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Abstract We report a novel approach to design artificial absorbing layers for
spectral-element discretisation of wave scattering problemswith bounded scatterers.
It is essentially built upon two techniques: (i) a complex compression coordinate
transformation that compresses all outgoing waves in the open space into the
artificial layer, and then forces them to be attenuated and decay exponentially;
(ii) a substitution (for the unknown) that removes the singularity induced by the
transformation, and diminishes the oscillations near the inner boundary of the layer.
As a result, the solution in the absorbing layer has no oscillation and is well-behaved
for arbitrary high wavenumber and very thin layer. It is therefore well-suited and
perfect for high-order simulations of scattering problems.

1 Introduction

Many partial differential equations (PDEs) are naturally set in unbounded domains.
In order to solve them numerically, one has to truncate or reduce the infinite
physical domains in some way. A critical issue is how to carry out this without
inducing significant artificial errors to the solutions. A direct domain truncation
with a hard-wall or periodic boundary condition is a viable option for problems
with rapidly decaying solutions in space. For problems with decaying but slowly
varying solutions (e.g., elliptic and diffusion equations), a reliable approach is to
compress the solution at infinity to a finite domain by using a suitable coordinate
transformation, and then solve the transformed PDE in a finite domain with a
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hard-wall boundary condition. However, these techniques fail to work for wave
problems as the underlying solutions are typically oscillating and decay slowly.
Indeed, Johnson [13] remarked that “any real coordinate mapping from an infinite
to a finite domain will result in solutions that oscillate infinitely fast as the
boundary is approached – such fast oscillations cannot be represented by any
finite-resolution grid, and will instead effectively form a reflecting hard wall.” In
practice, the reduction of an unbounded domain by artificial boundary conditions
[12] and perfectly matched layers (PMLs) [3, 9] has been intensively studied for the
scattering problems.

In this report, we offer a new absorbing layer that is well-suited for high-order
discretisation of wave scattering problems. The idea stems from the concept of an
inside-out (or inverse) invisibility cloak for electromagnetic waves, first proposed by
Zharova et al. [18], which was based on a coordinate transformation that compresses
an open space to a finite cloaking layer with physically meaningful medium. Such
a layer was expected to prevent waves inside the enclosed region from propagating
outside of the layer. Ideally, the cloaking layer could be a perfect absorbing layer
for scattering problems. However, it was far from perfect, as the material parameters
therein were highly singular and the approximation of the solution suffered from the
curse of infinite oscillation [13]. We introduce two techniques to surmount these
obstacles: (i) complex compression coordinate transformation; and (ii) variable
substitution. This leads to a transformed problem in the absorbing layer with
the remarkable features: (i) its solution has no oscillation; and (ii) it is nearly
definite for arbitrary high wavenumber, as opposite to the strong indefiniteness
of the Helmholtz and Maxwell’s equations. To fix the idea, we focus on the two-
dimensional Helmholtz problem with a circular absorbing layer, and outline the
extension to the rectangular layer. We demonstrate that the proposed absorbing
layer is completely non-reflective and perfect for very thin layer, arbitrary high
wavenumber and incident angle.

It is noteworthy that (i) the idea of using complex transformations to damp the
waves is similar to complex stretching of PMLs [3, 8–10], but the transformation
herein compresses all outgoing waves into the layer, and also maps the far-field
boundary condition to the outer boundary naturally; and (ii) the use of substitution
u D veik�=

p
� is found in the context of infinite element methods for scattering

problems to capture the decay rate of outgoing wave, see e.g., [11], but the
substitution in (20) is adopted for different purpose with a different power in �:

2 Time-Harmonic Acoustic Scattering Problem

Consider the time-harmonic wave scattering governed by the Helmholtz equation:

�u C k2 u D 0 in ˝1 WD R
2 n NDI (1a)

u D g on @DI @ru � iku D o.r�1=2/ as r D jxj ! 1; (1b)



A Perfect Absorbing Layer for High-Order Simulation of Wave Scattering Problems 83

scatterer
D

DΓ

f

abΩ

f

Ω

DΓ

scatterer
D

ab

Fig. 1 Schematic illustration of an absorbing layer˝ab: Left: annular layer. Right: polygonal layer

where the wavenumber k > 0; D � R
2 is a bounded scatterer with Lipschitz

boundary �D D @D, and the data g 2 H1=2.�D/ is generated by the incident
wave. In fact, the technique can be applied to solve the Helmholtz-type problems in
inhomogeneous, anisotropic media or with an external source, which are confined
in a bounded domain˝a enclosing ND; that is,

r � �
Cru

� C k2n u D f in ˝1; (2)

in place of (1a). Here, C 2 C
2�2 is a symmetric matrix, and n > 0 the reflective

index. Assume that exterior to˝a; C D I2; n D 1 and f D 0:

To numerically solve the exterior problem (1) or (2) with (1b), we reduce the
infinite domain by surrounding the computational domain ˝f WD ˝a n ND via an
artificial layer ˝ab with a finite thickness. Without loss of generality, we consider
two types of layers: (i) ˝ab D fa < r < bg is a circular annulus (cf. Fig. 1 (left));
and (ii)˝ab is a polygonal annulus (cf. Fig. 1 (right)). The former is more convenient
to illustrate the idea and to compare with the PML techniques in [3, 7, 10], while the
latter is more practical and flexible to the geometry of the scatterer. In what follows,
we focus on the derivation of the PDE in ˝ab that couples with the Helmholtz
problem in ˝f to achieve the aforementioned goals.

The form of the transformed Helmholtz operator under a generic coordinate
transformation finds useful later on, which can be verified by knowledge of calculus.

Lemma 1 Define the Helmholtz operator:

QHŒQu� D �Qu C k2 Qu: (3)

Given a coordinate transformation between Qx D .Qx; Qy/ and x D .x; y/ with the
Jacobian matrix

x D x.Qx/; y D y.Qx/I J WD @.x; y/

@.Qx; Qy/ D
"
@Qxx @Qyx
@Qxy @Qyy

#

; (4)
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we have the transformed Helmholtz operator

HŒu� D 1

n

˚r � �
Cru

� C k2 n u
�
; (5)

where u.x/ D Qu.Qx/ and

C D
"
C11 C12
C12 C22

#

D J Jt

det.J/
; n D 1

det.J/
: (6)

2.1 Real Compression Coordinate Transformation

We start with the “compression” coordinate transformation for the inside-out
invisibility cloak in [18]:

r D b � .b � a/2

�C b � 2a
or � D s.r/

b � r
; s.r/ WD a2 C r.b � 2a/; (7)

for � 2 Œa;1/ and r 2 Œa; b/: This one-to-one mapping compresses the open space
exterior to a disk of radius � D a into the annulus a � r < b; where the inner circle
� D a.D r/ remains unchanged, while � D 1 corresponds to r D b:

We now derive the equation in the compressed layer ˝ab by using Lemma 1.
By the chain rule involving the original Cartesian coordinates-.Qx; Qy/ with the polar
coordinates-.�; �/I and the physical Cartesian coordinates-.x; y/ with the polar
coordinates-.r; �/; we have

J D @.x; y/

@.Qx; Qy/ D @.x; y/

@.r; �/

@.r; �/

@.�; �/

@.�; �/

@.Qx; Qy/ : (8)

A direct calculation leads to

J D RJ0Rt with J0 D
"
dr=d� 0

0 r=�

#

; R D
"
cos � � sin �
sin � cos �

#

: (9)

Then by (6),

C0 D R

"
c0 0

0 1=c0

#

Rt; n0 D �

r

d�

dr
; c0 WD �

r

dr

d�
: (10)

As a consequence of Lemma 1, we obtain the modified Helmholtz equation:

r � �
C0ru

� C k2 n0 u D 0 in ˝ab: (11)
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Noting from (7) that

d�

dr
D

�b � a

b � r

�2 D
� dr

d�

��1
; r 2 .a; b/; (12)

we have

n0 D s.r/

r

.b � a/2

.b � r/3
; c0 D s.r/

r

b � r

.b � a/2
: (13)

It is evident that 1=c0; n ! 1; when r ! b�: This implies the wavenumber
becomes infinitely large near the outer boundary of layer ˝ab: In other words, the
solution u has infinite oscillation. It is no wonder that all the outgoing waves in the
open space are compressed into the finite layer ˝ab; so this induces the so-called
curse of infinite oscillation. Thus, it is advisable to use a complex compression
coordinate transformation to attenuate the waves.

2.2 Complex Compression Coordinate Transformation

Different from (7), we introduce the complex compression mapping

Q�.r/ D �.r/C i�0.�.r/ � a/; �.r/ D s.r/

b � r
; r 2 Œa; b/; (14)

where s.r/ D a2 C r.b � 2a/ as before, and �0 > 0 is a tuning parameter. For
notational convenience, we denote

˛ WD 1C i�0 D d Q�
d�
; ˇ WD 1C i�0

�
1 � a

�

�
D Q�
�
: (15)

Using Lemma 1, we can derive following PDE in ˝ab:

Theorem 1 Using the transformation (14), we derive the Helmholtz-type problem:

r � �
Cru

� C k2 n u D 0 in ˝ab; (16)

u D � at r D aI 1

˛

dr

d�
@ru � iku D o.j Q�j�1=2/ as r ! b�; (17)

where � is from the solution of the interior Helmholtz equation at the inner
boundary r D a; and

C D R

"
c 0

0 1=c

#

Rt; n D ˛ˇ
s.r/

r

.b � a/2

.b � r/3
; c D ˇ

˛

s.r/

r

b � r

.b � a/2
: (18)
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Moreover, if  2 L2.0; 2	/, we have the following point-wise bounds for all r 2
.a; b/;

ku.r; �/kL2.0;2	/ � exp
n
�k�0.� � a/

�
1 � a2

k2�2 C k2�20 .� � a/2

�1=2ok�kL2.0;2	/:
(19)

It is important to point out that the solution in the point-wise sense (19) decays
exponentially like O.e�k�0=.b�r// as r ! b�: We also observe from (18) that the
coefficients 1=c; n ! 1 as r ! b�: Though the product nu is well-behaved, the
problem (16)–(17) is still challenging for numerical solution due to the involved
singular coefficients.

2.3 Variable Substitution

To handle the singularity and remove essential oscillations of u, we introduce the
following substitution in˝ab:

u D vw; w D
�a
�

�3=2
eik.��a/; (20)

where � D �.r/ is as in (7). It is important to remark that

(i) We incorporate the complex exponential to capture the oscillation of u; so that v
essentially has no oscillation for arbitrary high wavenumber and very thin layer
(see Fig. 2 below).

2.22.12
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Fig. 2 Profiles of the solution (33) with k D 200; �0 D 	=4 and a0 D 1 under the real
compression mapping (7) and complex compression mapping (14), and the substitution (20) with
r 2 .2; 2:2/ and along � D 0. (a) Refu.�.r/; 0/g under (7). (b) Imfu.�.r/; 0/g under (7). (c)
Refu. Q�.r/; 0/g under (14) vs. Refvg in (20). (d) Imfu. Q�.r/; 0/g under (14) vs. Imfvg in (20)
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(ii) In real implementation, we can build in the substitution into the basis functions,
and formally approximate u by non-conventional basis:

uN 2 span
˚
 j D w
j W 0 � j � N

�
; (21)

where v is essentially approximated by the usual polynomial or piecewise
polynomial basis f
jg in spectral/spectral-element methods.

Remark 1 Recall that for fixed m and large jzj (cf. [1]),

H.1/
m .z/ �

r
2

	z
ei.z� 1

2m	� 1
4 	/; �	 < arg.z/ < 2	: (22)

By (60), we have the asymptotic estimates for fixed m W

jOum.r/j D j O mj
ˇ̌
ˇ
H.1/

m
�
k Q�.r/�

H.1/
m .ka/

ˇ̌
ˇ �

r
a

j Q�je
�k�0.��a/j O mj eik.��a/: (23)

In view of this, the complex exponential in (20) captures the oscillations of u near the
inner boundary r D a; so we expect v has no oscillation and decays exponentially
in the layer˝ab: ut

We find it is more convenient to carry out the substitution through the variational
form. Let L2!.˝/ be a weighted space of square integrable functions with the inner
product and norm denoted by .�; �/!;˝ and k � k!;˝ as usual. Define the trace integral
hu; vi�b WD H

�b
u Nv d�: Let ˝ D f̋ [˝ab; and assume g D 0: Formally, we define

the bilinear form associated with (1) in f̋ coupled with (16):

B
˝
.u; 
/ WD B

f̋
.u; 
/C B

˝ab
.u; 
/ with B

f̋
.u; 
/ D .ru;r
/ f̋ � k2.u; 
/˝f ;

B˝ab
.u; 
/ D .Cru;r
/˝ab � k2.n u; 
/˝ab � hCru � n; 
i�b ; (24)

where n D .cos �; sin �/t is the unit outer normal to �b:

Theorem 2 With the substitution u D vw and 
 D  w in (20), we have

B˝ab
.u; 
/ D �

$1Crv;r �
˝ab

C 1

˛

�
ˇ@nv; $2

�
˝ab

C 1

˛

�
ˇ$2v; @n 

�
˝ab

C�
$3v; 

�
˝ab
;

(25)

where @n D n � r is the directional derivative along the normal direction, and

$1 D a3

�3
; $2 D a3

r

1

�2

�
� 3

2�
C ik

�
; $3 D a3.b � a/2

rs2.r/

��ˇ
˛

� ˛ˇ
�
k2 C ˇ

˛

9

4�2

�
;

˛ D 1C i�0; ˇ D 1C i�0
�
1 � a

�

�
;

1

�
D b � r

s.r/
; s.r/ D a2 C r.b � 2a/; r 2 .a; b/:

(26)
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Remark 2 Some remarks are in order.

(i) Compared with the singular coefficients in (18), we observe from (26) that the
involved coefficients become regular. In particular, $3 is uniformly bounded
above and below away from zero.

(ii) The DtN boundary condition is transformed to the outer boundary r D b; this
naturally eliminate the boundary term in (24).

(iii) When u is approximated by a non-conventional basis (21), we can use (25)–
(26) to compute the matrices of the linear system. In fact, ˝ab can be replaced
by any element of a non-overlapping partition of˝ab: ut

Remarkably, the transformed problem in v is nearly definite for any wavenumber
k > 0, as opposite to the indefiniteness of the original problem.

Theorem 3 With the substitution u D vw in (20), we have

Re
˚
B˝ab.u; u/

� �c1.1 � ��1/k@rvk2
!2

C c2k@�vk2! C c3kv.a; �/k2L2.0;2	/

C a3jIj2k2
Z 2	

0

Z b

a

.r/

s2.r/
jvj2drd�;

(27)

where ! D b � r; jIj D b � a; " > 1 and

c1 D a3

bNc2jIj4
1

1C �20
; c2 D a3

bNc4jIj2 ; c3 D 3

2

1

1C �20
; Nc D maxfa; jIjg;

.r/ D 15

4a2k2
�20

1C �20
t3 � 9

4a2k2
t2 � �20

1C �20

�
�20 � � C 2

�
t C .�20 � �/; t D a

�
:

(28)

For simplicity, we denote the coefficients (up to a sign) of the cubic polynomial
in t by f�ig3iD0; and define

e‚.t/ WD ‚.r/ D �3t
3 � �2t

2 � �1t C �0; t 2 .0; 1�: (29)

One verifies readily that

e‚0.t/ D 3�3

n�
t � �2

3�3

�2 � �22

9�23
� �1

3�3

o
;

�2

3�3
D 1C �20

5�0
;

e‚0.0/ D ��1 < 0; e‚0.1/ < 3�3
�3
5

� 4a2k2

45

�
�20 � � C 2

��
:

If k2 � k20 WD 27=.4a2.�20 � � C 2// and 1 < � < �20 ; then e‚0.t/ < 0; and

e‚.1/ < e‚.t/ < e‚.0/ D �20 � �; t 2 .0; 1/I e‚.t/ � e‚.t�/ > 0; t 2 .0; t��;
(30)
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where

t� D �0

�1
D 1 � 1C ���2

0

1C .2 � �/��2
0

1

�20
; t� D 1 � 1

�20
C 2.� � 1/

1

�40
C O.��6

0 /:

(31)

This implies

‚.r/ > 0 if � � a

t�
or a <

b � a C b.t�1� � 1/

b � a C a.t�1� � 1/
a � r < b: (32)

In particular, if �0 � 1; we have‚.r/ > 0 for all r 2 .a; b/:

2.4 Numerical Results

2.4.1 Illustration of the Solution in �ab Under Different Transformations

Consider the exterior problem

�u C k2 u D 0; � > a0I uj�Da0 D gI @�u � iku D o.��1=2/; (33)

where we take g D �exp
�
ika0 cos.� � �0/

�
with the incident angle �0. It is known

that it admits a unique series solution u.�; �/: As before, we reduce the unbounded
domain by an artificial annular layer˝ab with radius a > a0:

We plot in Fig. 2 the profiles of the solution under different transformations.
We see that the infinite oscillation of the solution in the layer ˝ab by the
real compression transformation (7). The solution decays exponentially with the
complex compression transformation, but it oscillates near r D a: However, with
the substitution (20), v becomes well-behaved in the layer, which actually we
approximate.

2.4.2 Spectral-Element Methods for Scattering Problems

We demonstrate that the proposed absorbing layer is totally non-reflective, and
robust for high wavenumber and very thin layer. To show the high accuracy, we
solve (1) with the scatterer D being a disk of radius a0; which is reduced to two
annuluses:˝ D ˝f [˝ab: Here, we use Fourier approximation in � direction, and
spectral-element method in radial direction [14]. Note that for r 2 Œa; b�; we use the
non-standard basis  j D w
j with 
j being the usual polynomial nodal or modal
basis as in (21).

We also intend to compare our approach with the PML technique using the
complex coordinate stretching

Qr D r C i
Z r

a
�.t/dt; r 2 .a; b/; �.t/ > 0: (34)
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Typically, there are two choices of the absorbing function �.t/.

(i) Regular function (see, e.g., [7, 10]):

�.t/ D �1

� t � a

b � a

�n
; so Qr D rCi �1

b � a

n C 1

� r � a

b � a

�nC1
; r 2 .a; b/; (35)

where n is a positive integer and �1 > 0 is a tuning parameter.
(ii) Singular function (or unbounded absorbing function (see, e.g., [4, 5]):

�.t/ D �2

b � t
; so Qr D r C i �2 ln

�b � a

b � r

�
; r 2 .a; b/; (36)

where �2 > 0 plays the same role as �1:

Observe from (14) and (36) that the imaginary parts of both transformations
involve two different one-to-one mappings between .0;1/ and .a; b/; i.e.,

z D �.r/ � a

b � a
D r � a

b � r
; r D a C bz

1C z
; r 2 .a; b/; z 2 .0;1/; (37)

and

z D ln
�b � a

b � r

�
; r D b � .b � a/

1

ez
; r 2 .a; b/; z 2 .0;1/: (38)

It is noteworthy that the algebraic mapping (37) has been used for mapped spectral
methods in unbounded domains see, e.g., [6, 14], where at times one employs the
following logarithmic mapping similar to (38):

z D ln
�b � 2a C r

b � r

�
; r D b � .b � a/

2

1C ez
; r 2 .a; b/; z 2 .0;1/: (39)

Indeed, one can choose any of these singular mappings in (35) for the PML, but the
singularity of the coefficients in the PML equation is very different between (38)–
(39) and (37). In fact, the authors [4, 5] suggested the use of e.g., Gauss-quadrature
rules to avoid sampling the singular values at r D b; but it should be pointed out the
logarithmic singularity induced by (38) is more challenging to deal with than the
algebraic mapping (37).

We reiterate the significant differences of our approach from the PML: (i) we
use the compression transformation for both the real and imaginary parts in (36) so
we can directly transform the far-field radiation conditions to r D bI and (ii) more
importantly, the substitution allows us to remove the singularity and oscillation in
the layer leading to well-behaved functions which can be accurately approximated
by standard approximation tools.

In the test, we take g to be the same as in (33) with a0 D 1; �0 D 0, and use
Theorem 2 to compute the matrices related to the artificial layer. Let M be the
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cut-off number of the Fourier modes, and N D .N1;N/ be the number of points
in r-direction of two layers, respectively. We measure the maximum pointwise error
in ˝f : We take N1 D 200;M D ka with a D 2; b D 2:2 and vary N so that the
waves in the interior layer can be well-resolved, and the error should be dominated
by the approximation in the outer annulus. In Fig. 3a–b, we compare the accuracy
of the solver with PAL (�0 D 1:5), PML (n D 1; �1 D 1:89; 1:43 for k D 150; 200,
respectively: optimal value based on the rule in [7]) and UPML using unbounded
absorbing function (36) (�2 D 1=k W optimal value suggested by [5]). Observe that
our approach outperforms the PML with two choices of the absorbing functions,
and the advantage is even significant for high wavenumber. In addition, the effect of
the singularity related to UPML is observable for slightly large N.

We also study the influence of the thickness of the absorbing layer. In Fig. 3c, we
vary the thickness of the layer b� a D 0:02; 0:05; 0:1; 0:5 and plot the error against
N D 5; 10; � � � ; 40 with k D 100: For a fixed N, we observe the thinner the layer the
smaller the error, which shows the result is insensitive to the thickness. In Fig. 3d,
we plot Re.uN/j˝f and Re.vN/j˝ab with b � a D 0:02 and N D 40: Notice that the
approximation of v has no oscillation and is well-behaved in the layer.

In Fig. 3e–f, we further test PAL with a perfect conducting ellipse D with @D WD
f.x; y/ D �.cosh� cos �; sinh� sin �/; � 2 Œ0; 2	/g and fix .�; �/ D .0:8; 0:5/ with
k D 50; .a; b/ D .2; 2:2/. We partition ˝ D f˝.i/

f g8iD1 [ f˝.i/
ab g8iD1 into 16 non-

overlapping (curved) quadrilateral elements as shown in Fig. 3e. Using the Gordon-
Hall elemental transformation fTi

f ;T
i
abg W Œ�1; 1�2 7! f˝.i/

f ;˝
.i/
ab g; we define the
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Fig. 3 In (a)–(b): b D 2:2: In (c): k D 100: In (d): k D 100; b D 2:2;N D 40: In (e)–(f):
k D 50;N1 D 60; .a; b/ D .2; 2:2/; @D WD f.x; y/ D �.cosh� cos �; sinh� sin �/; � 2 Œ0; 2	/g
with .�; �/ D .0:8; 0:5/, �0 D 1:5; and for (e): N D 25. (a) PAL vs PML (k D 150). (b) PAL vs
PML (k D 200). (c) Errors vs thickness of ˝ab. (d) Re.uN / and Re.vN/. (e) Re.uN/ and Re.vN/.
(f) Error of (e) against N
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approximation space

uN 2 VN D
n
u 2 H1.˝/ W uj

˝
.i/
f

ı Ti
f 2 PN1 � PN1 ; uj

˝
.i/
ab

D vNw; vNj
˝
.i/
ab

ı Ti
ab 2 PN1 � PN

o
:

(40)

In Fig. 3e, we plot Re.uN/j˝f and Re.vN/j˝ab with .N1;N/ D .60; 25/. In Fig. 3f, we
take N1 D 60 (the interior layer can be well-resolved) and vary N D 5; 10; � � � ; 25
so that the maximum point-wise error in˝f should be dominated by N (the number
of points along the radial direction in ˝ab). We see the errors decay exponentially
for the spectral-element approximation, and a high accuracy can be achieved with a
small N:

2.4.3 Simulation of Cylindrical Inside-Out Cloak

We illustrate that with the lossy and dispersive materials in the cloaking layer ˝ab;

we can achieve the perfectness of the aforementioned inside-out cloak. Assume that
the scatterer D in (1) is penetrable, and place an active “point” source centred at
.x0; y0/ in the disk r < a W

f .x; y/ D A exp
�

� .x � x0/2 C .y � y0/2

2�2

�
; (41)

with .A; x0; y0; �/ D .105;�0:3;�0:3; 0:01/:We take k D 50, .a; b/ D .1; 1:5/ and
�0 D 0:1: In Fig. 4a, we plot Re.u/j˝f and Re.v/j˝ab with .N1;N/ D .50; 30/:We
depict in Fig. 4b–c the extracted profiles along x-axis. We see that the waves radiated
by the active source are completely absorbed by the cloaking layer˝ab. Indeed, the
unknown v in the layer is very well-behaved.
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Fig. 4 Inside-out cloaking phenomenon generated by a point source defined in (41) with k D 50,
.a; b/ D .1; 1:5/; �0 D 0:1; M D ka and N D .50; 30/. (a) Cloaking of a point source. (b) Profile
of u& v along x-axis. (c) Profile of u along x-axis
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3 Rectangular/Polygonal Absorbing Layer

In practice, the rectangular/polygonal layer is more desirable and flexible for e.g.,
elongated scatterers and for element methods. In fact, the two techniques for
designing the perfect annular absorbing layer can be extended to this setting. To
fix the idea, we set

˝f D fx 2 R
2 W jxij < Li; i D 1; 2g; ˝ D fx 2 R

2 W jxij < Li C di; i D 1; 2g;

with L1=L2 D d1=d2. Then, the absorbing layer consists of four trapezoidal pieces:
˝ab D ˝ n N̋ f D ˝r [˝ l [˝ t [˝b; whose non-parallel sides are rays from the
origin O; as illustrated in Fig. 5a.

Like (14), the complex compression coordinate transformation for the right and
top pieces˝r and˝ t; respectively, takes the form:

Qx1 D �1.x1/C i�0.�1.x1/� L1/; Qx2 D Qx1x2=x1; x 2 ˝r; (42)

Qx2 D �2.x2/C i�0.�2.x2/� L2/; Qx1 D Qx2x1=x2; x 2 ˝ t; (43)

and for the left and bottom pieces˝r and˝ t; we transform by symmetry:

�Qx1.x1/; Qx2.x1; x2/
�j˝ l D � � Qx1.�x1/; Qx2.�x1; x2/

�j˝r ; (44)
�Qx1.x1; x2/; Qx2.x2/

�j˝b D �Qx1.x1;�x2/;�Qx2.�x2/
�j˝ t : (45)

In the above, we have

�1.x1/ D L21 C .d1 � L1/x1
L1 C d1 � x1

; �2.x2/ D L22 C .d2 � L2/x2
L2 C d2 � x2

: (46)

Like (7), the real transformation Mx1 D �1.x1/maps Mx1 2 ŒL1;1/ to x1 2 ŒL1;L1C
d1/: As a result, the trapezoid ˝r on the right is compressed along radial direction

3 6 9 12 15 18 21 24 27 30
N

10-12

10-10

10-8

10-6

10-4

10-2

101

E
rr
or
s

Fig. 5 In (b)–(c), @D WD f.x; y/ D �.cosh� cos �; sinh� sin �/; � 2 Œ0; 2	/g with .�; �/ D
.0:8; 0:5/, �0 D 1:5. (a) Schematic illustration of ˝ab. (b) Re.uN/ and Re.vN/. (c) Error of (a)
against N
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from an open “trapezoid” with L1 � Mx1 < 1 and two infinitely-long, non-parallel
sides on the same rays as ˝r: Likewise for three other trapezoidal pieces, they are
compressed from open “trapezoids”.

Using Lemma 1, we can derive the Helmholtz-type PDE as with that in
Theorem 1. Thanks to the symmetry of the layer, one only needs to calculate the
material parameters in˝r and˝ t:

Theorem 4 By the transformation (42)–(43), we have C and n take the form

C11 D ˇ1

˛

�1

x1�0
1

; C22 D ˛

ˇ1

x1�0
1

�1
C ˇ1

˛

�1�
0
1

x1

�x2
x1

�2� 1
�0
1

� ˛

ˇ1

x1
�1

�2
; (47a)

C12 D x2
x1

�ˇ1
˛

�1

x1�0
1

� 1
�
; n D ˛ˇ1

�1�
0
1

x1
; in ˝r; (47b)

and

C11 D ˛

ˇ2

x2�0
2

�2
C ˇ2

˛

�2�
0
2

x2

�x1
x2

�2� 1
�0
2

� ˛

ˇ2

x2
�2

�2
; C22 D ˇ2

˛

�2

x2�0
2

; (48a)

C12 D x1
x2

�ˇ2
˛

�2

x2�0
2

� 1
�
; n D ˛ˇ2

�2�
0
2

x2
; in ˝ t; (48b)

where ˛ D 1 C �0i; and ˇi D Qxi=�i .i D 1; 2/: With the symmetric relations (44)–
(45), we have

fC11;C22; ng.x1; x2/j˝ l D fC11;C22; ng.�x1; x2/j˝r ; C12.x1; x2/j˝ l D �C12.�x1; x2/j˝r ;

(49)

fC11;C22; ng.x1; x2/j˝b D fC11;C22; ng.x1;�x2/j˝ t ; C12.x1; x2/j˝ t D �C12.x1;�x2/j˝ t :

(50)

We shall provide the derivations in a forthcoming work. Like (20), we use the
following substitution to diminish the singularity and essential oscillations:

u D vw; w D �
L1=�1

�3=2
eik

r
x1
.�1�L1 / in ˝r; w D �

L2=�2
�3=2

eik
r
x2
.�2�L2/ in ˝ t; (51)

w.x1; x2/j˝ l D w.�x1; x2/j˝r ; w.x1; x2/j˝b D w.x1;�x2/j˝ t ; with r D
q
x21 C x22: (52)

This can be implemented as in Theorem 2. The details shall be reported in a later
work.

To test our proposed method, we enclose the same elliptical scatterer with
the same setting as in Fig. 3e by a rectangular layer with .L1;L2/ D .1; 0:8/

and .d1; d2/ D .0:1; 0:08/. We partition ˝ D f˝.i/
f g8iD1 [ f˝.i/

ab g8iD1 into 16
non-overlapping quadrilateral elements as shown in Fig. 5b. Once again, the
spectral-element scheme can be implemented by the unconventional basis in (21)
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and uN 2 VN in (40) with w defined in (51)–(52). Let �0 D 0; k D 50; and �0 D 1:5,
we plot Re.uN/j˝f and Re.vN/j˝ab with .N1;N/ D .60; 30/ in Fig. 5b. We plot the
maximum error in˝f with fixed N1 D 60 and N D 3; 6; � � � ; 30 in Fig. 5c. Observe
that the error decays exponentially as N increases, and the approximation in the
layer has no oscillation and is well-behaved.

4 Extensions and Discussions

We discuss various extensions and relevant futures works to conclude this report.

• The complex compression coordinate transformation (14) can be directly applied
to construct three-dimensional spherical absorbing layer. However, the substitu-
tion (20) should be replaced by

u D vw; w D
�a
�

�2
eik.��a/: (53)

• For 3D polyhedral layers, we can compress the outgoing waves of the open space
in radial direction as with the polygonal layer outlined previously. The related
real compression transformation can also be viewed as an inside-out polyhedral
cloak version of that for the polyhedral cloak in [16].

• It is of interest and necessity to theoretically analyse the well-posedness of the
reduced problem, and conduct the related error estimates, which the analysis in
[7, 8, 15] can shed light on, and we shall report in future works.

• Time-dependent formulations of the equation in the absorbing layer can be
obtained by taking the inverse Fourier transform in time of the time-harmonic
counterparts as with the PML technique, see e.g., [9]. Remarkably, Daniel et al.
in [2] proposed a high-order super-grid-scale absorbing layer, whose limiting
case can be viewed as the real compression mapping discussed in Sect. 2.1,
together with an artificial viscosity term to damp the waves. Different from
the PAL technique and the above idea, which only involve spatial coordinate
transformations, Zenginoğlu constructed a hyperboloidal layer in [17] by using a
space-time coordinate transformation along characteristic lines. The comparison
of the accuracy and efficiency between these methods is worthy of deep
investigation.

Acknowledgements The authors thank Dr. Bo Wang from Hunan Normal University, China, for
discussions at the early stage of this topic. L. Wang would like to thank the Scientific Committee
and local organizers of ICOSAHOM 2016 for the conference invitation to Rio de Janeiro, Brazil.
The work of two authors was partially supported by Singapore MOE AcRF Tier 1 Grant (RG
27/15) and MOE AcRF Tier 2 Grant (MOE 2013-T2-1-095, ARC 44/13).



96 L.-L. Wang and Z. Yang

Appendix 1. Proof of Theorem 1

Proof Given the transformation (14), (8) becomes

J D @.x; y/

@.Qx; Qy/ D @.x; y/

@.r; �/

@.r; �/

@. Q�; �/
@. Q�; �/
@.Qx; Qy/ : (54)

With Q� in place of � in (9)–(10), we have

J D RJ1Rt with J1 D
"
dr=d Q� 0

0 r= Q�

#

; (55)

and

C D R

"
c 0

0 1=c

#

Rt; n D Q�
r

d Q�
dr

D ˛ˇ
�

r

d�

dr
; c WD Q�

r

dr

d Q� D ˇ

˛

�

r

dr

d�
: (56)

Then we can work out the explicit expressions of n; c in (18) as (13).
Note that the asymptotic boundary condition at r D b is transformed from the

Sommerfeld radiation condition in (1b).
We now derive the estimate (19). For this purpose, we expand the solution and

data in Fourier series:

fu; ‰g D
1X

jmjD0
fOum.r/; O m.r/geim� ; (57)

where
˚Oum.r/; O m.r/

�
are the Fourier coefficients. Then we can reduce the prob-

lem (16)–(17) to

1

r

�
rc Ou0

m

�0 � m2

r2c
Oum C k2n Oum D 0; r 2 Œa; b/; jmj D 0; 1; 2; � � � ; (58)

Oum D O m at r D aI 1

˛

dr

d�
Ou0
m � iku D o.j Q�j�1=2/ as r ! b�: (59)

One can verify by using the Bessel equation of Hankel function (cf. [1]):

r2y00 C ry0 C .r2 � m2/y D 0; y D H.1/
m .r/;

that the unique solution of (16)–(17) is

u D
1X

jmjD0
Oum.r/eim� with Oum.r/ D O m

H.1/
m .k Q�/

H.1/
m .ka/

: (60)
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We next resort to a uniform estimate of Hankel functions first derived in [7,
Lemma 2.2]: For any complex z with Re.z/; Im.z/ � 0; and for any real ‚ such
that 0 < ‚ � jzj; we have for any real order �;

jH.1/
� .z/j � e

�Im.z/
�
1� ‚2

jzj2

�1=2
jH.1/

� .‚/j; (61)

which implies

max
jmj�0

ˇ̌
ˇ
ˇ
H.1/

m .k Q�/
H.1/

m .ka/

ˇ̌
ˇ
ˇ � exp

n
�k�0.� � a/

�
1 � a2

k2�2 C k2�20 .� � a/2

�1=2o
; � > a:

(62)

Therefore, we can derive (19) by using the Parseval’s identity of Fourier series
and (62). ut

Appendix 2. Proof of Theorem 2

Proof We first deal with the boundary term hCru � n; 
i�b in (24). By a direct
calculation and (56), we have

.@ru; r
�1@�u/t D Rtru; Cru � n D R diag.c; c�1/Rt ru � n D c @ru: (63)

Thus, using (56) and the substitutions: 
 D w and u D wv, we can write

hCru � n; 
i�b D hcur ; 
i�b D hc Nwur;  i�b D a3=2
�
ˇ

r

s
b � r

s.r/
e�ik.��a/ 1

˛

dr

d�
ur ;  

�

�b

D a3=2
�
ˇ

r

s
b � r

s.r/
e�ik.��a/

� 1
˛

dr

d�
ur � iku

�
;  

�

�b

C ika3=2
�
ˇ

r

s
b � r

s.r/
e�ik.��a/u;  

�

�b

D a3=2
�
ˇ

r

s
b � r

s.r/
e�ik.��a/

� 1
˛

dr

d�
ur � iku

�
;  

�

�b

C ika3
�
ˇ

r

.b � r/2

s2.r/
v;  

�

�b

:

Noting that the integral along �b is in �; we obtain from the transformed
Sommerfeld radiation condition (17) that hCru � n; 
i�b ! 0 as r ! b�:

We next deal with the other two terms in (24). Using the basic differentiation
rules

ru D wrv C vrw; r N
 D Nwr N C N r Nw;
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we derive from (24) and a direct calculation that

B˝ab
.u; 
/ D�jwj2Crv;r �

˝ab
C �

wCrv � r Nw;  �
˝ab

C �
v NwCrw;r �

˝ab

C �
Crw � r Nw v;  �

˝ab
� k2

�jwj2 n v;  �
˝ab
:

(64)

As C is symmetric, one verifies readily that for any vectors a and b with two
components, we have .Ca/ � b D .Cb/ � a: Thus, we can rewrite

�
wCrv � r Nw;  �

˝ab
D �

wCr Nw � rv;  �
˝ab
: (65)

As w is independent of �; we immediately get rw D dw
dr n: Then by (56),

Crw D dw

dr
R diag.c; c�1/Rt n D c

dw

dr
n: (66)

Thus, we have

wCr Nw D c w
d Nw
dr

n; NwCrw D c Nwdw

dr
n; Crw � r Nw D c

ˇ
ˇ
ˇ
dw

dr

ˇ
ˇ
ˇ
2

: (67)

Introducing

$1 D jwj2; $2 D c Nw˛
ˇ

dw

dr
; $3 D c

ˇ
ˇ̌dw
dr

ˇ
ˇ̌2 � k2jwj2n; @n D n � r; (68)

we can derive (25) from (64)–(65) and (67)–(68). By (20),

dw

dr
D w

d�

dr

�
� 3

2�
C ik

�
: (69)

We can work out f$jg3jD1 by using (12), (56) and (69). ut

Appendix 3. Proof of Theorem 3

Proof We take v D  in (25). By (56) and (63), we have

Re
�
$1Crv;rv�

˝ab
D Re

Z 2	

0

Z b

a

n
cjvrj2 C 1

cr2
jv� j2

o
$1 rdrd�

D
Z 2	

0

Z b

a

n
Re

�ˇ
˛

� a3

r�2
dr

d�

o
jvrj2rdrd� C

Z 2	

0

Z b

a

n
Re

�˛
ˇ

� a3

r�4
d�

dr

o
jv� j2rdrd�:

(70)
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Using (26) and integration by parts leads to

Re
n 1
˛

�
ˇDnv; v$2

�
˝ab

C 1

˛

�
ˇv$2;Dnv

�
˝ab

o
D 2

Z 2	

0

Z b

a
Re

�ˇ
˛

�
Re.$2v Nvr/rdrd�

D
Z 2	

0

Z b

a
Re

�ˇ
˛

�
Re.$2/.@rjvj2/rdrd� � 2

Z 2	

0

Z b

a
Re

�ˇ
˛

�
Im.$2/Im.v Nvr/rdrd�

D 3

2

1

1C �20
kv.a; �/k2L2.0;2	/ C 3

2

Z 2	

0

Z b

a

n a3

r�4

� 4�20

1C �20

a

�
� 3

�d�
dr

o
jvj2rdrd�

� 2k
Z 2	

0

Z b

a
Re

�ˇ
˛

�a3

�2
Im.v Nvr/drd�:

(71)

It is evident that

Re
�
$3v; v

�
˝ab

D
Z 2	

0

Z b

a
Re.$3/jvj2rdrd�: (72)

Note from (15) that

Re
�ˇ
˛

�
D 1 � �20

1C �20

a

�
>

1

1C �20
; Re

�˛
ˇ

�
D 1C �0.1 � a=�/

1C �20 .1 � a=�/2
a

�
> 1:

(73)

Using the Cauchy-Schwarz inequality, we obtain

2k
Z 2	

0

Z b

a
Re

�ˇ
˛

�a3

�2
Im.v Nvr/drd� � 1

�

Z 2	

0

Z b

a

n
Re

�ˇ
˛

� a3

r�2
dr

d�

o
jvrj2rdrd�

C �k2
Z 2	

0

Z b

a

n
Re

�ˇ
˛

� a3

r�2
d�

dr

o
jvj2rdrd�;

(74)

where � is a positive constant independent of k. Thus, by (25), (70)–(74) and
collecting the terms, we obtain

Re
˚
B˝ab.u; u/

� �
�
1 � 1

�

� Z 2	

0

Z b

a

n
Re

�ˇ
˛

� a3

r�2
dr

d�

o
jvrj2rdrd�

C
Z 2	

0

Z b

a

n
Re

�˛
ˇ

� a3

r�4
d�

dr

o
jv� j2rdrd� C 3

2

1

1C �20
kv.a; �/k2L2.0;2	/

C
Z 2	

0

Z b

a

	
Re.$3/C



3

2

1

�2

� 4�20

1C �20

a

�
� 3

�
� �k2Re

�ˇ
˛

��
a3

r�2
d�

dr

�
jvj2rdrd�:

(75)
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We next work out and estimate the functions in the brackets. We have

s.r/ D a2 C r.b � 2a/ � jIjNc; Nc WD maxfa; jIjg; jIj WD b � a: (76)

By (12), (26) and (76),

a3

r�2
dr

d�
D a3

jIj2
.b � r/4

rs2.r/
� a3

b Nc2jIj4 .b � r/4I a3

r�4
d�

dr
D a3jIj2

r

.b � r/2

s4.r/
� a3

b Nc4jIj2 .b � r/2;

(77)

so we can obtain the lower bounds of the first two terms.
With a careful calculation, we can work out the summation in the curly brackets

of the last term in (75) by using (12), (15) and (26). ut
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