
MATHEMATICS OF COMPUTATION
Volume 82, Number 282, April 2013, Pages 1017–1036
S 0025-5718(2012)02645-7
Article electronically published on August 21, 2012

ON EXPONENTIAL CONVERGENCE OF GEGENBAUER

INTERPOLATION AND SPECTRAL DIFFERENTIATION

ZIQING XIE, LI-LIAN WANG, AND XIAODAN ZHAO

Abstract. This paper is devoted to a rigorous analysis of exponential con-
vergence of polynomial interpolation and spectral differentiation based on the
Gegenbauer-Gauss and Gegenbauer-Gauss-Lobatto points, when the underly-
ing function is analytic on and within an ellipse. Sharp error estimates in the
maximum norm are derived.

1. Introduction

Perhaps the most significant advantage of the spectral method is its high-order of
accuracy. The typical convergence rate of the spectral method is O(n−m) for every
m, provided that the underlying function is sufficiently smooth [21, 4, 6, 30, 8]. If
the function is suitably analytic, the expected rate is O(qn) with 0 < q < 1. This is
the so-called exponential convergence, which is well accepted among the community.

There has been much investigation on exponential decay of spectral expansions
of analytic functions. For instance, the justification or description of the results for
Fourier or Chebyshev series can be found in [40, 10, 38, 5, 35, 43]. In the seminal
work of Gottlieb and Shu on the resolution of the Gibbs phenomenon (the interested
readers are referred to Gustafsson [31] for a review of this significant contribution
attributed to a series of papers [26, 23, 24, 22, 25]), the exponential convergence, in
the maximum norm (termed as the regularization error), of Gegenbauer polynomial
expansions was derived, when the index (denoted by λ below) grows linearly with
the degree n. Boyd [7] provided an insightful study of the “diagonal limit” (i.e.,
λ = βn for some constant β > 0) convergence of the Gegenbauer reconstruction
algorithm in [26]. Indeed, under the assumption of analyticity in [26], the expo-
nential accuracy of Gegenbauer expansions is actually valid for fixed λ, which can
be justified by a direct application of the Stirling’s formula (see (2.11) below) to
Theorem 4.3 in [26]. We can also find the estimates under the analytic assump-
tion on and within the Bernstein ellipse Eρ (as defined in (2.15) below) from various
sources. We refer to [10, 38, 35] for the results on Chebyshev expansions. Davis [10]
stated an estimate (with proof, see Page 312 of [10]) due to K. Neumann, that is, if
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u is analytic on and inside Eρ with ρ > 1, then the Legendre expansion coefficient
satisfies

(1.1) lim sup
n→∞

|ûn|1/n = ρ−1.

A similar result for the general Jacobi expansion was presented in Theorem 9.1.1
(without proof) on Page 245 of [40]. A more informative and sharper estimate with
explicit dependence on n for Gegenbauer expansions was obtained in Theorem 4.2
of [25]. Based on an argument different from that of [25], the very recent paper [44]
showed the exponential convergence of the Legendre expansion.

It is known that the heart of a collocation/pseudospectral method is the spec-
tral differentiation process. That is, given a set of Gauss-type points {xj}nj=0, e.g.,
on [−1, 1], the derivative values {u′(xj)} can be approximated by an exact differ-
entiation of the polynomial interpolant {(Inu)′(xj)}. Such a direct differentiation
technique is also called a differencing method in the literature (see, e.g., [41, 18, 37]).
For the first time, Tadmor [41] showed the exponential accuracy of differencing an-
alytic functions on Chebyshev-Gauss points, where the main argument was based
on analyzing the (continuous) Chebyshev coefficients and the aliasing error, and
where the intimate relation between Fourier and Chebyshev basis functions played
an essential role in the analysis. Reddy and Weideman [37] took a different ap-
proach and improved the estimate in [41] for Chebyshev differencing of functions
analytic on and within Eρ with ρ > 1. As pointed out in [37], although the expo-
nential convergence of spectral differentiation of analytic functions is appreciated
and mentioned in the literature (see, e.g., [18, 42, 6]), the rigorous proofs (merely
for the Fourier and Chebyshev methods) can only be found in [41, 37]. Indeed,
to the best of our knowledge, the theoretical justification even for the Legendre
method is lacking. It is worthwhile to point out that under the regularity condi-
tion (M): ‖u(k)‖L∞ ≤ cMk, the super-geometric convergence of Legendre spectral
differentiation was proved by Zhang [47]:

(1.2) max
0≤j≤n

|(u− Inu)
′(xj)| ≤ C

( eM

2(n+ 1)

)n+2

,

where {xj}nj=0 are the Legendre-Gauss points. A similar estimate was nontrivially
extended to the Chebyshev collocation method in [48]. The condition (M) covers
a large class of functions, but it is even more restrictive than analyticity. On the
other hand, the regularity index k could be infinite, while the dependence of (1.2)
on k is not clear.

The main concern of this paper is to derive sharp estimates of exponential con-
vergence, in the maximum norm, of interpolation and spectral differentiation on
Gegenbauer-Gauss and Gegenbauer-Gauss-Lobatto points, provided that the un-
derlying function is analytic on and within Bernstein’s ellipse. The essential argu-
ment is based on the classical Hermite’s contour integral (see (2.19) below), and a
delicate estimate of the asymptotics of the Gegenbauer polynomial on the ellipse
of interest. It is important to remark that the Chebyshev polynomial takes a very
simple explicit form (see, e.g., [10] or (3.5) below), but the Gegenbauer polynomial
has a complicated expression. Accordingly, compared with the Chebyshev case in
[37], the analysis in this paper is much more involved. The Chebyshev and Le-
gendre methods are commonly used in spectral approximations, but we have also
witnessed renewed applications of the Gegenbauer (or more general Jacobi) poly-
nomial based methods in, e.g., defeating Gibbs phenomenon (see, e.g., [26, 20]),
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GEGENBAUER INTERPOLATION AND SPECTRAL DIFFERENTIATION 1019

hp-elements (see, e.g., [16, 2, 33, 27]), and numerical solutions of differential equa-
tions (see, e.g., [3, 28, 29, 12, 13, 14, 15, 45, 39]) and integral equations (see, e.g.,
[9]). The results in this paper might be useful for a better understanding of the
methods and have implications in other applications.

The rest of the paper is organized as follows. As some preliminaries, we briefly
review basic properties of Gegenbauer polynomials, Gamma functions and analytic
functions in Section 2. We study the asymptotics of the Gegenbauer polynomials in
Section 3, and present the main results on exponential convergence of interpolation
and spectral differentiation, together with some numerical results and extensions
in the last section.

2. Preliminaries

In this section, we collect some relevant properties of Gegenbauer polynomials
and assorted facts to be used throughout the paper.

2.1. Gegenbauer polynomials. The analysis heavily relies on the normalization
of [40], so we define the Gegenbauer polynomials1 by the three-term recurrence:

nCλ
n(x) = 2 (n+ λ− 1)xCλ

n−1(x)− (n+ 2λ− 2)Cλ
n−2(x), n ≥ 2,

Cλ
0 (x) = 1, Cλ

1 (x) = 2λx, λ > −1/2, x ∈ [−1, 1].
(2.1)

Notice that if λ = 0, Cλ
n(x) vanishes identically for n ≥ 1. This corresponds to the

Chebyshev polynomial, and there holds

(2.2) lim
λ→0

λ−1Cλ
n(x) =

2

n
Tn(x) =

2

n
cos(n arccos(x)), n ≥ 1.

Hereafter, if not specified explicitly, we assume λ �= 0, and refer to [37] for the
analysis of the Chebyshev case. Notice that for λ = 1/2, Cλ

n(x) = Ln(x), i.e., the
usual Legendre polynomial of degree n.

The Gegenbauer polynomials are orthogonal with respect to the weight function
(1− x2)λ−1/2, namely,

(2.3)

∫ 1

−1

Cλ
n(x)C

λ
m(x)(1− x2)λ−1/2dx = hλ

nδmn,

where δmn is the Kronecker symbol, and

(2.4) hλ
n =

21−2λπ

Γ2(λ)

Γ(n+ 2λ)

n!(n+ λ)
.

Moreover, we have

(2.5) Cλ
n(−x) = (−1)nCλ

n(x), Cλ
n(1) =

Γ(n+ 2λ)

n!Γ(2λ)

and

(2.6)
d

dx
Cλ

n(x) = 2λCλ+1
n−1(x).

1Historically, they are sometimes called “ultraspherical polynomials” (see, e.g., the footnote
on Page 80 of [40] and Page 302 of [1]).
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By Formula (4.7.1) and Theorems 7.32.1 and 7.33.1 of Szegö [40], we have

(2.7)
|Cλ

n(x)| ≤ Cλ
n(1) if λ > 0;

|Cλ
n(x)| ≤ Dλ n

λ−1 if − 1

2
< λ < 0 and n � 1,

where Dλ is a positive constant independent of n. A tight bound can be found in
[36] (also see [34]):

(2.8) max
|x|≤1

{
(1− x2)λ

(
Cλ

n(x)
)2} ≤ 2e(2 +

√
2λ)

π
hλ
n, λ > 0, n ≥ 0.

2.2. Gamma and incomplete Gamma functions. The following properties of
the Gamma and incomplete Gamma functions (cf. [46]) are found to be useful.
The Gamma function satisfies

(2.9) Γ(x)Γ(x+ 1/2) = 21−2x
√
π Γ(2x), ∀x ≥ 0

and

(2.10) Γ(x)Γ(−x) = − π

x sin(πx)
, ∀x > 0.

We would like to quote Stirling’s formula (see, e.g., [25]):

(2.11)
√
2πxx+1/2e−x ≤ Γ(x+ 1) ≤

√
2πxx+1/2e−xe

1
12x , ∀x ≥ 1.

We also need to use the incomplete Gamma function defined by

(2.12) Γ(α, x) =

∫ ∞

x

tα−1e−tdt, α > 0, x ≥ 0,

which satisfies (see P. 899 of [32])

(2.13) Γ(n+ 1, x) = n!e−x
n∑

k=0

xk

k!
, n = 0, 1, . . . .

2.3. Basics of analytic functions. Suppose that u(x) is analytic on [−1, 1]. Based
on the notion of analytic continuation, there always exists a simple connected region
R in the complex plane containing [−1, 1] into which f(x) can be continued ana-
lytically. The analyticity may be characterized by the growth of the derivatives of
u. More precisely, let C be a simple positively oriented closed contour surrounding
[−1, 1] and lying in R. Then we have (see, e.g., [10]):

(2.14)
|u(m)(x)|

m!
≤ maxz∈C |u(z)|L(C)

2πδm+1
, ∀x ∈ [−1, 1],

where L(C) is the length of C, and δ is the distance from C to [−1, 1] (can be
viewed as the distance from [−1, 1] to the nearest singularity of u in the complex
plane). Mathematically, an appropriate contour to characterize the analyticity is
the so-called Bernstein ellipse:

(2.15) Eρ :=
{
z ∈ C : z =

1

2
(w + w−1) with w = ρeiθ, θ ∈ [0, 2π]

}
, ρ > 1,

where C is the set of all complex numbers, and i =
√
−1 is the complex unit. The

ellipse Eρ has the foci at ±1 and the major and minor semi-axes are, respectively,

(2.16) a =
1

2

(
ρ+ ρ−1

)
, b =

1

2
(ρ− ρ−1),
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GEGENBAUER INTERPOLATION AND SPECTRAL DIFFERENTIATION 1021

so the sum of two axes is ρ. As illustrated in Figure 2.1, ρ is the radius of the
circle w = ρeiθ that is mapped to the ellipse Eρ under the conformal mapping:
z = 1

2 (w + w−1).

−2 −1 0 1 2

−2

−1

0

1

2
|w|=ρ

−2 −1 0 1 2

−2

−1

0

1

2

−1 1

Bernstein
ellipse

Figure 2.1. Circle (left): |w| = ρ = 1.5, and Bernstein ellipse (right):
Eρ with foci ±1 linked by the conformal mapping: z = 1

2
(w + w−1).

According to [37], the perimeter of Eρ satisfies

(2.17) L(Eρ) ≤ π
√
ρ2 + ρ−2,

which overestimates the perimeter by less than 12 percent. The distance from Eρ
to the interval [−1, 1] is

(2.18) δρ =
1

2
(ρ+ ρ−1)− 1.

We are concerned with the interpolation and spectral differentiation of analytic
functions on the Gegenbauer-Gauss-type points. Let {xj := xj(λ, n)}nj=0 be the

Gegenbauer-Gauss points (i.e., the zeros of Cλ
n+1(x)) or the Gegenbauer-Gauss-

Lobatto points (i.e., the zeros of (1− x2)Cλ+1
n−1(x)). The associated Lagrange inter-

polation polynomial of u is given by Inu ∈ Pn (the set of all polynomials of degree
≤ n) such that (Inu)(xj) = u(xj) for 0 ≤ j ≤ n. Our starting point is the Hermite’s
contour integral (see, e.g., [11]):

(2.19) (u− Inu)(x) =
1

2πi

∮
Eρ

Qn+1(x)

Qn+1(z)

u(z)

z − x
dz, ∀x ∈ [−1, 1],

where Qn+1(x) = Cλ
n+1(x) or (1− x2)Cλ+1

n−1(x). Consequently, we have

(2.20) (u− Inu)
′(xj) =

1

2πi

∮
Eρ

Q′
n+1(xj)

Qn+1(z)

u(z)

z − xj
dz, 0 ≤ j ≤ n.

A crucial component of the error analysis is to obtain a sharp asymptotic estimate
of Qn+1(z) on Eρ with large n. This will be the main concern of the forthcoming
section.

3. Asymptotic estimate of Gegenbauer polynomials on Eρ
Much of our analysis relies on the following representation of the Gegenbauer

polynomial.
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Lemma 3.1. Let z = 1
2 (w + w−1). We have

(3.1) Cλ
n(z) =

n∑
k=0

gλkg
λ
n−kw

n−2k, n ≥ 0, λ > −1/2,

where

(3.2) gλ0 = 1, gλk =

(
k + λ− 1

k

)
=

Γ(k + λ)

k!Γ(λ)
, 1 ≤ k ≤ n.

This formula is derived from the three-term recurrence formula (2.1) and the
mathematical induction. Its proof is provided in Appendix A.

Remark 3.1. Some consequences of Lemma 3.1 are in order.

(a) Comparing the coefficients wn on both sides of (3.1), we find that the
leading coefficient of Cλ

n is 2ngλn. This can be also verified from (2.1) by the
mathematical induction.

(b) If λ > 0, then gλk > 0 for all 0 ≤ k ≤ n. On the other hand, if λ < 0, we
find from (2.10) and (3.2) that

(3.3) gλk =
sin(πλ)

π

Γ(k + λ)Γ(1− λ)

k!
< 0, 1 ≤ k ≤ n.

(c) If λ = 1/2, it follows from (2.9) and (3.2) that

(3.4) gλk =
(2k)!

(k!)222k
, 0 ≤ k ≤ n.

Such a representation for the Legendre polynomial can be found in, e.g.,
[11] and [40], but the derivation is different.

(d) If λ = 0, then by (2.2),

(3.5) Tn(z) =
1

2

(
wn + w−n

)
, n ≥ 1.

(e) If λ = 1, then gλk ≡ 1 for 0 ≤ k ≤ n. Therefore, the Chebyshev polynomial
of the second kind has the representation

(3.6) Un(z) =
wn+1 − w−(n+1)

w − w−1
= wn

n∑
k=0

w−2k = C1
n(z), n ≥ 0,

which can be found in [35]. �
It is interesting to observe from (3.6) that for λ = 1, Cλ

n(z)/w
n converges to

(1− w−2)−λ uniformly for all |w| > 1, that is,
∞∑
k=0

w−2k =
1

1− w−2
, |w| > 1.

In what follows, we show a similar property holds for general λ > −1/2 and λ �= 0.
More precisely, we estimate the upper bound of remainder:∣∣∣(1− w−2

)−λ − Cλ
n(z)

gλnw
n

∣∣∣ ≤ n∑
k=1

|dλn,k||gλk |ρ−2k +
∞∑

k=n+1

|gλk |ρ−2k := Rn(ρ, λ),(3.7)

where z ∈ Eρ with |w| = ρ > 1, and

(3.8) dλn,k = 1−
gλn−k

gλn
, 1 ≤ k ≤ n.
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To obtain a sharp estimate of Rn(ρ, λ), it is necessary to understand the behavior
of the coefficients {gλk}nk=1 and {dλn,k}nk=1, which are summarized in the following
two lemmas.

Lemma 3.2. For λ > −1/2, k ≥ 1 and k + λ ≥ 1,

(3.9) c1

(
1 +

λ

k

)k+1/2

e−λ ≤ Γ(λ) gλk
(k + λ)λ−1

≤ c2

(
1 +

λ

k

)k+1/2

e−λ,

where c1 = e−
1

12k and c2 = e
1

12(k+λ) .

Proof. Applying Stirling’s formula (2.11) to

(k + λ)Γ(λ) gλk =
Γ(k + λ+ 1)

Γ(k + 1)

leads to (3.9). �

Lemma 3.3. Let {gλk}nk=1 and {dλn,k}nk=1 be the sequences as defined in (3.2) and

(3.8), respectively.

(i) If λ > 1, then there holds

(3.10) 0 < dλn,1 < dλn,2 < · · · < dλn,n < 1.

(ii) If −1/2 < λ < 1 and λ �= 0, then

(3.11) · · · < |gλk+1| < |gλk | < · · · < |gλ1 | < gλ0 = 1,

and we have

(3.12) 0 < −dλn,1 < −dλn,2 < · · · < −dλn,n−1,

and

(3.13) |dλn,kgλk | < 1 for 1 ≤ k ≤ n− 1, n ≥ 3.

Proof. By (3.2),

(3.14)
gλk+1

gλk
=

k + λ

k + 1
for λ �= 0.

Thus for λ > 1, {gλk} is strictly increasing with respect to k, which, together with
the fact gλk > 0, implies

0 < dλn,k = 1−
gλn−k

gλn
< 1

and

dλn,k+1 − dλn,k =
gλn−k − gλn−k−1

gλn
> 0.

This completes the proof of (i).
The property (3.11) is a direct consequence of (3.14), and (3.12) can be proved in

a fashion similar to (3.10). It remains to verify (3.13). If k = 1, a direct calculation
by using (3.2) yields

|dλn,1gλ1 | = |λ| 1− λ

n− (1− λ)
< 1, ∀n ≥ 3.
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For 2 ≤ k ≤ n− 1, it follows from (3.2) and (3.12) that

|dλn,kgλk | =
(gλn−k

gλn
− 1

)
|gλk | <

gλn−k

gλn
|gλk | =

⎛
⎝k−2∏

j=0

1− 1−λ
k−j

1− 1−λ
n−j

⎞
⎠ |λ|

1− 1−λ
n−k+1

< 1.

This ends the proof. �

With the above preparation, we are ready to present the main result on the
upper bound of Rn(ρ, λ) in (3.7).

Theorem 3.1. Let Rn(ρ, λ) with ρ > 1 be the remainder as defined in (3.7).

(i) If λ > 1, then for all n ≥ m ≥ 1 and

(3.15) m+ 2 ≥ (λ− 1)
( 1

2 ln ρ
− 1

)
,

we have

(3.16) Rn(ρ, λ) ≤ dλn,m

(
(1− ρ−2)−λ − 1

)
+A

[λ]!

(2 ln ρ)λ
(m+ λ)[λ]

ρ2(m−1)
,

where [λ] is the largest integer ≤ λ, and

(3.17) A =
1

Γ(λ)
exp

( 1

12(m+ 1 + λ)
+

λ

2(m+ 1)

)
.

(ii) If −1/2 < λ < 1 and λ �= 0, then for all n ≥ m ≥ 1 and n ≥ 3,

(3.18) Rn(ρ, λ) ≤ |dλn,m|
∣∣(1− ρ−2)−λ − 1

∣∣+ ρ−2m

ρ2 − 1
+ 2ρ−2n.

Here, the factor dλn,m is given by (3.8).

Proof. (i) For λ > 1, we obtain from (3.10) that

Rn(ρ, λ) =

m∑
k=1

dλn,kg
λ
kρ

−2k +

n∑
k=m+1

dλn,kg
λ
kρ

−2k +

∞∑
k=n+1

gλkρ
−2k

(3.10)

≤ dλn,m

m∑
k=1

gλkρ
−2k +

n∑
k=m+1

gλkρ
−2k +

∞∑
k=n+1

gλkρ
−2k

≤ dλn,m

(
(1− ρ−2)−λ − 1

)
+

∞∑
k=m+1

gλkρ
−2k.

(3.19)

By Lemma 3.2,

∞∑
k=m+1

gλkρ
−2k ≤ (Γ(λ))−1e−λe

1
12(m+1+λ)

∞∑
k=m+1

(k + λ)λ−1

ρ2k

(
1 +

λ

k

)k+1/2

≤ (Γ(λ))−1e−λe
1

12(m+1+λ)

∞∑
k=m+1

(k + λ)λ−1

ρ2k
eλ+

λ
2k ,

where we used the inequality 1 + x < ex for x > 0. Hence,

(3.20)
∞∑

k=m+1

gλkρ
−2k ≤ A

∞∑
k=m+1

(k + λ)λ−1

ρ2k
,
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GEGENBAUER INTERPOLATION AND SPECTRAL DIFFERENTIATION 1025

where A is given by (3.17). One verifies that under condition (3.15), (k + λ)λ−1/ρ2k

is decreasing with respect to k. Therefore, by (2.12) and (2.13),

∞∑
k=m+1

(k + λ)λ−1

ρ2k
≤

∫ ∞

m

(x+ λ)λ−1ρ−2xdx =
ρ2λ

(2 ln ρ)λ

∫ ∞

2(m+λ) ln ρ

xλ−1e−xdx

=
ρ2λ

(2 ln ρ)λ
Γ
(
λ, 2(m+ λ) ln ρ

)
≤ ρ2λ

(2 ln ρ)λ
Γ
(
[λ] + 1, 2(m+ λ) ln ρ

)

=
[λ]!ρ−2m

(2 ln ρ)λ

[λ]∑
k=0

(m+ λ)k(2 ln ρ)k

k!
≤ [λ]!

(2 ln ρ)λ
(m+ λ)[λ]

ρ2m

∞∑
k=0

(2 ln ρ)k

k!

=
[λ]!

(2 ln ρ)λ
(m+ λ)[λ]

ρ2(m−1)
.

A combination of the above estimates leads to (3.16).
(ii) Now, we turn to the proof of the second case: −1/2 < λ < 1 and λ �= 0. By

Lemma 3.3,

Rn(ρ, λ) =
m∑

k=1

|dλn,k||gλk |ρ−2k +
n∑

k=m+1

|dλn,k||gλk |ρ−2k +
∞∑

k=n+1

|gλk |ρ−2k

(3.12)

≤ |dλn,m|
m∑

k=1

|gλk |ρ−2k
(3.13)
+

n−1∑
k=m+1

ρ−2k + |dλn,ngλn|ρ−2n
(3.11)
+

∞∑
k=n+1

ρ−2k

≤ |dλn,m|
∣∣(1− ρ−2)−λ − 1

∣∣+ ρ−2m

ρ2 − 1
+ 2ρ−2n,

where in the last step, we used the following facts:

m∑
k=1

|gλk |ρ−2k ≤ sign(λ)
∞∑
k=1

gλkρ
−2k = sign(λ)

(
(1− ρ−2)−λ − 1

)
, ρ > 1,

(note: sign(λ) is the sign of λ), and |dλn,ngλn| = |gλn − 1| < 2, thanks to (3.11). �

The estimate in Theorem 3.1 is quite tight and is valid even for small n. By
choosing a suitable m to balance the two error terms in the upper bound, we are
able to derive the anticipated asymptotic estimate.

Theorem 3.2. For any z ∈ Eρ with |w| = ρ > 1, and any λ > −1/2 and λ �= 0,
there exists 0 < ε ≤ 1/2 such that

(3.21)
∣∣∣(1− w−2

)−λ − Cλ
n(z)

gλnw
n

∣∣∣ ≤ A(ρ, λ)nε−1 +O(n−1),

where

(3.22) A(ρ, λ) = |1− λ|
∣∣(1− ρ−2)−λ − 1

∣∣.
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1026 ZIQING XIE, LI-LIAN WANG, AND XIAODAN ZHAO

Proof. We first estimate |dλn,m| in Theorem 3.1, when n−m is large. Using Stirling’s
formula (2.11) and (3.2) we get

gλn−m

gλn
=
(
1+

1−λ

n+λ− 1

)n+ 1
2
(
1− 1−λ

n−m

)n−m+ 1
2
(
1− m

n+ λ− 1

)λ−1{
1+O

( 1

n−m

)}

=
(
1− m

n+ λ− 1

)λ−1{
1 +O

( 1

n−m

)}

=
{
1 +

(1− λ)m

n+ λ− 1
+O

(m2

n2

)}{
1 +O

( 1

n−m

)}
.

Hereafter, taking m = [nε] with 0 < ε ≤ 1/2 yields

gλn−m

gλn
= 1 + (1− λ)nε−1 +O

( 1

n− nε

)
=⇒ dλn,m = (λ− 1)nε−1 +O(n−1).

(3.23)

One verifies readily that for λ > 1 and any 0 < ε ≤ 1/2,

(3.24)
m[λ]

ρ2m
≤ 1

n
⇐⇒ lnn

nε
≤ 2 ln ρ

1 + ε[λ]
,

which, together with (3.16) and (3.23), implies (3.21) with λ > 1.
If −1/2 < λ < 1 and λ �= 0, it follows from (3.24) that ρ−2m ≤ n−1 for any

0 < ε ≤ 1/2. This validates the desired estimate. �

A direct consequence of Theorem 3.2 is that

(3.25) lim
n→∞

Cλ
n(z)

gλn
= lim

n→∞

n∑
k=0

gλn−k

gλn
gλkw

−2k = (1− w−2)−λ,

for all z ∈ Eρ with |w| = ρ > 1, and any λ > −1/2 and λ �= 0.

Remark 3.2. Based on a completely different argument, Elliott [17] derived an
asymptotic expansion for large n near z = 1 (but not near z = −1): Cλ

n(z) ∼
B(n,λ)

(z2−1)λ/2 , where B is a series involving modified Bessel functions, and some other

asymptotic expansions for |z| large and n fixed. Although they are valid for general
z off the interval [−1, 1], our results in Theorems 3.1 and 3.2 provide tighter and
sharper bounds when z is sitting on Eρ. �

At the end of this section, we provide some numerical results to illustrate the
tightness of the upper bound in (3.21). Denote by

(3.26) En(ρ;λ) :=
1

A(ρ, λ)
max
z∈Eρ

∣∣∣(1− w−2
)−λ − Cλ

n(z)

gλnw
n

∣∣∣.
To approximate the maximum value, we sample a set of points dense on the ellipse
Eρ based on the conformal mapping z = 1

2 (w + w−1) of the Fourier points on the

circle w = ρeiθ. We plot in Figure 3.1 in (Matlab) log-log scale of En(ρ;λ), n
−1

and nε−1 (with ε = 0.1) for several sets of parameters λ and ρ, and for large n.
According to Theorem 3.2, En should be bounded by nε−1 from above, and it is
anticipated to be bounded below by n−1, if the estimate is tight. Indeed, we observe
from Figure 3.1 such a behavior when n is large.
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Figure 3.1. En against nε−1 (with ε = 0.1) and n−1 for large n.

4. Error estimates of interpolation and spectral differentiation

After collecting all the necessary results, we are ready to estimate exponential
convergence of interpolation and spectral differentiation of analytic functions.

Hereafter, the notation an ∼= bn means that an/bn → 1 as n → ∞, for any two
sequences {an} and {bn} (with bn �= 0) of complex numbers.

4.1. Gegenbauer-Gauss interpolation and differentiation. We start with the
analysis of interpolation and spectral differentiation on zeros of the Gegenbauer
polynomial Cλ

n+1(x).

Theorem 4.1. Let u be analytic on and within the ellipse Eρ with foci ±1 and
ρ > 1 as defined in (2.15), and let (Inu)(x) be the interpolant of u(x) at the set of
(n+ 1) Gegenbauer-Gauss points.

(i) If λ > 0, we have

(4.1) max
|x|≤1

∣∣(u− Inu)(x)
∣∣ ≤ cΓ(λ)Mρ

√
ρ2 + ρ−2

Γ(2λ)(ρ− 1)2(1 + ρ−2)−λ

nλ

ρn
.

(ii) If −1/2 < λ < 0, we have

(4.2) max
|x|≤1

∣∣(u− Inu)(x)
∣∣ ≤ cDλ|Γ(λ)|Mρ

√
ρ2 + ρ−2

(ρ− 1)2(1− ρ−2)−λ

1

ρn
.

Here, Mρ = maxz∈Eρ
|u(z)|, Dλ is defined in (2.7), and c ∼= 1 is a generic positive

constant.
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Proof. By the formula (2.19) with Qn+1 = Cλ
n+1 and (2.17)-(2.18), we have the

bound of the pointwise error:∣∣(u− Inu)(x)
∣∣ ≤ |Cλ

n+1(x)|
2π

maxz∈Eρ
|u(z)|

minz∈Eρ
|Cλ

n+1(z)|

∮
Eρ

|dz|
|z − x|

≤ MρL(Eρ)
2πδρ

|Cλ
n+1(x)|

minz∈Eρ
|Cλ

n+1(z)|

≤ Mρ

√
ρ2 + ρ−2

ρ+ ρ−1 − 2

|Cλ
n+1(x)|

minz∈Eρ
|Cλ

n+1(z)|
, x ∈ [−1, 1], n ≥ 0.

(4.3)

Therefore, it is essential to obtain the lower bound of |Cλ
n+1(z)|. Recall that for any

two complex numbers z1 and z2, we have
∣∣|z1| − |z2|

∣∣ ≤ |z1 − z2|. It follows from
Theorem 3.2 that∣∣∣∣|1− w−2|−λ −

|Cλ
n+1(z)|

|gλn+1|ρn+1

∣∣∣∣ ≤ A(ρ, λ)nε−1 +O(n−1),

which implies ∣∣1− w−2
∣∣−λ −A(ρ, λ)nε−1 −O(n−1) ≤ |Cλ

n+1(z)|
|gλn+1|ρn+1

≤
∣∣1− w−2

∣∣−λ
+ A(ρ, λ)nε−1 +O(n−1).

(4.4)

Notice that

(4.5) 1− ρ−2 ≤ |1− w−2| ≤ 1 + ρ−2.

Consequently,

(4.6) |Cλ
n+1(z)| ≥ c

nλ−1ρn+1

|Γ(λ)|

{
(1 + ρ−2)−λ, if λ > 0,

(1− ρ−2)−λ, if λ < 0,

where we used (3.9), and the constant c ∼= 1.
On the other hand, we derive from (2.5), (2.7) and (2.11) that if λ > 0,

(4.7) max
|x|≤1

|Cλ
n+1(x)| = Cλ

n+1(1)
∼=

n2λ−1

Γ(2λ)
.

Hence, a combination of (4.3), (4.6) and (4.7) leads to (4.1). Similarly, for −1/2 <
λ < 0, we use (2.7) to derive (4.2). �

Remark 4.1. For λ > 0, we obtain from (2.4), (2.8) and (2.11) that

(4.8) |Cλ
n+1(x)| ≤

c21−λ
√
e(2 +

√
2λ)

Γ(λ)
nλ−1(1− x2)−λ/2, |x| < 1.

Replacing (4.7) by this bound in the above proof, we can derive the pointwise
estimate for λ > 0:

(4.9)
∣∣(u− Inu)(x)

∣∣ ≤ D(ρ, λ)
(1− x2)−λ/2

ρn
, |x| < 1,

where the positive constant D(ρ, λ) can be worked out as well. It appears to be
sharper than (4.1) at the points which are not too close to the endpoints x = ±1.
A similar remark also applies to the Gegenbauer-Gauss-Lobatto interpolation to be
addressed in a minute. �
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Now, we turn to the estimate of spectral differentiation.

Theorem 4.2. Let u be analytic on and within the ellipse Eρ with foci ±1 and
ρ > 1 as defined in (2.15), and let (Inu)(x) be the interpolant of u(x) at (n + 1)
Gegenbauer-Gauss points {xj}nj=0. Then we have

(4.10) max
0≤j≤n

∣∣(u− Inu)
′(xj)

∣∣ ≤ Λ(ρ, λ)
nλ+2

ρn
,

where the constant

(4.11) Λ(ρ, λ) =
2cΓ(λ+ 1)Mρ

√
ρ2 + ρ−2

Γ(2λ+ 2)(ρ− 1)2

{
(1 + ρ−2)λ, if λ > 0,

(1− ρ−2)λ, if λ < 0,

and c,Mρ are the same as in Theorem 4.1.

Proof. In view of (2.19) and (2.20), it is enough to replace x and Cλ
n+1(x) by xj

and d
dxC

λ
n+1(x), respectively, in (4.3). Thus, we have

∣∣(u− Inu)
′(xj)

∣∣ ≤ Mρ

2π

|(Cλ
n+1)

′(xj)|
minz∈Eρ

|Cλ
n+1(z)|

∮
Eρ

|dz|
|z − xj |

≤ Mρ

√
ρ2 + ρ−2

ρ+ ρ−1 − 2

|(Cλ
n+1)

′(xj)|
minz∈Eρ

|Cλ
n+1(z)|

, 0 ≤ j ≤ n.

(4.12)

By (2.6) and (4.7),

(4.13) max
|x|≤1

∣∣(Cλ
n+1)

′(x)
∣∣ = 2|λ||Cλ+1

n (1)| ∼=
2|λ|

Γ(2λ+ 2)
n2λ+1,

which, together with (4.6) and (4.12), leads to the desired estimate. �

Remark 4.2. Obviously, by (2.19),

(4.14) (u− Inu)
′(x) =

1

2πi

∮
Eρ

( (Cλ
n+1)

′(x)

z − x
+

Cλ
n+1(x)

(z − x)2

) u(z)

Cλ
n+1(z)

dz.

If x �= xj , we need to estimate the second term in the summation, which can be
done in the same fashion in the proof of Theorem 4.1. The first term is actually
estimated above. Consequently, we have

max
|x|≤1

∣∣(u− Inu)
′(x)

∣∣ ≤ Λ(ρ, λ)
nλ+2

ρn
+

1

δρ
max
|x|≤1

∣∣(u− Inu)(x)
∣∣,

where δρ is given by (2.18). Hence, by Theorem 4.1,

(4.15) max
|x|≤1

∣∣(u− Inu)
′(x)

∣∣ = O
(nλ+2

ρn

)
.

In fact, the results for higher-order derivatives can be derived recursively, and it is
anticipated that

(4.16) max
|x|≤1

∣∣(u− Inu)
(k)(x)

∣∣ = O
(nλ+2k

ρn

)
, k ≥ 1.

A similar remark applies to the Gegenbauer-Gauss-Lobatto case below. �
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4.2. Gegenbauer-Gauss-Lobatto interpolation and differentiation. We are
now in a position to estimate the Gegenbauer-Gauss-Lobatto interpolation and
spectral differentiation. In this case, Qn+1(x) = (1 − x2)Cλ+1

n−1(x) in (2.19)-(2.20).
The main result is stated as follows.

Theorem 4.3. Let u be analytic on and within the ellipse Eρ with foci ±1 and
ρ > 1 as defined in (2.15), and let (Inu)(x) be the interpolant of u(x) at the set of
(n+ 1) Gegenbauer-Gauss-Lobatto points.

(a) We have the interpolation error:

(4.17) max
|x|≤1

∣∣(u− Inu)(x)
∣∣ ≤ 4cMρ

√
ρ2 + ρ−2(1 + ρ−2)λ+1

(1− ρ−1)2(ρ− ρ−1)2
Γ(λ+ 1)

Γ(2λ+ 2)

nλ+1

ρn
.

(b) We have the estimate:

max
0≤j≤n

∣∣(u− Inu)
′(xj)

∣∣ ≤ 8cMρ

√
ρ2 + ρ−2(1 + ρ−2)λ+1

(1− ρ−1)2(ρ− ρ−1)2
Γ(λ+ 2)

Γ(2λ+ 4)

nλ+3

ρn
.(4.18)

Here, c ∼= 1 and Mρ = maxz∈Eρ
|u(z)|.

Proof. For any z ∈ Eρ, one verifies that

1

4
(ρ− ρ−1)2 ≤ |z2 − 1| ≤ 1

4
(ρ+ ρ−1)2

and

(4.19) min
z∈Eρ

∣∣(1− z2)Cλ+1
n−1(z)

∣∣ ≥ 1

4
(ρ− ρ−1)2 min

z∈Eρ

∣∣Cλ+1
n−1(z)

∣∣.
(a) By (2.19) with Qn+1(x) = (1 − x2)Cλ+1

n−1(x) and (2.17)-(2.18), we have the
bound of the pointwise error:

∣∣(u− Inu)(x)
∣∣ ≤

∣∣(1− x2)Cλ+1
n−1(x)

∣∣
2π

maxz∈Eρ
|u(z)|

minz∈Eρ

∣∣(1− z2)Cλ+1
n−1(z)

∣∣
∮
Eρ

|dz|
|z − x|

(4.19)

≤ Mρ

√
ρ2 + ρ−2

ρ+ ρ−1 − 2

4(ρ− ρ−1)−2|Cλ+1
n−1(x)|

minz∈Eρ
|Cλ+1

n−1(z)|
, x ∈ [−1, 1], n ≥ 0.

(4.20)

Thus, the estimate (4.17) follows from (4.6) and (4.7).
(b) Similarly, we have

∣∣(u− Inu)
′(xj)

∣∣ ≤ Mρ

2π

∣∣[(1− x2)Cλ+1
n−1(x)]

′(xj)
∣∣

minz∈Eρ

∣∣(1− z2)Cλ+1
n−1(z)

∣∣
∮
Eρ

|dz|
|z − xj |

≤ 4Mρ

√
ρ2 + ρ−2

ρ+ ρ−1 − 2

∣∣[(1− x2)Cλ+1
n−1(x)]

′(xj)
∣∣

(ρ− ρ−1)2 minz∈Eρ

∣∣Cλ+1
n−1(z)

∣∣ , 0 ≤ j ≤ n.

(4.21)

A direct calculation leads to

(4.22)
[
(1− x2)Cλ+1

n−1(x)
]′
= −2xCλ+1

n−1(x) + (1− x2)
[
Cλ+1

n−1(x)
]′
,

which, together with (4.7) and (4.13), gives

(4.23) max
|x|≤1

∣∣[(1− x2)Cλ+1
n−1(x)]

′∣∣ ∼= 2(λ+ 1)

Γ(2λ+ 4)
n2λ+3.

A combination of (4.6), (4.21) and (4.23) yields the desired estimate. �
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Remark 4.3. Similar to Remarks 4.1 and 4.2, we can derive a sharper pointwise
estimate and analyze higher-order derivatives of interpolation errors. �

4.3. Analysis of quadrature errors. Recall the interpolatory Gegenbauer-
Gauss-type quadrature formula:

(4.24)

∫ 1

−1

u(x)(1− x2)λ−1/2dx ≈
n∑

j=0

u(xj)ωj =

∫ 1

−1

(Inu)(x)(1− x2)λ−1/2dx,

where the quadrature weights {ωj}nj=0 are expressed by the Lagrange basis poly-
nomials (see, e.g., [40, 19]). Observe that

(4.25)
∣∣∣ ∫ 1

−1

(u− Inu)(x)(1− x2)λ−1/2dx
∣∣∣ ≤ hλ

0 max
|x|≤1

|(u− Inu)(x)|,

where hλ
0 is given by (2.4). With the aid of interpolation error estimates in Theorem

4.1 and Theorem 4.3, we are able to derive the quadrature errors immediately.

4.4. Numerical results. In what follows, we provide two numerical examples to
demonstrate the sharpness of the estimates established in Theorems 4.2 and 4.3.

4.4.1. Example 1. We take

(4.26) u(x) =
1

x2 + 1
,

which has two simple poles at ±i. By (2.16), we are free to choose Eρ with ρ in the
range

(4.27) 1 < ρ < 1 +
√
2 ≈ 2.414,

such that u is analytic on and within Eρ. To compare the (discrete) maximum error
of spectral differentiation with the upper bound, we sample about 2000 values
of ρ equally from (1, 1 +

√
2), and find a tighter upper bound (which is usually

attained when ρ is close to 1 +
√
2 ). In Figure 4.1 (a)-(b), we plot the (discrete)

maximum errors of spectral differentiation against the upper bounds. We visualize
the exponential decay of the errors, and the upper bounds and the errors decay at
almost the same rate. Moreover, it seems that the bounds are slightly sharper in
the Gegenbauer-Gauss case.

4.4.2. Example 2. The estimates indicate that the errors essentially depend on the
location of singularity (although it affects the constantMρ) rather than the behavior
of the singularity. To show this, we test the function with poles at ±i of order 2:

(4.28) u(x) =
1

(x2 + 1)2
.

We plot in Figure 4.1 (c)-(d) the errors and upper bounds as in (a)-(b). Indeed,
a similar convergence behavior is observed. Indeed, Boyd [6] pointed out that the
type of singularity might change the rate of convergence by a power of n, but not
an exponential function of n.
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(a) Upper bound vs Max.-error (Example 1)
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(b) Upper bound vs Max.-error (Example 1)
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(c) Upper bound vs Max.-error (Example 2)
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Figure 4.1. The (discrete) maximum errors of Gegenbauer-Gauss and
Gegenbauer-Gauss-Lobatto spectral differentiation against the upper
bounds in Theorems 4.2 and 4.3 with λ = 1/2, 3/2. Example 1 (a)-
(b), and Example 2 (c)-(d). In the legend, GG SP err (resp. GGL
SP err) represents the Gegenbauer-Gauss (resp. Gegenbauer-Gauss-
Lobatto) spectral differentiation error.

Concluding remarks

In this paper, the exponential convergence of Gegenbauer interpolation, spectral
differentiation and quadrature of functions analytic on and within a sizable ellipse
is analyzed. Sharp estimates in the maximum norm with explicit dependence on
the important parameters are obtained. Illustrative numerical results are provided
to support the analysis. For clarity of presentation, it is assumed that λ is fixed in
our analysis, but the dependence of the error on this parameter can also be tracked
if it is necessary.
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Appendix A. Proof of Lemma 3.1

We carry out the proof by induction.
Apparently, by (2.1), Cλ

0 (z) = 1, so (3.1)-(3.2) holds for n = 0. Similarly, we can
verify the case with n = 1.

Assume that the formula holds for Cλ
n−2(z) and Cλ

n−1(z) with n ≥ 2. It follows
from the three-term recurrence relation (2.1) that

nCλ
n(z) = 2(n+ λ− 1)z

n−1∑
k=0

gλkg
λ
n−1−kw

n−2k−1

− (n+ 2λ− 2)

n−2∑
k=0

gλkg
λ
n−2−kw

n−2k−2

= (n+ λ− 1)
n−1∑
k=0

gλkg
λ
n−1−kw

n−2k + (n+ λ− 1)
n−1∑
k=0

gλkg
λ
n−1−kw

n−2k−2

− (n+ 2λ− 2)
n−2∑
k=0

gλkg
λ
n−2−kw

n−2k−2

= (n+ λ− 1)gλn−1(w
n + w−n) +

n−1∑
k=1

Dλ
n,k g

λ
kg

λ
n−kw

n−2k,

where

Dλ
n,k = (n+ λ− 1)

(
gλn−k−1

gλn−k

+
gλk−1

gλk

)
− (n+ 2λ− 2)

gλn−k−1

gλn−k

gλk−1

gλk
.

One verifies from (3.2) that

(A.1) gλn =
n+ λ− 1

n
gλn−1, Dλ

n,k = n.

This completes the induction. �
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