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Abstract. We introduce a family of orthogonal functions, termed as generalized Slepian

functions (GSFs), closely related to the time-frequency concentration problem on a

unit disk in D. Slepian [19]. These functions form a complete orthogonal system in

L2
̟α
(−1,1) with ̟α(x) = (1− x)α, α > −1, and can be viewed as a generalization

of the Jacobi polynomials with parameter (α, 0). We present various analytic and

asymptotic properties of GSFs, and study spectral approximations by such functions.
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1. Introduction

The investigation of time-frequency concentration problem back to 1960s gives rises

to some interesting special functions with attractive properties. The most significant ones

(see a series of papers by Slepian et al. [16,17,20]) are known as the prolate spheriodal

wave functions (PSWFs) or Slepian functions, which are bandlimited and mostly time-

concentrated within a finite interval. This discovery has motivated many subsequential

research works in various directions (see, e.g., [4,5,7,10,12,14,15,22–24,27]).

In a very recent work [25], we introduced a family of generalized PSWFs as the

eigenfunctions of a singular Sturm-Liouville problem, and interestingly, they are also the

eigenfunctions of an integral operator. This orthogonal system is complete in L2
wα
(−1,1)

with wα(x) = (1− x2)α,α > −1, and generalizes both the PSWFs (from order zero to

order α) and the Gegenbauer polynomials (to a system with a bandwidth tuning pa-

rameter). However, this study could not cover the case when the weight function is

nonsymmetric (i.e., the Jacobi weight function wα,β (x) = (1− x)α(1+ x)β with α 6= β).

Indeed, it seems implausible to generate an orthogonal system of functions which is si-

multaneously the eigenfunctions of a second-order differential operator and an integral

operator with complex exponential kernel, based on the argument in [25].

In this paper, we explore such a generalization, but restrict our discussion to the non-

symmetric Jacobi weight ̟α(x) = (1− x)α with α > −1. More precisely, we define the
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orthogonal system as the eigenfunctions of a Sturm-Liouville problem (see (2.9) below),

and show that they satisfy an integral equation which has a close relation with the time-

frequency concentration problem over a unit disk studied in D. Slepian [19] (so we term

this new family of orthogonal functions as generalized Slepian functions (GSFs)). We

derive some analytic and asymptotic properties of the GSFs and their associated eigen-

values, and study spectral approximations of functions in L2
̟α
(−1,1) using the GSFs as

basis functions.

The paper is organized as follows. In section 2, we define the GSFs and describe the

algorithm for their evaluation. We present various properties in section 3, and derive the

spectral approximation results using the GSFs in section 4, together with some numerical

experiments to support the analysis.

2. Generalized Slepian functions

In this section, we define the generalized Slepian functions, and introduce an efficient

algorithm for their numerical evaluation.

2.1. Jacobi polynomials

We first review some properties of the Jacobi polynomials (cf. [21]). For α,β >

−1, the Jacobi polynomials, denoted by J
(α,β)
n (x), x ∈ I := (−1,1), are orthogonal with

respect to the weight function wα,β (x) = (1− x)α(1+ x)β ; namely,

∫

I

J (α,β)
m (x)J (α,β)

n (x)wα,β(x) d x = 0, if m 6= n.

In this paper, we mainly use the Jacobi polynomials with β = 0, and particularly, denote

J (α)n (x) := J (α,0)
n (x) and ̟α(x) = wα,0(x) = (1− x)α. We further assume that they are

normalized so that
∫

I

J (α)m (x)J
(α)
n (x)̟α(x) d x = δmn, (2.1)

where δmn is the Kronecker delta symbol. The Jacobi polynomials {J (α)n } are the eigen-

functions of the Sturm-Liouville problem

L (α)x

�

J (α)n

�

:= −̟−α∂x

�

(1− x2)̟α∂x J (α)n

�

= γ(α)n J (α)n , x ∈ I , (2.2)

with the corresponding eigenvalues γ(α)n = n(n+ α+ 1). Hereafter, we use ∂x to denote

the ordinary derivative d

d x
, and likewise for higher-order ordinary derivatives.

Recall that {J (α)n } satisfy the three-term recurrence relation:

xJ (α)n (x) = anJ
(α)
n−1(x)+ bnJ (α)n (x)+ cnJ

(α)
n+1(x), n≥ 1,

J
(α)
0 (x) =

r

α+ 1

2α+1
, J

(α)
1 (x) =

r

α+ 3

2α+3

�

α+ (α+ 2)x
�

.
(2.3)
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where

an =
2n(n+α)

(2n+α)
p

(2n+α− 1)(2n+α+ 1)
,

bn =
−α2

(2n+α)(2n+α+ 2)
, cn = an+1.

(2.4)

The leading coefficient of J (α)n (x) (i.e., the coefficient of xn) is

k(α)n =

p
2n+α+ 1Γ(2n+α+ 1)

2n+(α+1)/2n!Γ(n+α+ 1)
. (2.5)

Moreover, we have

J (α)n (1) =

p
2n+α+ 1Γ(n+α+ 1)

2(α+1)/2n!Γ(α+ 1)
. (2.6)

2.2. Definition of GSFs

Define the second-order differential operator

Dx := Dx(α, c) =L (α)x +
c2

2
(1− x)

= −(1− x2)∂ 2
x + (α+ (α+ 2)x)∂x +

c2

2
(1− x), x ∈ I ,

(2.7)

where α > −1, c > 0 and L (α)x is defined in (2.2). It is clear that Dx is a strictly positive

self-adjoint operator in the sense that for any u and v in the domain of Dx ,

�Dxu, v
�

̟α
=
�

u,Dx v
�

̟α
,
�Dxu,u

�

̟α
=






p

1+ x∂xu






2

̟α+1
+

c2

2
‖u‖2̟α+1

≥ 0, (2.8)

where for a generic weight function w, (·, ·)w and ‖ · ‖w denote the inner product and

the norm of the weighted space L2
w(I), respectively. Hence, by the Sturm-Louville theory

(cf. [3, 11]), the operator Dx admits a countable and infinite set of bounded, analytical

eigenfunctions, denoted by
�

ϕ(α)n (x ; c)
	∞

n=0, which forms a complete orthogonal system

of L2
̟α
(I). Thus, we have

Dxϕ
(α)
n = χ(α)n ϕ(α)n , n≥ 0, x ∈ I , c ≥ 0, (2.9)

where {χ(α)n := χ(α)n (c)}∞n=0 are the corresponding eigenvalues. We define ϕ(α)n (x ; c) as

the generalized Slepian function of order α and of degree n. Moreover, if c = 0, the eigen-

problem (2.9) is reduced to (2.2), and therefore we have

ϕ(α)n (x ; 0) = J (α)n (x), χ(α)n (0) = γ
(α)
n = n(n+α+ 1). (2.10)

In view of this, the GSFs can be viewed as a generalization of
�

J (α)n

	

, but equipped

with a tuning parameter c. It’s worthwhile to point out that when α = 0, ϕ(α)n (x ; c) is

different from the prolate spheroidal wave functions (cf. [20]), since the latter family is

the eigenfunctions of the operator Dx (α = 0) with c2 x2 in place of c2(1− x)/2.

The following properties can be derived from the general theory of Sturm-Louville

problems (cf. [3,11]). More precisely, for any c > 0 and α > −1, we have



4 J. Zhang and L. Wang

(i)
�

ϕ(α)n

	∞
n=0 are all real, smooth, and form a complete orthonormal system of L2

̟α
(I).

Thus,
∫ 1

−1

ϕ(α)m (x ; c)ϕ(α)n (x ; c)̟α(x) d x = δmn. (2.11)

(ii)
�

χ(α)n

	∞
n=0 are all real, positive, simple and ordered as

0< χ
(α)
0 (c) < χ

(α)
1 (c) < · · ·< χ(α)n (c)< · · · . (2.12)

(iii) ϕ(α)n has exactly n distinct zeros on the interval [−1,1], which lie in (−1,1).

For α > −1 and c > 0, we define the integral operator Q(α)c :

Q(α)c

�

φ
�

(x) =

∫ 1

−1

K
(α)
c (x , t)φ(t)̟α(t) d t, ∀φ ∈ L2

̟α
(I), x ∈ I , (2.13)

where

K
(α)
c (x , t) =

Jα
�

c
p

(1− x)(1− t)
�

�

c
p

(1− x)(1− t)
�α

, (2.14)

and Jα(·) is the Bessel function of the first kind. We find from the asymptotic properties

(cf. [26]):

Jα(z) = O(zα), z→ 0+; Jα(z) = O(z−1/2), z→ +∞.

The kernel function K
(α)
c (x , t) in (2.14) is well-defined for x = t. Moreover, one verifies

that Q(α)c : L2
̟α
(I)→ L2

̟α
(I) is compact.

A remarkable property of the GSFs is that they are the eigenfunctions of Q(α)c .

Theorem 2.1. For any c > 0, the GSFs {ϕ(α)n }∞n=0 are the eigenfunctions of Q(α)c :

Q(α)c [ϕ
(α)
n ] = ν

(α)
n ϕ(α)n , (2.15)

where {ν (α)n := ν (α)n (c)} are the corresponding eigenvalues.

Proof. An essential step is to show that

DxK
(α)
c (x , t) =

J ′α(z)
2zα−1

+
� c2

4
(3− x − t − x t)− α

2

�Jα(z)
zα

= DtK
(α)
c (x , t), (2.16)

where Dx is the differential operator defined in (2.7), and z = c
p

(1− x)(1− t). In this

proof, J ′α (resp. ∂xJα) means the derivative (resp. partial derivative) with respect to z

(resp. x). A direct calculation yields

zαDxK
(α)
c (x , t) = −(1− x2)∂ 2

x Jα(z) + 2x∂xJα(z)

+
�α2(1+ x)

4(1− x)
+

c2

2
(1− x)− α

2

�

Jα(z).
(2.17)
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Using the fact

∂xJα(z) = −
c

2

r

1− t

1− x
J ′α(z), (2.18)

and the property of the Bessel functions (cf. [26]):

J ′′α (z) +
1

z
J ′α(z) +

�

1− α
2

z2

�

Jα(z) = 0, z > 0, α > −1, (2.19)

we find

∂ 2
x Jα(z) =

c2(1− t)

4(1− x)

�

J ′′α (z)−
J ′α(z)

z

�

= − c2(1− t)

4(1− x)

�2

z
J ′α(z) +

�

1− α
2

z2

�

Jα(z)
�

.

(2.20)

Inserting (2.18) and (2.20) into (2.17) leads to the formula for DxK
(α)
c in (2.16). Since

K
(α)
c (x , t) = K

(α)
c (t, x), we interchange x and t, and derive DxK

(α)
c = DtK

(α)
c in (2.16).

We obtain from (2.8)-(2.9) and (2.16) that

χ(α)n

∫ 1

−1

K
(α)
c (x , t)ϕ(α)n (t; c)̟α(t)d t

(2.9)
=

∫ 1

−1

K
(α)
c (x , t)Dtϕ

(α)
n (t; c)̟α(t) d t

(2.8)
=

∫ 1

−1

ϕ(α)n (t; c)DtK
(α)
c (x , t)̟α(t) d t

(2.16)
=

∫ 1

−1

ϕ(α)n (t; c)DxK
(α)
c (x , t)̟α(t) d t

= Dx

∫ 1

−1

K
(α)
c (x , t)ϕ(α)n (t; c)̟α(t) d t,

or equivalently,

Dx

�

Q(α)c [ϕ
(α)
n ]
�

= χ(α)n Q(α)c [ϕ
(α)
n ].

This means Q(α)c [ϕ
(α)
n ] is an eigenfunction of Dx with the corresponding eigenvalue χ(α)n ,

so it must be proportional to ϕ(α)n . We denote the proportional constant by ν (α)n , so (2.15)

follows.

Remark 2.1. Slepian [19] discussed the time-frequency concentration problem on a unit

disk:

γψ(x , y) =

∫

D

eic(xξ+yη)ψ(ξ,η)dξdη, c > 0,

where D = {(x , y) : x2 + y2 ≤ 1}. This induces a family of orthogonal functions which

are eigenfunctions of the integral operator:

µφ(r) =

∫ 1

0

Jα(crs)
p

crsφ(s) ds, 0≤ r ≤ 1. (2.21)

Such a family is closely related to the Jacobi polynomials
�

xα+1/2J (α,0)
n (1−2x2)

	

(where

x ∈ (−1,1)). Indeed, by using a suitable transform, we realize that the problem (2.21)

can be converted to an eigen-problem similar to (2.13).
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2.3. Computation of the GSFs and the eigenvalues

Next, we introduce an efficient algorithm for numerical evaluation of the GSFs and

the corresponding eigenvalues.

Since the GSFs are analytic, an efficient approach to use the Jacobi spectral-Galerkin

methods as with the Bouwkamp-type algorithm (cf. [6, 8, 27]). More precisely, for any

fixed n≥ 0, we write

ϕ(α)n (x ; c) =

∞
∑

k=0

βn
k J
(α)
k
(x) , (2.22)

where

βn
k := βn

k (c) =

∫ 1

−1

ϕ(α)n (x ; c)J
(α)
k
(x)̟α(x) d x . (2.23)

Substituting it into (2.9) and using the properties (2.2) and (2.3), we obtain the

following equivalent eigen-problem:

(A−χ(α)n · I)~βn = 0, (2.24)

where ~βn = (βn
0 ,βn

1 ,βn
2 , · · · )t ∈ l2 and A is a symmetric tri-diagonal matrix. The non-zero

entries of A are given by

Ak,k = k(k+α+ 1) + c2(1− bk)/2; Ak,k+1 = Ak+1,k = −c2ak+1/2. (2.25)

The linear system (2.24) involves infinitely many unknowns, so an appropriate truncation

is necessary. Following the rule for the PSWFs in [8], we suggest a cutoff m = 2n+2[α]+

30 for the computation of
�

ϕ
(α)
l
(x ; c),χ

(α)
l
(c)
	n

l=0. Notice that ϕ(α)n is sufficiently smooth,

so this could lead to a very accurate evaluation for c (feasible for approximating general

functions in L2
̟α
(I)).
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x
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−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

x

↑c=0

↓c=0

↑c=12

Figure 2.1: Graph of ϕ(α)7 (x; c) with c = 0,8,12. Left: α = 0.5. Right: α = 0.

In Figure 2.1, we plot several samples of GSFs, and see that as c increases the GSFs

oscillate more and more uniformly. Such a behavior is analogous to the PSWFs (see,

e.g., [7]).

Now, we turn to the evaluation of the eigenvalues {ν (α)n (c)} of the integral operator

(2.13). The computation is based on the following explicit formula.
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Theorem 2.2. For any α > −1 and c > 0,

ν (α)n (c) =
2

1−α
2 βn

0p
α+ 1Γ(α+ 1)ϕ

(α)
n (1; c)

, (2.26)

where βn
0 is the first expansion coefficient given by (2.23).

Proof. By Formula (9.1.10) of [1],

Jα(z) =
zα

2α

¨

1

Γ(α+ 1)
− z2

4Γ(α+ 2)
+O(z4)

«

, α > −1.

Thus, by (2.13)-(2.15),

ν (α)n ϕ(α)n (x ; c) =
1

2αΓ(α+ 1)

∫ 1

−1

ϕ(α)n (t; c)̟α(t) d t

− c2(1− x)

2α+2Γ(α+ 2)

∫ 1

−1

ϕ(α)n (t; c)̟α+1(t) d t +O((1− x)2).

Letting x → 1− leads to

ν (α)n ϕ(α)n (1; c) =
1

2αΓ(α+ 1)

∫ 1

−1

ϕ(α)n (t; c)̟α(t) d t

(2.23)
=

1

2αΓ(α+ 1)

∞
∑

k=0

βn
k

∫ 1

−1

J
(α)
k
(t)̟α(t) d t

(2.1)
=

βn
0

2αΓ(α+ 1)

∫ 1

−1

J
(α)
0 (t)̟α(t) d t

(2.3)
=

2
1−α

2 βn
0p

α+ 1Γ(α+ 1)
.

Notice that ϕ(α)n (1; c) 6= 0 (refer to Property (iii) below (2.12)), so we have (2.26).

In Figure 3.1 (left), we depict the distribution of ν (α)n (c) with α = 0.5 and for

n ∈ [0,100], and c ∈ [0,60], which shows that for fixed c, the eigenvalues decay ex-

ponentially with respect to n. Intuitively, |βn
0 | must be sufficiently small for large n, since

ϕ(α)n is analytic. A quantitative analysis will be conducted in the forthcoming section.

3. Properties of the GSFs and the eigenvalues

In this section, we derive more properties of the GSFs and the associated eigenvalues

{χ(α)n } and {ν (α)n }.
Theorem 3.1. For any α > −1 and c > 0,

n(n+α+ 1)< χ(α)n (c) < n(n+α+ 1) + c2, n≥ 0. (3.1)
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Proof. Differentiating (2.9) with respect to c yields

∂x

�

(1− x)α+1(1+ x)∂x∂cϕ
(α)
n

�

+
�

χ(α)n (c)−
c2

2
(1− x)

�

̟α∂cϕ
(α)
n

=
�

c(1− x)− ∂cχ
(α)
n (c)

�

̟αϕ
(α)
n .

Multiplying the above equation by ϕ(α)n , and integrating the resulting equation over

(−1,1), we derive from (2.9) and integration by parts that

c

∫ 1

−1

(1− x)[ϕ(α)n (x ; c)]2̟α(x)d x − ∂ χ
(α)
n (c)

∂ c

=

∫ 1

−1

n

∂x

�

(1− x)α+1(1+ x)∂x∂cϕ
(α)
n (x ; c)

�

+
�

χ(α)n (c)−
c2

2
(1− x)

�

̟α∂cϕ
(α)
n (x ; c)

o

ϕ(α)n (x ; c)d x

=

∫ 1

−1

n

∂x

�

(1− x)α+1(1+ x)∂xϕ
(α)
n (x ; c)

�

+
�

χ(α)n (c)−
c2

2
(1− x)

�

̟αϕ
(α)
n (x ; c)

o

∂cϕ
(α)
n (x ; c)d x = 0,

which, together with (2.11), implies

0<
∂ χ(α)n

∂ c
= c

∫ 1

−1

(1− x)[ϕ(α)n (x ; c)]2̟α(x)d x < 2c

⇒ 0< χ(α)n (c)−χ(α)n (0)< c2.

Since χ(α)n (0) = n(n+α+ 1), the desired result follows.

For 0 < c ≪ 1, the GSF ϕ(α)n (x ; c) turns out to be a small perturbation of the Jacobi

polynomial J (α)n (x), so is the eignvalue χ(α)n (c) (a direct consequence of (3.1)). The

following estimate follows from a perturbation method as described in [19], and a sketch

of the proof is given in Appendix A for the readers’ reference.

Lemma 3.1. For any α > −1 and 0< c≪ 1,

ϕ(α)n (x ; c) = J (α)n (x)+O(c2); χ(α)n (c) = γ
(α)
n +O(c2), n≥ 0. (3.2)

With the aid the above lemma, we can show that the sequence {ν (α)n (c)} is strictly

decreasing with respect to n.

Theorem 3.2. For any α > −1 and c > 0,

ν (α)n (c)> ν
(α)
n+1(c)> 0, n= 0,1,2, · · · . (3.3)
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Proof. It is enough to verify this ordering for sufficiently small c. Indeed, if (3.3) is

true for 0< c≪ 1, and if there exists a positive constant c̃ > c that violates this ordering,

then we can find c < c∗ < c̃ such that ν (α)n (c∗) = ν
(α)
n+1
(c∗). This contradicts to the fact that

�

ν (α)n

	

are distinct.

To this end, we assume that 0 < c≪ 1, and carry out the proof by using Lemma 3.1.

Differentiating (2.15) with respect to x gives

ν (α)n ∂xϕ
(α)
n (x ; c) =

∫ 1

−1

ϕ(α)n (t; c)̟α(t)∂xK
(α)
c (x , t) d t, (3.4)

and

ν
(α)
n+1
∂xϕ

(α)
n+1
(x ; c) =

∫ 1

−1

ϕ
(α)
n+1
(t; c)̟α(t)∂xK

(α)
c (x , t)d t. (3.5)

It’s clear that

∂xK
(α)
c (x , t) = ∂tK

(α)
c (x , t). (3.6)

Multiplying (3.4) by ϕ
(α)
n+1̟α and integrating the resulting equation over (−1,1), we

derive from (3.6) that

ν (α)n

∫ 1

−1

∂xϕ
(α)
n ϕ

(α)
n+1̟αd x

=

∫ 1

−1

�

∫ 1

−1

ϕ(α)n (t; c)̟α(t)∂xK
(α)
c (x , t)d t

�

ϕ
(α)
n+1(x ; c)̟α(x)d x

(3.6)
=

∫ 1

−1

�

∫ 1

−1

ϕ(α)n (t; c)̟α(t)∂tK
(α)
c (x , t)d t

�

ϕ
(α)
n+1
(x ; c)̟α(x)d x

=

∫ 1

−1

�

∫ 1

−1

ϕ
(α)
n+1(x ; c)̟α(x)∂tK

(α)
c (x , t)d x

�

ϕ(α)n (t; c)̟α(t)d t

= ν
(α)
n+1

∫ 1

−1

∂xϕ
(α)
n+1ϕ

(α)
n ̟αd x ,

(3.7)

where the last equality is obtained by multiplying (3.5) by ϕ(α)n ̟α, and integrating the

resulting equation over (−1,1). For 0< c≪ 1, we find from (2.1), (2.5) and (3.2) that

∫ 1

−1

∂xϕ
(α)
n ϕ

(α)
n+1̟αd x =

∫ 1

−1

∂x J (α)n J
(α)
n+1̟αd x +O(c2) = O(c2),

and

∫ 1

−1

ϕ(α)n ∂xϕ
(α)
n+1̟αd x =

∫ 1

−1

∂x J
(α)
n+1J (α)n ̟αd x +O(c2) =

(n+ 1)k
(α)
n+1

k
(α)
n

+O(c2)

=
(2n+α+ 2)

p

(2n+α+ 1)(2n+α+ 3)

2(n+α+ 1)
+O(c2)

> n+ 1+
α

2
+O(c2).
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Thus, we can rewrite (3.7) as

ν (α)n (c)− ν (α)n+1(c) = ν
(α)
n (c)






1−

∫ 1

−1
∂xϕ

(α)
n ϕ

(α)
n+1̟αd x

∫ 1

−1
ϕ
(α)
n ∂xϕ

(α)
n+1̟αd x






= ν (α)n (c)

�

1−O(c2)
�

> 0.

This completes the proof.

The rest of this section is to analyze the asymptotic properties of ϕ(α)n and ν (α)n . In

view of (2.23) and (2.26), it is necessary to study the Jacobi expansion coefficients {βn
k
}.

We first derive an explicit upper bound for βn
0 by using an argument in [10].

Lemma 3.2. Denote

qn := q(n;α, c) =
c2

χ
(α)
n

, (3.8)

and let m be a nonnegative integer such that

m(m+α+ 1)<
ln2

2
χ(α)n −

c2

2
. (3.9)

Then for any α≥ 0 and c > 0, we have

|βn
0 | ≤

�qn

2

�m

exp
�2m3 + 3αm2 + 3(c2 −α− 2/3)m

3χ
(α)
n

�

r

α+ 1

2m+ 1
. (3.10)

Proof. Define

An
k =

∫ 1

−1

x kϕ(α)n (x ; c)̟α(x) d x , (3.11)

and ηn :=
qn

2
. To establish (3.10), we first show that

|An
0| ≤ ηm

n |An
m|

m−1
∏

l=0

 

1− c2 + 2l(l +α+ 1)

2χ
(α)
n

!−1

. (3.12)

Rewrite (2.9) as

∂x

�

(1− x2)̟α∂xϕ
(α)
n

�

+χ(α)n

�

1−ηn(1− x)
�

̟αϕ
(α)
n = 0.

Multiplying the above equation by x l and integrating the resulting equation over (−1,1),

leads to

l(l − 1)An
l−2−αlAn

l−1 +
n

χ(α)n −
c2

2
− l(l +α+ 1)

o

An
l +

c2

2
An

l+1 = 0, l ≥ 0, (3.13)

where An
−2 = An

−1 = 0. In particular, we have

n

χ(α)n −
c2

2

o

An
0+

c2

2
An

1 = 0. (3.14)

Without loss of generality, we assume that An
0 > 0 (if An

0 < 0, we just replace An
k

by −An
k

in (3.13)-(3.14)). Observe from (3.9) that for 0 ≤ l ≤ m, the coefficient of An
l

in (3.13)

is positive. Hence, (3.14) implies An
1 < 0. For α≥ 0, we find from (3.13) that
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• if l is even, then An
l−2

,An
l
> 0 and An

l−1
,An

l+1
< 0. Thus, by (3.13),

n

χ(α)n −
c2

2
− l(l +α+ 1)

o

An
l +

c2

2
An

l+1 ≤ 0, 0≤ l ≤ m,

which implies

0< An
l ≤ ηn|An

l+1|
�

1− c2 + 2l(l +α+ 1)

2χ
(α)
n

�−1

.

• if l is odd, then An
l−2

,An
l
< 0 and An

l−1
,An

l+1
> 0. By (3.13),

n

χ(α)n −
c2

2
− l(l +α+ 1)

o

An
l
+

c2

2
An

l+1
≥ 0,

which gives

0< −An
l ≤ ηnAn

l+1

�

1− c2 + 2l(l +α+ 1)

2χ
(α)
n

�−1

.

Consequently, for α≥ 0,

|An
l | ≤ ηn|An

l+1|
�

1− c2 + 2l(l +α+ 1)

2χ
(α)
n

�−1

, 0≤ l ≤ m, (3.15)

which leads to (3.12).

Notice that

1− x ≥ exp(−2x), for 0≤ x ≤ ln 2

2
.

Therefore, under the condition (3.9),

1− c2 + 2l(l +α+ 1)

2χ
(α)
n

≥ exp
�

− c2 + 2l(l +α+ 1)

χ
(α)
n

�

, 0≤ l ≤ m.

This yields

m−1
∏

l=0

 

1− c2 + 2l(l +α+ 1)

2χ
(α)
n

!−1

≤ exp
�

∑m−1

l=0 (c
2 + 2l(l +α+ 1))

χ
(α)
n

�

= exp
�2m3 + 3αm2 + 3(c2 −α− 2

3
)m

3χ
(α)
n

�

.

(3.16)

Next, we obtain from (2.11) and (3.11) that for α≥ 0,

|An
m| ≤ ‖xm‖̟α‖ϕ(α)n ‖̟α ≤

r

2α+1

2m+ 1
. (3.17)

Moreover, by (2.11), (2.23) and (3.11),

βn
0 = J

(α)
0

An
0 =

r

α+ 1

2α+1
An

0. (3.18)

A combination of (3.12) and (3.16)-(3.18) leads to the desired result (3.10).
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Remark 3.1. Suppose that

0< qn < 1 and m = O
�

(χ(α)n )
1/3� = O(n2/3).

Then we deduce from (3.10) that |βn
0 | decays exponentially with respect to n.

We have the following upper bound for |βn
k
| involving |β k

0 |, which together with

Lemma 3.2, will play an essential role for the analysis of GSF approximation in the pro-

ceeding section.

Lemma 3.3. Let βn
k

be the Jacobi expansion coefficient defined in (2.23), and let qn and m

be the same as in Lemma 3.2. If 0< qn < 1, then for α > −1, c > 0 and 0≤ k ≤ m,

|βn
k | ≤

�

Cα

qn

�k

|βn
0 | with Cα =

2(α+ 2)2

α+ 1
. (3.19)

Proof. The (k+ 1)th equation of the system (2.24) can be written as

βn
k+1 =

2

ak+1

�

− 1

qn

�

1− k(k+α+ 1)

χ
(α)
n

�

+
1

2
− bk

2

�

βn
k −

ak

ak+1

βn
k−1, (3.20)

for k ≥ 0 (with βn
−1 = 0).

Using (2.4), one verifies that for α > −1 and k ≥ 1,

2(α+ 1)

(α+ 2)2
≤ 2k(k+α)

(2k+α)2
< ak <

2k(k+α)

(2k+α)(2k+α− 1)
, (3.21)

and

0≤ −bk ≤ −b1 =
α2

(α+ 2)(α+ 4)
< 1. (3.22)

Next, we prove (3.19) by induction. Using (3.20) with k = 0, we derive from (3.21)

and the fact 0< qn < 1 that

|βn
1 | =

2

a1qn

|(α+ 1)qn− 2(α+ 2)|
2(α+ 2)

|βn
0 | ≤

4

a1qn

|βn
0 | ≤

Cα

qn

|βn
0 |.

Recalling that qn < 1, we find from (3.9) that for k ≤ m

qn

2
−
�

1− k(k+α+ 1)

χ
(α)
n

�

< −1

2
+

ln2

2
< 0. (3.23)

Assuming that (3.19) is true for k and k−1 (with k ≥ 1), we deduce from (3.20), (3.21)

and (3.23) that for k ≤ m

|βn
k+1
| ≤ 2

ak+1qn

|qn

2
−
�

1− k(k+α+ 1)

χ
(α)
n

�

− bkqn

2
||βn

k
|+ ak

ak+1

|βn
k−1
|

=
2

ak+1qn

�

1− k(k+α+ 1)

χ
(α)
n

− qn

2
− bkqn

2

�

|βn
k
|+ ak

ak+1

|βn
k−1
|

≤ (α+ 2)2

(α+ 1)qn

�

1− k(k+α+ 1)

χ
(α)
n

��Cα

qn

�k|βn
0 |+

ak

ak+1

�Cα

qn

�k−1|βn
0 |

=
�Cα

qn

�k+1|βn
0 |
(

1

2
− k(k+α+ 1)

2χ
(α)
n

+
akq2

n

2ak+1C2
α

)

.

(3.24)
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In view of (3.1), the summation in the curly brackets is bigger than 0 for all 1 ≤ k ≤ m,

so it suffices to show it is less than 1, that is, to prove

ak

ak+1

≤ (α+ 2)4

2(α+ 1)2
≤ C2

α

q2
n

, 1≤ k ≤ m, α > −1. (3.25)

We first consider the case with k = 1. A direct calculation by using (2.4) yields

a1

a2

=
(α+ 1)(α+ 4)

p

(α+ 3)(α+ 5)

2(α+ 2)2
p

(α+ 1)(α+ 3)
<
(α+ 4)2

2(α+ 2)2
.

Hence, it is enough to verify

f (α) := (α+ 2)3− (α+ 1)(α+ 4)> 0, α > −1,

which holds, since f (−1) = 1 and f ′(α)> 0 for all α > −1. We next turn to the verifica-

tion of (3.25) with k ≥ 2. Indeed, by (3.21),

ak

ak+1

<
k(k+α)(2k+α+ 2)2

(k+ 1)(k+α+ 1)(2k+α− 1)(2k+α)
<
�2k+α+ 2

2k+α− 1

�2 ≤
�α+ 6

α+ 3

�2

.

Thus, it suffices to show

(α+ 3)(α+ 2)2−p2(α+ 1)(α+ 6)> 0, α >−1.

Once again, it can be verified by simple calculus.

The induction is then completed by (3.24) and (3.25).

In the sequel, we study the asymptotic behavior of the GSFs and the eigenvalues

ν (α)n (c) with large n. For this purpose, we first establish the explicit asymptotic formulas

for the expansion coefficients βn
n+k

in (2.23) with k = 0,±1 by using the inverse power

method (cf. [18]). Basically, we solve the eigen-problem (2.24) with A being the 3× 3

symmetric tri-diagonal matrix, whose main diagonal is

�

An−1,n−1,An,n,An+1,n+1

�

,

and the upper off-diagonal is
�

An−1,n, An,n+1

�

,

where the entries Ai, j are given by (2.25). Using the standard inverse power method, we

can obtain a good approximation of βn
n+k

(k = 0,±1) and χ(α)n for large n :

�

β̃n
n−1, β̃n

n , β̃n
n+1

�t ≃ �βn
n−1,βn

n ,βn
n+1

�t
, χ̃(α)n (c) ≃ χ(α)n (c).

Hereafter, the notation A≃ B means that for B 6= 0, the ratio A/B→ 1 in certain limiting

process.
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Proposition 3.1. For fixed c > 0,α > −1 and large n,

βn
n±k = β̃

n
n±k +O

� c2

n3

�

, k = 0,1; χ(α)n (c) = χ̃
(α)
n (c) +O

� c2

n3

�

, (3.26)

where

β̃n
n = 1− c4

64n2
, β̃n

n−1 = −
c2

8n
+α

c2

16n2
, β̃n

n+1 =
c2

8n
− (α+ 2)

c2

16n2
, (3.27)

and

χ̃(α)n (c) = n(n+α+ 1) +
c2

2
+

c2
�

c2 + 4α2
�

32n2
. (3.28)

Consequently, we have

ϕ(α)n (x ; c)≃ βn
n−1J

(α)
n−1
(x)+ βn

n J (α)n (x)+ β
n
n+1J

(α)
n+1
(x). (3.29)

Remark 3.2. In theory, this approach can be applied to find the asymptotic formulas for

βn
k

with |k− n| > 1, but the symbolic computation is very tedious. Moreover, as pointed

out in [18], such a procedure is somehow heuristic and the rigorous proof is lengthy and

elementary.

As a consequence of Lemma 3.2 and Proposition 3.1, we have the following asymp-

totic bound for ν (α)n (c) with large n.

Corollary 3.1. If 0< qn = c2/χ(α)n < 1, then for α≥ 0, c > 0 and n≫ 1,

ν (α)n (c)≤ Cm−1/2n−(α+1/2)(qn/2)
m, (3.30)

where m= O(n2/3) and C is a positive constant independent of m and n.

Proof. Using (2.6), (3.29) and the Stirling’s formula

Γ(x)≃p2πx x−1/2e−x , ∀x ≫ 1, (3.31)

we obtain that

ϕ(α)n (1; c)≃ J (α)n (1)≃
nα+1/2

2α/2Γ(α+ 1)
, n≫ 1. (3.32)

Taking m = O(n2/3) such that the condition (3.9) holds, we obtain (3.30) from (2.26),

(3.10) and (3.32).

As a numerical illustration of the asymptotic formula (3.26)-(3.27), we plot in Figure

3.1 (right) the approximation error log10

�

max
|k|≤1
|βn

n+k
− β̃n

n+k
|/c2
�

against log10 n for α =

−0.5,0 and various c, which verifies the expected rate of convergence O(n−3).
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Figure 3.1: Left: Profiles of log10(ν
(α)
n
) for various n ∈ [0,100] and c ∈ (0,60] with α = 0.5.

Right: Decay of the error: log10

�

max
|k|≤1
|βn

n+k
− β̃n

n+k
|/c2
�

with n ∈ [20,160], c = 1,5,10 and

α =−0.5,0.

4. Approximation by GSFs

In this section, we study the approximability of GSFs, and derive the approximation

errors with explicit dependence on the tuning parameter c.

Hereafter, let N be the set of all non-negative integers. For N ∈ N, we consider the

approximation of function u ∈ L2
̟α
(I) by the truncated GSF series:

(π
(α)
N ,cu)(x) =

N
∑

n=0

û(α)n ϕ
(α)
n (x ; c), (4.1)

where

û(α)n := û(α)n (c) =

∫ 1

−1

u(x)ϕ(α)n (x ; c)̟α(x) d x . (4.2)

To describe the approximation errors, we introduce the weighted Sobolev space H r
̟α
(I)

with r ∈ N, defined as in [2], whose norm and semi-norm are denoted by ‖ · ‖r,̟α and

| · |r,̟α , respectively. In particular, L2
̟α
(I) = H0

̟α
(I) with the norm ‖ · ‖̟α . We also use

the non-uniformly weighted Sobolev space:

Br
̟α
(I) :=

n

u : ∂ k
x u ∈ L2

̟α+k
(I), 0≤ k ≤ r

o

, (4.3)

equipped with the norm and semi-norm:

‖u‖Br
̟α
=
�

r
∑

k=0

‖∂ k
x u‖2̟α+k

�1/2
, |u|Br

̟α
= ‖∂ r

x u‖̟α+r
.

Roughly speaking, the truncation error ‖π(α)N u − u‖̟α can be characterized by the

decay rate of |û(α)N |, as stated below. It should be pointed out that the argument is similar

to that for the PSWFs in [10], but the following analysis is subtler.



16 J. Zhang and L. Wang

Theorem 4.1. For α ≥ 0 and c > 0, let qN = c2
�

χ
(α)
N and assume that u ∈ Br

̟α
(I) with

r ≥ 0.

• If 0< qN < 1, then we have

�

�û
(α)
N

�

�≤ D
�

N−2r/3‖∂ r
x u‖̟α+r

+
� qNp

2

�δN2/3

‖u‖̟α
�

. (4.4)

• Given ln2 < c0 < 1, let q∗ be the root of x = 2c0e−2x . If 0 < qN < q∗, then there

exists 0< pN ≤ c0 < 1 such that

�

�û
(α)
N

�

�≤ D
�

N−r‖∂ r
x u‖̟α+r

+ (pN )
δN‖u‖̟α

�

. (4.5)

Here, D and δ are positive generic constants independent of N and u.

Proof. Let M be a positive integer to be specified later, and let uM be the truncated

Jacobi series:

uM (x) =

M
∑

k=0

g
(α)
k

J
(α)
k
(x), g

(α)
k
=

∫ 1

−1

u(x)J
(α)
k
(x)̟α(x)d x

Rewrite û
(α)
N as

û
(α)
N =

∫ 1

−1

(u(x)− uM (x))ϕ
(α)
N (x ; c)̟α(x)d x +

∫ 1

−1

uM (x)ϕ
(α)
N (x ; c)̟α(x)d x . (4.6)

Next, we estimate the two terms separately. Firstly, using the Cauchy-Schwartz inequality

and (2.11), we derive from the fundamental Jacobi approximation result (see, e.g., [9]

or Theorem 2.1 in [13]) that

�

�

�

∫ 1

−1

(u− uM )ϕ
(α)
N ̟αd x

�

�

�≤ ‖u− uM‖̟α‖ϕ
(α)
N ‖̟α ≤ DM−r‖(1− x2)r/2∂ r

x u‖̟α . (4.7)

On the other hand, using the orthogonality and Lemma 3.3, we treat the second term as

�

�

�

∫ 1

−1

uMϕ
(α)
N ̟αd x

�

�

�≤
�

�

�

M
∑

k=0

g
(α)
k

∫ 1

−1

J
(α)
k
ϕ
(α)
N ̟αd x

�

�

�

≤
�

M
∑

k=0

�

g
(α)
k

�2
�

1

2
�

M
∑

k=0

�

∫ 1

−1

J
(α)
k
ϕ
(α)
N ̟αd x

�2� 1

2

≤ ‖u‖̟α
�

M
∑

k=0

�

βN
k

�2
�

1

2 ≤
�

M
∑

k=0

�Cα

qN

�2k� 1

2 |βN
0 |‖u‖̟α

≤
p

M + 1
�Cα

qN

�M |βN
0 |‖u‖̟α .

(4.8)
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To prove (4.4), we take m = O
�

(χ
(α)
N )

1/3
�

= O(N2/3) in Lemma 3.2 (note: this m

verifies the condition (3.9), and the exponential factor in (3.10) is uniformly bounded),

and derive from (3.10) that for α ≥ 0 and c > 0,

|βN
0 | ≤

Dp
m

�qN

2

�m

. (4.9)

We choose M = O(m) and find a constant 0< γ < 1 such that

M

m
=

ln
p

2+ γ ln
p

2

qN

ln
Cα
qN

⇔ 1p
2

�Cα

qN

�
M

m
=
� qNp

2

�−γ
. (4.10)

To illustrate the existence of γ, we take γ = 1

4
for simplicity and define

f (yN ) :=
ln
p

2+ γ ln yN

ln
Cαp

2
+ ln yN

, (4.11)

where yN :=
p

2

qN
∈ (p2,+∞). By using simple calculus, we can verified that

5 ln
p

2

4 ln Cα
= f (
p

2)< f (yN )< f (+∞) = 1

4
, (4.12)

since f ′(yN ) > 0. In view of (4.12), M

m
is uniformly bounded. We take M = O(m) =

O(N2/3). Hence, a combination of (4.8), (4.9) and (4.10) leads to

�

�

�

∫ 1

−1

uMϕ
(α)
N ̟αd x

�

�

�≤ D
�Cα

qN

�M�qN

2

�m‖u‖̟α = D
�qN

2

�Cα

qN

�
M

m
�m‖u‖̟α

(4.10)
= D

� qNp
2

� 3

4
m‖u‖̟α ≤ D

� qNp
2

�δN2/3

‖u‖̟α ,

where δ = 3

4
τ with τ = N2/3/m. Thus, (4.4) follows from (4.6), (4.7) and the above

estimate.

Now, we turn to the proof of (4.5). We derive from (3.10) that for every m satisfying

(3.9),

|βN
0 | ≤

Dp
m

�qN

2

�m

exp
�2m3 + 3αm2 + 3c2m

3χ
(α)
N

�

= D
pm

Np
m

, (4.13)

where we denoted by

pN :=
qN

2
exp
�2m2+ 3αm+ 3c2

3χ
(α)
N

�

. (4.14)

It is clear that 0< pN ≤ c0 < 1, if and only if

m
�

m+
3

2
α
�

<
3

2
χ
(α)
N ln

2c0

qN

− 3

2
c2 and 0< qN < q∗, (4.15)
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where q∗ = 2c0e−q∗ with ln2< c0 < 1. Moreover, one verifies readily that when 0< qN <

q∗, we have

q3
N e2qN < 4c3

0 ⇔ ln 2

2
χ
(α)
N −

c2

2
<

3

2
χ
(α)
N ln

2c0

qN

− 3

2
c2. (4.16)

We choose m to be the largest positive integer such that

m
�

m+
3

2
(α+ 1)

�

≤ ln2

2
χ
(α)
N −

c2

2
, (4.17)

which guarantees (3.9) and (4.15). Similar to (4.10)-(4.12), we can find a constant

0< γ̄ < 1, and choose M such that when 0< qN < q∗,

M

m
= γ̄

ln 1

pN

ln
Cα
qN

⇔
�Cα

qN

�
M

m
= pN

−γ̄. (4.18)

Once again, by the same argument in (4.12), we can take M = O(m) = O(N). Thus, by

(4.8), (4.13) and (4.18),

�

�

�

∫ 1

−1

uMϕ
(α)
N ̟αd x

�

�

�≤ D
�Cα

qN

�M

pm
N ‖u‖̟α = D

�

pN

�Cα

qN

� M

m
�m‖u‖̟α

= Dp
(1−γ̄)m
N ‖u‖̟α = DpδN

N ‖u‖̟α .
(4.19)

where δ = (1− γ̄)τ̄ with τ̄ = m/N . Finally, the estimate (4.5) follows from (4.6), (4.7)

and (4.19).

Remark 4.1. Notice that the root of x = 2e−x is approximately q̃ ≈ 0.8524. Roughly, if

qN < q̃, the estimate (4.5) holds.

Notice that the conditions in Theorem 4.1 involve χ
(α)
N and c, while it is more desir-

able to express them in terms of the ratio κ = c/N . By (3.1),

1+
α+ 1

N
<
κ2

qN

< 1+
α+ 1

N
+ κ2, ∀N ≥ 1, (4.20)

which implies the for N ≫ 1,

κ :=
κ2

1+ κ2
≤ qN < κ

2. (4.21)

Hence, qN sits in the interval [κ,κ), but it seems implausible to obtain an explicit rela-

tion between qN and κ. Here, we just provide in Table 4.1 some samples of κ and the

corresponding numerical approximations of qN with α= 0.5 and N = 128.

In what follows, we provide some numerical examples to demonstrate the conver-

gence behavior of approximation by GSFs.
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Table 4.1: Samples of κ and qN .

κ= 0.5 κ= 1 κ= 1.2 κ= 1.268 κ= 1.5

κ qN κ qN κ qN κ qN κ qN

0.200 0.222 0.500 0.654 0.590 0.807 0.615 0.8524 0.692 0.976

In the first example, we consider the GSF approximation of u(x) = sin(3πx)exp(5x).

In Figure 4.1(left), we plot log10(|û(α)N |) (with α = 0) against N , and observe an expo-

nential decay of |û(α)N |, when qN meets the condition for (4.5). However, |û(α)N | grows fast

as qN gets close to 1. We also find that in general, |û(α)N | decays faster when c ≈ N .

In the second example, we test u(x) = (x − a)7/5esin x with a = 0,1, which has a

finite regularity in the space Br
̟α
(I) (cf. (4.3)). It follows from Theorem 4.1 that if a = 1

and qN satisfies the condition for (4.5), then we have |û(α)N | = O
�

N ǫ−(14/5+α+1)
�

for any

0 < ǫ≪ 1. We plot in in Figure 4.1(right), log10(|û(α)N |) (with α = 0.5) against log10(N).

The slopes are slightly smaller than the theoretical prediction when qN ≤ 0.8524 (cf.

Remark 4.1) or c ≈ 1.268N (cf. Table 4.1). Once again, we find that c ≈ N is a good

choice.
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Figure 4.1: Left (Example 1): log10(|û(α)N |) against N ∈ [8,64] with α = 0 and
qN = 0,0.22,0.65,0.81,0.87,0.93,0.98. Correspondingly, we have c = κN with κ =

0,0.5,1,1.2,1.3,1.4,1.5. Right (Example 2 with a = 1): log10(|û(α)N |) against log10(N) with
α = 0.5 and qN = 0,0.22,0.65,0.81,0.8524,0.93,0.96, 0.99. Correspondingly, c ≈ κN with
κ= 0,0.5,1,1.2,1.268,1.4,1.47,1.56.

We still test the second example with a = 0,1, but fix c = N and choose α = 0,0.5,1.

In Figure 4.2 (left), we take a = 0 in the second example. It is predicted by Theorem

4.1 that |û(α)N | behaves like O
�

N ǫ−19/10
�

. As expected, we observe almost the same decay

rate for different α. In contrast, if a = 1, the decay rate O
�

N ǫ−(19/5+α)
�

varies with α, as

depicted in Figure 4.2 (right).
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Figure 4.2: log10(|û(α)N |) against log10(N) with N ∈ [32,192] and c = N . Left: Example 2 with
a = 0. Right: Example 2 with a = 1.

A. Proof of Lemma 3.1

Following the general perturbation scheme in [19], we expand the eigen-pair in series

of c2 :

ϕ(α)n (x ; c) = J (α)n (x)+

∞
∑

j=1

c2 jQn, j(x ,α); χ(α)n (c) = γ
(α)
n +

∞
∑

j=1

c2 j an, j(α), (A.1)

where γ(α)n = χ(α)n (0) (cf. (2.10)), and

Qn, j(x ,α) =

j
∑

k=− j

Bk,n( j,α)J
(α)
n+k
(x), (A.2)

with the convectional choice B0,n = 0. Let L (α)x and Dx be the Sturm-Liouville operators

associated with J (α)n and ϕ(α)n , respectively, as defined in Section 2:

L (α)x = −̟−α∂x

�

(1− x2)̟α∂x

�

, Dx =L (α)x +
c2

2
(1− x). (A.3)

Hence, substituting the expansion (A.1) into

Dxϕ
(α)
n (x ; c) = χ(α)n (c)ϕ

(α)
n (x ; c), n≥ 1, (A.4)

equating to zero the coefficients of distinct powers of c2, we find the equation corre-

sponding to the coefficient of c2 is

�L (α)x − γ(α)n

�

Qn,1 +
1

2
(1− x)J (α)n − an,1J (α)n = 0. (A.5)
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Hence, using L (α)x J (α)n = γ(α)n J (α)n , the property (2.3) and (A.2), we find that

B1,n =
en

γ
(α)
n+1 − γ(α)n

=
(n+ 1)(n+α+ 1)

(2n+α+ 2)2
p

(2n+α+ 1)(2n+α+ 3)
,

an,1 = dn =
−α2

2(2n+α)(2n+α+ 2)
+

1

2
,

and B−1,n =
encn

γ
(α)
n−1 − γ(α)n

=
−n(n+α)

(2n+α)2
p

(2n+α− 1)(2n+α+ 1)
= −B1,n−1,

(A.6)

where en and dn are defined in (2.25). In view of B0,n = 0, we obtain that

ϕ(α)n (x ; c) = J (α)n (x)+ c2
�

B−1,nJ
(α)
n−1(x)+ B1,nJ

(α)
n+1(x)

�

+O(c4), (A.7)

and

χ(α)n (c) = γ
(α)
n + c2an,1+O(c4). (A.8)

This ends the proof.
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