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SPECTRAL APPROXIMATION OF TIME-HARMONIC MAXWELL

EQUATIONS IN THREE-DIMENSIONAL EXTERIOR DOMAINS

LINA MA1, JIE SHEN1 AND LI-LIAN WANG2

Abstract. We develop in this paper an efficient and robust spectral-Galerkin method

for solving the three-dimensional time-harmonic Maxwell equations in exterior domains.

We first reduce the problem to a bounded domain by using the capacity operator which

characterizes the transparent boundary condition (TBC). Then, we adopt the trans-

formed field expansion (TFE) approach to reduce the problem to a sequence of Maxwell

equations in a spherical shell. Finally, we develop an efficient spectral algorithm by

using Legendre approximation in the radial direction and vector spherical harmonic

expansion in the tangential directions.
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1. Introduction

We consider in this paper the approximation of the time-harmonic Maxwell equations
in a three-dimensional exterior domain:

− iωµH + curlE = 0, −iωεE − curlH = 0, in R3\D̄;

E × n|∂D = g; lim
r→∞

r
(√

µ/εH × er −E
)

= 0,
(1.1)

where D is a three-dimensional, simply connected, bounded scatterer, i =
√
−1 is the

complex unit, g is resulted from a given incident field, µ is the magnetic permeability, ε is
the electric permittivity, ω is the frequency of the harmonic wave, n is the unit outward
normal of D and er = x/r with r = |x|. The boundary condition at infinity in (1.1) is
known as the Silver-Müller radiation condition.

The Maxwell equations (1.1) play an important role in many scientific and engineering
applications, and are also of fundamental mathematical interest (see e.g., [13, 4, 11]).
Despite its seemingly simplicity, the system (1.1) is notoriously difficult to solve nu-
merically. Some of the main challenges include: (i) the indefiniteness when ω is not
small; (ii) highly oscillatory solutions when ω is large; (iii) the incompressibility (i.e.,
div(µH) = div(εE) = 0), which is implicitly implied by (1.1); and (iv) the unbound-
edness of the domain. On the one hand, one needs to construct approximation spaces
such that the discrete problems are well posed and lead to good approximations for a
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wide range of wave number. On the other hand, a perhaps more difficult problem is to
develop efficient algorithms for solving the indefinite linear system, particularly for large
wave numbers, from the given discretization. We refer to [11] and the references therein,
for various contributions with respect to numerical approximations of the time-harmonic
Maxwell equations. Most notably, a very popular and effective method for dealing with the
unboundedness of the domain is to introduce a perfectly matched layer (PML), initially
proposed in [3].

In this paper, we propose a spectral approximation based on the tensor-product of vector
spherical harmonics (VSH), which forms a complete orthogonal basis for L2-vector-valued
functions on the spherical surface, and Legendre polynomials in the radial direction. It is
well-known that the Maxwell equations with constant magnetic permeability and electric
permittivity are separable if D is a ball, and its solution can be explicitly expressed in
terms of the VSH and the spherical Hankel functions [13]. While the explicit solution is
very useful for some theoretical considerations, it has much less value in practice, since
most practical problems would have one or more of the following situations: non-spherical
domains, non-constant magnetic permeability and electric permittivity, non-homogeneous
source etc., where an explicit solution would not be available.

In order to deal with more general scatterers D and non-homogeneous source functions,
we adapt the so-called transformed field expansion (TFE) [15], which has proven to be
effective for a variety of situations (cf. [14, 5, 6, 9]). The TFE approach consists of four
steps: (i) reduce the problem in an unbounded domain to a bounded domain with trans-
parent boundary conditions; (ii) transform the reduced bounded domain to a separable
domain, consider the reduced domain as a perturbation of the separable domain, and ex-
pand the solution in term of the perturbation parameter ε; (iii) solve for each expansion
coefficient in the separable domain; and (iv) sum up the expansion terms using a robust
Padé approximation. The essential step in the above TFE approach is the step (iii), i.e.,
solve the Maxwell equations in the separable domain (which is a spherical shell in this
case) with non-homogeneous source term and non-local boundary conditions at the outer
spherical surface.

In this paper, we shall develop an efficient and robust spectral solver for the non-
homogeneous Maxwell equations in a spherical shell. More precisely, we shall use VSH to
decouple the problem into a sequence of one-dimensional problems that can be efficiently
solved using a direct spectral-Galerkin method. Therefore, the entire TFE approach does
not involve any iterative solver, and it is robust for low to moderately high wave numbers
and to scatterers which have sufficiently smooth boundaries.

The rest of the paper is organized as follows. In the next section, we introduce the
VSH and present the formulation of the capacity operator characterizing the exact non-
reflecting boundary condition. In Section 3, we present the TFE algorithm, and and
formulae in Appendix B. In Section 4, we describe the Legendre spectral-Galerkin method
for the reduced one-dimensional problems, and give the numerical results in Section 5.
In Appendix A, we provide some useful formulae for the VSH, while in Appendix B, we
derive the Maxwell equation in the transformed coordinates, and the recursion formulae
in the TFE approach.

2. Vector spherical harmonics and the capacity operator

In this section, we recall some essential properties of VSH, and derive the explicit
formula for the capacity operator expressed in terms of VSH, which characterizes the
exact DtN boundary condition at the outer spherical surface.



MAXWELL EQUATIONS 3

2.1. Vector spherical harmonics. Several versions of VSH with different notation and
properties have been used in practice (see e.g., [12, 10, 2, 13, 8, 7]). In what follows, we
adopt the family of VSH in [10, 13], and remark its relation with several other families
documented in the above literature (see Remark 2.1 below).

Recall that the spherical coordinates (r, θ, φ) are related to the Cartesian coordinates
x = (x1, x2, x3) by (cf. [13]):

(2.1) x1 = r sin θ cosφ, x2 = r sin θ sinφ, x3 = r cos θ,

with the moving (right-handed) orthonormal coordinate basis {er, eθ, eφ} :

er = x/r, eθ = (cos θ cosφ, cos θ sinφ,− sin θ), eφ = (− sinφ, cosφ, 0).(2.2)

For any v = (v1, v2, v3), we denote by vr, vθ and vφ the projections of v onto er, eθ and
eφ, respectively, that is, v = vrer + vθeθ + vφeφ with

(2.3) vr = v · er, vθ = v · eθ, vφ = v · eφ .
Hereafter, let S be the unit spherical surface, and denote by ∆S and ∇S the Laplace-
Beltrami and tangent gradient operators on S. Recall that

(2.4) ∆Su =
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2
, ∇Su =

∂u

∂θ
eθ +

1

sin θ

∂u

∂φ
eφ.

The spherical harmonics {Y ml } (as normalized in [13]) are eigenfunctions of ∆S , namely,

(2.5) ∆SY
m
l = −l(l + 1)Y ml , l ≥ 0, |m| ≤ l;

and form an orthonormal basis for L2(S) :

(2.6)

∫
S

Y ml Y m
′

l′ dS = δll′δmm′ .

The family of VSH is defined by

Tml = ∇SY ml × er =
1

sin θ

∂Y ml
∂φ

eθ −
∂Y ml
∂θ

eφ, for l ≥ 1, 0 ≤ |m| ≤ l,(2.7)

V m
l = (l + 1)Y ml er −∇SY ml , for l ≥ 0, 0 ≤ |m| ≤ l,(2.8)

Wm
l = lY ml er +∇SY ml , for l ≥ 1, 0 ≤ |m| ≤ l.(2.9)

Notice that V 0
0 = er/

√
4π. With the understanding of T 0

0 = W 0
0 = 0, the indexes {l,m}

run over {(l,m) : l ≥ 0, 0 ≤ |m| ≤ l}. We collect in Appendix A the properties of VSH to
be used throughout the paper.

Remark 2.1. The VSH in Hill [10] were denoted by {V lm,X lm,W lm}. In fact, we have
the relation

V lm = − V m
l√

(l + 1)(2l + 1)
, X lm =

iTml√
l(l + 1)

, W lm =
Wm

l√
l(2l + 1)

.(2.10)

Nédélec [13] employed the notation {Iml , Tml , Nm
l }, and there hold

(2.11) Nm
l+1 = V m

l , Tml = Tml , Iml−1 = Wm
l .

The Spherepack [18] used the notation
{
Y ml er,∇SY ml ,

−−→
curlSY

m
l

}
in Morse and Feshbach

[12] (also see [13, Thm. 2.4.8]). Noting that
−−→
curlSY

m
l = ∇SY ml × er (cf. [13, (2.4.176)]),

we have

(2.12) Y ml er =
Wm

l + V m
l

2l + 1
, ∇SY ml =

(l + 1)Wm
l − lV

m
l

2l + 1
,
−−→
curlSY

m
l = Tml .
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In the numerical experiments in Section 5, we shall use the VSH in the Spherepack. �

Define the vector L2-space and its tangential vector space:

(2.13) L2(S) = (L2(S))3, TL2(S) =
{
u ∈ L2(S) : u · er = 0

}
.

The family of VSH, {Tml ,V
m
l ,W

m
l }, forms a complete, orthogonal basis of L2(S), while

the family {Tml ,∇SY ml } forms an orthogonal basis for TL2(S) (cf. (2.4) and (A.1)-(A.2)).

2.2. The capacity operator. As the problem (1.1) is set in an unbounded domain, we
first truncate the unbounded domain at an artificial spherical surface r = b. Since the
exact solution for the homogeneous Maxwell equations (1.1) exterior to the ball r ≤ b with
µ and ε being constant can be obtained by using the separation of variables [13], we can
set up the exact DtN nonreflecting boundary condition:

(2.14) H × n− TbES = 0, at r = b,

where for simplicity, we assume hereafter µ = ε = 1 (so the wave number k = ω
√
εµ = ω),

and the capacity operator Tb, acting on the tangential component of E (i.e., ES = −E ×
n × n), can be determined as in [13] (see (2.22) below). Here, for the readers’ reference,
we sketch the derivation.

Given the tangential component of E on the artificial surface (note that ES ∈ TL2(S)),
we write

(2.15) ES

∣∣
r=b

=

∞∑
l=1

l∑
|m|=0

[
cml T

m
l + dml ∇SY ml

]
.

Then the exterior problem:

curl Ee = ikHe, curl He = −ikEe, r > b;

Ee × er = ES , at r = b; lim
r→∞

r
(
He × er −Ee

)
= 0,

(2.16)

can be solved analytically by using separation of variables. The solution {He,Ee} can be
expressed in VSH series in terms of {cml , dml } (see [13, Thm. 5.3.2]). Then, the capacity
operator Tb, which associates ES to He × er on the artificial spherical surface, is given
by (see [13, (5.3.87)-(5.3.88)] with kb in place of k):

(2.17) TbES = He × er
∣∣
r=b

=

∞∑
l=1

l∑
|m|=0

[ cml
ikb

Θl(kb)T
m
l +

ikb dml
Θl(kb)

∇SY ml
]
,

where

(2.18) Θl(kb) = zl(kb) + 1 with zl(r) = r
d
drh

(1)
l (r)

h
(1)
l (r)

,

and h
(1)
l (r) is the spherical Hankel function of the first kind (cf. [1]). By imposing

H × er = He × er at r = b, we obtain the exact boundary condition at r = b with TbES

given by (2.17)-(2.18), but it is expressed by the expansion coefficients {cml , dml } of ES .
Thus, it is necessary to represent it in terms of the expansion coefficients of the field E
with r ≤ b. For this purpose, we write

(2.19) E(r, θ, φ) =

∞∑
l=0

l∑
|m|=0

[
vml (r)V m

l (θ, φ) + tml (r)Tml (θ, φ) + wml (r)Wm
l (θ, φ)

]
,
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where we recall that T 0
0 = W 0

0 = 0. Using (2.19) and the identities:

(2.20) V m
l × er = −Tml , T

m
l × er = −∇SY ml , Wm

l × er = Tml , ∇SY ml × er = Tml ,

we find

(2.21) ES

∣∣
r=b

= −(E × er
)
× er

∣∣
r=b

=

∞∑
l=1

l∑
|m|=0

[
tml (b)Tml +

(
wml − vml

)
(b)∇SY ml

]
.

Comparing the coefficients in (2.17) and (2.21) leads to

(2.22) TbES

∣∣
r=b

=

∞∑
l=1

l∑
|m|=0

[ tml (b)

ikb
Θl(kb)T

m
l +

ikb
(
wml − vml

)
(b)

Θl(kb)
∇SY ml

]
,

where Θl is defined by (2.18).

3. Transformed field expansion and dimension reduction

Eliminating H and using the capacity operator, we reduce the problem (1.1) (with
µ = ε = 1) to

curl curlE − k2E = 0, in Ωb\D̄;

E × n|∂D = g; curlE × er − ikTbES = 0, at r = b,
(3.1)

where Ωb is the ball of radius b, and Tb is defined in (2.22).
We now apply the TFE approach to (3.1).

3.1. Change of variables. Assume that the scatterer is given by

D =
{
r < a+ h(θ, φ) : θ ∈ [0, π), φ ∈ [0, 2π)

}
,

for some a > 0. Let us choose b such that b > maxθ,φ{a + h(θ, φ)}, and then map the
domain: Ωb\D̄ = {a+ h(θ, φ) < r < b)} to the spherical shell: Ω = {a < r′ < b} with the
change of variables:

(3.2) r′ =
dr − bh(θ, φ)

d− h(θ, φ)
, θ′ = θ, φ′ = φ,

where d = b− a.
LetE = (Er,ES), where Er andES are the axial component and tangential component

of E, respectively. We first notice that we can rewrite the Maxwell equation

curl curlE − k2E = 0,

after multiplying both sides by r2, as

−∇S · (∇SEr) +∇S · (∂r(rES))− r2k2Er = 0,(3.3)

∇S(∇S · (E × er))× er + r∂r(∇SEr)− r∂2
r (rES)− r2k2ES = 0.(3.4)

Let us denote the transformed field by

(3.5) F (r′, θ′, φ′) := E(r, θ, φ) = E
(
r′ +

A(r′, θ′, φ′)

d
, θ′, φ′

)
:= (Fr′ ,F S),

with A(r′, θ′, φ′) = h(θ′, φ′)(b− r′).
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After some tedious manipulations (see Appendix B), we find that the system (3.3)-(3.4)
is transformed into:

−∇S · (∇SFr′) +∇S · (∂r′(r′F S))− r′2k2Fr′ = fr′ ,

∇S(∇S · (F × er))× er + r′∂r′(∇SFr)− r′∂2
r′(r
′F S)− r′2k2F S = f tp,

F × er +
Fr′(a)

a
∇Sh = g̃S , at r′ = a,

(curlF )× er − ikTbF S = J , at r′ = b,

(3.6)

where fr′ , f tp, g̃S and J are given in (B.5)-(B.8) in Appendix B.

3.2. Recursion by boundary perturbation. Now we assume h = εq, and expand

F (r′, θ′, φ′; ε) =

∞∑
n=0

F n(r′, θ′, φ′)εn.(3.7)

Writing F n = (Fnr′ ,F
n
S), plugging the above expansion into (3.6), and collecting the terms

in powers of ε, we arrive at the following recursion for n ≥ 0:

−∇S · (∇SFnr′) +∇S · (∂r′(r′F nS))− r′2k2Fnr′ = fnr′ ,

∇S(∇S · (F n × er))× er + r′∂r′(∇SFnr′)− r′∂2
r′(r
′F nS)− r′2k2F nS = fntp,

F n × er = g̃nS , at r′ = a,

(curlF n)× er − ikTbF nS = Jn, at r′ = b,

(3.8)

where fnr′ , f
n
tp, g̃

n
S and Jn are given in (B.14)-(B.17) in Appendix B. We note in particular

that fnr′ , f
n
tp and Jn only depend on the previous four expansion terms, namely {F n−i, i =

1, 2, 3, 4}.
We can rewrite the above system in the more compact form:

curl curlF n − k2F n =
1

r′2
fn, in Ω,(3.9)

F n × er|r=a = g̃nS ; curlF n × er − ikTbF nS = Jn, at r = b,(3.10)

where fn = (fnr′ ,f
n
tp). Hence, using the TFE approach, it boils down to solving a se-

quence of non-homogeneous Maxwell equations in the spherical shell Ω. We are therefore
concerned with developing an efficient, robust solver for this prototype system.

3.3. Dimension reduction. We now consider the following problem:

curl curlE − k2E = F , in Ω,(3.11)

E × er|r=a = g; curlE × er − ikTbES = h, at r = b,(3.12)

which has to be solved for each expansion order n with given F , g and h.
It follows from [13, Thm. 5.3.2] that the problem admits a unique solution, provided

that F ∈ L2(Ω) with ∇ · F = 0 and g, h ∈ TL2(S). We refer the interested readers to
[4, 13] for delicate regularity analysis of the above problem.

We first expand, in terms of VSH, the unknown function E as in (2.19), and the source
function F as:

(3.13) F (r, θ, φ) =

∞∑
l=0

l∑
|m|=0

[
fvl,m(r)V m

l (θ, φ) + f tl,m(r)Tml (θ, φ) + fwl,m(r)Wm
l (θ, φ)

]
.
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Then, we expand the given data g and h in terms of VSH basis of TL2(S) :

g(θ, φ) =

∞∑
l=1

l∑
|m|=0

[
ĝml T

m
l (θ, φ) + g̃ml ∇SY ml (θ, φ)

]
,

h(θ, φ) =

∞∑
l=1

l∑
|m|=0

[
ĥml T

m
l (θ, φ) + h̃ml ∇SY ml (θ, φ)

]
.

(3.14)

For simplicity of presentation, we define the handy differentiation operators:

(3.15) d+
l =

d

dr
+
l

r
, d−l =

d

dr
− l

r
.

Inserting the expansion (2.19) and (3.13)-(3.14) into (3.11), we find from the property
(A.9) that (3.11) reduces to a sequence of one-dimensional problems in {vml , tml , wml }.
More precisely, we have v0

0 = 0, and for l ≥ 1 and |m| ≤ l,
l

2l + 1
d−l
[
d−l−1w

m
l − d+

l+2v
m
l

]
− k2vml = fvl,m, r ∈ (a, b),(3.16)

l + 1

2l + 1
d+
l+1

[
d+
l+2v

m
l − d−l−1w

m
l

]
− k2wml = f tl,m, r ∈ (a, b),(3.17)

− 1

r2

d

dr

(
r2 dt

m
l

dr

)
+
l(l + 1)

r2
tml − k2tml = fwl,m, r ∈ (a, b).(3.18)

Similarly, Inserting the expansion (2.19) and (3.14) into (3.12), and using (2.20), (2.22)
and (A.9), the boundary conditions (3.12) become

wml (a)− vml (a) = ĝml , tml (a) = g̃ml ,(3.19) [
d−l−1w

m
l − d+

l+2v
m
l

]
(b) + k2b

(wml − vml )(b)

Θl(kb)
= ĥml ,(3.20)

∂rt
m
l (b)− b−1zl(kb)t

m
l (b) = h̃ml .(3.21)

Note that the modes tml (coefficients of Tml ) are completely decoupled from the modes vml
and wml .

In summary, we only have to solve the following sequence (l ≥ 1 and |m| ≤ l) of one-
dimensional problems with unknowns: v = vml , w = wml , u = tml , and with given data

fv = fvl,m, f
w = fwl,m, ĝ = ĝml , ĥ = ĥml , g̃ = g̃ml , h̃ = h̃ml :

βld
−
l

[
d−l−1w − d

+
l+2v

]
− k2v = fv, r ∈ (a, b),(3.22)

(1− βl)d+
l+1

[
d+
l+2v − d

−
l−1w

]
− k2w = fw, r ∈ (a, b),(3.23)

w(a)− v(a) = ĝ,
[
d−l−1w − d

+
l+2v

]
(b) + k2b

(w − v)(b)

Θl(kb)
= ĥ;(3.24)

and

− 1

r2

d

dr

(
r2 du

dr

)
+
l(l + 1)

r2
u− k2u = f t, r ∈ (a, b),(3.25)

u(a) = g̃, u′(b)− b−1zl(kb)u(b) = h̃,(3.26)

where βl = l/(2l + 1) and zl is defined in (2.18).

Remark 3.1. We derive immediately from the solvability of the 3D problem (3.11)-(3.12)
that there exists a unique triple {v, w, u} for each (l,m) that solves (3.22)-(3.26). �
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Remark 3.2. Observe that the problem (3.25)-(3.26) is exactly the equation reduced from
the time-harmonic Helmholtz equation with exact DtN boundary condition in a spherical
shell (cf. [17, (3.6)]). Since efficient algorithms and wave number-explicit a priori estimates
for this problem have already presented in [17], we shall concentrate below on (3.22)-
(3.24). �

4. Spectral-Galerkin method for the one-dimensional systems

We now construct the spectral-Galerkin method for the coupled system (3.22)-(3.24).
First, we make a simple variable transform, e.g., w − ĝ → w, to homogenize the Dirichlet
boundary condition in (3.22)-(3.24) at r = a. Hence, it suffices to consider

βld
−
l [d−l−1w − d

+
l+2v]− k2v = f1, r ∈ (a, b),(4.1)

(1− βl)d+
l+1[d+

l+2v − d
−
l−1w]− k2w = f2, r ∈ (a, b),(4.2)

w(a)− v(a) = 0, [d−l−1w − d
+
l+2v](b) + k2b

(w − v)(b)

Θl(kb)
= hb.(4.3)

Define the complex vector-valued functions v = (v, w)t, f = (f1, f2)t,φ = (φ1, φ2)t, and
the differential operators:

(4.4) ∇̃l = (d+
l+2,−d

−
l−1), ∇̃l · v = d+

l+2v − d
−
l−1w.

4.1. Weak formulation and well-posedness. Let I = (a, b), and PN be the set of all
real algebraic polynomials of degree at most N. Define the approximation space

(4.5) XN =
{
φ = (φ1, φ2)t ∈ (PN + iPN )2 : φ1(a)− φ2(a) = 0

}
,

and the weighted inner product by (u, v)ω =
∫
I
u(r)v̄(r)ω(r)dr with ω(r) = r2, where v̄ is

the complex conjugate of v. Then, the spectral-Galerkin approximation of (4.1)-(4.3) is to
find vN = (vN , wN )t ∈ XN such that

B(vN ,φ) := (∇̃l · vN , ∇̃l · φ)ω − k2(LvN ,φ)ω +
k2b3

Θl(kb)
(vN − wN )(b)(φ1 − φ2)(b)

= (INLf ,φ)ω + b2hb (φ1 − φ2)(b), ∀φ ∈ XN ,

(4.6)

where L is a 2-by-2 diagonal matrix:

L = diag
(
(2l + 1)/l, (2l + 1)/(l + 1)

)
,

and IN is the Legendre-Gauss-Lobatto interpolation operator. In the derivation of (4.6),
we used the identities obtained from integration by parts and the built-in boundary con-
dition in XN :∫ b

a

d−l (d−l−1wN − d
+
l+2vN )φ̄1r

2dr =−
∫ b

a

(d−l−1wN − d
+
l+2vN )(d+

l+2φ1)r2dr

+ (d−l−1wN − d
+
l+2vN )φ̄1r

2
∣∣∣b
a
;∫ b

a

d+
l+1(d+

l+2vN − d
−
l−1wN )φ̄2r

2dr =−
∫ b

a

(d+
l+2vN − d

−
l−1wN )(d−l−1φ2)r2dr

+ (d+
l+2vN − d

−
l−1wN )φ̄2r

2
∣∣∣b
a
.

Proposition 4.1. For any a > 0 and fixed l, k, b,N , the problem (4.6) admits a unique
solution vN ∈ XN .
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Proof. Recall that (cf. [11, Lemma 9.20]):

(4.7) c1l ≤ |Θl(kb)| ≤ c2l, ∀ l ≥ 1,

where c1, c2 are positive constants depending on kb. Thus, taking φ = vN in (4.6), and
taking the real part of the resulted equation, leads to

Re
(
B(vN ,vN )

)
≥ ‖∇̃l · vN‖2ω − k2(LvN ,vN )ω −

k2b3

c1l
|(vN − wN )(b)|2,(4.8)

where ‖u‖2ω = (u, u)ω. In view of (vN − wN )(a) = 0, we derive from an inverse inequality
(cf. [16, Thm. 3.33]) that

|(vN − wN )(b)| =
∣∣∣ ∫ b

a

∂r(vN − wN )dr
∣∣∣ ≤ √b− a‖∂r(vN − wN )‖

≤ cN2‖vN − wN‖,(4.9)

where c is a positive constant independent of N. Notice that

‖∇̃l · vN‖2ω =
∥∥∥∂r(vN − wN ) +

l + 2

r
vN −

l − 1

r
wN

∥∥∥2

ω

≥ a2‖∂r(vN − wN )‖2 − l + 2

a
(‖vN‖2 + ‖wN‖2);

(LvN ,vN )ω ≤
2l + 1

l
(‖vN‖2 + ‖wN‖2).

We deduce from the above and (4.8)-(4.9) that for a > 0,

Re
(
B(vN ,vN )

)
≥ a2‖∂r(vN − wN )‖2 − C(‖vN‖2 + ‖wN‖2),(4.10)

where C is positive constant depending on l, b, k,N.
Since XN is finite dimensional and (vN −wN )(a) = 0, it is easy to check that ‖|vN‖| :=

‖∂r(vN − wN )‖ is a norm on XN . Indeed, all norms on XN are equivalent. Hence, for
fixed N, (4.10) is indeed a G̊arding type inequality which implies the unique solvability of
the problem (4.6) (see, e.g., [13, P. 218]). �

We remark that since Re
(
1/Θl(kb)

)
< 0 (which can be derived from [13, (2.6.23)]), the

corresponding term can not contribute to the energy norm. Consequently, we have to use
the trace inequality (4.9) to derive the G̊arding type inequality (4.10).

Note also that the above proof does not provide a wave-number explicit a priori estimate
on the energy norm. Hence, it is not possible to derive, from the above result, a wave-
number explicit error estimate for (4.6), as was done for the decoupled equation (3.25)-
(3.26) in [17]. In a forthcoming paper, we shall consider a different approach, which is
more suitable for analysis but less convenient for implementation, and derive wave-number
explicit error estimates.

4.2. Implementation. We now describe an efficient implementation of the scheme (4.6).
The efficiency of the algorithm essentially relies on the choice of basis functions for XN

defined in (4.5).
Let Ln(r) be the (real-valued) Legendre polynomials of degree n, transformed from

[−1, 1] to [a, b] via a linear mapping, which satisfies Ln(a) = (−1)n and Ln(b) = 1. Define

φ0 =
1 + i

2
(x+ 1); φj = (1 + i)(Lj−1 − Lj+1), 1 ≤ j ≤ N − 1; φN = −1 + i

2
(x− 1).
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Set

ψj =

(
φj
0

)
, ψN+j =

(
0
φj

)
, 0 ≤ j ≤ N − 1; ψ2N =

(
φN
φN

)
.(4.11)

One verifies readily that ψj ∈ XN for all 0 ≤ j ≤ 2N and that they are linearly indepen-
dent. Since dim(XN ) = 2N + 1, we have

XN = span
{
ψ0,ψ1, · · · ,ψ2N

}
.(4.12)

Hence, the approximate solution vN can be written as

vN =

2N∑
j=0

αjψj =

( ∑N−1
j=0 αjφj + α2NφN∑N−1

j=0 αN+jφj + α2NφN

)
=

(
vN
wN

)
.(4.13)

Setting

ψj = (ψ1,j , ψ2,j)
t, 0 ≤ j ≤ 2N ; α = (α0, α1, · · · , α2N )t;

sij =

∫ b

a

(d+
l+2ψ1,j − d−l−1ψ2,j)(d

+
l+2ψ1,i − d−l−1ψ2,i)r

2dr, 0 ≤ i, j ≤ 2N ;

aij = −k2

∫ b

a

(2l + 1

l
ψ1,jψ1,i +

2l + 1

l + 1
ψ2,jψ2,i

)
r2dr, 0 ≤ i, j ≤ 2N ;

bij =
k2b3

Θl(kb)
(ψ1,j − ψ2,j)(b)(ψ1,i − ψ2,i)(b), 0 ≤ i, j ≤ 2N ;

fi =

∫ b

a

(2l + 1

l
(INf1)ψ1,i +

2l + 1

l + 1
(INf2)ψ2,i

)
r2dr − b2gb(ψ1,i − ψ2,i)(b),

f̃ = (f0, f1, · · · , f2N )t; S = (sij), A = (aij), B = (bij),

we find that the linear system (4.6) reduces to the matrix form:

(4.14)
(
S + A + B

)
α = f̃ .

We note that the coefficient matrices S, A and B are sparse, see Figure 4.1, and Hermitian,

i.e., S = St, and likewise for A and B. To compute their non-zero entries, we only need to
compute ∫ b

a

φ′j(r)φ
′
i(r)r

2dr,

∫ b

a

φ′j(r)φi(r)r
2dr,

∫ b

a

φj(r)φi(r)r
2dr,

which can be evaluated exactly by using the properties of Legendre polynomials.
It is worthwhile to point out that the basis functions in (4.11) are constructed to mini-

mize the coupling of vN and wN . Indeed, they are coupled through the single basis function
ψ0. Hence, the system (4.14) can be solved efficiently by using a block Gaussian elimina-
tion process to solve for α2N first, followed by solving two decoupled systems of size N
each for (α0, · · · , αN−1)t and (αN , · · · , α2N−1)t.

5. Numerical results

In this section, we provide some numerical results to show the accuracy and efficiency
of the proposed method. We use the exact multiple solutions of (3.11)-(3.12) (cf. [13]) as
the reference solution.
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Figure 4.1. Nonzero entries of the system matrix in (4.14).

In the first example, we take the exact solution of (3.11)-(3.12) to be

E =

M0∑
l=1

∑
m≤l

{
h

(1)
l (kr)Tml (θ, φ) +

−−→
curlS

(
h

(1)
l (kr)Tml (θ, φ)

)}
,(5.1)

which is a linear combination of the transverse electric and magnetic multipole solutions.
By using (2.12), we find

−−→
curlS

(
h

(1)
l (kr)Tml (θ, φ)

)
=− l

2l + 1

(
k
d

dz
h

(1)
l (kr)− l

r
h

(1)
l (kr)

)
V m
l

+
l + 1

2l + 1

(
k
d

dz
h

(1)
l (kr) +

l + 1

r
h

(1)
l (kr)

)
Wm

l .

(5.2)

Hence, the exact solution {v, w, u} of (3.22)-(3.26) is

v := vml = − l

2l + 1

(
k
d

dz
h

(1)
l (kr)− l

r
h

(1)
l (kr)

)
,

w =: wml =
l + 1

2l + 1

(
k
d

dz
h

(1)
l (kr) +

l + 1

r
h

(1)
l (kr)

)
,

u := tml = h
(1)
l (kr).

(5.3)
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We look for the approximate field:

(5.4) EM0

N (r, θ, φ) =

M0∑
l=1

l∑
|m|=0

[
vml,N (r)V m

l (θ, φ) + tml,N (r)Tml (θ, φ) + wml,N (r)Wm
l (θ, φ)

]
,

where {vml,N , wml,N} are computed from (4.6), i.e., spectral-Galerkin approximation of {vml , wml },
and {tml,N} are the spectral-Galerkin approximation of {tml }. Using the orthogonality (A.1),
we have the expression:∥∥E −EM0

N

∥∥2

L2(Ω)
=

M0∑
l=1

∑
m≤l

(‖tml − tml,N‖2L2(I)

l(l + 1)
+
‖vml − vml,N‖2L2(I)

(l + 1)(2l + 1)
+
‖wml − wml,N‖2L2(I)

l(2l + 1)

)
.

In the computation, we take a = 2, b = 4 and M0 = 10. In Figure 5.1, we plot the
relative discrete L2-error: ∥∥E −EM0

N

∥∥
l2(Ω)

/
∥∥E∥∥

l2(Ω)
,

against various N for k = 40, 60, 100 from left to right. We observe that the error decays
exponentially, as soon as N enters the asymptotic range, which is for this case roughly
N > k.
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Figure 5.1. Relative discrete l2-errors against N for k = 40, 60, 100.

In the second example, we consider an exact solution generated by the boundary data
g at the scatterer’s surface. More precisely, the exact electric field E is given by

E =

M1∑
l=1

l∑
|m|=0

{
gm1,lh

(1)
l (kr)Tml (θ, φ) + gm2,l

−−→
curlS

(
h

(1)
l (kr)Tml (θ, φ)

)}
,

where

gm1,l = − 1

l(l + 1)h
(1)
l (ka)

∫
S

(g · ∇SY ml ) dσ,

gm2,l =
a

l(l + 1)h
(1)
l (ka)(zl(ka) + 1)

∫
S

(g ·
−−→
curlSY

m
l ) dσ.

For given g, we can compute gm1,l and gm2,l using Spherepack [18].

Consider the incident wave: −eikx so that g = eikx. We take a = 2, b = 4 and M1 = 20,
and plot in Figure 5.2, the discrete relative L2-errors against N for k = 10, 20, 30 We
observe that the error behaves very similarly as in the first example.
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Figure 5.2. Relative discrete l2-errors against N for k = 10, 20, 30.

6. Concluding remarks

We developed in this paper an efficient and robust spectral-Galerkin method to solve
the three-dimensional time-harmonic Maxwell equations in exterior domains. The method
is based on the transformed field expansion (TFE) approach which reduces the original
problem in a general exterior domain to a sequence of Maxwell equations in a separable
spherical shell. By using a proper set of vector spherical harmonic functions, we are
able to reduce the Maxwell equations in a separable spherical shell to a sequence of one-
dimensional problems in the axial direction. Then, we proposed an efficient Legendre-
Galerkin algorithm to solve the one-dimensional problems.

This method does not involve any iterative algorithm for solving linear systems. Hence,
it is robust to wave numbers as long as the solution is well resolved by the spectral dis-
cretization. Also, the method enjoys spectral accuracy, i.e., the convergence rate increases
as the smoothness of data increases.

To the best of the authors’ knowledge, this is the first full spectral method for solving
the three-dimensional time-harmonic Maxwell equations in exterior domains. While we
have restricted our attention to problems with constant magnetic permeability and electric
permittivity, it is clear that our method can be easily extended to layered materials which
will lead to one-dimensional problems with piecewise-constant coefficients that can be
solved efficiently with a spectral-element method.

Appendix A. Properties of the vector spherical harmonics

The VSH are mutually orthogonal in L2(S) =
(
L2(S)

)3
:

∫
S

Tml · V
m′

l′ dS =

∫
S

Tml ·W
m′

l′ dS =

∫
S

V m
l ·W

m′

l′ dS = 0,∫
S

V m
l · V

m′

l′ dS = (l + 1)(2l + 1)δll′δmm′ ,

∫
S

Tml · T
m′

l′ dS = l(l + 1)δll′δmm′ ,∫
S

Wm
l ·W

m′

l′ dS = l(2l + 1)δll′δmm′ ,

(A.1)
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which, together with (2.12), implies∫
S

Tml · ∇SY ml dS = 0,

∫
S

∇Y ml · ∇SY m
′

l′ dS = l(l + 1)δll′δmm′ .(A.2)

Let f and v be differentiable scaler and vector functions, respectively. Recall that in
spherical coordinates (cf. [1]):

(A.3) grad f = ∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ,

(A.4) div v = ∇ · v =
1

r2

∂
(
r2vr

)
∂r

+
1

r sin θ

∂
(

sin θvθ
)

∂θ
+

1

r sin θ

∂vφ
∂φ

,

curlv = ∇× v =
1

r sin θ

(∂( sin θvφ
)

∂θ
− ∂vθ
∂φ

)
er +

1

r

( 1

sin θ

∂vr
∂φ
−
∂
(
rvφ
)

∂r

)
eθ

+
1

r

(∂(rvθ)
∂r

− ∂rvr
∂θ

)
eφ.

(A.5)

Let d+
l and d−l be the differentiation operators defined in (3.15) and we further define

(A.6) Ll =
d2

dr2
+

2

r

d

dr
− l(l + 1)

r2
.

In view of (2.10), the following properties can be derived from [10]:

• The scalar gradient:

(A.7) (2l + 1)grad
(
fY ml

)
=
(
d−l f

)
V m
l+1 +

(
d+
l+1f

)
Wm

l−1.

• The vector divergence:

div
(
fV m

l

)
= (l + 1)

(
d+
l+2f

)
Y ml , div

(
fTml

)
= 0, div

(
fWm

l

)
= l
(
d−l−1f

)
Y ml .(A.8)

• The vector curl:

curl
(
fV m

l

)
=
(
d+
l+2f

)
Tml , curl

(
fWm

l

)
= −

(
d−l−1f

)
Tml ,

(2l + 1)curl
(
fTml

)
= (l + 1)

(
d+
l+1f

)
Wm

l − l
(
d−l f

)
V m
l .

(A.9)

• The vector Laplace:

∆
(
fV m

l

)
= Ll+1(f)V m

l , ∆
(
fTml

)
= Ll(f)Tml , ∆

(
fWm

l

)
= Ll−1(f)Wm

l .(A.10)

Appendix B. Formulae related to the transformed field expansion

Recall that we set F (r′, θ′, φ′) = E(r, θ, φ) with the transform (3.2), and we need to
compute curl curlE − k2E in the new coordinates.
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For any scalar function E and vector function E, we have the following formulae under
the spherical coordinates:

∇E = ∂rEer +
1

r
∂θEeθ +

1

r sin θ
∂φEeφ,

∇ ·E =
1

r2
∂r(r

2Er) +
1

r sin θ
∂θ(sin θEθ) +

1

r sin θ
∂φEφ,

∇SE = ∂θEeθ +
1

sin θ
∂φEeφ,

∇S ·ES =
1

sin θ
∂θ(sin θEθ) +

1

sin θ
∂φEφ,

curlE =
1

r sin θ

(
∂θ(sin θEφ)− ∂φEθ

)
er +

1

r

( 1

sin θ
∂φEr − ∂r(rEφ)

)
eθ

+
1

r

(
∂r(rEθ)− ∂θEr

)
eφ,

(B.1)

where E = (Er,ES) = (Er, Eθ, Eφ).
We can rewrite the last identity as

curlE = ∇ · (E × er)er +∇Er × er −
1

r
∂r(rE × er)

= ∇ · (E × er)er +
1

r
∇SEr × er −

1

r
∂r(rE × er).

Notice the last two terms only involve the component of θ, φ. Consequently, we can
derive

curl curlE =∇ ·
(
∇Er × er × er −

1

r
∂r(rE × er × er)

)
er

+∇(∇ · (E × er))× er

− 1

r
∂r(r∇Er × er × er − ∂r(rE × er × er))

=∇ ·
(
− 1

r
∇SEr −

1

r
∂r(rE × er × er)

)
er

+∇(∇ · (E × er))× er

− 1

r
∂r(−∇SEr − ∂r(rE × er × er))

=
[
−∇ ·

(1

r
∇SEr

)
−∇ ·

(1

r
∂r(rE × er × er)

)]
er

+
1

r
∇S(∇ · (E × er))× er +

1

r
∂r(∇SEr) +

1

r
∂2
r (rE × er × er)

=
[
− 1

r2
∇S · (∇SEr) +

1

r2
∇S · (∂r(rES))

]
er

+
1

r2
∇S(∇S · (E × er))× er +

1

r
∂r(∇SEr)−

1

r
∂2
r (rES).
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The change of variables leads to

∂r′F =
d− h(θ, φ)

d
∂rE,(B.2)

∂θ′F =
∂θ′h(θ′, φ′)(b− r′)

d
∂rE + ∂θE =

∂θ′h(θ′, φ′)(b− r′)
d− h(θ′, φ′)

∂r′F + ∂θE,(B.3)

∂φ′F =
∂φ′h(θ′, φ′)(b− r′)

d
∂rE + ∂φE =

∂φ′h(θ′, φ′)(b− r′)
d− h(θ′, φ′)

∂r′F + ∂φE.(B.4)

With the above preparation and additional calculations, we can derive the following
formulae for fr′ , f tp and J in (3.6):

d2fr′ = (2dh+ h2)∇S · (∇SFr′)− (d− h)∇SA · (∂r′(∇SFr′))
− (d− h)∇S · (∂r′Fr′∇SA)− ∂r′Fr′(∇Sh · ∇SA)

+∇SA · ∂r′(∂r′Fr′∇SA)− (2dh+ h2)∇S · (∂r′(r′F S))

− h(d− h)∇S · (∂r′(r′F S))− d∇Sh · ∂r′(r′F S)

+ d(d− h)∇SA · ∂2
r′(r
′F S)−∇Sh · (∂r′(AF S))

− (d− h)∇S · (∂r′(AF S)) +∇SA · ∂2
r′(AF S) +

4∑
i=1

Hi(h)k2Fr′ ,

(B.5)

d2f tp = −(2dh+ h2)∇S(∇S · (F × er)) + (d− h)∂r′(∇S · (F × er))∇SA
+ (d− h)∇S(∇SA · ∂r′(F × er)) +∇SA · ∂r′(F × er)∇Sh
− ∂r′(∇SA · ∂r′(F × er))∇SA− (2dh+ h2)r′∂r′(∇SFr′)
− h(d− h)r′∂r′(∇SFr′)−A(d− h)∂r′(∇′SFr′) + (dr′ +A)∂r′(∂r′Fr′∇SA)

+ (2dh+ h2)r′∂2
r′(r
′F S) + (2dh− h2 +Ad)r′∂2

r′(r
′F S)

+ (r′d+A)∂2
r′(AF S) +

4∑
i=1

Hi(h)k2F S ,

(B.6)

and

dJ =
h

b
∇S · (F × er)

∣∣∣
r′=b

er +
h

b
∇SFr′ × er

∣∣∣
r′=b

+
1

b
∂r′(AF × er)

∣∣∣
r′=b

− hikTbF S ,
(B.7)

where F = (Fr′ ,F S), and

H1 := 2dAr′ − 2dhr′2, H2 := h2r′2 − 4hAr′ +A2,

H3 :=
2

d
h2Ar′ − 2

d
hA2, H4 :=

1

d2
h2A2.

Notice that the normal vector to the sphere

n(θ, φ) =
(

1 +
1

r2
||∇Sh||2

)− 1
2
(
er −

1

r
∇Sh

)∣∣∣
r=a+h(θ,φ)

.

Defining

gn(θ, φ) =
(

1 +
1

(a+ h(θ, φ))2
||∇Sh||2

) 1
2

,



MAXWELL EQUATIONS 17

we can write the boundary condition on the surface of the obstacle as

E ×
(
er +

1

a
∇Sh

)
= g̃,(B.8)

where g̃ = gng. The componentwise formulation of (B.8) reads

− 1

r sin θ
∂φhEθ +

1

r
∂θhEφ = g̃r,(B.9)

1

r sin θ
∂φhEr + Eφ = g̃θ,(B.10)

− 1

r
∂θhEr − Eθ = g̃φ.(B.11)

Thus, we have

g̃r =
1

r
∂θhg̃θ +

1

r sin θ
∂φhg̃φ

∣∣∣
r=a+h(θ,φ)

,(B.12)

and

F × er
∣∣
r′=a

+
1

a
∇ShFr′ × er = g̃S .(B.13)

Similarly, we can determine the following formulae for fnr′ , f
n
tp and Jn in (3.8):

d2fnr =2dq∇S · (∇SFn−1
r′ ) + q2∇S · (∇SFn−2

r′ )− d∇SAq · (∂r′(∇SFn−1
r′ ))

+ q∇SAq · (∂r′(∇SFn−2
r′ ))− d∇S · (∂r′Fn−1

r′ ∇SAq)
+ q∇S · (∂r′Fn−2

r′ ∇SAq)− ∂r′Fn−2
r′ (∇Sq · ∇SAq)

+∇SAq · ∂r′(∂r′Fn−2
r ∇SAq)− 2dq∇S · (∂r′(r′F n−1

S ))

− q2∇S · (∂r′(r′F n−2
S ))− dq∇S · (∂r′(r′F n−1

S )) + q2∇S · (∂r′(r′F n−2
S ))

− d∇Sq · ∂r′(r′F n−1
S ) + d2∇SAq · ∂2

r′(r
′F n−1

S )− dq∇SAq · ∂2
r′(r
′F n−2

S )

−∇Sq · (∂r′(AqF n−2
S ))− d∇S · (∂r′(AqF n−1

S )) + q∇S · (∂r′(AqF n−2
S ))

+∇SAq · ∂2
r′(AqF

n−2
S ) +

4∑
i=1

H̃(q)ik
2Fn−ir′ ,

(B.14)

d2fntp =− 2dq∇S(∇S · (F n−1 × er))− q2∇S(∇S · (F n−2 × er))
+ d∂r′(∇S · (F n−1 × er))∇SAq − q∂r′(∇S · (F n−2 × er))∇SAq
+ d∇S(∇SAq · ∂r′(F n−1 × er))− q∇S(∇SAq · ∂r′(F n−2 × er))
+∇SAq · ∂r′(F n−2 × er)∇Sq − ∂r′(∇SAq · ∂r′(F n−2 × er))∇SAq
− 2dqr′∂r′(∇SFn−1

r′ )− q2r′∂r′(∇SFn−2
r′ )− dqr′∂r′(∇SFn−1

r′ )

+ q2r′∂r′(∇SFn−2
r′ )− dAq∂r′(∇SFn−1

r′ ) + qAq∂r′(∇SFn−2
r′ )

+ dr′∂r′(∂r′F
n−1
r′ ∇SAq) +Aq∂r′(∂r′F

n−1
r′ ∇SAq) + 2dqr′∂2

r′(r
′F n−1

S )

+ q2r′∂2
r′(r
′F n−2

S ) + 2dqr′∂2
r′(r
′F n−1

S )− q2r′∂2
r′(r
′F n−2

S )

+Aqdr
′∂2
r′(r
′F n−1

S ) + dr′∂2
r′(AqF

n−1
S ) +Aq∂

2
r′(AqF

n−2
S )

+

4∑
i=1

H̃(q)ik
2F n−iS ,

(B.15)



18 L.N. MA, J. SHEN & L.L. WANG

g̃nS = δn0gS −
Fr′(a)n−1

a
∇Sq,(B.16)

and

dJn =
q

b
∇S · (F n−1 × er)

∣∣∣
r′=b

er +
q

b
∇SFn−1

r′ × er
∣∣∣
r′=b

+
1

b
∂r′(AqF

n−1 × er)
∣∣∣
r′=b
− qikTbF n−1

S ,
(B.17)

where Fm = (Fmr′ ,F
m
S ) for any m, and

H̃1 := 2dAqr
′ − 2dqr′2, H̃2 := q2r′2 − 4qAqr

′ +A2
q,

H̃3 :=
2

d
q2Aqr

′ − 2

d
qA2

q, H̃4 :=
1

d2
q2A2

q.
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