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Abstract. An efficient and accurate method for solving the two-dimensional Helmholtz

equation in domains exterior to elongated obstacles is developed in this paper. The

method is based on the so called transformed field expansion (TFE) coupled with a

spectral-Galerkin solver for elliptical domain using Mathieu functions. Numerical results

are presented to show the accuracy and stability of the proposed method.
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1. Introduction

Many scientific and engineering applications require fast and accurate numerical ap-

proximation of acoustic and electromagnetic scattering that returns from irregular obsta-

cles. Although the governing equation is linear, its numerical approximation presents a

number of notorious difficulties: (i) the problem is set in an unbounded exterior do-

main, making it difficult to obtain accurate approximations when an artificial boundary

is introduced; (ii) the problem is indefinite, making it difficult to design efficient iterative

methods; and (iii) the solution is highly oscillatory when the incoming wave has high fre-

quencies, making it inefficient to use low-order finite difference or finite element methods.

A wide variety of numerical methods have been proposed to deal with these difficulties

(cf. the review papers [14, 19] and the references therein). A particularly compelling

class of methods are based on the boundary perturbation technique originated from the

work of Rayleigh [13] and Rice [15], and we refer to [2–4] for some recent developments

in this direction. More recently, a robust and accurate numerical method based on the

transformed field expansion and a fast spectral-Galerkin solver is proposed for two- and
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three-dimensional acoustic scattering [5, 9, 11, 12]. The method has proven to be very ef-

ficient for obstacles that can be considered as a perturbation of a disk in 2-D or a sphere in

3-D. While in principle the algorithms in [5, 9] can be applied to elongated scatters (e.g.,

submarines and airfoils), which are found in many important applications, it may not be

computationally efficient to do so due to the fact that large artificial boundaries are needed

to enclosed the elongated obstacles. In such cases, it is more appropriate to use elliptic and

ellipsoidal artificial surfaces to truncate the unbounded computational domains.

The purpose of this paper is to develop an efficient and accurate numerical method

for the acoustic scattering from an elongated obstacle. The basic idea is to consider an

elongated obstacle as a perturbation of ellipse in 2-D and of ellipsoid in 3-D, use a larger

ellipse or ellipsoid to enclose the obstacle and reduce the problem to a bounded domain

through the Dirichlet-to-Neumann mapping, and then develop an efficient and accurate

spectral method for the reduced equation in the separated elliptic domain.

While spectral methods for partial differential equations in circular and spherical do-

mains have been well developed, their applications to elliptical domains have received

very little attention. The main reason is that the separation of variables in elliptical do-

mains leads to Mathieu functions in 2-D and spheroidal wave functions in 3-D. However,

the use of elliptic coordinates and Mathieu functions introduces significant difficulties in

both analysis and implementation. Although the Mathieu functions have been the subjects

of many studies (cf. [1, 7, 8]), most of which are concerned with their classical properties

such as identities, recurrence and asymptotic relations. As far as we know, there were es-

sentially no results on their approximation properties in Sobolev spaces which are required

for numerical analysis of spectral methods using these special functions. In a very recent

paper [18], two of the authors made a systematical study for the approximation properties

of Mathieu functions and applied them to study the elliptic equations in a bounded sepa-

rable elliptic domain. The analytical and numerical results presented in [18] indicate that

Mathieu functions have nice approximation properties similar to those enjoyed by classical

trigonometric polynomials and are suitable for numerical approximation of PDEs in elliptic

domains. Hence, we shall use Mathieu functions as basis functions for the spectral-Galerkin

solver in our scheme.

The rest of the paper is organized as follow. In Section 2, we describe the governing

equation for acoustic scattering in exterior domains with elliptical coordinates and use the

Dirichlet-to-Neumann mapping to reduce the problem to a bounded domain. We derive in

Section 3 the transformed field expansion in the elliptical coordinates. Then, we construct

a spectral-Galerkin method for solving the reduced Helmtoltz problem in a regular elliptical

domain. We present some illustrative numerical results in Section 5 and conclude with

some remarks in the last section.

2. Governing equation and Dirichlet-to-Neumann mapping

2.1. Governing equation

Consider a two-dimensional time-harmonic acoustic plane wave
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ũi(r,θ , t) = eiωtui(r,θ) = eiωt eir(α cos(θ )−β sin(θ )) (2.1)

incident upon a bounded obstacle Σ. It generates a scattered field

ũs(r,θ , t) = eiωtus(r,θ) (2.2)

satisfying the Helmholtz equation

∆us + k2us = 0 in Ω = R2\Σ̄, (2.3)

along with the Sommerfeld radiation boundary condition at infinity. In the above, k =
p

α2 + β2 is the wave number.

In [9], an efficient spectral method was proposed to solve this problem, which was

based on a transformed field expansion (TFE) approach and a fast spectral-Galerkin solver

in the circular domain. The method is suitable when the obstacle is a “small” perturbation

of the circle. When the obstacle has an elongated shape (e.g., a submarine), the method

in [9] will not be efficient as a rather large artificial computational domain will have to be

used. In this case, it is more desirable to truncate the unbounded domain into an ellipse,

and develop the spectral solver in elliptic coordinates:

x = c coshµ cosθ , y = c sinhµ sinθ , (2.4)

where 2c is the focal distance. Note that curves of constant µ are all ellipses and the curves

of constant θ are hyperbolas with foci x = ±c along the x -axis. To simplify the notation,

we take c = 1 hereafter.

Under the elliptic coordinates, the domain Ω can be expressed as

Ω =
�

(µ,θ) : µ > a+ g(θ), θ ∈ [0,2π)
	

.

Denoting v(µ,θ) := us(x , y), the Helmholtz equation (2.3) under the elliptic coordinates

becomes
1

1

2
cosh(2µ)− 1

2
cos(2θ)

�

∂ 2
µ v + ∂ 2

θ v
�

+ k2v = 0, (µ,θ) ∈ Ω, (2.5)

along with a boundary condition at ∂Ω, the periodic boundary condition in θ , and the

Sommerfeld radiation condition at infinity, namely,

v(a+ g(θ),θ) = ξ(θ), v(µ,θ) = v(µ,θ + 2π), (2.6)

lim
µ→∞

µ1/2(∂µv− ikv) = 0. (2.7)

Note that, to fix the idea, we prescribed in (2.6) a Dirichlet (sound-soft) boundary condi-

tion on the obstacle, although a Neumann (sound-hard) boundary condition can also be

used.

A main difficulty for solving the problem (2.5)-(2.7) is that the domain Ω is unbounded.

However, it is well-known that the solution of the Helmholtz equation (2.5) in the far

field can be exactly expressed by expansions in Mathieu functions, leading to an exact

expression of the so called Dirichlet-to-Neumann (DtN) operator (cf. [6]), which allows us

to reduce the system to a bounded domain.
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2.2. Mathieu functions

The Mathieu functions arise when one applies the separation of variables approach to

(2.5). More precisely, setting v(µ,θ) = R(µ)Φ(θ), we find that Φ(θ) satisfies the angular

Mathieu equation:

d2Φ

dθ2
+ (a− 2q cos2θ)Φ = 0, (2.8)

and R(µ) satisfies the radial Mathieu equation:

d2R

dµ2
− (a− 2q cosh2µ)R= 0, (2.9)

where a is the separation constant, and the parameter q = c2k2/4.

The angular Mathieu equation (2.8) supplemented with a periodic boundary condition

admits two families of linearly independent periodic solutions (eigenfunctions), namely

the even and the odd Mathieu functions of order m:

Φm(θ ; q) =

(

cem(θ ; q), m= 0,1, · · · ,

sem(θ ; q), m= 1,2, · · · .
(2.10)

Similarly, the radial Mathieu equation (2.9) admits two families of linearly independent

solutions, namely the even and the odd Mathieu-Hankel functions of order m:

Rm(µ; q) =

(

Mcm(µ; q), m = 0,1, · · · ,

Msm(µ; q), m = 1,2, · · · .
(2.11)

Hence, the general solution of (2.5) can be expressed as

v(µ,θ) =

∞
∑

i=0

αi Mci(µ; q)cei(θ ; q) +

∞
∑

i=1

βiMsi(µ; q)sei(θ ; q). (2.12)

In this context, the Mathieu-Hankel functions {Mci , Msi} are of the third kind.

We observe that the above expansion is reminiscent to the Fourier-Hankel expan-

sion for the solution of the Helmholtz equation in polar coordinates. Here, the angular

Mathieu functions play the role of Fourier series. Indeed, the set of Mathieu functions

{cem, sem+1}
∞
m=0 forms a complete orthogonal system in L2(0,2π),

∫ 2π

0

cem(θ ; q)cen(θ ; q)dθ =

∫ 2π

0

sem(θ ; q)sen(θ ; q)dθ =

(

π, if m = n,

0, if m 6= n,
(2.13)

and
∫ 2π

0

cem(θ ; q)sen(θ ; q)dθ = 0, ∀ m≥ 0, n≥ 1. (2.14)

The interested readers may refer to [8] for more properties of the Mathieu functions.
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2.2.1. DtN mapping

With the help of (2.12) and (2.13), we can determine the DtN mapping explicitly. We

truncate the domain at µ = b > a+
�

�g
�

�

L∞
. Then, given v(b,θ), we can write the expansion

v(b,θ) =ψ(θ) =

∞
∑

i=0

aicei(θ ; q) +

∞
∑

i=1

bisei(θ ; q). (2.15)

Taking µ = b in (2.12) and comparing with (2.15), we can determine the coefficients

{αi,βi} in (2.12) uniquely. Consequently, we have

v(µ,θ) =

∞
∑

i=0

ai

Mci(µ; q)

Mci(b; q)
cei(θ ; q) +

∞
∑

i=1

bi

Msi(µ; q)

Msi(b; q)
sei(θ ; q).

Therefore, we define the DtN operator T by

T v ≡ ∂µv(b,θ) =

∞
∑

i=0

ai

Mc′
i
(b; q)

Mci(b; q)
cei(θ ; q) +

∞
∑

i=1

bi

Ms′
i
(b; q)

Msi(b; q)
sei(θ ; q), (2.16)

which maps Dirichlet data, ψ, to Neumann data, ∂µv
�

�

µ=b
(cf. [6]). Thus, the system

(2.5)-(2.7) can be equivalently restated as

∂ 2
µ v+ ∂ 2

θ v +
1

2
k2(cosh(2µ)− cos(2θ))v = 0, (µ,θ) ∈ Ωa+g ,b, (2.17a)

v(a+ g(θ),θ) = ξ(θ), v(µ,θ) = v(µ,θ + 2π), (2.17b)

∂µv(b,θ)− T v(b,θ) = 0, (2.17c)

where

Ωa+g ,b =
�

(µ,θ) : a+ g(θ)< µ < b, 0≤ θ < 2π
	

.

The rest of the paper is devoted to developing and testing an efficient and accurate spectral

approximation to this problem.

3. Transformed field expansions

3.1. Transformation to a separable domain

While Eq. (2.17) is set on a bounded domain, it is still not suitable for spectral methods

as the domain Ωa+g ,b is in general not separable. In order to develop an effective spectral

method, it is necessary to transform the domain to a separable one. This can be done with

the change of variables

µ′ =
(b− a)µ− bg(θ)

(b− a)− g(θ)
=

dµ− bg

d − g
, θ ′ = θ ,

where d = b− a, which maps Ωa+g ,b to the elliptic annulus Ωa,b. Next, we need to rewrite

(2.17) in these transformed coordinates (µ′,θ ′).
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By using the relations

∂θ =
∂ µ′

∂ θ
∂µ′ + ∂θ ′ , ∂µ =

∂ µ′

∂ µ
∂µ′ ,

it is easy to see that

�

d − g(θ)
�

∂θ =
�

d − g(θ)
�

∂θ ′ − B(µ′,θ ′)∂µ′ , (3.1a)
�

d − g(θ)
�

∂µ = d ∂µ′ , (3.1b)

d µ= d µ′+ A(r ′,θ ′), (3.1c)

where

A(r ′,θ ′) = g(θ ′)(b− r ′), B(r ′,θ ′) = ∂θ ′A. (3.2)

We first deal with (2.17a). Multiplying (d − g)2 to (2.17a), we find

0= (d − g)2∂ 2
µ v + (d − g)2∂ 2

θ v +
1

2
k2(d − g)2
�

cosh(2µ)− cos(2θ)
�

v. (3.3)

Denoting u(r ′,θ ′) = v(r ′+ A/d ,θ ′), and using (3.1), we find

(d − g)2∂ 2
µ v = (d − g)∂µ

�

(d − g)∂µv
�

= (d − g)∂µ(d∂µ′u) = d2∂ 2
µ′

u,

and

(d − g)2∂ 2
θ v

= (d − g)∂θ
�

(d − g)∂θ v
�

+ ∂θ g(d − g)∂θ v

=
�

(d − g)∂θ ′ − B∂µ′
��

(d − g)∂θ ′ − B∂µ′
�

u+ ∂θ ′ g
�

(d − g)∂θ ′ − B∂µ′
�

u

= (d − g)2∂ 2
θ ′

u− (d − g)(∂θ ′ g)∂θ ′u− (d − g)∂θ ′[B∂µ′u]− B(d − g)∂µ′∂θ ′u

+ B∂µ′[B∂µ′u] + (d − g)(∂θ ′ g)∂θ ′u− (∂θ ′ g)B∂µ′u.

Moreover, we have

1

2
k2(d − g)2 cosh(2µ)v =

1

4
k2(d − g)2
�

e2µ + e−2µ
�

v

=
1

4
k2(d − g)2
�

e2µ′+ 2A

d + e−2µ′− 2A

d

�

u

=
1

4
k2(d − g)2
�

e2µ′ e
2A

d + e−2µ′ e−
2A

d

�

u.

Denoting

A1 =
2A

d
+
(2A

d
)2

2!
+
(2A

d
)3

3!
+ · · · ,

A2 = −
2A

d
+
(2A

d
)2

2!
−
(2A

d
)3

3!
+ · · · ,
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we have

e
2A

d = 1+ A1, e−
2A

d = 1+ A2,

and

1

2
k2(d − g)2 cosh(2µ)v

=
1

4
k2(d − g)2
�

e2µ′ + e−2µ′
�

u+
1

4
k2(d − g)2
�

e2µ′A1 + e−2µ′A2

�

u.

Collecting the above relations into (3.3), the original equation (2.17a) can be written as

∂ 2
µ′

u+ ∂ 2
θ ′

u+
1

2
k2
�

cosh(2µ′)u− cos(2θ ′)
�

u= F, (3.4)

where F contains all the extra terms due to the transformation and is given by

−d2F =− 2d g∂ 2
θ ′

u+ g2∂ 2
θ ′

u− (d − g)∂θ ′[B∂µ′u]

− B(d − g)∂µ′∂θ ′u+ B∂µ′[B∂µ′u]

− (∂θ ′ g)B∂µ′u+ k2d g cos(2θ ′)u−
1

2
k2 g2 cos(2θ ′)u− k2d g cosh(2µ′)u

+
1

2
k2 g2 cosh(2µ′)u+

1

4
k2(d − g)2(e2µ′A1+ e−2µ′A2)u. (3.5)

Now multiplying (2.17c) by (d − g) and using (3.1), we find

0= (d − g)∂µv(b,θ)− (d − g)T v(b,θ)

= d ∂µ′u(b,θ ′)− d Tu(b,θ ′) + g(θ ′)Tu(b,θ ′).

Therefore, (2.17c) is transformed into

∂µ′u(b,θ ′)− Tu(b,θ ′) = J(θ ′), (3.6)

where

J(θ ′) = −
1

d
g(θ ′)Tu(b,θ ′). (3.7)

Collecting these transformations, we find that the transformed field u, upon dropping

primes, satisfies

∂ 2
µ u+ ∂ 2

θ u+
1

2
k2
�

cosh(2µ)u− cos(2θ)
�

u= F, (µ,θ) ∈ Ωa,b, (3.8a)

u(a,θ) = ξ(θ), u(µ,θ) = u(µ,θ + 2π), (3.8b)

∂µu(b,θ)− T u(b,θ) = J(θ), (3.8c)

where F and J(θ) are given by (3.5) and (3.7), respectively.
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3.2. Boundary perturbation

While Eq. (3.8) is set on a separable domain, it is still challenging to solve it numerically

due to (i) the non-constant coefficients in F which prevents a feasible direct solution, and

(ii) its indefiniteness makes it difficult to design an efficient iterative scheme.

Therefore, similar to [5, 9], we resort to a perturbation approach. More precisely, we

write g(θ) = ǫ f (θ) and expand the solution u of (3.8) as

u(µ,θ ;ǫ) =

∞
∑

n=0

un(µ,θ) ǫn. (3.9)

Inserting the above in (3.8), it is straightforward, albeit tedious, to derive the following

recursions for {un}:

∂ 2
µ un + ∂

2
θ un+

1

2
k2
�

cosh(2µ)− cos(2θ)
�

un = Fn, (µ,θ) ∈ Ωa,b, (3.10a)

un(a,θ) = δn,0 ξ(θ), un(µ,θ) = un(µ,θ + 2π), (3.10b)

∂µun(b,θ)− T un(b,θ) = Jn(θ), (3.10c)

where Jn = −( f /d)Tun−1(b,θ), and

−d2Fn =− 2d g∂ 2
θ un−1 + g2∂ 2

θ un−2 − d∂θ[B∂µun−1] + g∂θ [B∂µun−2]− dB∂µ∂θun−1

+ gB∂µ∂θun−2 + B∂µ[B∂µun−2]− (∂θ g)B∂µun−2 + k2d g cos(2θ)un−1

−
1

2
k2 g2 cos(2θ)un−2 − k2d g cosh(2µ)un−1+

1

2
k2 g2 cosh(2µ)un−2

+
1

4
k2d2e2µ
�

2A

d

1!
un−1 +

(2A

d
)2

2!
un−2 + · · ·+

(2A

d
)n

n!
u0

�

+
1

4
k2d2e−2µ
�

−
2A

d

1!
un−1 +

(2A

d
)2

2!
un−2 + · · ·+ (−1)n

(2A

d
)n

n!
u0

�

−
1

2
k2d ge2µ
�

2A

d

1!
un−2 +

(2A

d
)2

2!
un−3 + · · ·+

(2A

d
)n−1

(n− 1)!
u0

�

−
1

2
k2d ge−2µ
�

−
2A

d

1!
un−2 +

(2A

d
)2

2!
un−3 + · · ·+ (−1)n−1

(2A

d
)n−1

(n− 1)!
u0

�

+
1

4
k2 g2e2µ
�

2A

d

1!
un−3 +

(2A

d
)2

2!
un−4 + · · ·+

(2A

d
)n−2

(n− 2)!
u0

�

+
1

4
k2 g2e−2µ
�

−
2A

d

1!
un−3 +

(2A

d
)2

2!
un−4 + · · ·+ (−1)n−2

(2A

d
)n−2

(n− 2)!
u0

�

.

In the above we adopt the convention that terms with subscripts are set to zero. We observe

that Fn involves solutions at all previous iterations as opposed to only four previous iterates

in the circular or spherical case [5,9].
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It is clear that for smooth f (θ) there exists ǫ0 > 0 such that the Taylor expansion

(3.9) converges for all ǫ ≤ ǫ0. Furthermore, it is shown in [10] that the Dirichlet-to-

Neumann operator T depends analytically on variations of arbitrary smooth domains so

that an alternative summation method such as Padé approximation can be effectively used

to extend the convergence radius beyond ǫ0.

4. Spectral-Galerkin method

We note that for each iteration n, Eq. (3.10) is simply the following Helmholtz equation

in a separable elliptic domain:

∂ 2
µ U + ∂ 2

θ U +
1

2
k2 cosh(2µ)U −

1

2
k2 cos(2θ)U = F, (µ,θ) ∈ Ωa,b, (4.1a)

U(a,θ) = ξ(θ), (4.1b)

∂µU(b,θ)− T U(b,θ) = η(θ), (4.1c)

with given F(µ,θ), ξ(θ) and η(θ). Hence, they can be efficiently solved by using a suitable

spectral-Galerkin method which we describe below.

Thanks to the orthogonality of the angular Mathieu functions (2.13)-(2.14), we can

expand U(µ,θ), F(µ,θ), ξ(θ) and η(θ) as

(U(µ,θ), F(µ,θ)) =

∞
∑

m=0

(û1m(µ), f̂1m(µ))cem(θ ; q) +

∞
∑

m=1

(û2m(µ), f̂2m(µ))sem(θ ; q),

(ξ(θ),η(θ)) =

∞
∑

m=0

(ξ̂1m, η̂1m)cem(θ ; q) +

∞
∑

m=1

(ξ̂2m, η̂2m)sem(θ ; q).

We recall that cem and sem satisfy the angular Mathieu equation (2.8):

ce′′m + (λcm− 2q cos(2θ))cem = 0,

se′′m + (λsm− 2q cos(2θ))sem = 0.

Inserting the Mathieu expansions in (4.1a)-(4.1c) and using (2.16), we find that (4.1a)-

(4.1c) can be decomposed into the following sequence of one-dimensional problems (m =

0,1,2, · · · ):

û′′1m−λcmû1m+
1

2
k2 cosh(2µ)û1m = f̂1m, µ ∈ (a, b), (4.2a)

û1m(a) = ξ̂1m, û′1m(b)−
Mc′m(b; q)

Mcm(b; q)
û1m(b) = η̂1m, (4.2b)

and

û′′2m −λsmû2m +
1

2
k2 cosh(2µ)û2m = f̂2m, µ ∈ (a, b), (4.3a)

û2m(a) = ξ̂2m, û′2m(b)−
Ms′m(b; q)

Msm(b; q)
û2m(b) = η̂2m, (4.3b)
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where Mcm and Msm are the radial Mathieu-Hankel functions of the third kind.

We describe below a spectral-Galerkin method for (4.2) only, since (4.3) can be treated

in exactly the same fashion. To this end, let us first make a change of variable x =
2(µ−a)

b−a
−1

which maps µ ∈ (a, b) to x ∈ I := (−1,1). Denoting

ũ1m(x) = û1m(µ), f̃1m(x) = f̂1m(µ), η̃1m = η̂1m, ξ̃1m = ξ̂1m,

ta =
2

b− a
, tbm = −

Mc′m(b; q)

Mcm(b; q)
, α=

4

(b− a)2
,

Eq. (4.2) becomes

αũ′′1m −λcmũ1m + q
�

e(b−a)x+(b+a) + e−(b−a)x−(b+a)
�

ũ1m = f̃1m, x ∈ I , (4.4a)

ũ1m(−1) = ξ̃1m, taũ′1m(1)+ tbmũ1m(1) = η̃1m. (4.4b)

We first reformulate Eq. (4.4) into an equivalent problem with homogeneous boundary

conditions. To this end, we set

h1m(x) =
η̃1m − tbmξ̃1m

ta + 2tbm

x +
η̃1m + tbmξ̃1m+ taξ̃1m

ta + 2tbm

which satisfies the two boundary conditions in (4.4b). Hence, setting

d =
η̃1m− tbmξ̂1m

ta + 2tbm

, f1m = f̃1m +[λcm− q(e(b−a)x+(b+a) + e−(b−a)x−(b+a))]h1m,

u1m(x) = ũ1m(x)+ h1m(x),

Eq. (4.4) becomes

αu′′1m−λcmu1m+Q(x)u1m = f1m, (4.5a)

u1m(−1) = 0, tau′1m(1)+ tbmu1m(1) = 0, (4.5b)

where Q(x) = q(e(b−a)x+(b+a) + e−(b−a)x−(b+a)).

Let PN be the space of complex-valued polynomials of degree less than or equal to N ,

and

X
(1,m)
N :=
n

u ∈ PN

�

�

� u(−1) = 0, tau′(1)+ tbmu(1) = 0
o

. (4.6)

The Spectral-Galerkin method for (4.5) is: find u
(1,m)
N ∈ X

(1,m)
N such that

α

∫

I

�

u
(1,m)
N

�′′
v̄N d x +

∫

I

(Q−λcm)u
(1,m)
N v̄N d x =

∫

I

f1,m v̄N d x, ∀vN ∈ X
(1,m)
N , (4.7)

where v̄N is the complex conjugate of vN . We recall (cf. [16, 17]) that if ta and tbm are

real numbers and PN consists of real polynomials, then there exist unique real numbers

(α
(1,m)

k
,β
(1,m)

k
) such that

X
(1,m)
N = span
�

γ
(1,m)
0 ,γ

(1,m)
1 , · · · ,γ(1,m)

N−2

	

,



268 Q. Fang, J. Shen and L. Wang

where

γ
(1,m)

k
(x) = Lk(x)+α

(1,m)

k
Lk+1(x)+ β

(1,m)

k
Lk+2(x),

and Lk(x) is the k-th Legendre polynomial. It is easy to see that this is still true if we allow

all of the
�

α
(1,m)

k
,β
(1,m)

k

�

, ta, tbm, PN , and X
(1,m)
N to be complex valued. In fact, one easily

verifies that

α
(1,m)

k
=

(2k+ 3)ta

ta(k+ 2)2+ 2tbm

, β
(1,m)

k
= α

(1,m)

k
− 1.

Now setting

u
(1,m)
N (x) :=

N−2
∑

j=0

u
(1,m)

j
γ j(x), u :=
�

u
(1,m)
0 ,u

(1,m)
1 , · · · ,u(1,m)

N−2

�T

,

a
(1,m)

j,n
:=

∫

I

�

γ(1,m)
n

�′′
γ̄
(1,m)

j
d x , A(1,m) :=

�

a
(1,m)

j,n

�

,

b
(1,m)

j,n
:=

∫

I

Q(x)γ(1,m)
n γ̄

(1,m)

j
d x , B(1,m) :=

�

b
(1,m)

j,n

�

,

f
(1,m)

j
=

∫

I

f1,mγ̄
(1,m)

j
d x, f(1,m) =
�

f
(1,m)

0 , f
(1,m)

1 , · · · , f
(1,m)
N−2

�T

,

the system (4.7) becomes the following complex-valued linear system:

�

αA(1,m) + B(1,m) −λcmI
�

u(1,m) = f(1,m). (4.8)

Due to the non-constant coefficients in Q(x), the matrix B(1,m) is full. Since one has to

solve the system (4.8) at each iteration n of (3.10), it is more efficient to compute and

store the LU factorization of αA(1,m) + B(1,m) −λcmI and use it for each iteration.

Although the Mathieu functions have been frequently used by physicists and engineers,

there were essentially no error estimates available in the context of spectral method for

PDEs using Mathieu functions. Recently, Shen & Wang [18] derived a first set of error

estimates for the spectral-Galerkin method of the Helmholtz equation (with an approxi-

mate Dirichlet-to-Neumann operator, i.e., Eqs. (4.1a)-(4.1c) with T being replaced by an

approximated operator) using Mathieu functions. Let

uNµ,Nθ
(µ,θ) =

Nθ
∑

m=0

�

û
1,m
Nµ
(µ)Mcm(θ ; q) + û

2,m
Nµ
(µ)Msm(θ ; q)
�

, (4.9)

where u
1,m
Nµ
(µ) and u

2,m
Nµ
(µ) are approximate solutions of (4.2) and (4.3) by the spectral-

Galerkin method described above. Then, based on the results in [18], it can be expected

that the error ‖u− uNµ,Nθ
‖L2(Ωa,b)

will decay exponentially as Nθ , Nµ→∞.
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5. Numerical results

We now present some numerical results to demonstrate the robustness and effective-

ness of the above scheme for the Helmholtz problem (2.17).

Before we present the numerical results, let us comment on the expected error esti-

mates. Let u be the exact solution of (3.8) and un be the n-th term in its Taylor expansion

(3.9). Given a triplet of discretization parameters (M , Nµ, Nθ ), let u
(n)
Nµ,Nθ

be the spectral

approximation of un defined in (4.9). Then, the final approximation of u is

uM
Nµ,Nθ

(µ,θ) =

M
∑

n=0

u
(n)
Nµ,Nθ

(µ,θ)ǫn. (5.1)

Writing

u− uM
Nµ,Nθ

=
�

u−
M
∑

n=0

unǫ
n
�

+

M
∑

n=0

�

un − u
(n)
Nµ,Nθ

�

ǫn,

and using the triangular inequality, we can expect, for smooth perturbation f (θ), an error

estimate of the form

‖u− uM
Nθ ,Nµ
‖L2(Ωa,b)

® ǫM + exp(−αNµ) + exp(−βNθ), (5.2)

where α,β are some positive numbers. A complete proof of this result is highly non-

trivial due to the complexity of the algorithm so we shall only provide some numerical

verifications. In the following, we shall present numerical results which are consistent

with the above expected error estimate.

5.1. Test with exact solutions

It is well known that the Helmholtz equation (2.17a) admits a family of exact solutions:

v(µ,θ) = Mcm(µ; q)cem(θ ; q) or Msm(µ; q)sem(θ ; q), m= 0,1,2, · · · ,

where, we recall, q = k2/4 with k being the wave number in (3.10).

To validate the spectral-Galerkin method in Section 4, we first preform a set of tests

on a regular elliptical obstacle, i.e., g(θ) ≡ 0. Thanks to the orthogonality of the angular

Mathieu functions, it is clear that Mcm and Msm are respectively solutions of (4.2) and

(4.3) with f1m = f2m = 0 and η̂1m = η̂2m = 0. So we just need to test the one dimensional

solver for (4.2) and (4.3). We take a = 1, b = 2 and the exact solution of (4.2) to be

Mc2(µ; q). In Fig. 1, we plot the L2-error vs. wave numbers with different number of

modes Nµ. We observe that for fixed wave number k, the error converges exponentially as

soon as enough modes are used.

In the next set of tests, we show that the transformed field expansion algorithm de-

scribed in Section 3 is robust and efficient. We consider two elongated obstacles (cf. Fig. 2)

described by

f (θ) = sin(θ) and f (θ) =
3

2
cos2(θ)−

1

2
. (5.3)
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Figure 1: L2-error vs. the number of modes Nµ for di�erent wave numbers.
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Figure 3: Convergene history of the TFE algorithm with f (θ ) = sin(θ ), a = 1, b = 2 and a �xedresolution Nµ = 40, Nθ = 50.
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Case I. a = 1.0, b = 2.0

Nµ k = 10 k = 20 k = 30

20 3.19E-004 N/A N/A

30 8.78E-009 2.66E-002 N/A

40 3.49E-014 4.08E-006 N/A

50 7.44E-015 3.86E-010 1.08E-004

60 7.45E-015 9.45E-015 7.59E-008

Case II. a = 1.0, b = 1.7

Nµ k = 10 k = 20 k = 30

10 1.75E-002 N/A N/A

16 1.24E-005 0.118 N/A

24 1.79E-010 5.44E-005 0.126

32 8.12E-015 9.11E-009 1.15E-004

40 8.17E-015 3.37E-013 6.36E-008

Case III. a = 1.0, b = 1.4

Nµ k = 10 k = 20 k = 30

10 1.98E-005 1.96E-002 N/A

16 4.12E-010 7.97E-006 2.17E-003

24 7.90E-015 3.69E-011 1.61E-007

32 8.01E-015 5.72E-015 1.59E-012

Case IV. a = 1.0, b = 1.11

Nµ k = 10 k = 20 k = 30

10 6.36E-011 7.24E-008 5.56E-006

16 5.48E-015 3.65E-014 2.63E-011

24 5.49E-015 1.38E-014 1.39E-013

32 5.56E-015 9.25E-015 1.39E-013

Two sets of numerical tests are conducted:

(i) Fix k = 1 and vary ǫ through the values ǫ = 0.125, 0.25, 0.5.

(ii) Fix ǫ = 0.1 and vary the wave number k among k = 1, 5, 10, 20.

In Fig. 3, we present the results for f (θ) = sin(θ) with a = 1, b = 2 and a fixed resolution

Nµ = 40, Nθ = 50. We observe that, for both fixed wave number k = 1 and fixed pertur-

bation parameter ǫ = 0.1, the TFE algorithm converges monotonically for all cases, and it

achieves the accuracy limited by discretization parameters Nµ and M . Similar convergence

behavior is observed for the obstacle described by f (θ) = 3

2
cos2(θ)− 1

2
.

A distinct advantage of the TFE algorithm is that we can choose the artificial boundary

as close to the obstacle as possible, since we use a spectral approximation of the exact

Dirichlet-to-Neumann operator as boundary conditions on the artificial boundary. Thus,

the effective wave number in the radial direction is reduced from (a+max |g|)k to essentially

(max |g|)k, and consequently, the number of modes needed in the radial direction can be

reduced significantly. To illustrate this property, we fix ǫ = 0.1, a = 1 and take b =

2.0,1.7,1.4,1.11. The results are reported in Table 1. We observe, for example, that for

b = 2.0 and k = 10, we need Nµ = 50 to achieve the near machine accuracy of 10−15,
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Figure 4: Convergene history of the TFE algorithm for plane wave sattering: ǫ = 0.1, a = 1, b = 1.2with Nµ = 50 and Nθ = 70. Left, f (θ ) = sin(θ ); Right, f (θ ) = 3

2
cos2(θ )− 1

2
.

while only Nµ = 32, Nµ = 24, Nµ = 16 are needed for b = 1.7, b = 1.4, b = 1.11,

respectively. Thus, choosing b close to a+max |g| allows us to use much less points in the

radial direction.

5.2. Plane-wave scattering

Here we are interested in computed the scattered field from a plane-wave incident upon

the obstacle depicted in Fig. 2. Since we no longer have an exact solution, for comparison

purposes, we use a high resolution approximation (Nθ = 200, Nr = 80) as the reference

solution.

In Fig. 4, we present the convergence history of the TFE algorithm for the plane wave

scattering upon the two obstacles described by (5.3) and ǫ = 0.1, a = 1, b = 1.2 with

Nµ = 50 and Nθ = 70. We observe that the convergence behavior for the plane wave scat-

tering is essentially the same as for the case with an exact solution. Namely, it converges

monotonically with respect to the iteration number and the achievable accuracy is only

limited by the discretization parameters Nµ and Nθ .

6. Concluding remarks

We developed in this paper an efficient and accurate method for solving the two di-

mensional Helmholtz equation in domains exterior to elongated obstacles. The method is

based on the transformed field expansion (TFE) which has been successfully used in [5,9]

previously for solving the acoustic scattering problems in both two-dimensional circular

and three-dimensional spherical domains. However, these algorithms may become ineffi-

cient for elongated obstacles. Therefore, we considered a spectral approximation based the

Mathieu functions which arise naturally in separation of variables for Helmholtz equations

in 2-D elliptical domains.
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It turned out that the use of elliptic transform and Mathieu functions introduces signif-

icant complications in the algorithm development and implementation of the TFE method.

With delicate analytical derivations and careful manipulations of the Mathieu functions in

programming, we have successful derived the TFE algorithm under elliptical coordinates

and developed a stable implementation of the spectral-Galerkin method using Mathieu

functions.

The illustrative numerical results presented in this paper indicate that the TFE algo-

rithm with a spectral-Galerkin solver using Mathieu functions is efficient and accurate for

acoustic scattering from elongated obstacles.
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