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In this paper, an error estimate of spectral approximations by prolate spheroidal wave
functions (PSWFs) with explicit dependence on the bandwidth parameter and optimal
order of convergence is derived, which improves the existing result in [Chen et al., Spectral
methods based on prolate spheroidal wave functions for hyperbolic PDEs, SIAM J. Numer.
Anal. 43 (5) (2005) 1912–1933]. The underlying argument is applied to analyze spectral
approximations of periodic functions by Mathieu functions, which leads to new estimates
featured with explicit dependence on the intrinsic parameter.
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1. Introduction

The PSWFs are a family of special functions arisen from two different contexts. On the one hand, they are eigenfunc-
tions of a Sturm–Liouville equation associated with the method of separation-of-variables for solving elliptic problems in
spheroidal geometry (see, e.g., [8]):((

1 − x2)(ψc
n

)′)′ + (
χ c

n − c2x2)ψc
n = 0, x ∈ (−1,1), c � 0, (1.1)

where ψc
n is referred to as the PSWF of degree n (and of order 0), and χ c

n is the corresponding eigenvalue. On the other
hand, they appear in the study of time-frequency concentration problem (see a series of papers by Slepian et al. [20,13,19]).
As a remarkable coincidence, the PSWFs are the eigenfunctions of an integral equation:

λc
nψ

c
n(x) =

1∫
−1

eicxtψc
n(t)dt, x ∈ (−1,1), c > 0, (1.2)

where c is the bandwidth parameter. The PSWFs have been proven to be an optimal tool for approximating bandlimited
functions (see, e.g., [26,25,18,15]). Moreover, being the eigen-system of a singular Sturm–Liouville problem, they serve as
an ideal orthogonal basis for spectral methods for partial differential equations (PDEs). Indeed, spectral approximations
based on PSWFs enjoy some advantages over the polynomial counterparts (see, e.g., [5,3,12,24,27]). In addition, they have
been used in the wavelet methods (see, e.g., [22,21,23]).
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An interesting but challenging issue on approximation by PSWFs is to analyze how the approximation errors depend on
the bandwidth parameter c. The first estimate in Sobolev spaces was derived in Chen et al. [5] (note: Boyd [3] presented
a similar result without proof) under the condition qN = c/

√
χ c

N < 1 (see (2.7) below). This result predicts that a spectral
accuracy can be achieved when c <

√
χ c

N , or roughly, c < π N/2 (cf. [5]). However, the estimate (2.7) is suboptimal and
conservative at least for fixed bandwidth c, since the expected convergence order is O (N−s) instead of O (N−2s/3), where
s is the regularity index of the associated Sobolev space. Moreover, many numerical evidences have demonstrated that a
much better accuracy can be attained when c � κN for certain κ marginally less than π/2. Theoretically, it would be
interesting to find such a κ (as large as possible) that guarantees an optimal order of convergence. This will be one of the
main objectives of this paper.

A second purpose of this paper is to apply the argument to analyze spectral approximation by (angular) Mathieu func-
tions. This family of special functions originates from the method of separation-of-variables for solving the Helmholtz
equation in elliptic domains [14], and has many applications in physics and engineering (see, e.g., [16] and the references
therein). In addition, the Mathieu functions form a natural basis for spectral-Galerkin methods for scattering problems in el-
liptic domains (see, e.g., [7]). Spectral approximations in Sobolev spaces were first established in [17]. However, the explicit
dependence of the errors on the underlying parameter has not been investigated. Interestingly, the accuracy of approximat-
ing periodic functions can oftentimes be improved by using Mathieu functions when compared with that by Fourier series.
This situation is reminiscent to the comparison between the PSWFs and Legendre polynomials.

The rest of the paper is organized as follows. We present in Section 2 the improved estimate of PSWF approximation,
and provide some numerical results to support the theoretical results. In Section 3, we analyze spectral approximations by
Mathieu functions in Sobolev spaces.

2. An improved estimate of approximation by PSWFs

This section is devoted to error estimate of spectral approximation by truncated PSWF series in Sobolev spaces.
We first make some necessary preparations. Let L2(I) with I := (−1,1) be the space of square integrable functions with

the norm ‖ · ‖, and let Hs(I) with integer s � 0 be the Sobolev space with the norm ‖ · ‖s as in Adams [2].
Recall that the PSWFs {ψc

n(x)}∞n=0, defined by (1.1) or (1.2), form a complete orthonormal system in L2(I) with I :=
(−1,1), namely,

1∫
−1

ψc
n(x)ψc

m(x)dx = δmn, ∀c � 0, (2.1)

where δmn is the Kronecker symbol. If c = 0, the PSWFs coincide with the (normalized) Legendre polynomials, denoted by
Lk(x), which satisfy

xLk(x) = ak Lk−1(x) + ak+1Lk+1(x), k � 1, x ∈ I;

L0(x) = 1√
2
, L1(x) =

√
3

2
x with ak = k√

(2k − 1)(2k + 1)
. (2.2)

We expand ψc
n in terms of Legendre polynomials as

ψc
n(x) =

∞∑
k=0

βn
k Lk(x) with βn

k := βn
k (c) =

1∫
−1

Lk(x)ψc
n(x)dx, (2.3)

and find from (1.1) and (2.1)–(2.2) that

βn
k+2 = 1

f (k + 2)

(
1

q2
n

(
1 − k(k + 1)

χ c
n

)
− g(k)

)
βn

k − f (k)

f (k + 2)
βn

k−2, k � 2, (2.4)

where

f (k) = k(k − 1)

(2k − 1)
√

(2k − 3)(2k + 1)
, g(k) = 2k(k + 1) − 1

(2k − 1)(2k + 3)
, qn = c√

χ c
n

. (2.5)

In what follows, we shall use the following inequality (see Lemma 2.2 in [24]):

n(n + 1) < χ c
n < n(n + 1) + c2, n � 0, c > 0. (2.6)

The following estimate was stated in [5,3].
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Theorem 2.1. Let u ∈ Hs(I) with s � 0, and let qN = c/
√

χ c
N < 1. Then the (N + 1)th coefficient ûc

N = ∫ 1
−1 u(x)ψc

N (x)dx of the PSWF
expansion decays like∣∣ûc

N

∣∣ � D
(
N−2s/3‖u‖s + (qN)δN‖u‖), (2.7)

where D and δ are positive constants independent of u, N and c.

As the best L2-approximation error is dominated by |ûc
N |, this estimate shows that spectral accuracy can be achieved

if qN < 1 or roughly c < π N/2 (cf. [5]). However, when c is small or fixed, the decay rate should be of the same order
as the Legendre approximation, that is, O (N−s). Indeed, ample numerical results (see, e.g., [5,3,24]) showed that when
c < κN with κ being marginally less than π/2, the PSWF approximations behave like or usually outperform the Legendre
approximations. Hence, it is necessary to find such a κ (as large as possible) that can guarantee an optimal order of
convergence. We also point out a set of optimal estimates was derived in [24], but the bandwidth parameter c is implicitly
built in the Sobolev-type norm characterized by the Sturm–Liouville operator.

To improve the estimate (2.7), we first recall the following result on the upper bound of |βn
k | (see Lemmas A.1 and A.2

in [5]).

Lemma 2.1. For any c > 0, and any positive integer m satisfying

2m(2m + 1) <
ln 2

2
χ c

n , (2.8)

we have

∣∣βn
k

∣∣ � D

(
2

qn

)2[k/2]
max

{∣∣βn
0

∣∣, ∣∣βn
1

∣∣}

� Dm−1/2
(

2

qn

)2[k/2]
q2m

n exp

(
8m3

3χ c
n

)
, 0 � k � 2m, (2.9)

where [a] is the largest integer � a and D is a positive constant independent of m,n and c.

Hereafter, we use ∂k
x to denote the ordinary derivative dk/dxk, whenever no confusion may cause. The main approxima-

tion result to be derived is stated below.

Theorem 2.2. Let c > 0, and qN = c/
√

χ c
N . Given a positive constant q∗ < 1, if

qN � q∗
6
√

2
≈ 0.8909q∗, (2.10)

and

u ∈ Bs(I) := {
u:

(
1 − x2)k/2

∂k
x u ∈ L2(I), 0 � k � s

}
(2.11)

with integer s � 0, we have the estimate∣∣ûc
N

∣∣ � D
(
N−s

∥∥(
1 − x2)s/2

∂ s
xu

∥∥ + (q∗)δN‖u‖), (2.12)

where D and δ are positive constants independent of u, N and c.

Proof. The proof is based on an argument similar to that for Theorem 2.1 (cf. [5]), but the analysis is subtler.
Let M be a positive integer to be specified later, and denote by uM(x) the truncated Legendre series:

uM(x) =
M∑

k=0

ak Lk(x) with ak =
1∫

−1

u(x)Lk(x)dx. (2.13)

Rewrite ûc
N as

ûc
N =

1∫
−1

(
u(x) − uM(x)

)
ψc

N(x)dx +
1∫

−1

uM(x)ψc
N(x)dx. (2.14)

Using the Legendre approximation results (see, e.g., [4,10]), we obtain the estimate for the first term:
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∣∣∣∣∣
1∫

−1

(u − uM)ψc
N dx

∣∣∣∣∣ � ‖u − uM‖∥∥ψc
N

∥∥ � DM−s
∥∥(

1 − x2)s/2
∂ s

xu
∥∥. (2.15)

Next, we obtain from Lemma 2.1 that for any m satisfying (2.8),∣∣∣∣∣
1∫

−1

uMψc
N dx

∣∣∣∣∣ �
M∑

k=0

∣∣akβ
N
k

∣∣ �
(

M∑
k=0

a2
k

) 1
2
(

M∑
k=0

(
βN

k

)2

) 1
2

� Dm−1/2q2m
N exp

(
8m3

3χ c
N

)(
M∑

k=0

(
2

qN

)4[ k
2 ]) 1

2

‖u‖

� D

√
M

m

(
2

qN

)M

q2m
N exp

(
8m3

3χ c
N

)
‖u‖

� D

√
M

m

{
pN

(
2

qN

) M
2m

}2m

‖u‖, (2.16)

where in the last step, we used the fact

q2m
N exp

(
8m3

3χ c
N

)
� q2m

N exp

(
4m2(2m + 1)

3χ c
N

)
:= p2m

N with pN = qN exp

(
2m(2m + 1)

3χ c
N

)
. (2.17)

The rest of the proof is to determine m and M so as to derive an optimal estimate of the upper bound in (2.16). Firstly,
given 0 < q∗ < 1, we choose m so that pN � q∗, that is,

2m(2m + 1) � 3χ c
N ln

q∗
qN

, (2.18)

so in view of (2.8), it suffices to require

ln 2

2
χ c

N � 3χ c
N ln

q∗
qN

⇔ qN � q∗
6
√

2
. (2.19)

The second requirement is to ensure there exists a constant 0 < γ < 1 such that

pN

(
2

qN

) M
2m

= p1−γ
N ⇔ 1

γ

M

2m
= ln 1

pN

ln 2
qN

=
− 2m(2m+1)

3χ c
N

+ ln 1
qN

ln 2 + ln 1
qN

:= hN . (2.20)

It is clear that hN < 1, so we require that h∗ � hN for some constant 0 < h∗ < 1, that is,

2m(2m + 1)

3χ c
N

� (1 − h∗) ln
1

qN
− h∗ ln 2, for all 0 � qN � q∗/

6
√

2. (2.21)

Hence, we make it meet (2.8) and require that

ln 2

6
� (1 − h∗) ln

1

qN
− h∗ ln 2 ⇒ qN � 2

h∗+1/6
h∗−1 . (2.22)

It is important to notice that if qN � q∗/ 6
√

2, we can always find h∗ ∈ (0,1) to ensure (2.21). In other words, (2.20) holds,
and we have(

2

qN

) M
2m

= p−γ
N and γ h∗ � M

2m
� γ . (2.23)

We choose m to be the largest integer satisfying (2.8), and choose M of the same order of m, that is,

2m =
[√

ln 2

2
χ c

N

]
(2.6)= O (N) and M = γ (1 + h∗)m = O (N). (2.24)

Thus, using (2.16), (2.20), (2.24) and the fact pN � q∗, leads to∣∣∣∣∣
1∫

−1

uMψc
N dx

∣∣∣∣∣ � Dp
(1−γ )

√
ln 2

2 χ c
N

N ‖u‖ � D(pN)δN‖u‖ � D(q∗)δN‖u‖. (2.25)

Finally, the estimate (2.12) follows from (2.14), (2.15) and (2.25). �
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Table 2.1
Samples of κ and qN .

κ = 0.4 κ = 0.5 κ = 0.6 κ = 0.8 κ = 1.0

κ qN κ qN κ qN κ qN κ qN

0.371 0.386 0.447 0.472 0.515 0.553 0.625 0.695 0.707 0.810

κ = 1.178 κ = 1.2 κ = 1.3 κ = 1.5 κ = π/2

κ qN κ qN κ qN κ qN κ qN

0.762 0.8909 0.768 0.899 0.793 0.935 0.832 0.989 0.844 1.0

Fig. 2.1. Left: log10(|ûc
N |) against N ∈ [8,80] with c = κN (or c = qN

√
χ c

N ), where κ = 0, 0.5, 0.7, 0.8, 1, 1.178, 1.2, 1.3, 1.5, and correspondingly, qN = 0, 0.48,
0.62, 0.69, 0.81, 0.89, 0.90, 0.94, 0.99. Right: log10(|ûc

N |) against log10 N with N ∈ [32,196]. Here, κ = 0, 0.5, 1.178, 1.5, and qN = 0, 0.61, 0.89, 0.99.

Remark 2.1. It is seen that under the condition (2.10), the optimal order of convergence can be recovered. In practice, it
is more informative to express (2.10) in terms of the relation between c and N. Setting κ = c/N with κ being a positive
constant, we find from (2.6) that

1 + 1

N
<

κ2

q2
N

< 1 + 1

N
+ κ2, ∀N � 1, (2.26)

which implies that for N � 1,

κ := κ√
1 + κ2

� qN < κ. (2.27)

Hence, qN falls into the interval [κ,κ), but it seems difficult to obtain an explicit asymptotic expression between qN and κ.

Here, we just provide in Table 2.1 some samples of κ and the corresponding numerical approximations of qN with N = 128.

We find from Table 2.1 that qN lies between κ and κ. Roughly speaking, if c = κN with κ < 1.178, the condition (2.10)
is met. We also notice that when κ = π/2, we have qN ≈ 1, which numerically confirms the asymptotic estimate of qN for
c = π/2N (see, e.g., [5]). �

Next, we present some numerical results to support the estimate in Theorem 2.2, and refer the readers to other numerical
tests in [5,3,24], which are consistent with this theoretical result as well.

In this first example, we test PSWF approximation of the analytic function: u(x) = sin(3πx)exp(2x). We plot in Fig. 2.1
(left) log10 |ûc

N | against N. We observe an exponential decay of |ûc
N | for all choices of c that meet the condition (2.10), and

the fast growth of |ûc
N | (or divergence of the truncated PSWF series), when qN gets close to or approaches 1.

In the second test, we purposely choose u(x) = (x−1)besin x with b = 7/5, which has a finite regularity in the space Bs(I)
(cf. (2.11)) with s = 1 + 2b + ε and ε > 0. As predicted by Theorem 2.2, |ûc

N | decays like O (Nε−(1+2b)) if qN satisfies (2.10).
We plot in Fig. 2.1 (right) log10 |ûc

N | against log10 N, and find that the slopes are slightly smaller than the theoretical
prediction.
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In the end of this section, we briefly discuss the exponential convergence of PSWF approximations of analytic functions
on [−1,1]. Suppose that u is analytic on and within a closed contour C that contains [−1,1]. It follows from Lemma 4.2
of [9] (with a different normalization of the Legendre polynomials and making use of the Stirling formula in Lemma 2.3
of [9]) that the Legendre coefficient ak in (2.13) decays exponentially:

|ak| � Cρ

(2ρ)k
, k � 1, (2.28)

where ρ is the distance of C to the interval [−1,1], and Cρ is a positive constant independent of k. In view of this, we
update the estimate in (2.15) as∣∣∣∣∣

1∫
−1

(u − uM)ψc
N dx

∣∣∣∣∣ �
∞∑

k=M+1

|ak|
1∫

−1

∣∣Lk(x)
∣∣∣∣ψc

N(x)
∣∣dx �

∞∑
k=M+1

|ak|‖Lk‖
∥∥ψc

N

∥∥

�
∞∑

k=M+1

|ak| � Cρ

∞∑
M+1

1

(2ρ)k
= Cρ

2ρ − 1

1

(2ρ)M
, (2.29)

if ρ > 1/2. Therefore, under the above assumption of analyticity and under the conditions of Theorem 2.2, |ûc
N | decays

exponentially.
As pointed out in [6], it is standard to assume that u is analytic on and within an ellipse with foci x = ±1 :

Er = {
z = (

reiθ + r−1e−iθ ): θ ∈ [0,2π)
}
, r > 1,

where i = √−1 is the complex unit. In this case, the distance of Er to [−1,1] is ρ = (r + r−1)/2−1. In this case, a relatively
sharper estimate of the Legendre coefficients might be derived, and we refer to the book of Davis [6] for the details.

3. Approximation by Mathieu functions

The Mathieu functions have found their applications in various areas (see, e.g., [16,11,7]). Some spectral approximation
results in Sobolev spaces were first derived in [17]. However, to the best of our knowledge, the issue on the dependence
of approximation errors on the intrinsic parameter has not been investigated by far. In this section, we apply the previous
argument for the PSWFs to establish similar estimates for Mathieu functions.

The (angular) Mathieu equation:

∂2
θ Φ +

(
a − ρ2

2
cos 2θ

)
Φ = 0, θ ∈ [−π,π), ρ � 0, (3.1)

appears in the method of separation-of-variables for solving the Helmholtz equation in elliptic coordinates. Here, a is the
separation constant, and ρ is a constant related to the wave number (cf. [14]). The Mathieu equation (3.1) admits two
families of linearly independent periodic solutions (eigenfunctions), that is, the even “cosine-elliptic” and odd “sine-elliptic”
functions:

Φn(θ;ρ) = cen(θ;ρ) or sen+1(θ;ρ), n = 0,1, . . . , (3.2)

with the corresponding eigenvalues denoted by an(ρ) and bn+1(ρ), respectively. In the analysis, it is more convenient to
rewrite (3.1) in the Sturm–Liouville form:(−∂2

θ + ρ2 cos2 θ
)
Φn = λnΦn, (3.3)

where

λn =
{

an(ρ) + ρ2/2 := λc
n, if Φn = cen,

bn(ρ) + ρ2/2 := λs
n, if Φn = sen.

(3.4)

We collect below some relevant properties of the Mathieu functions (see, e.g., [14]).

• If ρ = 0, we have cen = cos nθ and sen = sin nθ. Like the trigonometric basis, {cen, sen+1} are 2π -periodic, mutually
orthogonal and form a complete orthogonal system in L2(0,2π). In what follows, we assume that they are orthonormal
with respect to the inner product

(u, v) = 1

π

π∫
−π

u(θ)v(θ)dθ,

where v̄ is the complex conjugate of v.
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• The eigenvalues are all real, positive, distinct and of the order

0 < λc
0 < λs

1 < λc
1 < · · · < λc

n < λs
n < · · · . (3.5)

Moreover, by Lemma 3.1 of [17],

n2 < λn < n2 + ρ2 with λn = λc
n or λs

n. (3.6)

Similar to the analysis of PSWF approximations, it is necessary to study the decay property of the coefficients of the
trigonometric expansions:

cen(θ;ρ) = A(n)
0

2
+

∞∑
k=1

A(n)

k cos kθ; sen(θ;ρ) =
∞∑

k=1

B(n)

k sin kθ,

where

A(n)

k = 2

π

π∫
0

cen(θ,ρ) cos kθ dθ, k � 0,

B(n)

k = 2

π

π∫
0

sen(θ,ρ) sin kθ dθ, k � 1. (3.7)

One finds from (3.3) the recurrence formulas:(
4λc

n − 2ρ2 − 4k2)A(n)

k − ρ2(A(n)

k−2 + A(n)

k+2

) = 0, k � 1,(
2λc

n − ρ2)A(n)
0 = ρ2 A(n)

2 , A(n)
−1 = A(n)

1 , (3.8)

and (
4λs

n − 2ρ2 − 4k2)B(n)

k − ρ2(B(n)

k−2 + B(n)

k+2

) = 0, k � 1,

B(n)
−1 = −B(n)

1 , B(n)
0 = 0. (3.9)

We have the following upper bounds for |A(n)

k | and |B(n)

k+1| with k = 0,1.

Lemma 3.1. For any ρ > 0, let ηn = ρ/
√

λn, and let m be a positive integer satisfying

m2 <
ln 2

8
λn. (3.10)

Then we have

∣∣Z (n)

k

∣∣ � Dm−1/4η2m
n exp

(
8m3

3λn

)
, k = 0,1, (3.11)

where

{
λn, Z (n)

k

} =
{ {λc

n, A(n)

k }, for cen,

{λs
n, B(n)

k+1}, for sen,
(3.12)

and D is a positive constant independent of n,m and c.

Proof. The main idea for the proof is similar to that of Lemma A.1 in [5] for the PSWFs.
We first consider the estimate of |A(n)

k | with k = 0,1. Define

μ
(n)

k =
π∫

−π

cosk θ cen(θ;ρ)dθ. (3.13)

Our starting point is to show that under the condition (3.10),

∣∣μ(n)
0

∣∣ � η2m
n

∣∣μ(n)
2m

∣∣m−1∏(
1 − 4k2

λc
n

)−1

. (3.14)

k=0
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Indeed, multiplying (3.3) with Φn = cen by cos2k θ (0 � k � m) and integrating the resulting equation over (0,2π), leads to

ρ2μ
(n)

2k+2 = 2k(2k − 1)μ
(n)

2k−2 + (
λc

n − 4k2)μ(n)

2k , 1 � k � m,

μ
(n)
0 = η2

nμ
(n)
2 . (3.15)

In view of (3.10), we find that μ
(n)
2 , . . . ,μ

(n)
2m have the same sign as μ

(n)
0 , so it follows that

ρ2
∣∣μ(n)

2k+2

∣∣ �
(
λc

n − 4k2)∣∣μ(n)

2k

∣∣ ⇒ ∣∣μ(n)

2k

∣∣ � η2
n

∣∣μ(n)

2k+2

∣∣(1 − 4k2

λc
n

)−1

. (3.16)

Then, an induction yields (3.14).
It is clear that if 0 � x � ln 2/2, we have 1 − x � e−2x. Therefore, under (3.10),

1 − 4k2

λc
n

� exp

(
−8k2

λc
n

)
, 0 � k � m,

which implies

m−1∏
k=0

(
1 − 4k2

λc
n

)−1

� exp

(
8
∑m−1

k=0 k2

λc
n

)
� D exp

(
8m3

3λc
n

)
. (3.17)

Next, using (3.14), the property of the Beta function and the Stirling formula (cf. [1]), we obtain that

∣∣μ(n)
2m

∣∣ �
∥∥cos2m θ

∥∥‖cen‖ � D

( 1∫
0

t4m(
1 − t2)−1/2

dt

)1/2

� D

√
Γ (2m + 1)

Γ (2m + 3/2)
� D

4
√

m
. (3.18)

Hence, by (3.14), (3.17) and (3.18),

∣∣μ(n)
0

∣∣ � Dm−1/4η2m
n exp

(
8m3

3λc
n

)
. (3.19)

Since μ
(n)
0 = π A(n)

0 , we derive the upper bound for |A(n)
0 |.

Now, we turn to the estimate for |A(n)
1 |. Similar to (3.15), we multiply (3.3) by cos2k−1 θ (1 � k � m) rather than cos2k θ

(1 � k � m), to derive

ρ2μ
(n)

2k+1 = (2k − 1)(2k − 2)μ
(n)

2k−3 + (
λc

n − (2k − 1)2)μ(n)

2k−1, 2 � k � m − 1,

ρ2μ
(n)
3 = (

λc
n − 1

)
μ

(n)
1 . (3.20)

Under (3.10), the derivation of the upper bound for |An
1| is essentially the same as above.

To estimate |B(n)
1 | and |B(n)

2 |, we redefine

μ
(n)

k = −
π∫

−π

∂θ

(
cosk θ

)
sen(θ;ρ)dθ = k

π∫
−π

cosk−1 θ sin θ sen(θ;ρ)dθ.

Replacing the testing functions cos2k θ and cos2k−1 θ in the derivation of (3.15) and (3.20) by ∂θ (cos2k θ) and ∂θ (cos2k−1 θ),

respectively, we derive the recurrence formulas:

ρ2μ
(n)

2k+2 = k + 1

k

{
2k(2k − 1)μ

(n)

2k−2 + (
λs

n − 4k2)μ(n)

2k

}
, 2 � k � m − 1,

ρ2μ
(n)
4 = 2

(
λc

n − 4
)
μ

(n)
2 ,

and

ρ2μ
(n)

2k+1 = 2k + 1

2k − 1

{
(2k − 1)(2k − 2)μ

(n)

2k−3 + (
λs

n − (2k − 1)2)μ(n)

2k−1

}
, 2 � k � m − 1,

ρ2μ
(n)
3 = 3

(
λs

n − 1
)
μ

(n)
1 .

The rest of the analysis is similar to that for |A(n)
0 |. �

It is essential to prove the following property of the expansion coefficients A(n) and B(n) in (3.7).
k k
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Lemma 3.2. Let ρ > 0, and let m be a positive integer such that

4 < λc
n − 3ρ2

4
and m2 < λc

n − ρ2

2
, (3.21)

then for all 0 � k � m,∣∣A(n)

k

∣∣ � s[k/2]
n max

{∣∣A(n)
0

∣∣, ∣∣A(n)
1

∣∣}, (3.22)

where

sn = 2d2
n +

√
1 + 4d4

n with dn =
√

λc
n − ρ2/2

ρ
. (3.23)

Under the same conditions, the above estimate holds for B(n)

k for all 1 � k � m with B(n)
1 , B(n)

2 and λs
n in place of A(n)

0 , A(n)
1 and λc

n, but

dn being replaced by
√

λs
n − ρ2/4/ρ.

Proof. We first prove (3.22) with even k by induction. It is trivial for k = 0. For k = 2, we obtain from (3.8) and (3.21) that

∣∣A(n)
2

∣∣ = 2λc
n − ρ2

ρ2

∣∣A(n)
0

∣∣ = 2d2
n

∣∣A(n)
0

∣∣ � sn
∣∣A(n)

0

∣∣,
which verifies (3.22) with k = 2. Assuming that the upper bound holds for even k,k − 2(k � 2), we derive again from (3.8)
and (3.21) that

∣∣A(n)

k+2

∣∣ � 4λc
n − 2ρ2 − 4k2

ρ2

∣∣A(n)

k

∣∣ + ∣∣A(n)

k−2

∣∣ � 4d2
n

∣∣A(n)

k

∣∣ + ∣∣A(n)

k−2

∣∣
� s1+k/2

n
(
4d2

ns−1
n + s−2

n

)∣∣A(n)
0

∣∣ = s1+k/2
n

∣∣A(n)
0

∣∣. (3.24)

Notice that the identify is due to that sn is the positive root of the quadratic equation: x2 − 4d2
nx − 1 = 0.

For odd k, we find from (3.8) and (3.21) with k = 3 that

∣∣A(n)
3

∣∣ = 4λc
n − 3ρ2 − 4

ρ2

∣∣A(n)
1

∣∣ � 4λc
n − 2ρ2

ρ2

∣∣A(n)
1

∣∣ � sn
∣∣A(n)

1

∣∣.
The rest of the induction remains the same as the previous case.

We now turn to dealing with B(n)

k . Observe from (3.8) and (3.9) that A(n)

k and B(n)

k share the same recurrence formula
when k > 1, so it suffices to check the induction base. By (3.9),

∣∣B(n)
3

∣∣ = 4λs
n − ρ2 − 4

ρ2

∣∣B(n)
1

∣∣ � sn
∣∣B(n)

1

∣∣,
where in sn, dn = √

λs
n − ρ2/4/ρ. Similar analysis can be applied to B(n)

2 and B(n)
4 . Therefore, the desired estimate fol-

lows. �
With the above preparation, we derive the following result on the decay property of the coefficients A(n)

k and B(n)

k
in (3.7).

Theorem 3.1. For any ρ > 0, assume that m is a positive integer satisfying (3.10) and ηn = ρ/
√

λn < 1. Then

∣∣Z (n)

k

∣∣ � Dm−1/4η2m
n exp

(
8m3

3λn

)(
2 + √

5

η2
n

)[k/2]
, 0 � k � m, n � 1, (3.25)

where λn and Z (n)

k are the same as in (3.12), and D is a positive constant independent of m,n and c.

Proof. We only consider the estimate of A(n)

k , since the proof for B(n)

k+1 is similar.
Observe that if m satisfies (3.10) and ηn < 1, the condition (3.21) is met. Moreover, we have

dn <
1

ηn
⇒ sn �

2 +
√

η4
n + 4

η2
n

<
2 + √

5

η2
n

.

Therefore, using Lemmas 3.1 and 3.2 leads to the desired result. �
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Now, we are ready to estimate approximation of periodic functions by truncated Mathieu series. The error essentially
depends on the decay property of the expansion coefficients:

v̂c
n := v̂c

n(ρ) = 1

π

π∫
−π

v(θ) cen(θ;ρ)dθ; v̂ s
n := v̂ s

n(ρ) = 1

π

π∫
−π

v(θ) sen(θ;ρ)dθ. (3.26)

For convenience, we decompose v into even and odd parts as

v(θ) = v(θ) + v(−θ)

2
+ v(θ) − v(−θ)

2
:= ve(θ) + vo(θ),

so we have

v̂c
n := v̂c

n(ρ) = 2

π

π∫
0

ve(θ) cen(θ;ρ)dθ; v̂ s
n := v̂ s

n(ρ) = 2

π

π∫
0

vo(θ) sen(θ;ρ)dθ. (3.27)

For real r > 0, we use Hr
p(−π,π) to denote the 2π -periodic Sobolev space with the semi-norm denoted by | · |Hr

p(−π,π) as
usual (cf. [4]).

Theorem 3.2. Let ρ > 0, ηN = ρ/
√

λN and 0 < η∗ < 1 be a given constant. For any v ∈ Hr
p(−π,π) with r � 0,

• if ηN � η∗ , then

|ẑN | � D
(
N−2r/3|v|Hr

p(−π,π) + N1/6(η∗)σ N2/3‖v‖L2(−π,π)

); (3.28)

• if ηN � η∗/ 6
√

2 ≈ 0.8909η∗ , then

|ẑN | � D
(
N−r |v|Hr

p(−π,π) + N1/4(η∗)σ N‖v‖L2(−π,π)

)
, (3.29)

where

{λN , ẑN } =
{ {λc

N , v̂c
N}, for ceN ,

{λs
N , v̂ s

N}, for seN ,
(3.30)

and D and σ are positive generic constants independent of N, v and ρ.

Proof. It suffices to prove the estimate of vc
N , since the same argument can be applied to estimate vs

N . Given a cut-off M,

denote

ve
M(θ) = ν0

2
+

M∑
k=1

νk cos kθ where νk = 2

π

π∫
0

ve(θ) cos kθ dθ,

and rewrite v̂c
N as

v̂c
N = 2

π

π∫
0

(
ve(θ) − ve

M(θ)
)

ceN(θ;ρ)dθ + 2

π

π∫
0

ve
M(θ)ceN(θ;ρ)dθ. (3.31)

Using the standard Fourier approximations (see, e.g., [4]) leads to

∣∣∣∣∣
π∫

0

(
ve − ve

M

)
ceN dθ

∣∣∣∣∣ � D
∥∥ve − ve

M

∥∥
L2(0,π)

‖ceN‖L2(0,π)

� DM−r
∣∣ve

∣∣
Hr

p(0,π)
� DM−r |v|Hr

p(−π,π). (3.32)
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Table 3.1
Samples of ι and ηN .

ι = 0.4 ι = 0.5 κ = 0.6 ι = 0.8 ι = 1.0

ι ηN ι ηN ι ηN ι ηN ι ηN

0.371 0.385 0.447 0.471 0.515 0.551 0.625 0.693 0.707 0.984

ι = 1.1 ι = 1.1832 ι = 1.2 ι = 1.4 ι = π/2

ι ηN ι ηN ι ηN ι ηN ι ηN

0.740 0.856 0.764 0.8909 0.768 0.897 0.814 0.963 0.844 0.999

Now, we deal with the second term at the right-hand side of (3.31). We derive from (3.7) and Theorem 3.1 that

2

π

∣∣∣∣∣
π∫

0

ve
M ceN dθ

∣∣∣∣∣ �
M∑

k=0

∣∣νk A(N)

k

∣∣ �
(

M∑
k=0

(νk)
2

) 1
2
(

M∑
k=0

(
A(N)

k

)2

) 1
2

� Dm−1/4η2m
N exp

(
8m3

3λc
N

)(
M∑

k=0

(
2 + √

5

η2
N

)2[k/2])1/2∥∥ve
∥∥

L2(0,π)

� D

(
M

m

)1/4

M1/4
(√

2 + √
5

ηN

)M

η2m
N exp

(
8m3

3λc
N

)
‖v‖L2(−π,π). (3.33)

We choose m so that the exponential factor is uniformly bounded, that is,

m = O
((

λc
N

)1/3) (3.6)= O
(
N2/3),

which verifies the condition (3.10). Consequently,∣∣∣∣∣
π∫

0

ve
M ceN dθ

∣∣∣∣∣ � DN1/6
{
ηN

(√
2 + √

5

ηN

) M
2m

}2m

‖v‖L2(−π,π)

= DN1/6η
2(1−γ )m
N ‖v‖L2(−π,π), (3.34)

where the constant 0 < γ < 1. The existence of γ can be proved in the same way as for (2.20). Therefore, we take M =
O (m) = O (N2/3) and (3.28) follows.

Now we turn to the proof of (3.29). We obtain from (3.33) that∣∣∣∣∣
π∫

0

ve
M ceN dθ

∣∣∣∣∣ � D

(
M

m

)1/4

M1/4
(

pN

(√
2 + √

5

ηN

) M
2m

)2m

‖v‖L2(−π,π), (3.35)

where pN = ηN exp( 4m2

3λc
N
). Following the same lines as for the derivation of (2.25), we can show that if ηN � η∗/ 6

√
2, we can

choose m = O (N) and M = O (N) such that there exists a constant 0 < γ̄ < 1 such that

∣∣∣∣∣
2π∫
0

ve
M ceN dθ

∣∣∣∣∣ � DN1/4 p2(1−γ̄ )

N ‖v‖L2(−π,π) � DN1/4(η∗)δN‖v‖L2(−π,π). (3.36)

Thus, a combination of (3.31), (3.32), and (3.36) leads to (3.29). �
Remark 3.1. Like in Remark 2.1, it is more desirable to quantify the condition of ηN = ρ/

√
λN by using ι = ρ/N. In view

of (3.6), we have

1 <
ι2

η2
N

< 1 + ι2 ⇒ ι := ι√
1 + ι2

< ηN < ι.

However, it is difficult to find the explicit relation between ηN and ι. We just provide some samples computed with
N = 128. (See Table 3.1.)

Indeed, we find that ηN lies in the interval (ι, ι), and to meet the condition for (3.29), we may choose ρ = ιN roughly
with ι < 1.1832. �
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Fig. 3.1. Graphs of ce8(θ;ρ) (left) and se8(θ;ρ) (right) with θ ∈ [0,π ] and ρ = 0, 6, 8, 12.

Fig. 3.2. Left: log10(|ẑN |) against N ∈ [8,64] with ρ = ιN (or ρ = ηN
√

λN ), where ι = 0, 0.5, 0.8, 0.9, 1.1832, 1.2, 1.4, 1.5, and correspondingly, ηN = 0, 0.47,
0.69, 0.75, 0.85, 0.89, 0.96, 0.99. Right: log10(|v̂c

N |) against log10 N with N ∈ [48,512]. Here, ι = 0, 0.5, 0.9, 1.1832 and ηN = 0, 0.47, 0.75, 0.89.

Finally, we present some numerical results to support the estimates in Theorem 3.2. First, we plot in Fig. 3.1 the Mathieu
functions ce8(θ;ρ) (left) and se8(θ;ρ) (right) with θ ∈ [0,π ] and ρ = 0,6,8,12.

Compared with their trigonometric counterparts cos(8θ) and sin(8θ), the Mathieu functions oscillate non-uniformly and
their zeros move towards θ = π/2 (symmetric about θ = π/2) as ρ increases. It is anticipated that the use of Mathieu
functions with a suitable tuning parameter ρ may lead to a better approximation than the Fourier basis. This situation is
reminiscent to approximation by PSWFs and Legendre polynomials (cf. Section 2).

Next, we consider two typical examples. In the first example, we test the analytic periodic function: v(θ) = exp(7 sin θ).

We plot in Fig. 3.2 (left) log10(|ẑN |) (with |ẑN | = max{|v̂c
N |, |v̂ s

N |}) against various N with ηN = 0,0.47,0.69,0.75,0.85,0.89,

0.96,0.99. Indeed, we find that when ηN meets the condition for (3.29), an exponential decay of |ẑN | is observed. Moreover,
a suitable choice of ρ may lead to a faster decay than the Fourier expansion.

In the second example, we test a function with finite periodicity: v(θ) = (θ2 − π2)3eθ . It is anticipated that the decay
rate for |v̂c

N | (resp. |v̂ s
N |) should be O (N−4) (resp. O (N−5)). In Fig. 3.2 (right), we plot log10(|v̂c

N |) against log10 N and find
that the slopes are about −3.99, as expected.
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