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The first purpose of this paper is to provide further illustrations, from both theoretical
and numerical perspectives, for the nonconvergence of h-refinement in hp-approximation
by the prolate spheroidal wave functions (PSWFs), a surprising convergence property
that was first discovered by Boyd et al. (2013) [3]. The second purpose is to offer
a new basis that leads to prolate-collocation systems with condition numbers independent
of (c, N), the intrinsic bandwidth parameter and the number of collocation points. We
highlight that the collocation scheme together with a very practical rule for pairing
up (c, N) significantly outperforms the Legendre polynomial-based method (and likewise
other Jacobi polynomial-based methods) in approximating highly oscillatory bandlimited
functions.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The prolate spheroidal wave functions of order zero (PSWFs) provide an optimal tool for approximating bandlimited
functions (whose Fourier transforms are compactly supported), and appear superior to polynomials in approximating nearly
bandlimited functions (cf. [37]). PSWFs also offer an alternative to Chebyshev and Legendre polynomials for pseudospec-
tral/collocation and spectral-element algorithms, which enjoy a “plug-and-play” function by simply swapping the cardinal
basis, collocation points and differentiation matrices (cf. [4,7,39,3]). With an appropriate choice of the underlying tunable
bandwidth parameter c, PSWFs exhibit some advantages: (i) Spectral accuracy can be achieved on quasi-uniform com-
putational grids; (ii) Spatial resolution can be enhanced by a factor of π/2; and (iii) The resulted method relaxes the
Courant–Friedrichs–Lewy (CFL) condition related to an explicit time-stepping scheme. Boyd et al. [3, Table 1] provided an
up-to-date review of recent developments since the series of seminal works by Slepian et al. [31,21,29].

While PSWFs enjoy some unique properties (e.g., being bandlimited and orthogonal over both a finite and an infinite
interval), they are anyhow a non-polynomial basis, and therefore might lose certain capabilities of polynomials, when they
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are used for solving partial differential equations (PDEs). This can be best testified to by the nonconvergence of h-refinement
in prolate-element methods, which was discovered by Boyd et al. [3] through simply examining hp-prolate approximation
of the trivial function u(x) = 1. Indeed, PSWFs lack some properties of polynomials which are important for efficient spec-
tral algorithms. Therefore, a naive extension of existing algorithms to this setting might be unsatisfactory or fail to work
sometimes, so the related numerical issues are worthy of investigation.

The purpose of this paper is to have new insights into spectral algorithms using PSWFs as basis functions. The main
contributions reside in the following aspects.

• We establish an hp-error bound for a PSWF-orthogonal projection. As a by-product, this provides further illustrations,
from an approximation theory viewpoint, for the nonconvergence of h-refinement in hp-approximation. We also present
more numerical results to demonstrate this surprising convergence behavior observed by Boyd et al. [3].

• We offer a new PSWF basis of dual nature.
Firstly, it produces a matrix that nearly inverts the second-order prolate pseudospectral differentiation matrix, in the
sense that their product is approximately an identity matrix for large N (see (5.9)). Consequently, it can be used as
a preconditioner for the usual prolate-collocation scheme, leading to well-conditioned collocation linear systems. We
remark that the idea along this line is mimic to the integration preconditioning (see e.g., [17,11,33]), and also related
to the polynomial-based spectral algorithms in e.g., [9,13,38,15,14]. However, the PSWFs lack some properties of poly-
nomials, so the procedure here is different from that for the polynomials.
Secondly, under the new basis, the matrix of the highest derivative in the collocation linear system is an identity matrix,
and the resulted linear system is well-conditioned. In contrast with the preconditioning technique, this does not involve
the differentiation matrices, so the round-off errors in forming differentiation matrices can be alleviated.
It is noteworthy that the non-availability of a quadrature rule exact for products of PSWFs, makes the PSWF-Galerkin
method less attractive. We believe that the proposed well-conditioned collocation approach might be the best choice.

• We propose a practical approximation to Kong–Rokhlin’s rule (see [19]) for pairing up (c, N), and demonstrate that the
collocation scheme using this rule significantly outperforms the Legendre polynomial-based method when the underly-
ing solution is bandlimited. For example, the portion of discrete eigenvalues of the prolate differentiation matrix that
approximates the eigenvalues of the continuous operator to 12-digit accuracy is about 87% against 25% for the Legendre
case (see Section 3.2). Similar advantages are also observed in solving Helmholtz equations with high wave numbers in
heterogeneous media (see Section 5.3).

This paper is organized as follows. In Section 2, we review some basic properties of PSWFs, and the related quadrature
rules, cardinal bases and differentiation matrices. In Section 3, we introduce Kong–Rokhlin’s rule for pairing up (c, N), and
study the discrete eigenvalues of the second-order prolate differentiation matrix. In Section 4, we establish the hp-error
bound for a PSWF-projection and explain the nonconvergence of h-refinement in prolate-element methods. In Section 5,
we introduce a new PSWF-basis which leads to well-conditioned collocation schemes. We also propose a collocation-based
prolate-element method for solving Helmholtz equations with high wave numbers in heterogeneous media. The last section
is for extensions and concluding remarks.

2. PSWFs and prolate pseudospectral differentiation

In this section, we review some relevant properties of the PSWFs, and introduce the quadrature rules, cardinal basis and
prolate differentiation matrices.

2.1. Prolate spheroidal wave functions

The PSWFs arise from two contexts: (i) in solving the Helmholtz equation in prolate spheroidal coordinates by separation
of variables (see e.g., [1]), and (ii) in studying time-frequency concentration problem (see [31]). As highlighted in [31],
“PSWFs form a complete set of bandlimited functions which possesses the curious property of being orthogonal over a given finite
interval as well as over (−∞,∞).”

Firstly, PSWFs, denoted by ψn(x; c), are eigenfunctions of the singular Sturm–Liouville problem:

Dc
x[ψn] := −∂x

((
1 − x2)∂xψn(x; c)

) + c2x2ψn(x; c) = χn(c)ψn(x; c), (2.1)

for x ∈ I := (−1,1), and c � 0. Here, {χn(c)}∞n=0, are the corresponding eigenvalues, and the positive constant c is dubbed
as the “bandwidth parameter” (see Remark 2.3). PSWFs are complete and orthogonal in L2(I) (the space of square integrable
functions). Hereafter, we adopt the conventional normalization:

1∫
−1

ψn(x; c)ψm(x; c)dx = δmn :=
{

1, m = n,

0, m �= n.
(2.2)
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The eigenvalues {χn(c)}∞n=0 (arranged in ascending order), have the property (cf. [37]):

χn(0) < χn(c) < χn(0) + c2, n � 0, c > 0. (2.3)

Asymptotically, for fixed c and large n, we have (cf. [26, (64)]):

χn(c) = n(n + 1) + c2

2
+ c2(4 + c2)

32n2

(
1 − 1

n
+ O

(
n−2)). (2.4)

Remark 2.1. Note that when c = 0, (2.1) reduces to the Sturm–Liouville equation of the Legendre polynomials. Denote the
Legendre polynomials by Pn(x), and assume that they are orthonormal. Then we have ψn(x;0) = Pn(x) and χn(0) = n(n+1).

Secondly, Slepian et al. (cf. [31,30]) discovered that PSWFs coincidentally arise from the study of time-frequency concen-
tration problems. Define the integral operator related to the finite Fourier transform:

Fc[φ](x) :=
1∫

−1

eicxtφ(t)dt, ∀c > 0, (2.5)

where i = √−1 is the complex unit. Remarkably, the differential and integral operators are commutable: Dc
x ◦Fc =Fc ◦Dc

x .
This implies that PSWFs are also eigenfunctions of Fc , namely,

inλn(c)ψn(x; c) =
1∫

−1

eicxτψn(τ ; c)dτ , x ∈ I, c > 0. (2.6)

The corresponding eigenvalues {λn(c)} (modulo the factor in) are all real, positive, simple and ordered as

λ0(c) > λ1(c) > · · · > λn(c) > · · · > 0, c > 0. (2.7)

We have the following uniform upper bound (cf. [32, (2.14)]):

λn(c) <

√
πcn(n!)2

(2n)!Γ (n + 3/2)
, n � 1, c > 0, (2.8)

where Γ (·) is the Gamma function.

Remark 2.2. As demonstrated in [32], the upper bound in (2.8) provides a fairly accurate approximation to λn(c) for a wide
range of c, n of interest.

Remark 2.3. Recall that a function f (x) defined in (−∞,∞), is said to be bandlimited, if its Fourier transform F (ω), defined
by

F (ω) =
∞∫

−∞
f (x)eiωx dx, (2.9)

has a finite support (cf. [31]), that is, F (ω) vanishes when |ω| > σ > 0. Then f (x) can be recovered by the inverse Fourier
transform

f (x) = 1

2π

σ∫
−σ

F (ω)e−iωx dω. (2.10)

One verifies from (2.6) and the parity: ψn(−x; c) = (−1)nψn(x; c) (see [31]) that

ψn(x; c) = in

cλn(c)

c∫
−c

ψn

(
ω

c
; c

)
e−iωx dω. (2.11)

Hence, the PSWF ψn is bandlimited to [−c, c], and c is therefore called the bandwidth parameter. However, its counterpart
Pn(x) is not bandlimited. Indeed, we have the following formula (see [12, p. 213]):
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1∫
−1

Pn(ω)e−iωx dω = (−i)n(2n + 1)

√
π

2

Jn+1/2(x)√
x

, (2.12)

where Jn+1/2 is the Bessel function (cf. [1]). This implies Jn+1/2(x)/
√

x is bandlimited, as its Fourier transform is
Pn(ω)χI (ω) (up to a constant multiple), where χI is the indicate function of (−1,1). Since a function and its Fourier
transform cannot both have finite support, Pn(x) is not bandlimited.

The PSWFs provide an optimal tool for approximating bandlimited functions (see e.g., [31,30,37,19]). On the other hand,
being the eigenfunctions of a singular Sturm–Liouville problem (cf. (2.1)), the PSWFs offer a spectral basis on quasi-uniform
grids with spectral accuracy (see e.g., [4,7,20,32,39,34,3]). However, the PSWFs are non-polynomials, so they lack some
important properties that make the naive extension of polynomial algorithms to PSWFs unsatisfactory or fail to work some-
times. For example, Boyd et al. [3] demonstrated the nonconvergence of h-refinement in prolate elements, which turns out
to be in distinctive contrast with Legendre polynomials. In addition, we observe that for any

ψm,ψn ∈ V c
N := span{ψn: 0 � n � N}, (2.13)

we have

∂xψn /∈ V c
N−1;

∫
ψn dx /∈ V c

N+1; ψn · ψm /∈ V c
2N , c > 0. (2.14)

These will bring about some numerical issues to be addressed later.

Remark 2.4. In what follows, we might drop c and simply denote the PSWFs by ψn(x), and likewise for the eigenvalues,
whenever no confusion might cause.

2.2. Quadrature rules and grid points

The conventional choice of grid points for pseudospectral and spectral-element methods, is the Gauss–Lobatto points.
The quadrature rule using such a set of points has the highest degree of precision (DOP) for polynomials. For example,
let {ξ j,ρ j}N

j=0 (with ξ0 = −1 and ξN = 1) be the Legendre–Gauss–Lobatto (LGL) points (i.e., zeros of (1 − x2)P ′
N(x)) and

quadrature weights. Then we have

1∫
−1

Pn(x)dx =
N∑

j=0

Pn(ξ j)ρ j, 0 � n � 2N − 1. (2.15)

It is also exact for all Pn · Pm ∈ P2N−1 (the set of all algebraic polynomials of degree at most 2N − 1), namely,

1∫
−1

Pn(x)Pm(x)dx =
N∑

j=0

Pn(ξ j)Pm(ξ j)ρ j, 0 � n + m � 2N − 1.

Such an exactness is essential for the superior accuracy of spectral/spectral-element methods based on the Galerkin formu-
lation.

The choice of computational grids for the PSWFs is subtle, largely due to (2.14). The pursuit of the highest DOP leads
to the generalized Gaussian quadrature (see e.g., [8,37,4,24]). In particular, the generalized prolate-Gauss–Lobatto (GPGL)
quadrature in [4] is based on the fixed points: x0 = −1, xN = 1, and the interior quadrature points {x j}N−1

j=1 and weights

{ω j}N
j=0 being determined by

1∫
−1

ψn(x)dx = ψn(−1)ω0 +
N−1∑
j=1

ψn(x j)ω j + ψn(1)ωN , 0 � n � 2N − 1. (2.16)

Another choice is the prolate-Lobatto (PL) points (see [20,5] and [37,23] for prolate-Gaussian case), which are zeros of
(1 − x2)∂xψN (x) (still denoted by {x j}N

j=0). The corresponding quadrature weights {ω j}N
j=0 are determined by

1∫
−1

ψn(x)dx =
N∑

j=0

ψn(x j)ω j, 0 � n � N, (2.17)

which is exact for {ψn}N .
n=0



L.-L. Wang et al. / Journal of Computational Physics 268 (2014) 377–398 381
Remark 2.5. It is noteworthy that in the Legendre case (i.e., c = 0), the quadrature rules (2.16) and (2.17) are identical.

Remark 2.6. In view of (2.14), the GPGL quadrature (2.16) is not exact for ψn · ψm with 0 � m + n � 2N − 1. This makes the
spectral-Galerkin method using PSWFs less attractive. On the other hand, when it comes to prolate pseudospectral/colloca-
tion approaches, we find there is actually very subtle difference between two sets of points (also see [7]). Moreover, much
more effort is needed to compute the GPGL points, so in what follows, we just use the PL points.

2.3. Prolate differentiation matrices

With the grid points at our disposal, we now introduce the cardinal (or nodal) basis. Here, we have two different routes
to define the prolate cardinal basis once again due to (2.14).

Let {x j}N
j=0 be the PL points. The first approach searches for the cardinal basis hk(x) := hk(x; c) ∈ V c

N such that

hk(x j) = δ jk, 0 � k, j � N. (2.18)

To compute the basis functions, we write

hk(x) =
N∑

n=0

tnkψn(x), (2.19)

and determine the coefficients {tnk} from (2.18). More precisely, introducing the (N + 1)2 matrices:

Ψ jk = ψk(x j), Ψ
(m)

jk = ψ
(m)

k (x j), T nk = tnk, D(m)

jk = h(m)

k (x j), (2.20)

we have Ψ T = I N+1, so T = Ψ −1. Thus, the mth-order differentiation matrix is computed by

D(m) = Ψ (m)Ψ −1, m � 1. (2.21)

The second approach is to define

lk(x) = s(x)

s′(xk)(x − xk)
, 0 � k � N with s(x) = (

1 − x2)∂xψN(x). (2.22)

Then one verifies readily that

lk(x j) = δ jk, 0 � k, j � N. (2.23)

Different from the previous case, the so-defined {lk}N
k=0 � V c

N for c > 0. The differentiation matrix D̂
(m)

with the entries

D̂
(m)

jk = l(m)

k (x j) for 0 � k, j � N can be computed by directly differentiating the cardinal basis in (2.22). We provide in

Appendix A the explicit formulas for computing the entries of D̂
(1)

and D̂
(2)

, which only involve the function values
{ψN(x j)}N

j=0.

3. Study of eigenvalues of the prolate differentiation matrix

The appreciation of eigenvalue distribution of spectral differentiation matrices is important in many applications of
spectral methods (see e.g., [35,36]). For example, for the second-order differentiation matrix, we are interested in the answer
to the question: to what extent can the discrete eigenvalues approximate those of the continuous operator accurately?

With this in mind, we first introduce the Kong–Rokhlin’s rule in [19] for pairing up (c, N) that guarantees high accuracy
in numerical integration and differentiation of bandlimited functions, but it requires computing the eigenvalue λN of the
integral equation (2.6). In this section, we first propose a practical mean for its implementation. We demonstrate that with
the choice of (c, N) by this rule, the portion of discrete eigenvalues of the prolate differentiation matrix that approximates
the eigenvalues of the continuous operator to 12-digit accuracy is about 87% against 25% for the Legendre case. This implies
that the polynomial interpolation cannot resolve the continuous spectrum, while the PSWF interpolation has significant
higher resolution.

3.1. Kong–Rokhlin’s rule

An important issue related to the PSWFs is the choice of bandlimit parameter c. As commented by [4], the so-called
“transition bandwidth”:

c∗(N) = π
(

N + 1
)

, (3.1)

2 2
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turned out to be very crucial for asymptotic study of PSWFs and all aspects of their applications. In fact, when c is close
to c∗(N), ψN (x; c) behaves like the trigonometric function cos([π/2]N(1 − x)), so it’s nearly uniformly oscillatory. However,
when c > c∗(N), ψN (x; c) transits to the region of the scaled Hermite function, so it vanishes near the endpoints x = ±1.
In other words, the PSWFs with c > c∗(N) lose the capability of approximating general functions in (−1,1). Therefore, the
feasible bandwidth parameter c should fall into [0, c∗(N)). However, this range appears rather loose, as many numerical
evidences showed the significant degradation of accuracy when c is close to c∗(N).

A conservative bound was provided in [34] (which improved that in [7]):

0 < qN := c√
χN

<
1

6
√

2
≈ 0.8909. (3.2)

Note that qN ≈ 1, if c = c∗(N). In practice, a quite safe choice is c = N/2 (see e.g., [7,32]).
From a different perspective, Kong and Rokhlin [19] proposed a useful rule for pairing up (c, N). The starting point is

a prolate quadrature rule, say (2.17). We know from [37] that it has the accuracy for the complex exponential eicax:∣∣∣∣∣
1∫

−1

eicax dx −
N∑

j=0

eicax j ω j

∣∣∣∣∣ = O (λN). (3.3)

Furthermore, for a bandlimited function of bandwidth c, defined by

f (x) =
1∫

−1

φ(t)eicxt dt, for some φ ∈ L2(−1,1),

we have (see [37, Remark 5.1])∣∣∣∣∣
1∫

−1

f (x)dx −
N∑

j=0

f (x j)ω j

∣∣∣∣∣ � ε‖φ‖, (3.4)

where ε is the maximum error of integration of a single complex exponential as in (3.3). In view of this, Kong and
Rokhlin [19] suggested the rule: given c and an error tolerance ε, choose the smallest N∗ = N∗(c, ε) such that

λN∗(c) � ε � λN∗−1(c). (3.5)

In what follows, we introduce a very practical mean to implement this rule approximately, which does not require
computing the eigenvalues {λN }. We first use the property n! = Γ (n + 1) and the formula (see [1, (6.1.38)]):

Γ (x + 1) = √
2π xx+ 1

2 exp

(
−x + θ

12x

)
, x > 0, θ ∈ (0,1), (3.6)

to derive a more explicit upper bound of λN in (2.8):

√
πcN(N!)2

(2N)!Γ (N + 3/2)
�

√
πe

2

(
ec

4

)N(
N + 1

2

)−(N+1/2)

e1/(6N) := νN (c). (3.7)

We now replace λN in (3.5) by νN . Accordingly, given a tolerance ε > 0, we look for N∗ satisfying the equation: νN∗ (c) = ε.
Taking the common log on both sides of this equation, we are able to convert the problem of finding N∗ to locate the root
of the algebraic equation: Fε(x; c) = 0 where

Fε(x; c) := x log
ec

4
−

(
x + 1

2

)
log

(
x + 1

2

)
+ 1

6x
+ log

1

ε
+ 1

2
log

πe

2
, x � 1. (3.8)

One verifies that F ′
ε(x; c) < 0 for slightly large x, and F ′′

ε (x; c) < 0 (see Fig. 3.1 (left)). Moreover, Fε(1; c) > 0 and Fε(∞; c) <

0, so Fε(x; c) = 0 has a unique root x∗ . Then we set N∗ = [x∗] (i.e., the integer part of x∗).

Remark 3.1. Note that νN (c) provides a fairly accurate approximation to λN(c) (cf. [32]) and λN∗ decays exponentially with
respect to N∗ , so we have λN∗ ≈ ε ≈ λN∗−1. In fact, Boyd et al. [3] listed some other approximations to λN (c), which might
be employed here as well.

We compare in Table 3.1 the approximate approach with the “exact” approach in [19], and very similar performance is
observed. In Fig. 3.1 (middle), we depict the ratio λN∗/ε for various c, which are all constant and become smaller for as c
increases. We also see from Fig. 3.1 (right) that N∗ roughly grows linearly with respect to c.
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Table 3.1
A comparison of the pairs (c, N∗) obtained by the approximate approach and (c, N) obtained by the Kong–Rokhlin’s rule [19], where ε = 10−14.

c N∗ λN∗ N∗ [19] λN∗ [19] c N∗ λN∗ N∗ [19] λN∗ [19]

10 24 1.77e−14 26 8.54e−16 100 94 2.79e−15 96 8.25e−16
20 34 5.96e−15 36 8.54e−16 200 163 8.00e−16 164 7.49e−16
40 50 8.79e−15 52 1.78e−15 400 299 5.20e−16 294 2.69e−15
80 79 1.10e−14 82 7.57e−16 800 571 1.57e−16 554 7.73e−16

Fig. 3.1. Graphs of Fε(x; c) for some c given in the legend (left). The ratio λN∗ /ε (middle) and the pair (c, N∗) (right) for several samples of c. In all cases,
ε = 10−14.

3.2. Eigenvalues of the second-order prolate differentiation matrix

Consider the model eigen-problem:

Find (μ, u) such that u′′(x) = μu(x), x ∈ (−1,1); u(±1) = 0, (3.9)

which admits the eigen-pairs (μk, uk):

μk = −k2π2

4
, uk(x) = sin

kπ(x + 1)

2
, k � 1. (3.10)

The corresponding discrete eigen-problems are

Find (μ̃, ũ) such that D(2)

in ũ = μ̃ũ; or Find (μ̂, û) such that D̂
(2)

in û = μ̂û. (3.11)

Here, D(2)

in and D̂
(2)

in are obtained by deleting the first and last rows and columns of D(2) and D̂
(2)

, respectively. Recall that

D(2) and D̂
(2)

are the differentiation matrices associated with two different ways of forming nodal basis functions, see (2.19)
and (2.22), respectively.

We examine the relative errors:

ẽ j := |μ̃ j − μ j|
|μ j| , ê j := |μ̂ j − μ j|

|μ j| , 1 � j � N − 1.

In the computation, (c, N) is paired up by the approximate Kong–Rokhlin’s rule (i.e., through finding the root, see (3.8))
with ε = 10−14. We plot in Fig. 3.2 the relative errors between the discrete and continuous eigenvalues of the prolate
differentiation matrices with c = 120π and N = 284, compared with those of the Legendre differentiation matrix at the
Legendre–Gauss–Lobatto (LGL) points. Among 283 eigenvalues of D(2)

in , 245 (approximately 87%) are accurate to at least 12
digits with respect to the exact eigenvalues, while only 72 (approximately 25%) of the Legendre case are of this accuracy. A

very similar number of accurate eigenvalues is also obtained from D̂
(2)

in .

Remark 3.2. Some remarks are in order.

• As shown in [35] for the Legendre case, a portion 2/π of the eigenvalues approximate the eigenvalues of the continuous
operator with one or two digit accuracy (about 180 among 283). The errors in the remaining ones are large, which
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Fig. 3.2. The relative errors {ẽ j}N−1
j=1 (left) and {ê j}N−1

j=1 (right), obtained by c = 120π , ε = 10−14 and N = 284. The prolate differentiation matrices D(2)

in (left,

marked by “�”) and D̂
(2)

in (right, marked by “�”), against the Legendre case (marked by “◦”).

Fig. 3.3. The relative errors {ẽ j}N−1
j=1 (left) and {ê j}N−1

j=1 (right) for (3.12) with c = 120π , ε = 10−14 and N = 284. The prolate differentiation matrices D(2)

in

(left, marked by “�”) and D̂
(2)

in (right, marked by “�”), against the Legendre case (marked by “�”).

cannot be resolved by polynomial interpolation even on spectral grids. However, the prolate interpolation significantly
improves the portion to around 95%. We point out that the portion is about 1/3 for piecewise linear finite elements
(refer to [41] for a review).

• We remark that the usual prolate differentiation scheme under the approximate Kong–Rokhlin’s rule behaves very simi-
larly to the new differentiation scheme proposed by Kong and Rokhlin [19], which however is based on a Gram–Schmidt
orthogonalization of certain modal basis.

We next consider the eigen-problem involving the Bessel operator:

u′′(r) + 1

r
u′(r) − 1

r2
u(r) = μu(r), r ∈ (0,1); u(0) = u(1) = 0. (3.12)

The exact eigenvalues are μk = −τ 2
k , k � 1, where each τk is a root of the Bessel function J1(·). We adopt the same

computational setting as for Fig. 3.2, and the relative errors are depicted in Fig. 3.3. Among 283 (discrete) eigenvalues,
245 are accurate to at least 12 digits with respect to the exact eigenvalues. In comparison, there are only 111 eigenvalues
produced by Legendre collocation method that are within the same accurate level.

We demonstrate in Fig. 3.4 the growth of the magnitude of the largest and smallest eigenvalues of D(2)

in and D̂
(2)

in ,
compared with the Legendre case, where (c, N) is once again paired up by the approximate Kong–Rokhlin’s rule. We observe
a much slower growth of the largest eigenvalue, so the condition number of the differentiation matrix is much smaller.
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Fig. 3.4. Growth of the magnitude of the largest and smallest eigenvalues of D(2)

in (left) and D̂
(2)

in (right) at the PL points (c �= 0) against the Legendre case
at the LGL points (c = 0).

4. On nonconvergence of h-refinement in prolate elements

As already mentioned, one purpose of this paper is to provide further illustrations, from both theoretical and numerical
point of views, for the nonconvergence of h-refinement in prolate-element methods, a surprising property revealed by Boyd
et al. [3].

We first introduce the notation and setting for hp-approximation by PSWFs. For simplicity, we partition the interval
Ω := (a,b) uniformly into M non-overlapping subintervals, that is,

Ω̄ =
M⋃

i=1

Ī i, Ii := (ai−1,ai), ai = a + ih, h = b − a

M
, 1 � i � M. (4.1)

Note that the mapping between Ii and the reference interval Iref := (−1,1) is given by

x = h

2
y + ai−1 + ai

2
= hy + 2a + (2i − 1)h

2
, x ∈ Ii, y ∈ Iref. (4.2)

For any u(x) defined in Ω , we denote

u|x∈Ii = uIi (x) = û Ii (y), x = hy + 2a + (2i − 1)h

2
∈ Ii, y ∈ Iref. (4.3)

Hereafter, for a generic interval Λ, let Hs(Λ) with s � 0 be the usual Sobolev space with the norm ‖ ·‖Hs(Λ) as in Admas [2].
In particular, for s = 0, we denote the L2-norm by ‖ · ‖L2(Λ) .

Let π̂ c
N be the L2(Iref)-orthogonal projector upon V c

N = span{ψn: 0 � n � N}, given by

(
π̂ c

N û
)
(y) =

N∑
n=0

ûn(c)ψn(y; c) with ûn(c) =
∫

Iref

û(y)ψn(y; c)dy. (4.4)

Define the approximation space

Xc
h,N = {

v ∈ H1(Ω): v|Ii (x) = v̂ Ii (y) ∈ V c
N , 1 � i � M

}
. (4.5)

Let π c
h,N : H1(Ω) → Xc

h,N be a mapping, assembled by(
π c

h,N u
)∣∣

Ii
(x) = (

π̂ c
N û Ii

)
(y), 1 � i � M, (4.6)

where by definition, we have

(
π c

h,N u
)∣∣

Ii
(x) =

N∑
n=0

û Ii
n (c)ψn(y; c) with û Ii

n (c) =
∫

û Ii (y)ψn(y; c)dy. (4.7)
Iref



386 L.-L. Wang et al. / Journal of Computational Physics 268 (2014) 377–398
Fig. 4.1. Illustration of nonconvergence of h-refinement in prolate elements. Maximum point-wise errors against h with N = 2, c = 0,0.5 (left), and N = 4,
c = 0,1 (right).

To describe the errors, we introduce the broken Sobolev space:

H̃σ (a,b) = {
u: uIi ∈ Hσ (Ii), 1 � i � M

}
, σ � 1, (4.8)

equipped with the norm and semi-norm

‖u‖H̃σ (a,b) =
(

M∑
i=1

∥∥uIi
∥∥2

Hσ (Ii)

) 1
2

, |u|H̃σ (a,b) =
(

M∑
i=1

∥∥∂σ
x uIi

∥∥2
L2(Ii)

) 1
2

.

The hp-approximability of π c
h,N u to u is stated in the following theorem.

Theorem 4.1. Let π c
h,N be the projector defined in (4.6). For any constant q∗ < 1, if

c√
χN

� q∗
6
√

2
≈ 0.8909q∗, (4.9)

then for any u ∈ H̃σ (a,b) with σ � 1, we have

∥∥π c
h,N u − u

∥∥
L2(a,b)

� D

{√
N

(
h

N

)σ

|u|H̃σ (a,b) + 1√
δ ln(1/q∗)

(q∗)δN‖u‖L2(a,b)

}
, (4.10)

where D and δ are positive constants independent of u, N and c.

To be not distracted from the main result, we postpone its proof to Appendix B.

Remark 4.1. Some remarks are in orders.

• Observe from (4.10) that the second term in the upper bound is independent of h. This implies that for fixed N (e.g.,
N = 2,3), the refinement of h does not lead to any convergence in h, as the second term dominates. For the example,
u(x) = 1, considered in [3], the first term of the upper bound vanishes, so (4.10) indicates no gain in order of h, but the
error decays exponentially as N grows.

• This should be in contrast with the Legendre approximation (see e.g., [6,18]), for which we have

∥∥π0
h,N u − u

∥∥
L2(a,b)

� D

(
h

N

)σ

|u|H̃σ (a,b). (4.11)

• For fixed c, the estimate in (4.10) appears sub-optimal due to the factor
√

N . It can be improved to the optimal order
by applying [32, Theorem 3.3] to (B.1), but the norm in the upper bound will depend on c implicitly.
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Table 4.1
Performance of the prolate-element method with c = N/4 and the Legendre spectral-element method.

h N(c �= 0)

2 3 4 6 8 16

1/2 8.98E − 02 4.76E − 03 1.98E − 04 1.97E − 06 4.91E − 08 1.03E − 13
1/4 6.90E − 03 4.32E − 04 7.27E − 05 1.84E − 06 4.77E − 08 7.60E − 12
1/8 2.80E − 03 3.52E − 04 4.47E − 05 1.12E − 06 2.94E − 08 1.27E−12
1/16 3.30E − 03 3.93E − 04 3.21E − 05 8.58E − 07 2.31E − 08 3.16E−12

h N(c �= 0)

2 3 4 6 8 16

1/2 5.97E − 01 7.17E − 03 6.60E − 04 1.35E − 06 3.35E − 09 5.91E−12
1/4 3.79E − 02 3.00E − 04 1.08E − 05 5.89E − 09 7.99E−12 6.26E−12
1/8 2.37E − 03 1.06E − 05 1.71E − 07 8.98E−11 7.29E−12 1.52E−11
1/16 1.48E − 04 3.45E − 07 2.68E − 09 4.24E−11 2.22E−11 3.26E−11

We next provide some numerical illustrations for the nonconvergence in h-refinement. Consider the prolate-element
method for the equation:

−(
1 + x2)u′′(x) − (2x + sin x)u′(x) + u(x) = f (x), x ∈ (0,1),

u(0) = 0, u(1) = u1, (4.12)

where u1 and f (x) are computed from the exact solution: u(x) = (x + 1)α sin(πx/2) with α = 13/3. The prolate-element
scheme is based on swapping the points, cardinal basis and differentiation matrices in the standard Legendre spectral-
element method (see e.g., [25,5]).

In Fig. 4.1, we plot the maximum point-wise errors against h with fixed N = 2,4 for the prolate and Legendre spectral-
element methods. It clearly shows that the prolate elements do not have h-refinement convergence, as opposite to its
counterpart.

We tabulate in Table 4.1 the maximum point-wise errors of two methods with various h, N . For fixed N , nonconvergence
is observed by refining h for the prolate-element method. Benefited from h-convergence, the Legendre approach appears
more accurate for small h and fixed N . However, from the viewpoint of p-version (e.g., for h = 1/2), the prolate-element
method slightly outperforms the Legendre method.

5. A well-conditioned prolate-collocation method

In this section, we propose a well-conditioned prolate-collocation method for second-order boundary value problems
(BVPs). The essential piece of the puzzle is to construct a new basis with dual nature. Firstly, this basis generates a matrix,

denoted by B in, such that the eigenvalues of B in D(2)

in and B in D̂
(2)

in are nearly concentrated around one. In other words, the
matrix B in is approximately the “inverse” of the second-order differentiation matrix. Therefore, the matrix B in is a nearly
optimal preconditioner, leading to a well-conditioned prolate-collocation linear system. Secondly, using the new basis, the
matrix of the highest derivative in the linear system of the usual collocation scheme is identity and the condition number
of the whole linear system is independent of N and c. In this section, we focus on second-order BVPs, but the idea can be
extended to higher-order BVPs (see Section 6).

5.1. New basis

Let {βk(x) := βk(x; c)}N
k=0 be a set of functions in an (N + 1)-dimensional space to be specified shortly, which satisfies

the conditions:

β0(−1) = 1, β ′′
0 (x j) = 0, 1 � j � N − 1, β0(1) = 0;

βk(−1) = 0, β ′′
k (x j) = δ jk, βk(1) = 0, 1 � j,k � N − 1;

βN(−1) = 0, β ′′
N(x j) = 0, 1 � j � N − 1, βN(1) = 1, (5.1)

where {x j} are the PL points.
If we look for {βk}N

k=0 ⊆ V c
N = span{ψn: 0 � n � N}, then (5.1) is associated with a generalized Birkhoff interpolation

problem: Given u ∈ C2(−1,1), find p ∈ V c
N such that

p(−1) = u(−1); p′′(x j) = u′′(x j), 1 � j � N − 1; p(1) = u(1). (5.2)
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We can express the interpolant as

p(x) = u(−1)β0(x) +
N−1∑
k=1

u′′(xk)βk(x) + u(1)βN(x). (5.3)

The basis {βk} for (5.2) can be computed by writing βk(x) = ∑N
k=0 αnkψn(x), and solving the coefficients by the interpolation

conditions. However, this process requires the inversion of a matrix as ill-conditioned as Ψ (2) and D(2) , which is apparently
unstable even for slightly large N . However, this approach works for the Legendre and Chebyshev cases (see [33]), thanks
to some properties of orthogonal polynomials (but unfortunately, not available for the PSWFs).

Remark 5.1. The Birkhoff interpolation is typically considered in the polynomial setting (see [22,10,40]). Unlike the Lagrange
and Hermite interpolation, it does not interpolate the function and its derivative values consecutively at every point. For
example, in (5.2), the data u(x j) and u′(x j) are not interpolated at the interior point x j .

In what follows, we search for the basis {βk} and the interpolant p in a different finite dimensional space other than V c
N .

More precisely, set

β0(x) = 1 − x

2
, βN(x) = 1 + x

2
, (5.4)

and we look for

βk ∈ W c,0
N := span

{
φn: φ′′

n (x) = ψn(x) with φn(±1) = 0, 0 � n � N − 2
}
, (5.5)

for 1 � k � N − 1, which therefore satisfy βk(±1) = 0 in (5.1). Solving the ordinary differential equation in (5.5) directly
leads to

φn(x) = x

x∫
−1

ψn(t)dt −
x∫

−1

tψn(t)dt + 1 + x

2

1∫
−1

(t − 1)ψn(t)dt. (5.6)

Then we compute {βk}N−1
k=1 , by writing

βk(x) =
N−2∑
n=0

αnkφn(x), so β ′′
k (x) =

N−2∑
n=0

αnkψn(x). (5.7)

Thus we can find the coefficients {αnk} by β ′′
k (x j) = δ jk with 1 � k, j � N − 1, that is,

A = Ψ̄
−1

where Ank = αnk, Ψ̄ jn = ψn(x j), (5.8)

for 1 � j,k � N − 1 and 0 � n � N − 2.

Remark 5.2. Like the cardinal basis in (2.19), this process only involves inverting a matrix of PSWF values, rather than their
derivative values. Hence, the operations are very stable even for very large N .

Remark 5.3. It is important to point out that the use of integrated orthogonal polynomials (e.g., Chebyshev polynomials) as
basis functions for devising well-conditioned spectral algorithms can be traced back to Clenshaw [9] in late 1950s. Alter-
natively, one could cast a differential equation into an integral equation, and then directly employs orthogonal polynomials
to expand the unknown (see e.g., [13,38,15,14]). The idea of constructing the basis in (5.5) is actually inspired by these
polynomial-based algorithms, and also by the very similar attempts along the line of collocation/pseudospectral approaches
[17,11,33]. Unlike polynomial cases, we see from (5.6) that we do not use the iterated integration of the PSWFs, but invert
the highest differential operator with homogeneous Dirichlet data to derive the basis.

Define the matrix B with entries B jk = βk(x j) for 0 � k, j � N , and let B in be the (N − 1)2 matrix obtained by deleting
the first and last rows and columns from B . Observe from (5.5)–(5.6) that B in is generated from integration of PSWFs, which
turns out to be an “inverse process” of spectral differentiation in the sense that

D(2)

in B in ≈ I N−1, B in D(2)

in ≈ I N−1, (5.9)

where I N−1 is an (N − 1)2 identity matrix.
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Fig. 5.1. Distribution of the largest and smallest eigenvalues of B in D(2)

in (left) and B in D̂
(2)

in (right) for various N ∈ [4,218] and c = N/2.

Remark 5.4. We give an explanation to (5.9). Let {hk}N
k=0 be the cardinal basis defined in (2.18), and let Ic

N : C[−1,1] → V c
N

be the interpolation operator defined by

(
Ic

N u
)
(x) =

N∑
p=0

u(xp)hp(x), ∀u ∈ C[−1,1].

It is noteworthy that the estimate of the L2-orthogonal projection error is based on a sophisticated analysis of the expansion
coefficient (cf. (B.3) in Appendix B, and [7,34]). However, the bound of the interpolation error Ic

N u − u remains open, when
c > 0. In fact, from the numerical evidences in e.g., [4,7,20], the nodal basis enjoys the approximability of the PSWFs {ψn}.
Formally, we write

β ′′
k (x) ≈ (

Ic
Nβk

)′′
(x) =

N−1∑
p=1

βk(xp)h′′
p(x), 1 � k � N − 1. (5.10)

Roughly speaking, for large N and c satisfying (3.2), max|x|�1 |(Ic
Nβk)

′′ − β ′′
k | should decay exponentially with respect to N

for all k. Indeed, by (5.6)–(5.7), {βk} are analytic functions, as they are linear combinations of PSWFs (which are analytic).
Since βk(x j) = δ jk (cf. (5.1)), letting x = x j in (5.10) leads to the first property in (5.9).

Similarly, by (5.3),

h j(x) ≈
N−1∑
k=1

h′′
j (xk)βk(x), 1 � k � N − 1.

We infer the second property in (5.9) from the approximability of the basis {βk}.

Remark 5.5. The above argument also applies to the cardinal basis {l j} defined in (2.22), so one can replace D(2)

in in (5.9)

by D̂
(2)

in .

We depict in Fig. 5.1 the distribution of the largest and smallest eigenvalues of B in D(2)

in and B in D̂
(2)

in at the PL points. We
see that all their eigenvalues for various N with c = N/2 are confined in [λmin, λmax], which are concentrated around one
for slightly large N . This agrees with (5.9).

5.2. Well-conditioned prolate-collocation methods

Consider the second-order variable coefficient problem:

u′′(x) + p(x)u′(x) + q(x)u(x) = f (x), x ∈ I = (−1,1); u(±1) = u±, (5.11)

where p, q and f are continuous functions. Let {x j}N
j=0 be the PL points as before. Then the usual collocation scheme is:

Find uN ∈ V c
N such that

u′′
N(x j) + p(x j)u′

N(x j) + q(x j)uN(x j) = f (x j), 1 � j � N − 1; uN(±1) = u±. (5.12)
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Under the cardinal basis {hk} defined in (2.18)–(2.19), the prolate-collocation system reads(
D(2)

in + Λp D(1)

in + Λq
)
u = g, (5.13)

where Λp is a diagonal matrix with entries {p(x j)}N−1
j=1 (and likewise for Λq), the unknown vector u = (uN (x1), . . . ,

uN (xN−1))
t , and g is the vector with elements

g j = f (x j) − u−
(
h′′

0(x j) + p(x j)h
′
0(x j)

) − u+
(
h′′

N(x j) + p(x j)h
′
N(x j)

)
, 1 � j � N − 1.

It is known that the system (5.13) is ill-conditioned.
Thanks to (5.9), we precondition the system (5.13):

B in
(

D(2)

in + Λp D(1)

in + Λq
)
u = B in g, (5.14)

which is well-conditioned (see Table 5.1).
On the other hand, one can directly use {βk} as a basis. Different from (5.12), the collocation scheme becomes: Find

v N ∈ W c
N := span{βk: 0 � k � N} such that

v ′′
N(x j) + p(x j)v ′

N(x j) + q(x j)v N(x j) = f (x j), 1 � j � N − 1; v N(±1) = u±. (5.15)

By writing

v N(x) = u−β0(x) +
N−1∑
k=1

wkβk(x) + u+βN(x), (5.16)

the collocation system becomes(
I N−1 + Λp B(1)

in + Λq B in
)

w = h, (5.17)

where w is the vector of unknowns, and the vector h has the components

h j = f (x j) − (
p(x j) + x jq(x j)

)u+ − u−
2

− q(x j)
u+ + u−

2
, 1 � j � N − 1.

Finally, we recover v = (v N (x1), . . . , v N (xN−1))
t —the approximation of the solution, from (5.16):

v = B in w + u−b0 + u+bN , (5.18)

where b0 = (β0(x1), . . . , β0(xN−1))
t and bN = (βN (x1), . . . , βN (xN−1))

t .

Remark 5.6. Compared with (5.14), the system (5.17) does not involve differentiation matrices. However, the unknowns are
not physical values, so an additional step (5.18) is needed to recover the physical values.

Remark 5.7. Similar to the spectral-Galerkin method in [27], an essential idea is to construct an appropriate basis so that the
matrix of the highest derivative becomes diagonal or identity. We refer to [28, p. 160] for the proof of the well-conditioning
of such spectral-Galerkin schemes. However, a rigorous justification in this context appears challenging. Here, we just pro-
vide some intuitions for (5.11) with p = 0 and q = q0 (a constant). Let λmin and λmax be the minimum and maximum
eigenvalues of D(2)

in . By (5.9), the eigenvalues of B in in magnitude are roughly confined in [|λmax|−1, |λmin|−1]. As a re-
sult, the eigenvalues of I N−1 + q0 B in in magnitude approximately fall into the range [1 + q0|λmax|−1,1 + q0|λmin|−1]. Note
that for large N , |λmin| behaves like a constant, while |λmax| grows like O (N4) (see Fig. 3.4). This implies I N−1 + q0 B in is
well-conditioned.

We now provide some numerical examples, and compare the condition numbers between (5.13), (5.14) and (5.17). Con-
sider

u′′(x) − xu′(x) − u(x) = f (x) =
{

0, −1 < x < 0,

−3x2/2, 0 � x < 1,
(5.19)

with the exact solution

u(x) =
{

exp( x2

2 + 1) + exp( x2

2 ), −1 � x < 0,

exp( x2

2 + 1) + x2

2 + 1, 0 � x � 1.
(5.20)

Note that f ∈ C1( Ī) and u ∈ C3( Ī). The linear systems (5.13), (5.14) and (5.17) are neither sparse nor symmetric, so we
solve them by the iterative approach—biconjugated gradient stabilized method. In Table 5.1, we tabulate the condition
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Table 5.1
Performance of PCOL, P-PCOL and N-COL methods.

N PCOL P-PCOL N-PCOL

Cond. Errors Steps Cond. Errors Steps Cond. Errors Steps

4 6.64E + 00 1.40E − 02 3 1.24 1.40E − 02 3 1.25 7.71E − 03 3
6 1.93E + 00 1.30E − 04 7 1.31 1.30E − 04 6 1.49 1.04E − 04 6
8 4.58E + 01 1.29E − 04 8 1.32 1.29E − 04 6 1.59 1.03E − 04 6

10 9.68E + 01 4.19E − 05 11 1.33 4.19E − 05 6 1.66 3.98E − 05 7
12 1.85E + 02 2.01E − 05 14 1.33 2.01E − 05 6 1.70 1.99E − 05 7
14 3.24E + 02 1.12E − 05 14 1.33 1.12E − 05 6 1.72 1.12E − 05 7
16 5.32E + 02 6.78E − 06 23 1.33 6.78E − 06 6 1.74 6.78E − 06 7
32 7.61E + 03 4.80E − 07 69 1.33 4.80E − 07 6 1.82 4.80E − 07 7
64 1.16E + 05 3.20E − 08 271 1.33 3.20E − 08 6 1.86 3.20E − 08 7

128 1.82E + 06 2.14E − 09 1037 1.33 2.07E − 09 6 1.38 2.07E − 09 7
256 2.88E + 07 3.29E − 08 6038 1.33 1.32E − 10 6 1.88 1.32E − 10 7
512 4.60E + 08 8.65E − 04 65 791 1.33 1.21E−11 6 1.89 8.35E−12 7

Fig. 5.2. Maximum point-wise errors for PCOL, P-PCOL and N-PCOL methods. The slope of two lines is approximately −3.95.

numbers, iteration steps, and maximum point-wise errors between the numerical and exact solutions obtained from the
prolate-collocation scheme (5.13) (PCOL), the preconditioned scheme (5.14) (P-PCOL), and the new collocation scheme (5.17)
(N-PCOL), respectively. Here, we choose c = N/2. In Fig. 5.2, we plot the maximum point-wise errors for three schemes.

We see that the last two schemes are well-conditioned and the iterative solver converges in a few steps, so they signif-
icantly outperform the usual prolate-collocation method using the cardinal basis (2.18)–(2.19). Note that the exact solution
u ∈ H4−ε(−1,1) for some ε > 0, so the slope of the line is approximately −3.95 as expected.

5.3. A collocation-based p-version prolate-element method

As already discussed, the prolate-element method does not possess h-refinement convergence, and the Galerkin method
is less attractive due to the lack of accurate quadrature rules for products of PSWFs. We therefore propose a p-version
prolate-element method using the collocation formulation and the new basis {βk}. Here, we particularly apply it to problems
with discontinuous variable coefficients, e.g., the Helmholtz equation in heterogeneous media with high wave numbers.

Consider the model problem:

L[u](x) := −(
p(x)u′(x)

)′ + q(x)u(x) = f (x), x ∈ Ω = (a,b);
u(a) = ua, u(b) = ub. (5.21)

We adopt the same setting as in (4.1)–(4.3). The interval Ω is uniformly partitioned into M non-overlapping subintervals
{Ii = (ai−1,ai)}M

i=1. Recall that the mapping between Ii and the reference interval Iref = (−1,1) is given by

x = h

2
y + ai−1 + ai

2
= hy + 2a + (2i − 1)h

2
, x ∈ Ii, y ∈ Iref. (5.22)

As before, let W c
N = span{βk: 0 � k � N}. Without loss of generality, assume that the same number of points will be

used for each subinterval. Introduce the approximation space
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Fig. 5.3. Maximum point-wise errors of the new prolate- and Legendre spectral-element methods for the example (4.12). The slope of line with c = 0.5 is
approximately −1.99.

Y c
h,N := {

u ∈ H1(Ω): u(x)|x∈Ii = uIi (x) = û Ii (y)|y∈Iref ∈ W c
N , 0 � i � M

}
. (5.23)

Define

φ
Ii
k (x) =

{
βk(y), x = (hy + 2a + (2i − 1)h)/2 ∈ Ii,

0, otherwise,
(5.24)

and at the adjoined points ai , 1 � i � M − 1,

ϕai (x) =
{

(1 + y)/2, x = (hy + 2a + (2i − 1)h)/2 ∈ Ii,

(1 − y)/2, x = (hy + 2a + (2i + 1)h)/2 ∈ Ii+1,

0, otherwise.

(5.25)

Then we have

Y c
h,N := span

{{
φ

I1
k

}N−1
k=0 ,

{
φ

I2
k

}N−1
k=1 , . . . ,

{
φ

IM−1
k

}N−1
k=1 ,

{
φ

IM
k

}N
k=1;

{
ϕai

}M−1
i=1

}
, (5.26)

and the dimension of Y c
h,N is MN + 1.

Let {y j} be the PL points in the reference interval Iref. Then the grids on each Ii are given by

xIi
j = hy j + 2a + (2i − 1)h

2
, 0 � j � N, 1 � i � M. (5.27)

The prolate-element method for (5.21) is: Find v ∈ Y c
h,N such that v(a) = ua , v(b) = ub , and

L[v](xIi
j

) = f
(
xIi

j

)
, 1 � j � N − 1, 1 � i � M, (5.28)

and at the joint points ai ,

b∫
a

{
p(x)v ′(x)

(
ϕai (x)

)′ + q(x)v(x)ϕai (x)
}

dx =
b∫

a

f (x)ϕai (x)dx, 1 � i � M − 1. (5.29)

We see that the scheme is collocated at the interior points in each subinterval, and at the joint points, it is built upon the
Galerkin-formulation for ease of imposing the continuity across elements. As shown in Section 5.2, the interior solvers (5.28)
are well-conditioned, and the differentiation matrices are not involved.

Remark 5.8. As illustrated in Section 4, the prolate-element method using the nodal basis {h j} is not convergent when h is
refined with fixed N . However, it is seen from (5.4) that the hat functions are included in the new basis {βk}, but the basis
cannot represent quadratic polynomials exactly. We therefore expect that {βk} should possess a second-order convergence
in h. With this in mind, we test the method on the same example (4.12) with the same setting as for Fig. 4.1 (left). We
plot in Fig. 5.3 the maximum point-wise errors of both the new prolate-element and Legendre spectral-element methods.
Indeed, we find the rate of convergence is about second-order, while the Legendre method converges at a rate as predicted
in (4.11).
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Fig. 5.4. Maximum point-wise errors of Legendre spectral-element and new prolate-element methods for the Helmholtz equation with exact solution (5.31).
Left: k = 60 and right: k = 100.

We next provide some numerical results to show the performance of the new scheme. We focus on the Helmholtz
equation in a heterogeneous medium:(

c2(x)u′(x)
)′ + k2n2(x)u(x) = 0, x ∈ Ω = (a,b);

u(a) = ua,
(
cu′ − iknu

)
(b) = 0,

u, c2u′ are continuous on Ω, (5.30)

where the wave number k > 0, and c(x), n(x) are piecewise smooth such that

0 < c0 � c(x) � c1, 0 < n0 � n(x) � n1.

Note that c(x) and n(x) represent the local speed of sound and the index of refraction in a heterogeneous medium, respec-
tively.

In the first example, we choose Ω = (0,1), n(x) = 1 and c(x) to be piecewise constant:

c(x) =
{

2, 0 < x < 1/2,

1, 1/2 < x < 1.

Then the problem (5.30) admits the exact solution (cf. [16]):

u(x) =
{

(3 exp(
ik(1+2x)

4 ) + exp(
ik(3−2x)

4 ))/4, 0 < x < 1/2,

exp(ikx), 1/2 < x < 1.
(5.31)

In this case, we partition Ω = (0,1) into two subintervals I1 = (0,1/2) and I2 = (1/2,1).
In Fig. 5.4, we plot the maximum point-wise errors for the usual Legendre spectral-element method and the new

p-version prolate-element method, where (c, N) is paired up by the approximate Kong–Rokhlin’s rule with ε = 10−14 and
samples of c in [2,52]. From Fig. 5.4, a much rapid convergence rate of the new approach is observed for high wave
numbers.

In the second example, we take Ω = (0,1), f (x) = 1 and consider the problem (5.30) with piecewise smooth coefficients
(cf. [16]):

c(x) =
⎧⎨⎩1 + x2, 0 < x < 0.25,

1 − x2, 0.25 < x < 0.5,

1, 0.5 < x < 1,

n(x) =
{1.75 + x, 0 < x < 0.25,

1.25 − x, 0.25 < x < 0.5,

2, 0.5 < x < 1.

Naturally, we partition Ω into four subintervals of equal length. In this case, we do not have explicit exact solution, so we
generate a reference “exact” solution using very fine grids by the new prolate-element method (c, N) = (177,144) (paired
up by the approximate Kong–Rokhlin’s rule again). In Fig. 5.5, we plot the real and image parts of the “exact” solution
(where k = 160) against the numerical solution obtained by very coarse grids with (c, N) = (36,48), which approximates
the highly oscillatory solution with an accuracy about 10−6.

In Fig. 5.6, we make a comparison of convergence similar to that in Fig. 5.4. Here, we sample c ∈ [4,52]. One again,
we observe significantly faster convergence rate for the new approach under the approximate Kong–Rokhlin’s rule (with
ε = 10−14) of selecting (c, N).
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Fig. 5.5. Real part (left) and imaginary part (right) of the reference “exact” solution u computed by (c, N) = (177,144) and k = 160, against the numerical
solution uN of the prolate-element method with (c, N) = (36,48). The maximum point-wise error is 1.19 × 10−6.

Fig. 5.6. Maximum point-wise errors of Legendre spectral-element and new prolate-element methods. Left: k = 100 and right: k = 160.

6. Concluding remarks and discussions

In this paper, we provided further illustrations for nonconvergence of h-refinement in prolate elements, which was first
claimed by Boyd et al. [3]. We also proposed well-conditioned collocation and collocation-based p-version prolate-element
methods using a new PSWF-basis. We demonstrated that the new approach with Kong–Rokhlin’s rule of selecting (c, N) sig-
nificantly outperformed the Legendre polynomial-based method in particular when the underlying solution is bandlimited.
Advantages of our proposals were confirmed in solving the Helmholtz equations with high wave numbers in heterogeneous
media.

The discussions in Section 5 were centered around the second-order BVPs. We conclude this paper with some remarks
on how to devise the new basis for higher-order BVPs.

To fix the idea, we consider a fourth-order problem with given boundary data {u(±1), u′(±1)}. Like (5.4), we set

B−(x) = (2 + x)(1 − x)2

4
, B+(x) = B−(−x),

B̂−(x) = (1 + x)(1 − x)2

4
, B̂+(x) = −B̂−(−x), (6.1)

which are the Hermite interpolation basis polynomials associated with two interpolating points x = ±1. In other words,
letting
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H(x) = u(−1)B−(x) + u(1)B+(x) + u′(−1)B̂−(x) + u′(1)B̂+(x),

we have H(±1) = u(±1) and H ′(±1) = u′(±1). As a direct extension of (5.5), we look for {Bk}N−1
k=1 such that

Bk ∈ Y c,0
N := span

{
ϕn: ϕ

(4)
n (x) = ψn(x) with ϕn(±1) = ϕ′

n(±1) = 0, 0 � n � N − 2
}
, (6.2)

and

Bk(x j) = δkj, 1 � j � N − 1, (6.3)

where {x j} are the PL points as before. To compute the new basis, we solve the fourth-order equation in (6.2), while this
appears slightly more involved than the second-order case. Let us introduce the iterated integral operators:

∂−1
x u(x) =

x∫
−1

u(y)dy, ∂−m
x u(x) = ∂−1

x

(
∂1−m

x u(x)
)
, m � 1.

Define Ψn(x) = ∂−4
x ψn(x), which can be computed straightforwardly from the integrated Legendre polynomials and then

modifying the codes in Boyd [5]. Noting that Ψn(−1) = Ψ ′
n(−1) = 0, we have the basis for Y c,0

N :

ϕn(x) = Ψn(x) − Ψn(1)B+(x) − Ψ ′
n(1)B̂+(x), 0 � n � N − 2.

Then we compute {Bk}N−1
k=1 from {ϕn}N−2

n=0 stably in a fashion very similar to (5.7)–(5.8).

With the new basis {B±, B̂±} ∪ {Bk}N−1
k=1 at our disposal, we are able to design well-conditioned collocation schemes for

fourth-order BVPs as in Section 5.
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Appendix A. Formulas for differentiation matrices

To this end, we derive the explicit formulas involving only function values {ψN (x j)}N
j=0 for computing the entries of the

first-order and second-order differentiation matrices generated from the cardinal basis (2.22).
A direct derivation from (2.22) leads to

l′k(x j) =
⎧⎨⎩

1
x j−xk

s′(x j)

s′(xk)
, if j �= k,

s′′(xk)
2s′(xk)

, if j = k,
(A.1)

where s(x) = (1 − x2)ψ ′
N (x). By (2.1),

s′(x) = (
c2x2 − χN

)
ψN(x), s′′(x) = 2c2xψN(x) + (

c2x2 − χN
)
ψ ′

N(x). (A.2)

As {xk}N−1
k=1 are zeros of ψ ′

N (x), we have

s′′(xk) = 2c2xk ψN(xk), 1 � k � N − 1. (A.3)

Again by (2.1),

ψ ′
N(−1) = −1

2

(
χN − c2)ψN(−1), ψ ′

N(1) = 1

2

(
χN − c2)ψN(1), (A.4)

which, together with (A.2), implies

s′′(−1) = (−2c2 + (
c2 − χN

)2
/2

)
ψN(−1), s′′(1) = (

2c2 − (
c2 − χN

)2
/2

)
ψN(1). (A.5)

Then, (A.1) can be computed by

l′k(x j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

− q2

q2−1
+ χN

4 (q2 − 1), if j = k = 0,

1
x j−xk

q2x2
j −1

q2x2
k −1

ψN (x j)

ψN (xk)
, if j �= k, 0 � j,k � N,

q2xk

q2x2
k −1

, if 1 � j = k � N − 1,

q2

q2−1
− χN

4 (q2 − 1), if j = k = N,

(A.6)

√

where q = c/ χN .
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We now compute the entries of the second-order differentiation matrix. A direct differentiation of s(x) = s′(xk)(x −
xk)lk(x) (cf. (2.22)) yields

s′′(x) = s′(xk)(x − xk)l
′′
k (x) + 2s′(xk)l

′
k(x). (A.7)

Therefore, for j �= k,

l′′k (x j) = 1

x j − xk

{
s′′(x j)

s′(xk)
− 2l′k(x j)

}
, (A.8)

so the off-diagonal entries of D̂
(2)

can be computed from (A.2)–(A.6).

It remains to compute diagonal entries of D̂
(2)

. Differentiating (A.7) and letting x = xk , gives

l′′k (xk) = s′′′(xk)

3s′(xk)
, 0 � k � N.

By (A.2),

s′′′(x) = (
c2x2 − χN

)
ψ ′′

N(x) + 4c2xψ ′
N(x) + 2c2ψN(x). (A.9)

For 1 � k � N − 1, we find from (2.1) and the fact ψ ′
N (xk) = 0 that

ψ ′′
N(xk) = c2x2

k − χN

1 − x2
k

ψN(xk), so s′′′(xk) =
{

2c2 + (c2x2
k − χN)2

1 − x2
k

}
ψN(xk),

which, together with (A.2), gives

l′′k (xk) = s′′′(xk)

3s′(xk)
= 2

3

q2

q2x2
k − 1

+ χN

3

q2x2
k − 1

1 − x2
k

, 1 � k � N − 1. (A.10)

It is seen from (A.9) that the remaining two entries l′′0(−1) and l′′N (1) involve ψ ′′
N (±1), which can also be represented by

ψN(±1). Indeed, differentiating (2.1) and letting x = ±1, leads to

4ψ ′′
N(±1) = ±(

χN − 2 − c2)ψ ′
N(±1) − 2c2ψN(±1),

so by (A.4), ψ ′′
N (±1) is a multiple of ψN (±1). Finally, we get

l′′0(−1) = l′′N(1) = 2q2

3(q2 − 1)
+ 1

24

(
c2 − χN + 1

)2 − 5

6
c2 − 1

24
, (A.11)

where q = c/
√

χN as before.

Appendix B. Proof of Theorem 4.1

We derive from the definition (4.6) that

∥∥π c
h,N u − u

∥∥2
L2(a,b)

=
M∑

i=1

∥∥(
π c

h,N u
)∣∣

Ii
− uIi

∥∥2
L2(Ii)

= h

2

M∑
i=1

∥∥π̂ c
N û Ii − û Ii

∥∥2
L2(Iref)

. (B.1)

Thus, it suffices to estimate L2(Iref)-orthogonal projection error in the reference interval Iref = (−1,1). To do this, we recall
the estimate in [34, Theorem 2.1]: if c/

√
χn � q∗/ 6

√
2, then for any

û ∈ Bσ (Iref) := {
û:

(
1 − y2)k/2

∂k
yû(y) ∈ L2(Iref), 0 � k � σ

}
, σ � 0, (B.2)

we have the estimate for the PSWF expansion coefficient in (4.4):∣∣ûn(c)
∣∣ � D

(
n−σ

∥∥(
1 − y2)σ/2

∂σ
y û

∥∥
L2(Iref)

+ (q∗)δn‖û‖L2(Iref)

)
, n � 1, (B.3)

where D and δ are generic positive constants independent of û, n and c. Then we have the following L2-error estimate for
the orthogonal projection defined in (4.4):∥∥π̂ c

N û − û
∥∥

L2(Iref)
� D

(
N1/2−σ

∥∥(
1 − y2)σ/2

∂σ
y û

∥∥
L2(Iref)

+ 1√
δ ln(1/q∗)

(q∗)δN‖û‖L2(Iref)

)
, (B.4)
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for integer σ � 1. Indeed, by the orthogonality (2.2) and the bound (B.3),

∥∥π̂ c
N û − û

∥∥2
L2(Iref)

=
∞∑

n=N+1

∣∣ûn(c)
∣∣2 � D

{( ∞∑
n=N+1

n−2σ

)∥∥(
1 − y2)σ/2

∂σ
y û

∥∥2
L2(Iref)

+
( ∞∑

n=N+1

(q∗)2δn

)
‖û‖2

L2(Iref)

}
.

Since

∞∑
n=N+1

n−2σ �
∞∫

N

1

x2σ
dx = 1

2σ − 1
N1−2σ , if σ >

1

2
,

and

∞∑
n=N+1

(q∗)2δn �
∞∫

N

(
q2∗

)δx
dx � 1

2δ ln(1/q∗)
(q∗)2δN ,

we obtain (B.4).
One verifies readily from (4.3) that for x ∈ Ii and y ∈ Iref,

∂σ
y û Ii (y) = hσ

2σ
∂σ

x uIi (x),
(
1 − y2)σ = 22σ

(
ai − x

h

)σ (
x − ai−1

h

)σ

� 22σ .

Then applying (B.4) to (B.1) leads to the desired result.
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