),

Me2m+1(θ; ρ) = (−1)[
m
2 ]sem+1(π/2 − θ; ρ),

(4.1)

for m = 0, 1, · · · , where [a] denotes the largest integer ≤ a. Let {λm(·)} be the
eigenvalues defined in (3.2). One verifies that the pair {(λm, Mem)} satisfies the
Sturm-Liouville problem

(4.2) AρMem = λmMem,

where the Sturm-Liouville operator is defined as

(4.3) Aρv =
(
− ∂2

θ + 4ρ sin2 θ
)
v.
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As the operator Ap defined in (3.4), Aρ is also compact, strictly positive, symmetric
and self-adjoint.

The following properties can be derived from the Sturm-Liouville theory or the
symmetric property (2.11):

• The set of Mathieu functions {Mem(θ; ρ)} forms a complete orthogonal
system in L2(I), and

(4.4)
1
π

∫ 2π

0

Mem(θ; ρ)Men(θ; ρ)dθ = δmn.

Moreover, they are orthogonal in H1
p (I) with the inner product

(4.5) âρ(u, v) = (∂θu, ∂θv) + 4ρ(u, v)ω̂, with ω̂ = sin2 θ,

namely,

âρ

(
Mem, Men

)
=

∫ 2π

0

∂θMem∂θMendθ + 4ρ

∫ 2π

0

MemMen cos2 θdθ

=
(
AρMem, Men

)
= πλmδmn.

(4.6)

• The eigenvalues {λm} are real, distinct and arranged in ascending order
(cf. (3.6))

(4.7) 0 < λ0(ρ) < λ1(ρ) < · · · < λm(ρ) < · · · ,

and by (3.8),

(4.8) m2 < λm(ρ) < m2 + 4ρ, m = 0, 1, · · · .

Define the finite dimensional space

(4.9) X̂ρ
M := span

{
Mem : 0 ≤ m ≤ M

}
.

The following inequalities can be proved in the same fashion as for Lemma 3.2.

Lemma 4.1. We have

(4.10) |âρ(φ, ψ)| ≤ λM‖φ‖‖ψ‖ ≤ (M2 + 4ρ)‖φ‖‖ψ‖, ∀φ, ψ ∈ X̂ρ
M ,

and the following inverse inequality holds:

(4.11) ‖∂l
θφ‖ ≤ λ

l/2
M ‖φ‖, ∀φ ∈ X̂ρ

M , l ≥ 1.

We now consider the L2-orthogonal projection π̂ρ
M : L2(I) → X̂ρ

M defined by

(4.12) (π̂ρ
Mv − v, vM ) = 0, ∀vM ∈ X̂ρ

M .

We introduce the Hilbert space Ĥs
ρp(I) with the norm ‖v‖

Ĥs
qp(I)

, which is defined
by replacing Aq and aq(·, ·) in (3.19)–(3.20) by Aρ and âρ(·, ·), respectively. Since
the Sturm-Liouville operator Aρ is compact, strictly positive, symmetric and self-
adjoint, similar to (3.22), the norm of the space Ĥs

ρp(I) can be expressed in the
frequency space

(4.13) ‖v‖
Ĥs

ρp(I)
=

(
π

s∑
m=0

λs
m|v̂m|2

)1/2

with v̂m =
1
π

∫ 2π

0

v(θ)Mem(θ; ρ)dθ.
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In most applications, we may assume that the parameter ρ is a finite constant
independent of M. One verifies from a direct calculation (refer to (3.28)–(3.30))
that the embedding relation Ĥs

ρp(I) ⊂ Hs
p(I) and

(4.14) ‖v‖
Ĥs

ρp(I)
≤ C‖v‖s, s ≥ 0,

where C is a positive constant independent of v (but depending on ρ). In the case
of ρ � 1, a more precise estimate with an explicit dependence of ρ can be carried
out in the same fashion as in (3.31).

Following the same argument as in the proofs of Theorems 3.1–3.4, we can derive
the following approximation results.

Theorem 4.1. For any v ∈ Ĥs
ρp(I), we have that

‖π̂ρ
Mv − v‖

Ĥr
ρp(I)

≤ λ
(r−s)/2
M+1 ‖v‖

Ĥs
ρp(I)

, 0 ≤ r ≤ s.(4.15)

In particular, for any v ∈ Hs
p(I),

|π̂ρ
Mv − v|r � Mr−s‖v‖s, 0 ≤ r ≤ s(4.16)

and

‖π̂ρ
Mv − v‖L∞ � M1/2−s‖v‖s, s ≥ 1.(4.17)

In the preceding part, we presented Mathieu approximation results in Sobolev
spaces, which are the main ingredients for the analysis of spectral approximation
to PDEs in elliptical geometries, as illustrated in the succeeding two sections.

5. Application to the modified Helmholtz equation

We first consider the modified Helmholtz equation in an ellipse:

− ∆U + βU = F, in Ω; U(x, y) = 0, on ∂Ω,(5.1)

where β ≥ 0, F is a given function and

(5.2) Ω =
{

(x, y) :
x2

c2 cosh2 1
+

y2

c2 sinh2 1
< 1

}
with c being the semi-focal distance.

Using the elliptic transform (2.1) and setting u(µ, θ) = U(x, y), we have that

(5.3) ∇U(x, y) =
1
h

∂u

∂µ
�eµ +

1
h

∂u

∂θ
�eθ :=

1
h
∇̃u

and

(5.4) ∆U(x, y) =
1
h2

(∂2u

∂µ2
+

∂2u

∂θ2

)
:=

1
h2

∆̃u,

where

(5.5) h = h(µ, θ) = c
(
cosh2 µ − cos2 θ

)1/2 =
c√
2

(
cosh 2µ − cos 2θ

)1/2
,

and the Jacobian from (x, y) to (µ, θ) is h2, i.e., dxdy = h2dµdθ. Hence, under the
elliptic coordinates, equation (5.1) takes the form

− 1
h2

∆̃u + βu = f, (µ, θ) ∈ Q := (0, 1) × [0, 2π),

u(1, θ) = 0, θ ∈ [0, 2π); u is 2π-periodic in θ,
(5.6)
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where f(µ, θ) = F (x, y).
We note that curves of constant µ are all ellipses and the curves of constant θ

are hyperbolas with foci x = ±c along the x-axis. The transform (2.1) is singular
at µ = 0 when the ellipse is reduced to the line segment y = 0 and |x| ≤ c.1

Therefore, additional condition(s) should be imposed for the solution of (5.6) to be
consistent with that of (5.1). We now derive the necessary condition(s) through
weak formulations.

The weak formulation of (5.1) is to find U ∈ H1
0 (Ω) such that

(5.7)
∫

Ω

∇U∇V dxdy + β

∫
Ω

UV dxdy =
∫

Ω

FV dxdy, ∀V ∈ H1
0 (Ω).

By the Lax-Milgram Lemma, if β ≥ 0, this problem admits a unique solution
U ∈ H1

0 (Ω), provided that F ∈ L2(Ω).
Let us define

(5.8) X :=
{
u ∈ L2

h2(Q) : ∇̃u ∈ L2(Q), u(1, θ) = 0, u(µ, θ + 2π) = u(µ, θ)
}
.

Using (5.3), we find that, under the elliptic coordinates, the weak formulation (5.7)
becomes: find u ∈ X such that

B(u, v) :=
∫
Q
∇̃u∇̃vdµdθ + β

∫
Q

uvh2dµdθ =
∫
Q

fvh2dµdθ, ∀v ∈ X.(5.9)

On the other hand, in order for (5.6) to be consistent with (5.9), the condition

(5.10)
∂u

∂µ
(0, θ) = 0, ∀θ ∈ [0, 2π)

should be supplemented to (5.6).

5.1. Dimension reduction. We now expand the solution in a series of Mathieu
functions in θ-direction:

(5.11)
(
u, h2f

)
=

∞∑
m=0

(
ûm, f̂m

)
Mem(θ; ρ)

with ρ = c2β/4. Since the Mathieu function Mem satisfies the Mathieu equation
(4.2), substituting the expansion (5.11) into (5.6) and (5.10) leads to a sequence of
one-dimensional problems in the µ-direction:

− û′′
m + (λm + 4ρ cosh2 µ)ûm = f̂m, ∀µ ∈ Λ = (0, 1),

û′
m(0) = ûm(1) = 0, m = 0, 1, · · · .

(5.12)

Its weak formulation is:
Find ûm ∈ 0H

1(Λ) =
{
φ : φ ∈ H1(Λ), φ(1) = 0

}
such that

Bm(ûm, v̂m) = (f̂m, v̂m), ∀v̂m ∈ 0H
1(Λ), m = 0, 1, · · · ,

(5.13)

where

(5.14) Bm(ûm, v̂m) = (û′
m, v̂′m) + λm(ûm, v̂m) + 4ρ(ûm, v̂m)χ,

with the weight function χ = cosh2 µ. For each m ≥ 0, the problem is uniquely
solvable thanks to the fact λm, ρ > 0 and the Lax-Milgram lemma.

1The singularity here is different from that of the polar coordinates, because µ = 0 corresponds
to the whole interval [−c, c] rather than a single point.
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Moreover, we have the following a priori estimate whose proof is given in Ap-
pendix C.

Lemma 5.1. For each m ≥ 0, if f̂m ∈ L2(Λ), then we have

(5.15) ‖ûm‖2
2 + λm‖ûm‖2

1 + λ2
m‖ûm‖2 � ‖f̂m‖2.

5.2. Mixed Mathieu-Legendre spectral-Galerkin methods. We now describe
our spectral approximation to (5.6) with (5.10). Given a cutoff integer M > 0, we
define the Mathieu spectral approximation to the solution of (5.9) by

(5.16) u
MN

(µ, θ) =
M∑

m=0

ûN
m(µ)Mem(θ; ρ),

where {ûN
m}M

m=0 are the solutions of the following Legendre spectral-Galerkin ap-
proximation to (5.13):

Find ûN
m ∈ 0PN :=

{
φ ∈ PN : φ(1) = 0

}
such that

Bm(ûN
m, v̂N

m) = (f̂m, v̂N
m), ∀v̂N

m ∈ 0PN , m = 0, 1, · · · , M,
(5.17)

where the bilinear form Bm(·, ·) is defined in (5.14).

5.3. Error estimations. We first recall some relevant approximation results by
Legendre polynomials (with a change of variable from (−1, 1) to Λ := (0, 1)). Con-
sider the orthogonal projection 0Π1

N : 0H
1(Λ) → 0PN such that

(5.18)
(
∂µ(0Π1

Nv − v), ∂µvN

)
+

(
0Π1

Nv − v, vN

)
= 0, ∀vN ∈ 0PN .

As in [16], we introduce the weighted space to describe the approximation errors:

(5.19) Br(Λ) :=
{
v ∈ L2(Λ) : (µ − µ2)

k−1
2 ∂k

µv ∈ L2(Λ), 1 ≤ k ≤ r
}

with the norm and semi-norm

‖v‖Br(Λ) =
(
‖v‖2+

r∑
k=1

∥∥(µ−µ2)
k−1
2 ∂k

µv
∥∥2

) 1
2
, |v|Br(Λ) =

∥∥(µ−µ2)
r−1
2 ∂r

µv
∥∥, r ≥ 1.

In particular, we have B0(Λ) = L2(Λ).
The following lemma can be derived from the existing Legendre polynomial ap-

proximation; see, e.g., [13, 16].

Lemma 5.2. For any v ∈ 0H
1(Λ) ∩ Br(Λ),

(5.20) ‖0Π1
Nv − v‖σ � Nσ−r‖(µ − µ2)(r−1)/2∂r

µv‖, 0 ≤ σ ≤ 1 ≤ r.

We first estimate the error between ûm (the solution of (5.13)) and ûN
m (the

solution of (5.17)). For notational convenience, denote êm = ûm − ûN
m and êN

m =
0Π1

N ûm − ûN
m. Clearly, we have that 0Π1

N ûm − ûm = êN
m − êm := ẽN

m.

Lemma 5.3. For each m ≥ 0, if ûm ∈ 0H
1(Λ) ∩ Br(Λ) with r ≥ 1, then we have√

Bm

(
ûm − ûN

m, ûm − ûN
m

)
� (λ1/2

m + N)N−r|ûm|Br(Λ)(5.21)

and

(5.22) ‖ûm − ûN
m‖ � (λm + N2)N−(2+r)|ûm|Br(Λ).
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Proof. By (5.13) and (5.17), we have that for any v̂N
m ∈ 0PN ,

Bm(êm, v̂N
m) = 0 ⇒ Bm(êN

m, v̂N
m) = Bm(ẽN

m, v̂N
m).(5.23)

Taking v̂N
m = êN

m in the above identity, we derive from (5.14), (5.18) and the Cauchy-
Schwarz inequality that

Bm(êN
m,êN

m) = (λm − 1)
(
ẽN
m, êN

m

)
+ 4ρ

(
ẽN
m, êN

m

)
χ

≤ λm‖ẽN
m‖‖êN

m‖ + ‖ẽN
m‖‖êN

m‖ + 4ρ‖ẽN
m‖0,χ‖êN

m‖0,χ

≤ λm

2
‖êN

m‖2 +
λm

2
‖ẽN

m‖2 +
1
2
|êN

m|21 + 2‖ẽN
m‖2 + 2ρ‖êN

m‖2
0,χ + 2ρ‖ẽN

m‖2
0,χ

=
1
2
Bm(êN

m, êN
m) +

λm

2
‖ẽN

m‖2 + 2ρ‖ẽN
m‖2

0,χ + 2‖ẽN
m‖2,

where we used the embedding inequality (B.1) for the following derivation:

(5.24) ‖êN
m‖ ≤ 2|êN

m|1 ⇒ ‖ẽN
m‖‖êN

m‖ ≤ 2‖ẽN
m‖|êN

m|1 ≤ 1
2
|êN

m|21 + 2‖ẽN
m‖2.

Therefore, we derive from Lemma 5.2 that for r ≥ 1,

Bm(êN
m, êN

m) ≤ λm‖ẽN
m‖2 + 4‖ẽN

m‖2 + 4ρ‖ẽN
m‖2

0,χ

� (λm + 1)N−2r‖(µ − µ2)(r−1)/2∂r
µûm‖2.

(5.25)

Since by the triangle inequality,

Bm(êm, êm) ≤ Bm(êN
m, êN

m) + Bm(ẽN
m, ẽN

m),(5.26)

we obtain the desired result by using (5.25) and Lemma 5.2.
We now estimate (5.22) by a duality argument. Given g ∈ L2(Λ), we consider

the dual problem of (5.13): Find w ∈ 0H
1(Λ) such that

(5.27) Bm(w, v) = (g, v), ∀v ∈ 0H
1(Λ).

By an argument similar to that for Lemma 5.1, this problem admits a unique
solution with the regularity

(5.28) ‖w‖2
2 + λm‖w‖2

1 + λ2
m‖w‖2 � ‖g‖2.

Taking v = êm in (5.27), we deduce from (5.23), the Cauchy-Schwarz inequality
and (5.21) that

|(g, êm)|2 = |Bm(w, êm)|2 = |Bm(w − 0Π1
Nw, êm)|2

≤ Bm(w − 0Π1
Nw, w − 0Π1

Nw) Bm(êm, êm)

� (λ1/2
m + N)4N−(4+2r)‖(µ − µ2)1/2w′′‖2|ûm|2Br(Λ)

� (λ1/2
m + N)4N−(4+2r)‖g‖2|ûm|2Br(Λ).

(5.29)

Consequently,

(5.30) ‖êm‖ = sup
g∈L2,g �=0

|(g, êm)|
‖g‖ �

(
λ1/2

m + N
)2

N−(2+r)|ûm|Br(Λ).

This ends the proof. �
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We now estimate the global errors between u (the solution of (5.9)) and u
MN

(the numerical solution defined in (5.16)–(5.17)). For this purpose, we introduce
the Sobolev space

Hr,s
p (Q) : = L2(I; Br(Λ)) ∩ Hs−1

p (I; 0H
1(Λ)) ∩ Hs

p(I; L2(Λ)), r, s ≥ 1,(5.31)

with the norm

‖u‖Hr,s
p (Q) =

(
π

∞∑
m=0

[
|ûm|2Br(Λ) + λs−1

m ‖ûm‖2
H1(Λ) + λs

m‖ûm‖2
L2(Λ)

]) 1
2

,(5.32)

where {ûm} are the coefficients of the Mathieu expansion of u.
With the above preparations, we now estimate the global error.

Theorem 5.1. Let u be the solution of (5.9) and uMN its approximation given by
(5.16)–(5.17). Then, for u ∈ Hr,s

p (Q) with r, s ≥ 1, we have

(5.33) ‖∇̃(u − u
MN

)‖L2(Q) �
(
M1−s + (M + N)N−r

)
‖u‖Hr,s

p (Q)

and

(5.34) ‖u − uMN ‖L2(Q) �
(
M−s + (M2 + N2)N−2−r

)
‖u‖Hr,s

p (Q).

Proof. Recall that êm = ûm − ûN
m. Hence, by (5.11) and (5.16),

(5.35) u − uMN =
M∑

m=0

êmMem +
∞∑

m=M+1

ûmMem.

Using (5.9), (4.2)–(4.6) and a direct calculation leads to

B(u − u
MN

, u − u
MN

) = ‖∇̃(u − u
MN

)‖2
L2(Q) + β‖u − u

MN
‖2

L2
h2 (Q)

=
M∑

m=0

[
π‖ê′m‖2

L2(Λ) + 4ρπ‖êm‖2
L2

χ(Λ) + ‖êm‖2
L2(Λ)âρ(Mem, Mem)

]
+

∞∑
m=M+1

[
π‖û′

m‖2
L2(Λ) + 4ρπ‖ûm‖2

L2
χ(Λ) + ‖ûm‖2

L2(Λ)âρ(Mem, Mem)
]

= π
M∑

m=0

Bm(êm, êm) + π
∞∑

m=M+1

Bm(ûm, ûm),

(5.36)

where h2 is defined in (5.5), and the weight function χ = cosh2 µ. By Lemma 5.3
and (5.14),

M∑
m=0

Bm(êm, êm) � (λ1/2
M + N)2N−2r

M∑
m=0

|ûm|2Br(Λ) ≤ (M + N)2N−2r‖u‖2
Hr,s

p (Q).

On the other hand, we have from (4.8) and (5.14) that
∞∑

m=M+1

Bm(ûm, ûm) ≤ λ1−s
M+1

∞∑
m=M+1

λs−1
m Bm(ûm, ûm)

� M2−2s
∞∑

m=M+1

(
λs−1

m ‖ûm‖2
H1(Λ) + λs

m‖ûm‖2
L2(Λ)

)
.

(5.37)
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Therefore, we deduce from the above estimates and (5.31)–(5.32) that

‖∇̃(u − u
MN

)‖L2(Q) +
√

β‖u − u
MN

‖L2
h2 (Q) � (M1−s + (M + N)N−r)‖u‖Hr,s

p (Q).

This yields (5.33).
We now prove (5.34). By (5.35), the orthogonality (4.4) and (5.22),

‖u − uMN ‖2
L2(Q) = π

M∑
m=0

‖êm‖2
L2(Λ) + π

∞∑
m=M+1

‖ûm‖2
L2(Λ)

� (M2 + N2)2N−2(2+r)
M∑

m=0

|ûm|2Br(Λ) + λ−2s
m

∞∑
m=M+1

λ2s
m‖ûm‖2

L2(Λ)

�
(
M−2s + (M2 + N2)2N−2(2+r)

)
‖u‖2

Hr,s
p (Q).

(5.38)

This ends the proof. �
We now present some numerical results. As a first example, we consider (5.9)

with β = c = 1 and the exact solution

U(x, y) = cos(xy) = v(µ, θ) = cos(sinh(2µ) sin(2θ)/4).

For this analytical solution, Theorem 5.1 holds for all r, s ≥ 0 hence an exponential
convergence is expected. We plot the L2-errors against various M = N on the left
side of Figure 5.1. An exponential convergence rate of order O(e−cN ) is clearly
observed.

For the second example, we consider (5.9) with the exact solution v(µ, θ) =
µγ sin(2θ). It can be easily checked that for γ ≥ 3

2 but noninteger, we have v ∈
H2γ−ε,s

p (Q) for any ε, s > 0. Hence, Theorem 5.1 indicates an L2 convergence rate
of N−2γ+ε with M = N for any ε > 0. We plot the L2-errors vs. various M = N
in log-log scale for γ = 2.5, 2.8, 3.5 on the right side of Figure 5.1. We observe
algebraic decays with slopes of roughly 2−2γ. We note that the difference between
the observed rates and the rates predicted in Theorem 5.1 can be attributed to the
fact that the forcing function f is replaced by its Mathieu-Legendre interpolation in
the computation and that this interpolation error is not accounted for in Theorem
5.1.

Figure 5.1. Left: L2-errors in semi-log scale for the first example.
Right: L2-errors in log-log scale for the second example.
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6. Application to the Helmholtz equation

Given r > 0, we denote

(6.1) Dr =
{
(x, y) :

x2

c2 cosh2 r
+

y2

c2 sinh2 r
< 1

}
,

where c > 0 is the semi-focal distance. For b > a > 0, we denote Ωa,b = Db\D̄a,
i.e., the open domain between the two co-focal ellipses. We consider the following
Helmholtz equation

− ∆V − k2V = G, in Ωa,b; V
∣∣
∂Da

= 0,(6.2)

together with a Robin boundary condition at ∂Db expressed in elliptic coordinates
(see [14]):

(6.3)
∂v

∂µ
−

(
ick sinh µ − 1

2
tanhµ

)
v = 0, on ∂Db,

where v(µ, θ) = V (x, y). We note that this boundary condition is a first-order
approximation to the exact Dirichlet-to-Neumann boundary condition (cf. [14]).
Without loss of generality, we consider only the homogeneous boundary conditions
since nonhomogeneous boundary conditions can be easily handled by boundary
lifting.

Under the elliptic coordinates (2.1), the equation (6.2)–(6.3) becomes

− 1
h2

( ∂2v

∂µ2
+

∂2v

∂θ2

)
− k2v = g, ∀(µ, θ) ∈ (a, b) × [0, 2π),

v(a, θ) = 0,
( ∂v

∂µ
−

(
ick sinh µ − 1

2
tanh µ

)
v
)
(b, θ) = 0, ∀θ ∈ [0, 2π),

v is 2π-periodic in θ,

(6.4)

where g(µ, θ) = G(x, y).

6.1. Dimension reduction. We expand the solution and given data in a series of
Mathieu functions in the θ-direction

(6.5)
(
v, h2g

)
=

∞∑
m=0

(
v̂m, ĝm

)
mem(θ; q)

with q = c2k2/4. For simplicity, hereafter, we denote k̂ = ck. The equation (6.4) is
reduced to

− v̂′′m + (λm − k̂2 cosh2 µ)v̂m = ĝm, ∀µ ∈ Λ = (a, b),

v̂m(a) = 0, v̂′m(b) − Tk̂,bv̂m(b) = 0, m = 0, 1, · · · ,
(6.6)

where

(6.7) Tk̂,b := ik̂ sinh b − 1
2

tanh b.

We note that the functions (v, g) and (v̂m, ĝm) are complex-valued. With a slight
abuse of notation, we shall still use Hs and L2, etc. to denote spaces of complex-
valued functions.
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Let (u, v) :=
∫
Λ

uvdµ. Then, a weak formulation of (6.6) is: Find v̂m ∈ 0H1(Λ) :=
{v ∈ H1(Λ) : v(a) = 0} such that

Bm(v̂m, ŵm) :=
(
v̂′m, ŵ′

m

)
+ λm(v̂m, ŵm) − k̂2

(
v̂m, ŵm

)
χ

− Tk̂,b v̂m(b)ŵm(b) =
(
ĝm, ŵm

)
, ∀ŵm ∈ 0H1(Λ),

(6.8)

where χ = cosh2 µ.

Theorem 6.1. Given m ≥ 0 and ĝm ∈ L2(Λ), problem (6.8) admits a unique
solution v̂m ∈ H2(Λ) ∩ 0H1(Λ).

Proof. Observe that Im
(
Tk̂,b

)
= k̂ sinh b > 0, so we deduce from the Fredholm

alternative theorem (see, for instance, [22, 31, 34]) that if ĝm ∈ L2(Λ), the problem
(6.8) has a unique solution v̂m ∈ 0H1(Λ). Then by a standard regularity argument,
we have

‖v̂m‖2 � c(a, b, k̂)‖ĝm‖,
where c(a, b, k̂) is a positive constant depending on a, b and k̂. �

We now derive a sharp a prior estimate with explicit dependence on k̂.

Lemma 6.1. Given m ≥ 0 and ĝm ∈ L2(Λ) ∩ L2
χ̂−1(Λ), we have

‖v̂′m‖ +
k̂

2
‖v̂m‖0,χ̂ ≤ Ca,b,k̂‖ĝm‖0,χ̂−1 + (b − a + 1)‖ĝm‖,(6.9)

where
χ̂(µ) = (µ − a + 1) sinh(2µ),

Ca,b,k̂ =
√

2(b − a + 1)
[
cosh(2b)
sinh b

+
tanh2 b

4k̂2 sinh b

]
+

1
k̂

.
(6.10)

Proof. In order to derive the desired a priori estimate, we take three different test
functions in (6.8), namely, v̂m, (µ − a)v̂′m and v̂′m. The following weight functions
will be used in the sequel:

χ(µ) = cosh2 µ, χ̃(µ) = (µ − a) sinh(2µ),

χ̄(µ) = sinh(2µ), χ̂(µ) = (µ − a + 1) sinh(2µ).

Step 1. Taking ŵm = v̂m in (6.8) leads to

(6.11) ‖v̂′m‖2 + λm‖v̂m‖2 − k̂2‖v̂m‖2
0,χ − Tk̂,b|v̂m(b)|2 =

∫ b

a

ĝmv̂mdµ,

whose real and imaginary parts read

(6.12) ‖v̂′m‖2 + λm‖v̂m‖2 +
1
2

tanh b|v̂m(b)|2 = k̂2‖v̂m‖2
0,χ + Re(ĝm, v̂m)

and

(6.13) −ik̂ sinh b |v̂m(b)|2 = Im(ĝm, v̂m).

Theorem 6.1 asserts that the solution v̂m of (6.8) also solves the original problem
(6.6). Therefore, we have that for any ŵm ∈ H1(Λ),∫ b

a

(
− v̂′′m + (λm − k̂2 cosh2 µ)v̂m

)
ŵmdµ =

∫ b

a

ĝmŵmdµ.(6.14)
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Step 2. In order to bound the term k̂2‖v̂m‖2
0,χ in (6.12), we take ŵm = 2(µ− a)v̂′m

in (6.14) and integrate by parts.
Using the identities

− 2Re
∫ b

a

v̂′′m(µ − a)v̂′mdµ = −Re
∫ b

a

(µ − a)d |v̂′m|2

= ‖v̂′m‖2 − (b − a)|v̂′m(b)|2,

2Re
∫ b

a

(µ − a)v̂mv̂′mdµ = Re
∫ b

a

(µ − a)d |v̂m|2

= (b − a)|v̂m(b)|2 − ‖v̂m‖2,

− 2Re
∫ b

a

(µ − a)v̂mv̂′m cosh2 µ dµ = −Re
∫ b

a

(µ − a) cosh2 µ d|v̂m|2

= −(b − a) cosh2 b|v̂m(b)|2 + ‖v̂m‖2
0,χ + ‖v̂m‖2

0,χ̃,

(6.15)

and collecting all the real parts, we find

‖v̂′m‖2 + k̂2‖v̂m‖2
0,χ + k̂2‖v̂m‖2

0,χ̃ + λm(b − a)|v̂m(b)|2

= (b − a)|v̂′m(b)|2 + λm‖v̂m‖2 + k̂2(b − a) cosh2 b|v̂m(b)|2

+ 2Re(ĝm, (µ − a)v̂′m).

(6.16)

Step 3. We now take ŵm = 2v̂′m in (6.14). Using the identities

− 2Re
∫ b

a

v̂′′mv̂′mdµ = |v̂′m(a)|2 − |v̂′m(b)|2, 2Re
∫ b

a

v̂mv̂′mdµ = |v̂m(b)|2,

− 2Re
∫ b

a

(cosh2 µ)v̂mv̂′mdµ = − cosh2 b|v̂m(b)|2 + ‖v̂m‖2
0,χ̄,

(6.17)

and collecting all the real parts, we get

k̂2‖v̂m‖2
0,χ̄ + λm|v̂m(b)|2 + |v̂′m(a)|2 = |v̂′m(b)|2 + k̂2 cosh2 b|v̂m(b)|2 + 2Re(ĝm, v̂′m).

(6.18)

A combination of (6.11), (6.16) and (6.18) leads to

2‖v̂′m‖2 + k̂2‖v̂m‖2
0,χ̂ + |v̂′m(a)|2 + λm

(
b − a + 1

)
|v̂m(b)|2 +

1
2

tanh b|v̂m(b)|2

≤ (b − a + 1)|v̂′m(b)|2 + k̂2 cosh2 b(b − a + 1)|v̂m(b)|2

+ |Re(ĝm, v̂m)| + 2|Re(ĝm, (µ − a + 1)v̂′m)|,

(6.19)

where χ̂ = (µ − a + 1) sinh(2µ). Using the boundary condition at r = b in (6.6)
yields

|v̂′m(b)|2 = |Tk̂,b|
2|v̂m(b)|2 =

(
k̂2 sinh2 b +

1
4

tanh2 b
)
|v̂m(b)|2.

By (6.13) and the Cauchy-Schwarz inequality,

k̂2 cosh(2b)(b − a + 1)|v̂m(b)|2 = k̂
cosh(2b)
sinh b

(b − a + 1)|Im(ĝm, v̂m)|

≤ k̂2

8
‖v̂m‖2

0,χ̂ + 2(b − a + 1)2
cosh2(2b)
sinh2 b

‖ĝm‖2
0,χ̂−1

(6.20)
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and

1
4

tanh2 b(b − a + 1)|v̂m(b)|2 =
tanh2 b

4k̂ sinh b
(b − a + 1)|Im(ĝm, v̂m)|

≤ k̂2

8
‖v̂m‖2

0,χ̂ + (b − a + 1)2
tanh4 b

8k̂4 sinh2 b
‖ĝm‖2

0,χ̂−1 .

(6.21)

On the other hand, using the Cauchy-Schwarz inequality yields

|Re(ĝm, v̂m)| ≤ k̂2

4
‖v̂m‖2

0,χ̂ +
1
k̂2

‖ĝm‖2
0,χ̂−1(6.22)

and

2|Re(ĝm, (µ − a + 1)v̂′m)| ≤ ‖v̂′m‖2 + (b − a + 1)2‖ĝm‖2.(6.23)

Notice that cosh2 b + sinh2 b = cosh(2b), so the desired result follows from (6.19)–
(6.23). �

6.2. Spectral-Galerkin approximations. Given a cut-off integer M > 0, we
define the Mathieu-Legendre approximation to the solution v of (6.4) by

(6.24) v
MN

(µ, θ) =
M∑

m=0

vN
m(µ)mem(θ; q),

where {vN
m}M

m=0 are the solutions of the problem: Find vN
m ∈ 0PN = {φ ∈ PN :

φ(a) = 0} such that

Bm(vN
m , wN

m) =
(
∂µvN

m , ∂µwN
m

)
+ λm(vN

m , wN
m)

− k̂2
(
vN

m , wN
m

)
χ
− Tk̂,bv

N
m(b)wN

m(b) =
(
ĝm, wN

m

)
, ∀wN

m ∈ 0PN .
(6.25)

As for (6.8), it is clear from the Fredholm Alternative Theorem that (6.25) admits
a unique solution. The following result is needed for the error analysis.

Lemma 6.2. If ĝm ∈ L2
χ̃−1(Λ), we have

‖∂µvN
m‖ +

k̂

2
‖vN

m‖0,χ̃ � C̃a,b,k̂‖ĝm‖0,χ̃−1 ,(6.26)

where χ̃ = (µ − a) sinh(2µ) and

C̃a,b,k̂ =
√

2(b − a)
[
cosh(2b)
sinh b

+
tanh2 b

4k̂2 sinh b
+

√
(b − a) sinh(2b)

]
+

1
k̂

.(6.27)

Proof. Since the first two test functions wN
m = vN

m , (µ − a)∂µvN
m ∈ 0PN , but for

the third one ∂µvN
m �∈ 0PN , the proof of Lemma 6.1 needs to be slightly modified to

derive (6.26). For completeness, we sketch the derivation below.
Note that (6.12)–(6.13) hold with vN

m in place of v̂m. We now take wN
m =

2(µ − a)∂µvN
m in (6.25), and find that

(6.28) 2Re
(
∂µvN

m , ∂µ((µ − a)∂µvN
m)

)
= (b − a)|∂µvN

m(b)|2 + ‖∂µvN
m‖2.
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We also see that the second and third identities in (6.15) hold with vN
m in place of

v̂m. Thus, the real part of (6.25) with wN
m = 2(µ − a)∂µvN

m becomes

‖∂µvN
m‖2 + k̂2‖vN

m‖2
0,χ + k̂2‖vN

m‖2
0,χ̃

+ (b − a)|∂µvN
m(b)|2 + λm(b − a)|vN

m(b)|2

= λm‖vN
m‖2 + k̂2(b − a) cosh2 b|vN

m(b)|2 + 2Re(ĝm, (µ − a)∂µvN
m)

+ 2(b − a)Re
(
Tk̂,bv

N
m(b)∂µvN

m(b)
)
.

(6.29)

Hence, a combination of (6.12) (replacing v̂m by vN
m) and (6.29) leads to

2‖∂µvN
m‖2 + k̂2‖vN

m‖2
0,χ̃ +

1
2

tanh b|vN
m(b)|2

+ (b − a)|∂µvN
m(b)|2 + λm(b − a)|vN

m(b)|2

= k̂2(b − a) cosh2 b|vN
m(b)|2 + 2Re(ĝm, (µ − a)∂µvN

m) + Re(ĝm, vN
m)

+ 2(b − a)Re
(
Tk̂,bv

N
m(b)∂µvN

m(b)
)
.

(6.30)

Using the Cauchy-Schwarz inequality yields

2(b − a)
∣∣Re

(
Tk̂,bv

N
m(b)∂µvN

m(b)
)∣∣

≤ b − a

4
|∂µvN

m(b)|2 + (b − a)|Tk̂,b|
2|vN

m(b)|2

≤ b − a

4
|∂µvN

m(b)|2 + (b − a)
(
k̂2 sinh2 b +

1
4

tanh2 b
)
|vN

m(b)|2.

(6.31)

Similarly, by (6.13) and the Cauchy-Schwarz inequality,

k̂2 cosh(2b)(b − a)|vN
m(b)|2 = k̂

cosh(2b)
sinh b

(b − a)|Im(ĝm, vN
m)|

≤ k̂2

8
‖vN

m‖2
0,χ̃ + 2(b − a)2

cosh2(2b)
sinh2 b

‖ĝm‖2
0,χ̃−1

(6.32)

and

1
4

tanh2 b(b − a)|vN
m(b)|2 =

tanh2 b

4k̂ sinh b
(b − a)|Im(ĝm, vN

m)|

≤ k̂2

8
‖v̂m‖2

0,χ̃ + (b − a)2
tanh4 b

8k̂4 sinh2 b
‖ĝm‖2

0,χ̃−1 .

(6.33)

On the other hand, using the Cauchy-Schwarz inequality again yields

|Re(ĝm, vN
m)| ≤ k̂2

4
‖vN

m‖2
0,χ̃ +

1
k̂2

‖ĝm‖2
0,χ̃−1(6.34)

and

2|Re(ĝm, (µ − a)∂µvN
m)| ≤ ‖∂µvN

m‖2 +
∫ b

a

(µ − a)2|ĝm|2dµ

≤ ‖∂µvN
m‖2 +

∫ b

a

(µ − a)3 sinh(2µ)
|ĝm|2

(µ − a) sinh(2µ)
dµ

≤ ‖∂µvN
m‖2 + (b − a)3 sinh(2b)‖ĝm‖2

0,χ̃−1 .

(6.35)

Finally, a combination of (6.30)–(6.35) leads to the desired result. �
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6.3. Error estimations. As in the previous section, we define the space B̂r(Λ) :

(6.36) B̂r(Λ) :=
{

v ∈ L2(Λ) :
[
(µ − a)(b − µ)

] k−1
2 ∂k

µv ∈ L2(Λ), 1 ≤ k ≤ r
}
,

with the norm and semi-norm

‖v‖B̂r(Λ) =
(
‖v‖2 +

r∑
k=1

∥∥[
(µ − a)(b − µ)

] k−1
2 ∂k

µv
∥∥2

) 1
2
,

|v|B̂r(Λ) =
∥∥[

(µ − a)(b − µ)
] r−1

2 ∂r
µv

∥∥.

Let �(µ) = (µ − a)(b − µ). The following approximation result will be used in
the error analysis (see Appendix D for the proof).

Lemma 6.3. There exists a mapping π1
N : H1(Λ) → PN satisfying

(6.37) π1
Nw(a) = w(a), π1

Nw(b) = w(b)

and

(6.38)
(
∂µ(π1

Nw − w), ∂µwN

)
= 0, ∀wN ∈ PN .

Moreover, for any w ∈ B̂r(Λ) with r ≥ 1,

(6.39) ‖(π1
Nw − w)′‖ + N‖

(
π1

Nw − w
)
‖0,�−1 � N1−r|w|B̂r(Λ).

With the aid of the a priori estimates and the above approximation result, we
derive the following error estimates.

Theorem 6.2. Let v̂m and vN
m be the solutions of (6.8) and (6.25), respectively.

If v̂m ∈ 0H1(Λ) ∩ B̂r(Λ) with r ≥ 1, we have

(6.40) ‖∂µ(v̂m − vN
m)‖ + k̂‖v̂m − vN

m‖0,χ̃ � Dm,N,k̂N1−r‖v̂m‖B̂r(Λ),

where χ̃ = (µ − a) sinh(2µ), and

Dm,N,k̂ :=
[
1 + (b − a)3/2 sinh1/2(2b)k̂N−1

+ C̃a,b,k̂(b − a)1/2
(
λm +

cosh2 b

(sinh(2b))1/2
k̂2

)
N−1

]
,

(6.41)

with C̃a,b,k̂ being given by (6.27).

Proof. Let eN
m = vN

m − π1
N v̂m and ẽN

m = v̂m − π1
N v̂m. By (6.6) and (6.25), we have

that Bm(v̂m − vN
m , wN

m) = 0, for all wN
m ∈ 0PN . Hence, using the fact ẽN

m(b) = 0 and
(6.38) leads to

Bm(eN
m, wN

m) = Bm(v̂m − π1
N v̂m, wN

m) = λm(ẽN
m, wN

m) − k̂2(ẽN
m cosh2 µ, wN

m).(6.42)

Note that (6.42) can be viewed as (6.25) with ĝm = λmẽN
m − k̂2(cosh2 µ)ẽN

m. Thus,
by (6.26),

‖∂µeN
m‖ +

k̂

2
‖eN

m‖0,χ̃ ≤ C̃a,b,k̂

(
λm‖ẽN

m‖0,χ̃−1 + k̂2‖ẽN
m‖0,χ∗

)(6.43)
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where we denote χ∗ = cosh4 µ
(µ−a) sinh(2µ) = (cosh2 µ)χ̃−1. Hence, by Lemma 6.3,

‖ẽN
m‖0,χ̃−1 =

(b − ν1)1/2

(sinh(2ν1))1/2
‖π1

N v̂m − v̂m‖0,�−1

� (b − a)1/2N−r|v̂m|B̂r(Λ),

‖ẽN
m‖0,χ∗ =

(b − ν2)1/2 cosh2 ν2

(sinh(2ν2))1/2
‖π1

N v̂m − v̂m‖0,�−1

� (b − a)1/2 cosh2 b

(sinh(2b))1/2
N−r|v̂m|B̂r(Λ),

‖ẽN
m‖0,χ̃ = (ν3 − a)(b − ν3)1/2 sinh1/2(2ν3)‖π1

N v̂m − v̂m‖0,�−1

� (b − a)3/2 sin1/2(2b)N−r|v̂m|B̂r(Λ),

(6.44)

where {νi}3
i=1 are three constants in (a, b).

Next, by the triangle inequality, (6.39) and (6.43)–(6.44),

‖∂µ(v̂m − vN
m)‖ + k̂‖v̂m − vN

m‖0,χ̃ ≤ ‖∂µeN
m‖ + k̂‖eN

m‖0,χ̃ + ‖∂µẽN
m‖ + k̂‖ẽN

m‖0,χ̃

�
[
1 + (b − a)3/2 sinh1/2(2b)k̂N−1

+ C̃a,b,k̂(b − a)1/2
(
λm +

cosh2 b

(sinh(2b))1/2
k̂2

)
N−1

]
N1−r|v̂m|B̂r(Λ).

This ends the proof. �

Remark 6.1. To illustrate how the error v̂m−vN
m behaves with respect to N , k and b

with fixed a > 0 and m ≥ 0, we consider a typical oscillatory function v̂m(µ) = eikµ

to be the solution of (6.8). Then, for any r > 0,

|v̂m|2
B̂r(Λ)

=
∫ b

a

|∂r
µv̂m|2

(
(µ − a)(b − µ)

)r−1
dµ

≤ k2r

∫ b

a

(
(µ − a)(b − µ)

)r−1
dµ � k

(
k

b − a

2

)2r−1

.

(6.45)

Notice that Dm,N,k̂ � 1+(b−a)3/2 cosh bk2N−1. Therefore, Theorem 6.2 indicates
that for this typical solution, we have that for any r ≥ 1,

‖∂µ(v̂m−vN
m)‖+k̂‖v̂m−vN

m‖ �
(
1+(b−a)3/2 cosh bk2N−1

)
k

√
b − a

2

(k(b − a)
2N

)r−1

.

Hence, the error will decay exponentially as soon as k(b−a)
2N < 1. Therefore, we can

significantly reduce the computational cost by choosing b closer to a.

We now present some numerical results. We solved (6.25) with the function ĝm

such that the exact solution is v̂m = exp(ikµ). We refer to [12] for more details on
the actual implementation of (6.25). In Figure 6.1, we plot numerical results which
depict the convergence behaviors of our numerical scheme with (b − a)/2 = 1. On
the left, we fix k = 100 and plot the L2-errors with respect to N . We observe that
the error decays exponentially fast as soon as N > k. Next, we denote α = k(b−a)

2N

and plot on the right of Figure 6.1 the L2-errors with three different α. We observe
that in all three cases, the error converges exponentially.
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Figure 6.1. Left: L2-error with respect to N for k = 100. Right:

L2-errors with three different α where α = k(b−a)
2N

.

We now estimate the error of the Legendre-Mathieu spectral approximation. Let
Q = Λ × I = (a, b) × (0, 2π), and introduce the space

Ĥr,s
p (Q) : = L2(I; B̂r(Λ)) ∩ Hs−1

p (I; 0H1(Λ)) ∩ Hs
p(I; L2(Λ)), r, s ≥ 1,(6.46)

with the norm

‖v‖
Ĥr,s

p (Q)
=

( ∞∑
m=0

[
|v̂m|2

B̂r(Λ)
+ λs−1

m ‖∂µv̂m‖2
L2(Λ) + λs

m‖v̂m‖2
L2(Λ)

]) 1
2

,(6.47)

where {v̂m} are the coefficients of the Mathieu expansion of v.

Theorem 6.3. Let v be the solution of (6.4), and let vMN be the approximate
solution given by (6.24)–(6.25). Then, for v ∈ Ĥr,s

p (Q) with r, s ≥ 1, we have

‖v − vMN ‖L2
χ̃(Q) �

(
DM,N,k̂k̂−1N1−r + λ

−s/2
M+1

)
‖v‖

Ĥr,s
p (Q)

,(6.48)

‖∂µ(v − v
MN

)‖L2(Q) �
(
DM,N,k̂N1−r + λ

(1−s)/2
M+1

)
‖v‖

Ĥr,s
p (Q)

,(6.49)

and

(6.50) ‖∂θ(v − v
MN

)‖L2(Q) �
(
(b − a)DM,N,k̂λ

1/2
M N1−r + λ

(1−s)/2
M+1

)
‖v‖

Ĥr,s
p (Q)

,

where χ̃ = (µ− a) sinh(2µ), DM,N,k̂ is given in (6.41), and λm is the eigenvalue of
the Mathieu equation (cf. (3.3)).

Proof. We derive from the orthogonality of the Mathieu functions and (6.40) that

‖v − v
MN

‖2
L2

χ̃(Q) =
M∑

m=0

π‖v̂m − vN
m‖2

L2
χ̃(Λ) +

∞∑
m=M+1

π‖v̂m‖2
L2

χ̃(Λ)

≤
M∑

m=0

π‖v̂m − vN
m‖2

L2
χ̃(Λ) + λ−s

M+1

∞∑
m=M+1

πλs
m‖v̂m‖2

L2
χ̃(Λ)

� k̂−2D2
M,N,k̂

N2−2r
M∑

m=0

|v̂m|2
B̂r(Λ)

+ λ−s
M+1

∞∑
m=M+1

λs
m‖v̂m‖2

L2
χ̃(Λ).

(6.51)
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Similarly, using (6.40) leads to

‖∂µ(v − v
MN

)‖2
L2(Q) � D2

M,N,k̂
N2−2r

M∑
m=0

|v̂m|2
B̂r(Λ)

+ λ1−s
M+1

∞∑
m=M+1

λs−1
m ‖∂µv̂m‖2

L2(Λ).

We now prove (6.50). One verifies, by using the Hardy inequality (B.3), that for
any w ∈ 0H1(Λ),

‖w‖L2(Λ) ≤ 2(b − a)‖w′‖L2(Λ).

Hence, by (6.40),

(6.52) ‖v̂m−vN
m‖L2(Λ) � (b−a)‖∂µ(v̂m−vN

m)‖L2(Λ) � (b−a)Dm,N,k̂N1−r|v̂m|B̂r(Λ).

By (3.10)–(3.11), (6.5) and (6.24), we have from (6.52) that

‖∂θ(v − vMN )‖2 + k̂2‖(v − vMN ) cos θ‖2

=
M∑

m=0

πλm‖v̂m − vN
m‖2

L2(Λ) +
∞∑

m=M+1

πλm‖v̂m‖2
L2(Λ)

� (b − a)2λMD2
M,N,k̂

N2−2s
M∑

m=0

|v̂m|2
B̂r(Λ)

+ λ1−s
M+1

∞∑
m=M+1

λs
m|v̂m|2L2(Λ).

This ends the proof. �

7. Concluding remarks

The Mathieu functions are classical special functions which are important tools
for solving certain partial differential equations in elliptic domains. In particular,
they enable us to reduce the Helmholtz or the modified Helmholtz equation in a two-
dimensional elliptic domain to a sequence of one-dimensional equations that are easy
to solve numerically. However, to the best of our knowledge, there was no rigorous
approximation result available for Mathieu expansions. This paper established a
first set of such approximation results which will serve as basic ingredients for the
numerical analysis of Mathieu approximations to PDEs.

More precisely, we developed optimal approximation results for the angular
Mathieu functions. These approximation results are very similar to those for the
Fourier expansions. Namely, the orthogonal projection based on Mathieu expan-
sions of a periodic function converges in the same way as that based on Fourier
expansions.

As examples of applications, we applied the approximation results developed in
this paper to establish optimal error estimates for the Mathieu-Legendre approxi-
mation to the modified Helmholtz equation and the Helmholtz equation. We also
presented illustrative numerical results which are consistent with our theoretical
analysis.

Appendix A. Recurrence relations

The coefficients {A(n)
j , B

(n)
j } in the expansion (2.10) satisfy the following recur-

sive relations:
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• Even functions of period π (i.e., ce2m and n = 2m):

(A.1) (an − j2)A(n)
j − q

(
A

(n)
j−2 + A

(n)
j+2

)
= 0, j ≥ 3,

and

(A.2) anA
(n)
0 − qA

(n)
2 = 0, (an − 4)A(n)

2 − q
(
A

(n)
0 + A

(n)
4

)
= 0.

• Even functions of period 2π (i.e., ce2m+1 and n = 2m + 1):

(A.3) (an − 1)A(n)
1 − q

(
A

(n)
1 + A

(n)
3

)
= 0,

along with (A.1) for j ≥ 3.
• Odd functions of period π (i.e., se2m and n = 2m):

(A.4) (bn − j2)B(n)
j − q

(
B

(n)
j−2 + B

(n)
j+2

)
= 0, j ≥ 3,

and

(A.5) (bn − 4)B(n)
2 − qB

(n)
4 = 0.

• Odd functions of period 2π (i.e., se2m+1 and n = 2m + 1):

(A.6) (bn − 1)B(n)
1 + q

(
B

(n)
1 − B

(n)
3

)
= 0,

along with (A.1) for j ≥ 3.

Appendix B. An embedding inequality

We have the following inequality:

(B.1) ‖w‖ ≤ 2‖w′‖, ∀w ∈ H1(0, 1) with w(1) = 0.

Proof. We recall Hardy’s inequality ([20])

(B.2)
∫ b

a

[ ∫ b

µ

φ(ν)dν
]2

(b − µ)d−2dµ ≤ 4
1 − d

∫ b

a

φ2(µ)(b − µ)ddµ, d < 1

and

(B.3)
∫ b

a

[ ∫ µ

a

φ(ν)dν
]2

(µ − a)d−2dµ ≤ 4
1 − d

∫ b

a

φ2(µ)(µ − a)ddµ, d < 1.

Thanks to w(1) = 0, taking φ = w′, a = 0, b = 1 and d = 0 in (B.2) leads to

‖w‖2 ≤
∫ 1

0

|w|2(1 − µ)−2dµ ≤ 4‖w′‖2.

This ends the proof. �

Appendix C. Proof of Lemma 5.1

Taking vm = ûm in (5.13)–(5.14), we use the Cauchy-Schwarz inequality and the
embedding inequality (B.1) that

‖û′
m‖2 + λm‖ûm‖2 + 4ρ‖ûm‖2

0,χ ≤ |(f̂m, ûm)|

≤ 2‖f̂m‖‖û′
m‖ ≤ 1

2
‖û′

m‖2 + 2‖f̂m‖2.
(C.1)
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We verify by integration by parts and the fact û′
m(0) = ûm(1) = 0 that

−
∫ 1

0

ûmû′′
m cosh2 µdµ =

∫ 1

0

|û′
m|2 cosh2 µdµ +

∫ 1

0

ûmû′
m sinh(2µ)dµ

= ‖û′
m‖2

0,χ +
1
2
|ûm(1)|2 sinh(2) −

∫ 1

0

|ûm|2 cosh(2µ)dµ

= ‖û′
m‖2

0,χ +
1
2
|ûm(1)|2 sinh(2) + ‖ûm‖2 − 2‖ûm‖2

0,χ.

(C.2)

Multiplying the first equation in (5.12) by −û′′
m and integrating the resulting equa-

tion over (0, 1), we derive from a direct calculation that

‖û′′
m‖2 + λm‖û′

m‖2 + 4ρ‖û′
m‖2

0,χ + 2ρ|ûm(1)|2 sinh(2) + 4ρ‖ûm‖2

≤ 8ρ‖ûm‖2
0,χ + |(f̂m, û′′

m)| ≤ 8ρ‖ûm‖2
0,χ +

1
2
‖f̂m‖2 +

1
2
‖û′′

m‖2.
(C.3)

Since by (C.1), 8ρ‖ûm‖2
0,χ ≤ 4‖f̂m‖2, a combination of (C.1) and (C.3) leads to

(C.4) ‖ûm‖2
2 + λm‖ûm‖2

1 � ‖f̂m‖2.

Next, by the first equation of (6.6) and (C.4),

(C.5) λm‖ûm‖ ≤ ‖û′′
m‖ + 4ρ‖ cosh2 µûm‖ + ‖f̂m‖ � ‖f̂m‖,

which completes the proof of Lemma 5.1.

Appendix D. Proof of Lemma 6.3

We first recall a generalized Jacobi approximation (with a change variable from
(−1, 1) to Λ = (a, b) and an extension to complex-valued functions) with parameters
α = β = −1 (cf. Theorem 3.1 of [15]):

Let �(µ) = (µ − a)(b − µ), and π−1
N be the orthogonal projection from

L2
�−1(Λ) onto P 0

N = H1
0 (Λ) ∩ PN such that∫ b

a

(
π−1

N v − v
)
vN�−1(µ)dµ = 0, ∀vN ∈ P 0

N .

Then for any v ∈ L2
�−1(Λ) ∩ B̂r(Λ) with r ≥ 1, we have

(D.1) ‖∂µ(π−1
N v − v)‖ + N‖π−1

N v − v‖0,�−1 � N1−r|v|B̂r(Λ).

Next, using the Hardy inequalities (B.2)–(B.3) and an argument similar to that in
Appendix B, we have H1

0 (Λ) ⊆ L2
�−1(Λ). Moreover, we find from [15] (see (2.5))

that π−1
N is also the H1

0 (Λ)-orthogonal projection, namely,

(D.2)
∫ b

a

(
π−1

N v − v
)′

v′Ndµ = 0, ∀vN ∈ P 0
N .

For any w ∈ H1(Λ), let w∗(µ) be the linear interpolation of w associated with
the points µ = a, b, i.e.,

(D.3) w∗(µ) =
µ − b

a − b
w(a) +

µ − a

b − a
w(b) ∈ P1.

It is clear that w − w∗ ∈ H1
0 (Λ) ⊆ L2

�−1(Λ). Now, we define

(D.4) π1
Nw = π−1

N (w − w∗) + w∗ ∈ PN , ∀w ∈ H1(Λ).
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Obviously, π1
Nw satisfies (6.37). Next we verify (6.38). For this purpose, let w∗

N be
the linear interpolation function of wN as defined in (D.3). We derive from (D.2)
and integration by parts that for any wN ∈ PN ,∫ b

a

∂µ

(
π1

Nw − w
)
∂µwNdµ

=
∫ b

a

∂µ

(
π−1

N (w − w∗) − (w − w∗)
)
∂µ

(
(wN − w∗

N ) + w∗
N

)
dµ

=
∫ b

a

∂µ

(
π−1

N (w − w∗) − (w − w∗)
)
∂µw∗

Ndµ

=
w∗

N (b) − w∗
N (a)

b − a

(
π−1

N (w − w∗) − (w − w∗)
)∣∣∣b

a
= 0.

Hence, (6.38) holds. Next, by (D.1),

(D.5) ‖∂µ(π1
Nw − w)‖ + N‖π1

Nw − w‖0,�−1 � N1−r|w − w∗|B̂r(Λ).

Since ∂r
µw∗ = 0 for r ≥ 2, and for r = 1,

‖∂µw∗‖ = (b − a)−1/2|w(b) − w(a)| ≤ 1√
b − a

∫ b

a

|∂µw|dµ ≤ ‖∂µw‖,

we have |w−w∗|B̂r(Λ) ≤ 2|w|B̂r(Λ), which, together with (D.5), leads to the desired
result.
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