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Abstract. An error analysis is presented for the spectral-Galerkin method to the Helmholtz
equation in 2- and 3-dimensional exterior domains. The problem in unbounded domains is first
reduced to a problem on a bounded domain via the Dirichlet-to-Neumann operator, and then a
spectral-Galerkin method is employed to approximate the reduced problem. The error analysis is
based on exploring delicate asymptotic behaviors of the Hankel functions and on deriving a priori
estimates with explicit dependence on the wave number for both the continuous and the discrete
problems. Explicit error bounds with respect to the wave number are derived, and some illustrative
numerical examples are also presented.
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1. Introduction. We consider in this paper the acoustic wave scattering from
a bounded obstacle D ⊂ R

d, d = 2, 3. In this case, the scattered wave satisfies the
Helmholtz equation

(1.1) −ΔU − k2U = F in R
d\D̄,

along with the Sommerfeld radiation condition at infinity

(1.2) ∂rU − ikU = o
(
r

1−d
2

)
as r → ∞, d = 2, 3,

which ensures that waves do not reflect from the far field. On the surface of the
scatterer D, a Dirichlet (sound soft) or Neumann (sound hard) condition is assumed.

Although the Helmholtz equation with (1.2) is linear, its numerical approximation
and associated analysis are notoriously difficult due to the following: (i) the domain
is unbounded; (ii) the system is not positive definite; and (iii) when the wave number
k � 1, the solution is highly oscillatory. In particular, it remains a challenge to
design numerical algorithms which are robust and efficient for moderate to high wave
numbers.

There has been extensive research work devoted to overcoming these difficulties
(see, for instance, [16, 23, 22] and the references therein). In particular, it has been
shown, at least for some simple cases, that errors of pth order numerical methods for
the Helmholtz equation behave like O(kp+1hp) (see, for instance, [18, 4, 30]). Hence,
high-order methods are particularly preferable for this type of problem over low-order
methods. We note also that some very detailed analyses were carried out in [2, 3]
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on the discrete dispersive relation by the hp version of finite element method (FEM)
and by the high-order discontinuous Galerkin method. These results indicate, once
again, that high-order methods are preferable, if not necessary, for highly oscillatory
problems.

On the other hand, the linear system from a discretization of the Helmholtz equa-
tion with moderate to high wave numbers is usually highly indefinite and difficult to
solve. It is with these considerations in mind that we choose to use the transformed
field expansion (TFE) method (cf. [26]), which improves over the classical field expan-
sion method [27, 5, 6], coupled with a fast spectral-Galerkin solution (cf. [28, 29, 24]).

There are a few recent works on wave number independent boundary element
methods and on error estimates with explicit dependence on wave numbers for acous-
tic scattering problems. In [19, 8], the authors introduced a novel Galerkin bound-
ary element method using a graded mesh and special basis functions and derived a
quasi-optimal error estimate which is independent of wave number for the Helmholtz
equation in a half-plane and exterior of a convex polygon.

We now briefly describe the TFE method for a 2-dimensional (2-D) obstacle
enclosed by {r = a+ g(θ) : 0 ≤ θ < 2π}. The TFE algorithm consists of the following
steps:

• Assuming F is compactly supported and choosing b such that b > a +
max0≤θ<2π |g(θ)| and suppF ⊂ Ωg := {(r, θ) : a + g(θ) < r < b}, we then use
the Dirichlet-to-Neumann operator T (see [15, 13] and the next section) to
reduce the problem in the unbounded domain to

− ΔU − k2U = F in Ωg,

U |r=a+g(θ) = ξ, (∂rU + T (U))|r=b = 0.
(1.3)

• Make a change of variables

(1.4) r′ =
(b− a)r − bg(θ)

(b− a) − g(θ)
, θ′ = θ,

which maps Ωg to an annulus Ω0. To simplify the notation, we still use (r, θ)
to denote (r′, θ′) and U, F, ξ to denote the functions U, F, ξ after the change
of variables. Then the problem (1.3) becomes

− ΔU − k2U = F + J(g, U) in Ω0,

U(a, θ) = ξ(θ), (∂rU + TU)|r=b = η(g, U),
(1.5)

where J(g, U) and η(g, U) contain differential operators with nonconstant
coefficients for which a fast direct/iterative solution is not available.

• Consider the obstacle {(r, θ) : r < a + g(θ)} as a perturbation of the disk
{r < a}; i.e., write g = εh and expand u as

U(r, θ; ε) =

∞∑
n=0

Un(r, θ) εn.

Plugging the above expansion into (1.5) and collecting terms with εn, we find
that [24]

− ΔUn − k2Un = δn,0F + J̃(g, Un−4, . . . , Un−1) in Ω0,

Un(a, θ) = δn,0ξ(θ), (∂rUn + TUn)|r=b = η̃(g, Un−1).
(1.6)
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• Solve (1.6) for n = 0, 1, 2, . . . , and sum up the series by using a Padé approx-
imation.

It is shown in [25, 26] that this TFE method is stable and robust at high order, and
it is demonstrated in [24] that this method, coupled with a spectral-Galerkin solution
for (1.6), is very efficient and capable of providing very accurate results for bounded
obstacle scattering with moderate to high wave numbers.

Notice that the whole algorithm boils down to solving a sequence of the following
nonhomogeneous Helmholtz equation in an annulus (2-D) or a spherical shell (3-D):

− ΔU − k2U = F in Ω0,

U(a, θ) = ξ(θ), (∂rU + TU)|r=b = η(θ).
(1.7)

The purpose of this paper is to present a detailed error analysis of the spectral-
Galerkin method for (1.7). The main difficulty here is to obtain error estimates with
explicit dependence on the wave number. Among the very few results available in this
regard are those in [18, 30], where the Helmholtz equation in bounded domains with
a first-order approximation to the radiation boundary condition was considered and
error estimates with explicit dependence on the wave numbers were derived. To the
authors’ best knowledge, there seems to be no rigorous error estimate available with
explicit dependence on the wave number for a numerical scheme to bounded obstacle
scattering.

We now introduce some notations to be used throughout this paper. Let 	 be a
given positive weight function in I := (a, b). We denote by L2

�(I) a Hilbert space of
real or complex functions with inner product and norm

(u, v)� =

∫
I

u(r)v(r)	(r)dr, ‖u‖� =
√

(u, u)�,

respectively, where v̄ is the complex conjugate of v. Then the weighted Sobolev
spaces Hs

�(I) (s = 0, 1, 2, . . . ) can be defined as usual with inner products, norms,
and seminorms denoted by (·, ·)s,�, ‖ · ‖s,�, and | · |s,�, respectively. For real s > 0,
Hs

�(I) is defined by space interpolation (cf. [20]). The subscript 	 will be omitted

from the notations in the case of 	 ≡ 1. For simplicity, we denote ∂l
rv = dlv

drl
, l ≥ 1.

We shall also use (·, ·)ω and ‖ · ‖ω to denote the weighted inner product and the
weighted L2-norm, respectively, in two and three dimensions.

Let S be the unit circle in 2-D and the unit sphere in 3-D; we also use the
nonisotropic periodic-type Sobolev space on Ω = S × I: Hs′

p

(
S;Hs

�(I)
)
, s′ ≥ 0

(subscript p stands for periodicity in the θ-direction) with the norm

(1.8) ‖U‖Hs′
p (S;Hs

�(I)) =

⎧⎪⎨⎪⎩
(∑∞

|m|=0(1 + m2)s
′‖ûm‖2

s,�

)1/2

if d = 2,(∑∞
m=0

∑m
l=−m(1 + m)2s

′‖ûlm‖2
s,�

)1/2

if d = 3,

where {ûm} (resp., {ûlm}) are the expansion coefficients of U in terms of Fourier
(resp., spherical harmonic) basis, i.e.,

(1.9) U =

∞∑
|m|=0

ûmeimθ or U =

∞∑
m=0

m∑
l=−m

ûlmY l
m(θ, φ).

The norm of the Sobolev space Hs′

p (S) on S can be defined in the same fashion by
replacing the norm ‖ · ‖s,� by the absolute value | · |. In particular, we have

L2
p(Ω) = H0

p (S,H0
�(I)) with 	 = rd−1, d = 2, 3.
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We assume that a > 0 is a fixed parameter representing the radius of the scatterer.
Throughout this paper, we denote by c a generic positive constant which depends only
on a and possibly on a fixed k0 > 0. We use the expression A � B to mean that
A ≤ cB.

2. Dirichlet-to-Neumann (DtN) map. The error analysis relies heavily on
the properties of the DtN map which we investigate below.

2.1. Formulation of the DtN operator. We start with the 3-D case and
consider an “auxiliary” exterior problem

(2.1)

{
−ΔU − k2U = 0 in Ωext := R

3 \ B̄,

U = Ψ on ∂B,

where B is a ball of radius b. This problem can be solved analytically via separation
of variables; namely, we can express its solution as

(2.2) U(r, θ, φ) =

∞∑
m=0

h(1)
m (kr)

m∑
l=−m

ûlmY l
m(θ, φ),

where (r, θ, φ) ∈ [b,∞)× [0, 2π)× [0, π), h
(1)
m (z) is the spherical Hankel function of the

first kind of order m, and {Y l
m} are the spherical harmonic functions. To determine

the coefficients {ûlm}, we expand the Dirichlet boundary value Ψ on the sphere ∂B
as

(2.3) U(b, θ, φ) = Ψ(θ, φ) =

∞∑
m=0

m∑
l=−m

ψ̂lmY l
m(θ, φ).

Letting r = b in (2.2) and comparing the coefficients of the two expansions yield that

(2.4) ûlm =
ψ̂lm

h
(1)
m (kb)

for m ≥ |l| ≥ 0.

Plugging it into (2.2) leads to the exact solution of (2.1):

U(r, θ, φ) =

∞∑
m=0

h
(1)
m (kr)

h
(1)
m (kb)

m∑
l=−m

ψ̂lmY l
m(θ, φ).(2.5)

Differentiating (2.5) with respect to r and setting r = b, we find

(2.6) ∂rU(b, θ, φ) =

∞∑
m=0

k
h

(1)
m

′
(kb)

h
(1)
m (kb)

m∑
l=−m

ψ̂lmY l
m(θ, φ).

Hence, the DtN map is defined explicitly as

T (U) =
∂U

∂n

∣∣∣
∂B

= −∂U

∂r

∣∣∣
r=b

= −
∞∑

m=0

k
h

(1)
m

′
(kb)

h
(1)
m (kb)

m∑
l=−m

ψ̂lmY l
m(θ, φ),(2.7)

where n is the outward normal of Ωext.
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The counterpart of (2.1) in 2-D is

(2.8)

{
−ΔU − k2U = 0 in Ωext := R

2 \ B̄,

U = Φ on ∂B,

where B is a circle of radius b which can be solved analytically with the exact solution

(2.9) U(r, θ) =

∞∑
|m|=0

ûmH(1)
m (kr)eimθ ∀(r, θ) ∈ [b,∞) × [0, 2π).

Here H
(1)
m (z) is the Hankel function of the first kind of order m. The coefficients

{
ûm

}
are determined by the boundary value Φ(θ) with the expansion

(2.10) U(b, θ) = Φ(θ) =
∞∑

|m|=0

φ̂meimθ.

Hence, letting r = b in (2.9) and comparing the coefficients of the above two expansions

lead to ûm = φ̂m/H
(1)
m (kb). As a consequence, the exact solution of (2.8) is

(2.11) U(r, θ) =

∞∑
|m|=0

H
(1)
m (kr)

H
(1)
m (kb)

φ̂meimθ ∀(r, θ) ∈ [b,∞) × [0, 2π).

The 2-D DtN map is given by

T (U) =
∂U

∂n

∣∣∣
∂B

= −∂U

∂r

∣∣∣
r=b

= −
∞∑

|m|=0

k
H

(1)
m

′
(kb)

H
(1)
m (kb)

φ̂meimθ.(2.12)

By using the DtN map T and choosing b sufficiently large so that B contains both
D and suppF , the original problem (1.1)–(1.2) with a Dirichlet boundary condition
is reduced to:

(2.13)

⎧⎪⎨⎪⎩
−ΔU − k2U = F in Ω := B ∩ R

d \ D̄, d = 2, 3,

U = ξ on ∂D,

∂rU + TU = 0 on ∂B.

To fix the idea, we prescribed a Dirichlet boundary condition on the scatterer D;
other types of boundary conditions can be used as well.

2.2. Properties of the DtN kernel. In order to carry out a rigorous mathe-
matical analysis for the problem (2.13), we need to study carefully the properties of
the DtN kernel associated with (2.7) and (2.12), i.e., the properties of the coefficients:

(2.14) Tm,κ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H

(1)
m

′
(κ)

H
(1)
m (κ)

if d = 2,

h
(1)
m

′
(κ)

h
(1)
m (κ)

if d = 3.
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2.2.1. Behavior of the 3-D kernel. In this case, we have κ > 0 and m ≥ 0.
We recall that

(2.15) h(1)
m (κ) = jm(κ) + iym(κ) =

√
π

2κ
Jm+1/2(κ) + i

√
π

2κ
Ym+1/2(κ),

where Jν and Yν (resp., jν and yν) are the Bessel (resp., spherical Bessel) functions
of the first and second kinds, respectively, of order ν. Using the relevant properties of
the Bessel functions (cf. [31]), one verifies that

Re(Tm,κ) =
m

κ
− jm(κ)jm+1(κ) + ym(κ)ym+1(κ)∣∣h(1)

m (κ)
∣∣2

=
m

κ
−

Jm+1/2(κ)Jm+3/2(κ) + Ym+1/2(κ)Ym+3/2(κ)

J2
m+1/2(κ) + Y 2

m+1/2(κ)
;

(2.16a)

Im(Tm,κ) =
1

κ2
∣∣h(1)

m (κ)
∣∣2 =

2

πκ

1

J2
m+1/2(κ) + Y 2

m+1/2(κ)
.(2.16b)

An explicit expression of Tm,κ is given by Theorem 2.6.1 of [23]:

(2.17) Tm,κ = Re(Tm,κ) + i Im(Tm,κ) = − Pm(κ)

κQm(κ)
+

i

Qm(κ)
,

where

Pm(κ) = 1 + 2am1
1

κ2
+ · · · + (m + 1)amm

1

κ2m
,

Qm(κ) = 1 + am1
1

κ2
+ · · · + amm

1

κ2m
,

(2.18)

with

(2.19) amj =
(m + j)!(2j)!

4j(j!)2(m− j)!
.

We now study the monotonic property of Im(Tm,κ) with respect to m and κ.
We observe from (2.17)–(2.19) that, for a fixed m ≥ 0, Im(Tm,κ) is an increasing
function of κ, as illustrated by Figure 2.1(b). However, for a given κ > 0, Im(Tm,κ) is
a decreasing function of m, which follows from Nicholson’s formula (see p. 444 of [31])

(2.20) J2
m+1/2(κ) + Y 2

m+1/2(κ) =
8

π2

∫ +∞

0

K0(2κsinht)cosh
(
(2m + 1)t

)
dt,

where K0(ξ) > 0 is Kelvin’s function defined by (A.2) in the appendix.
We next consider the bounds and asymptotic behavior of Tm,κ. An immediate

consequence of (2.17)–(2.19) is that

(2.21) Re(Tm,κ) < 0, Im(Tm,κ) > 0,

which ensures the well-posedness of the problem (2.13) (cf. [11]). Moreover, we have
the following bounds (see, e.g., p. 87 of [23]):

(2.22) −m + 1

κ
≤ Re(Tm,κ) ≤ − 1

κ
, 0 < Im(Tm,κ) ≤ 1,
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Fig. 2.1. Graphs of Re(Tm,κ) and Im(Tm,κ), with (κ,m) ∈ [1,100] × [0,120], in the 3-D case.
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(a)  Case: κ=m+1/2
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0

0.2

0.4

0.6
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m

(b)  Full range (κ=20,30,40,50) 

κ=20 κ=50

Fig. 2.2. (a) Im(Tm,m+1/2) (�) against Em,m+1/2 (◦) with m ∈ [1, 200]; (b) Im(Tm,κ) (solid
line) against Em,κ (+ for κ > m + 1/2, (◦) for k = m + 1/2, and (�) for κ < m + 1/2), with
κ = 20, 30, 40, 50.

in particular, by (2.17)–(2.19),

(2.23) Re(T0,κ) = − 1

κ
, Im(T0,κ) = 1.

We now seek more precise estimates of Im(Tm,κ) and proceed separately with
three cases:

(i) κ > m + 1/2. We first recall the estimate (see p. 447 of [31])

(2.24)
2

πκ
< J2

ν (κ) + Y 2
ν (κ) <

2

π
√
κ2 − ν2

if
1

2
≤ ν < κ,

which, together with (2.16b), implies that

(2.25) Em,κ :=

√
κ2 − (m + 1/2)2

κ
< Im(Tm,κ) < 1 if κ > m +

1

2
.

We observe from Figure 2.2 that the lower bound Em,κ provides an acceptable
approximation to Im(Tm,κ).

(ii) κ = m + 1/2. Using the formulas (see p. 232 of [31])

Jν(ν) = C1ν
−1/3 + O(ν−5/3), Yν(ν) = −C2ν

−1/3 + O(ν−5/3),(2.26)

with

C1 =
Γ(1/3)

22/331/6π
≈ 0.4473, C2 =

31/3Γ(1/3)

22/3π
≈ 0.7748,
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we obtain from (2.16b) that

(2.27) Im
(
Tm,m+1/2

)
∼ C◦

(
m + 1/2

)−1/3
:= Em,m+1/2,

with C◦ = 2/
(
π(C2

1 + C2
2 )
)
≈ 0.7954.

In Figure 2.2(a), we plot Im(Tm,m+1/2) against Em,m+1/2 for 1 ≤ m ≤ 200,

which shows that, even for small m, the asymptotic estimate C◦
(
m + 1/2

)−1/3

provides a very good approximation to Im
(
Tm,m+1/2

)
.

(iii) κ < m + 1/2. By the asymptotic formulas (see p. 243 of [31])

Jν(νsechα) ∼ eν(tanhα−α)

√
2πνtanhα

, Yν(νsechα) ∼ − eν(α−tanhα)√
1
2πνtanhα

,(2.28)

one verifies that for m + 1/2 = κcoshα, with α > 0,

(2.29) Im(Tm,κ) ∼ 2(2m + 1)tanhα

κ
[
e(2m+1)(tanhα−α) + 4e(2m+1)(α−tanhα)

] := Em,κ.

Hence, Im(Tm,κ) becomes exponentially small for large m. The exponential
decay of Im(Tm,κ) is shown more clearly from the asymptotic estimate

(2.30) Im(Tm,κ) ∼
( eκ

2m + 1

)2m

, m � κ,

which follows from formula 9.3.1 of [1]:

(2.31) Jν(κ) ∼ 1√
2πν

(eκ
2ν

)ν

, Yν(κ) ∼ − 2√
πν

(eκ
2ν

)−ν

, ν � κ.

We plot in Figure 2.2(b) the estimate Em,κ (defined in (2.25), (2.27), and (2.29))
versus Im(Tm,κ), with κ = 20, 30, 40, 50 and various m, which indicates that Em,κ

provides an accurate picture of Im(Tm,κ).

2.2.2. Behavior of the 2-D kernel. The identity H
(1)
−ν (z) = eνπiH

(1)
ν (z) and

the definition (2.14) imply that

(2.32) T−m,κ =
H

(1)
−m

′
(κ)

H
(1)
−m(κ)

=
(−1)mH

(1)
m

′
(κ)

(−1)mH
(1)
m (κ)

= Tm,κ.

Hence, it suffices to consider Tm,κ with m ≥ 0. Using the recursion formulas of the
Bessel functions, one verifies that

Re(Tm,κ) =
m

κ
− Jm(κ)Jm+1(κ) + Ym(κ)Ym+1(κ)

J2
m(κ) + Y 2

m(κ)
;(2.33a)

Im(Tm,κ) =
2

πκ

1

|H(1)
m (κ)|2

=
2

πκ

1

J2
m(κ) + Y 2

m(κ)
.(2.33b)

We observe that the 2-D kernel has an expression similar to that of the 3-D kernel
(cf. (2.16)). In fact, they share similar properties and asymptotic behaviors except
for m = 0 (comparison: Figure 2.1(a) versus Figure 2.3(a) and Figure 2.2(b) versus
Figure 2.3(b)).

Indeed, we notice that the same monotonic property holds for the 2-D Im(Tm,κ) :
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(a)  Graph of Re( T
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Fig. 2.3. (a) Graph of 2-D Re
(
Tm,κ

)
, with (κ,m) ∈ [1,100] × [1,120]; (b) 2-D Im(Tm,κ) (solid

line) against Em,κ defined in (2.35) (+ for κ > m+1/2, ◦ for κ = m+1/2, and (�) for κ < m+1/2),
with κ = 20, 30, 40, 50.

(i) For a given m ≥ 1, Im(Tm,κ) is a strictly increasing function of κ, which

follows from (2.33b) and the fact that κ|H(1)
m (κ)|2 is a strictly decreasing

function of κ (cf. p. 446 of [31]);
(ii) for a fixed κ > 0, Im(Tm,κ) is a strictly decreasing function of m, which is a

direct consequence of Nicholson’s formula (A.3a).
As in (2.22), we have the following bound for the 2-D kernel (see the appendix

for the proof):

0 < Im(Tm,κ) < 1, m ≥ 1;(2.34a)

−m

κ
≤ Re(Tm,κ) ≤ − 1

2κ
, m ≥ 1; − 1

2κ
≤ Re(T0,κ) < 0;(2.34b)

Im(T0,κ) > 1 ∀κ > 0.(2.34c)

As in the 3-D case, applying the general formulas (2.24), (2.26), and (2.28) to the
2-D Im(Tm,κ), we find that an accurate approximation for Im(Tm,κ) is

(2.35) Em,κ :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
√

1 −m2/κ2 if κ > m ≥ 1,

C◦m
−1/3 if κ = m,

4m tanhα

κ
[
e2m(tanhα−α) + 4e2m(α−tanhα)

] if κ = m sechα, α > 0,

where the constant C◦ is defined by (2.27).
In Figure 2.3(b), we plot Em,κ against Im(Tm,κ), which indicates that the estimate

Em,κ gives an accurate picture of the behavior of Im(Tm,κ).

3. A priori estimates. In order to carry out error analysis for the spectral-
Galerkin approximation to (1.7), we need to establish some a priori estimates for the
solution of (1.7). Without loss of generality, we shall set ξ = 0 since the nonhomo-
geneous boundary condition at r = a can be simply converted to a homogeneous one
by subtracting a suitable function from the solution.

3.1. Dimension reduction. We now rewrite (1.7) with ξ = 0 in polar coordi-
nates (r, θ) or spherical coordinates (r, θ, φ):

(3.1)

⎧⎨⎩ −
( 1

rd−1
∂r
(
rd−1∂rU

)
+

1

r2
ΔSU

)
− k2U = F in Ω = (a, b) × S,

U
∣∣
r=a

= 0,
[
∂rU + T (U)

]∣∣
r=b

= η,
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where

(3.2) ΔSU =

⎧⎨⎩∂2
θU if d = 2,

1
sin2 φ

∂2
θU + 1

sinφ∂φ
(
sinφ∂φU

)
if d = 3,

and its eigenfunctions are the Fourier basis
{
eimθ

}
(in 2-D) or the spherical harmonic

functions
{
Y l
m(θ, φ)

}
(in 3-D), i.e.,

(3.3) −ΔSe
imθ = m2eimθ (d = 2); −ΔSY

l
m(θ, φ) = m(m + 1)Y l

m(θ, φ) (d = 3).

We shall denote

(3.4) βm =

{
m2, m = 0,±1,±2, . . . , if d = 2,

m(m + 1), m = 0, 1, 2, . . . , if d = 3.

Expanding the solution and given data in terms of the eigenfunctions of ΔS :

(3.5)
(
U, F, η

)
=

⎧⎨⎩
∑∞

|m|=0

(
ûm(r), f̂m(r), ĥm

)
eimθ if d = 2,∑∞

m=0

∑m
l=−m

(
ûlm(r), f̂lm(r), ĥlm

)
Y l
m(θ, φ) if d = 3,

we find from (3.3) that the problem (3.1)–(3.2) is reduced to the following sequence
of 1-dimensional equations (for brevity, we use u to denote ûm or ûlm and likewise
for f and h below):

(3.6)

⎧⎨⎩ − 1

rd−1

d

dr

[
rd−1 du

dr

]
+ βm

u

r2
− k2u = f, r ∈ (a, b), d = 2, 3,

u(a) = 0, u′(b) − kTm,ku(b) = h,

where Tm,k is derived from (2.7) and (2.12):

(3.7) Tm,k =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
H

(1)
m

′
(kb)

H
(1)
m (kb)

if d = 2,

h
(1)
m

′
(kb)

h
(1)
m (kb)

if d = 3.

Notice that Tm,k = Tm,kb (defined by (2.14)).

3.2. Variational formulation and a priori estimates. We denote the weight
functions ωα(r) = rα and ω(r) = r. Define the 1-D weighted space

(3.8) X := X(d) =
{
u ∈ H1

ωd−1(I) ∩ L2
ωd−3(I) : u(a) = 0

}
.

We define a bilinear form on H1
p (S;X) ×H1

p (S;X) :

B(U, V ) =
(
∂rU, ∂rV

)
ωd−1 +

(
∇SU,∇SV

)
ωd−3 − k2

(
U, V

)
ωd−1

+ bd−1
〈
T (U)(·), V (b, ·)

〉
S
,

(3.9)

where 〈·, ·〉S is the L2(S)-inner product (cf. the appendix), and the gradient operator
∇S is defined by

(3.10) ∇SU =

⎧⎨⎩∂θU if d = 2,(
1

sin θ∂θU
)
�eθ +

(
∂φU

)
�eφ if d = 3.
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The variational formulation of (3.1) is as follows: Given F ∈ L2
ωd−1(Ω) and η ∈

L2(S), find U ∈ H1
p (S;X) such that

(3.11) B(U, V ) = (F, V )ωd−1 + bd−1
〈
η, V (b, ·)

〉
S

∀ V ∈ H1
p (S;X), d = 2, 3,

which admits a unique solution (see, e.g., [23]). The first main result of this paper is
the following a priori estimates.

Theorem 3.1. Let U be the solution of (3.11). If F ∈ L2(Ω) and η ∈ L2(S),
then we have

‖∇U‖ + k‖U‖Ω �
(√

bd +
√
b|I|(kb)1/3

)
‖η‖L2(S) + (kb)1/3|I|‖F‖,(3.12)

where |I| = b− a.
The rest of this section is devoted to the proof of this estimate. Observe that, for

each mode m or (l,m), the expansion coefficient u = ûm or ûlm (cf. (3.5)) satisfies
the following reduced problem (i.e., the variational formulation of (3.6)–(3.7)):

Given f ∈ L2
ωd−1(I) and h ∈ C, find u ∈ X such that

Bm(u, v) = (f, v)ωd−1 + bd−1hv(b) ∀v ∈ X, d = 2, 3,
(3.13)

where f = f̂m or f̂lm, h = ĥm or ĥlm, and the sesquilinear form

Bm(u, v) := (∂ru, ∂rv)ωd−1 + βm(u, v)ωd−3 − k2(u, v)ωd−1 − kbd−1Tm,ku(b)v(b),

(3.14)

where βm is defined in (3.4).
An essential step is to derive a priori estimates for each u = ûm or ûlm and then

combine these estimates to get the desired result for the original problem (3.11).
We have the following a priori estimate for the solution of (3.13)–(3.14).
Lemma 3.1. Let |I| = b−a be the length of the interval I = (a, b). If f ∈ L2

ωd−1(I),
then given k0 > 0, we have that, for k ≥ k0 and d = 2, 3,

‖∂ru‖ωd−1 +
√
βm‖u‖ωd−3 + k‖u‖ωd−1

�
(√

bd +
√
b|I|Cm,k

)
|h| + Cm,k|I|‖f‖ωd−1 ,

(3.15)

where

(3.16) Cm,k =

{
(kb)

1
3 if |m| ≤ kb,

1 if |m| > kb.

Proof. Some early work (cf. [12, 17, 18]) in this direction relies on the explicit
form of Green’s function which is very difficult, if not possible, to extend to more
general cases. Our proof is based on an argument in [21, 10] (see also [30, 9]). More
precisely, we take two test functions v = u, (r − a)∂ru ∈ X in (3.13) successively
to obtain a priori estimates without using Green’s functions. In the following, εj >
0 (j = 1, . . . , 5) are some suitable real numbers.

We first take v = u in (3.13). The imaginary and real parts are, respectively,

−kbd−1Im(Tm,k)|u(b)|2 = bd−1Im(hu(b)) + Im(f, u)ωd−1 ,(3.17a)

‖∂ru‖2
ωd−1 + βm‖u‖2

ωd−3 − k2‖u‖2
ωd−1 − kbd−1Re(Tm,k)|u(b)|2

= bd−1Re(hu(b)) + Re(f, u)ωd−1 .
(3.17b)
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In order to derive an upper bound for ‖∂ru‖2
ωd−1 +βm‖u‖2

ωd−3 , we proceed separately
with two cases: (i) d = 2, |m| > 0 or d = 3, m ≥ 0 and (ii) d = 2, m = 0. In the
first case, we have from (2.22) and (2.34b) with |m| ≥ 1 (note that κ = kb) that

(3.18)
1

k|Re(Tm,k)|
≤ b for d = 2, |m| > 0 or d = 3, m ≥ 0.

In what follows, we shall repeatedly use the inequality 2AB ≤ εA2 + B2

ε for all
A,B, ε > 0.

Applying the Cauchy–Schwarz inequality to (3.17b) leads to

‖∂ru‖2
ωd−1 + βm‖u‖2

ωd−3 − kbd−1Re(Tm,k)|u(b)|2

≤ k2‖u‖2
ωd−1 +

kbd−1|Re(Tm,k)|
2

|u(b)|2 +
bd−1

2k|Re(Tm,k)|
|h|2

+ ε1k
2‖u‖2

ωd−1 +
1

4ε1k2
‖f‖2

ωd−1 .

(3.19)

Thus, by (3.18), the estimate (3.19) becomes (for d = 2, |m| > 0 or d = 3, m ≥ 0)

‖∂ru‖2
ωd−1 + βm‖u‖2

ωd−3 −
kbd−1Re(Tm,k)

2
|u(b)|2

≤ (1 + ε1)k
2‖u‖2

ωd−1 +
bd

2
|h|2 +

1

4ε1k2
‖f‖2

ωd−1 .

(3.20)

To treat the only remaining case, (ii) d = 2 and m = 0, we apply the Cauchy–Schwarz
inequality to (3.17a) and get that

kbIm(T0,k)|u(b)|2 ≤ kbIm(T0,k)

2
|u(b)|2 +

b

2kIm(T0,k)
|h|2

+
ε2kIm(T0,k)

2
‖u‖2

ω +
1

2ε2kIm(T0,k)
‖f‖2

ω,

(3.21)

which implies that

(3.22) k2b|u(b)|2 ≤ ε2k
2‖u‖2

ω +
b

|Im(T0,k)|2
|h|2 +

1

ε2|Im(T0,k)|2
‖f‖2

ω.

Thanks to (2.34c), we can rewrite the inequality (3.22) as

(3.23) k2b|u(b)|2 ≤ ε2k
2‖u‖2

ω + b|h|2 +
1

ε2
‖f‖2

ω.

We now apply the Cauchy–Schwarz inequality to (3.17b) (with d = 2 and m = 0) and
use (3.23) to bound the term involving |u(b)|2 to get

‖∂ru‖2
ω + β0‖u‖2

ω−1 − kbRe(T0,k)|u(b)|2

≤ k2‖u‖2
ω + k2b|u(b)|2 +

b

4k2
|h|2 +

ε1k
2

2
‖u‖2

ω +
1

2ε1k2
‖f‖2

ω

≤ (1 + ε1)k
2‖u‖2

ω + cb|h|2 +
1

ε1
‖f‖2

ω,

(3.24)
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where we took ε2 = ε1/2 in (3.23). In view of (3.20) and (3.24), we have the following
estimate which is valid for all cases:

‖∂ru‖2
ωd−1 + βm‖u‖2

ωd−3 ≤ (1 + ε1)k
2‖u‖2

ωd−1 + cbd|h|2 + c‖f‖2
ωd−1 .(3.25)

Now the main difficulty is how to bound the term k2‖u‖2
ωd−1 . To do this, we need

to derive further estimates by testing (3.13) with another function. Using a standard
regularity argument, one can easily verify that for f ∈ L2

ωd−1(I) the weak solution of
(3.13) satisfies (r − a)∂ru ∈ X. Hence, we can take v = 2(r − a)∂ru in (3.13), and
after integration by parts and thanks to the identity

(3.26) (u, v)ω + (v, u)ω = 2Re(u, v)ω,

we find that the first three terms of the real part of (3.13) with v = 2(r − a)∂ru are

2Re
(
∂ru, ∂r((r − a)∂ru)

)
ωd−1 = bd−1|I||∂ru(b)|2

+

∫ b

a

[
(2 − d) + (d− 1)

a

r

]
|∂ru|2rd−1dr;

(3.27a)

2βmRe
(
u, (r − a)∂ru

)
ωd−3 = βmbd−3|I||u(b)|2

− βm

∫ b

a

[
(d− 2) − (d− 3)

a

r

]
|u|2rd−3dr;

(3.27b)

−2k2Re(u, (r − a)∂ru)ωd−1 = −k2bd−1|I||u(b)|2

+ k2

∫ b

a

[
d− (d− 1)

a

r

]
|u|2rd−1dr.

(3.27c)

Accordingly, we find that the real part of (3.13) with v = 2(r − a)∂ru becomes

bd−1|I|
(
|∂ru(b)|2 + βmb−2|u(b)|2

)
+ a(d− 1)‖∂ru‖2

ωd−2

+ k2

∫ b

a

[
d− (d− 1)

a

r

]
|u|2rd−1dr

≤ k2bd−1|I||u(b)|2 + (d− 2)‖∂ru‖2
ωd−1 + βm

∫ b

a

[
(d− 2) + (3 − d)

a

r

]
|u|2rd−3dr

+ 2bd−1|I|
∣∣Re(h∂ru(b))

∣∣ + 2
∣∣Re(f, (r − a)∂ru)ωd−1

∣∣.

(3.28)

Note that in the third term the factor d − (d − 1)ar > 1 for all r ∈ (a, b), so we can
use this term to bound k2‖u‖2

ωd−1 in (3.25).
By the Cauchy–Schwarz inequality, we can treat the last two terms at the right-

hand side of (3.28) as, respectively,

(3.29) 2bd−1|I|
∣∣Re

(
h∂ru(b)

)∣∣ ≤ bd−1|I|
2

|∂ru(b)|2 + 2bd−1|I||h|2,

and

2
∣∣Re(f, (r − a)∂ru)ωd−1

∣∣ ≤ ε3‖∂ru‖2
ωd−1 +

|I|2
ε3

‖f‖2
ωd−1 .(3.30)

We now proceed separately for d = 2 and d = 3.
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Case I: d = 2. In this case, a combination of (3.28)–(3.30) leads to

b|I|
(
|∂ru(b)|2 + βmb−2|u(b)|2

)
+ a‖∂ru‖2 + k2

∫ b

a

[
2 − a

r

]
|u|2rdr

≤ k2b|I||u(b)|2 +
(
ε3‖∂ru‖2

ω + aβm‖u‖2
ω−2

)
+

b|I|
2

|∂ru(b)|2

+ 2b|I||h|2 +
|I|2
ε3

‖f‖2
ω.

(3.31)

Using (3.25) with d = 2, we have that, for ε3 < 1 and for certain ξ1 ∈ (a, b),

ε3‖∂ru‖2
ω + aβm‖u‖2

ω−2 ≤ max
{
ε3,

a

ξ1

}(
‖∂ru‖2

ω + βm‖u‖2
ω−1

)
≤ (1 + ε1)k

2‖u‖2
ω + cb2|h|2 + c‖f‖2

ω.
(3.32)

Hence, it remains to bound the term k2b|I||u(b)|2 in (3.31).
(i) |m| > kb. In this case, the term b|I|k2|u(b)|2 can be absorbed by

b−1|I|βm|u(b)|2 at the left-hand side of (3.31). Hence, a combination of
(3.31)–(3.32) leads to the desired result:

b|I|
(1

2
|∂ru(b)|2 + (βmb−2 − k2)|u(b)|2

)
+ a‖∂ru‖2 + Ck2‖u‖2

ω

� b2|h|2 + (1 + |I|2)‖f‖2
ω,

(3.33)

where, with a suitable choice of ε1, the constant

(3.34) C = 1 − a

ξ2
− ε1 > 0 for certain ξ2 ∈ (a, b).

(ii) |m| ≤ kb. Similar to the derivation of (3.22), we apply the Cauchy–Schwarz
inequality to (3.17a):

(3.35) k2b|I||u(b)|2 ≤ ε3|I|k2‖u‖2
ω +

b|I|
|Im(Tm,k)|2

|h|2 +
|I|

ε3|Im(Tm,k)|2
‖f‖2

ω.

Then a combination of the estimates (3.31), (3.32), and (3.35) leads to

b|I|
(1

2
|∂ru(b)|2 + βmb−2|u(b)|2

)
+ a‖∂ru‖2 + C̃k2‖u‖2

ω

� C
(1)
m,k|h|2 + C

(2)
m,k‖f‖2

ω,

(3.36)

where, with a suitable choice of ε1 and ε3 and using the fact that Im(Tm,k) <
1, the constants are

C̃ = 1 − a

ξ3
− ε1 − ε3|I| > 0 for certain ξ3 ∈ (a, b),

C
(1)
m,k = b2 +

b|I|
|Im(Tm,k)|2

,

C
(2)
m,k = |I|2 +

|I|
ε3|Im(Tm,k)|2

� |I|2
(
1 +

1

|Im(Tm,k)|2
)
.

(3.37)

Notice that we have

(3.38) Im(Tm,k) ≥ c(kb)−
1
3 for |m| ≤ kb,

since Im(Tm,k) is a decreasing function of m and the estimate (2.35).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1968 JIE SHEN AND LI-LIAN WANG

Therefore, the desired result (3.15) with d = 2 follows from (3.25), (3.33), and
(3.36).

Case II: d = 3. In this case, a combination of (3.28)–(3.30) leads to

b2|I|
(
|∂ru(b)|2 + βmb−2|u(b)|2

)
+ 2a‖∂ru‖2

ω + k2

∫ b

a

[
3 − 2a

r

]
|u|2rdr

≤ k2b2|I||u(b)|2 +
b2|I|

2
|∂ru(b)|2 +

(
‖∂ru‖2

ω2 + βm‖u‖2
)

+ 2b2|I||h|2 +
|I|2
ε3

‖f‖2
ω2 .

(3.39)

By (3.25),

‖∂ru‖2
ω2 + βm‖u‖2 ≤ (1 + ε1)k

2‖u‖2
ω2 + cb3|h|2 + c‖f‖2

ω2 .(3.40)

The rest of the proof is essentially the same as that in the 2-D case. More precisely, we
can derive the 3-D version of inequalities (3.33)–(3.38) with slightly different constants

C = 2 − 2a

ξ3
− ε1 > 0, ξ3 ∈ (a, b), if m ≥ kb,

C̃ = 2 − 2a

ξ3
− ε1 − 2ε3|I|, ξ3 ∈ (a, b), if m < kb.

(3.41)

Finally, since Im(Tm,k) is a decreasing function of m and Im(Tm,k) = Im(Tm,kb)
(cf. (2.14) and (3.7)), the desired bound follows from (2.27) and (2.35).

The proof of Theorem 3.1. Since the proof of the 2-D and 3-D cases is essentially
the same, we prove only (3.12) with d = 3. Thanks to the orthogonality of the spherical
harmonic functions, we deduce from Lemma 3.1 that

‖∇U‖2 + k2‖U‖2 � ‖∂rU‖2
ω2 + ‖∇SU‖2 + k2‖U‖2

ω2

�
∞∑

m=0

m∑
l=−m

(
‖∂rûlm‖2

ω2 + βm‖ûlm‖2 + k2‖ûlm‖2
ω2

)
�

∞∑
m=0

m∑
l=−m

((√
b3 +

√
b|I|Cm,k

)2|ĥlm|2 + C2
m,k|I|2‖f̂lm‖2

ω2

)
�

∞∑
m=0

m∑
l=−m

((√
b3 +

√
b|I|(kb)1/3

)2
ĥ2
lm + (kb)2/3|I|2‖f̂lm‖2

ω2

)
�

(√
b3 +

√
b|I|(kb)1/3

)2‖η‖L2(S) + (kb)2/3|I|2‖F‖2.

This ends the proof.

4. Spectral-Galerkin approximation.

4.1. The spectral-Galerkin method and its well-posedness. Let PN be
the space of all complex polynomials of degree at most N on Ī . Define XN :=

{
u ∈

PN : u(a) = 0
}

and

(4.1) YM :=

⎧⎨⎩span
{
eimθ : −M ≤ m ≤ M

}
if d = 2,

span
{
Y l
m(θ, φ) : 0 ≤ |l| ≤ m ≤ M

}
if d = 3,

where B(·, ·) is defined in (3.9).
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The spectral-Galerkin approximation to (3.11) is as follows:

Find UMN ∈ VMN := XN × YM such that

B(UMN , VMN ) = (F, VMN )ωd−1 + bd−1
〈
η, VMN (b, ·)

〉
S

∀ VMN ∈ VMN .
(4.2)

Since the sesquilinear form B(·, ·) is not coercive in VMN × VMN even for small wave
number k, an important issue is to prove the well-posedness of the discrete scheme
(4.4).

Expanding the numerical solution and test function as

(4.3)
(
UMN , VMN

)
=

⎧⎨⎩
∑M

|m|=0

(
ûN
m(r), v̂Nm(r)

)
eimθ if d = 2,∑M

m=0

∑m
l=−m

(
ûN
lm(r), v̂Nlm(r)

)
Y l
m(θ, φ) if d = 3,

one verifies that uN := ûN
m or ûN

lm satisfies the reduced problem

(4.4)

{
Find uN ∈ XN such that

Bm(uN , vN ) = (f, vN )ωd−1 + bd−1hvN (b) ∀vN ∈ XN , d = 2, 3,

where Bm(·, ·) is defined in (3.14); for brevity, we denote vN := v̂Nm or vNlm, and f and
h are the same as those in (3.13).

It is important to note that, unlike in the Galerkin finite-element method, the
spectral-Galerkin approximation space XN has the following property: For uN ∈ XN ,
we have (r − a)∂ruN ∈ XN . Hence, the proof of Lemma 3.1 is also valid for the
discrete system (4.4). In particular, Theorem 3.1 holds with uN in the place of u.
As a consequence, the problem (4.4) has at most one solution. Since (4.4) is finite-
dimensional, we then derive from a simple fact in linear algebra that the problem
(4.4) admits a unique solution.

Therefore, following the same procedure as in the proof of Theorem 3.1 leads to
the following result.

Theorem 4.1. If F ∈ L2(Ω) and η ∈ L2(S), the problem (4.2) admits a unique
solution satisfying

‖∇UMN‖ + k‖UMN‖ �
(√

bd +
√
b|I|(kb)1/3

)
‖η‖L2(S) + (kb)1/3|I|‖F‖.(4.5)

4.2. Error estimates. In this part, we shall estimate the error between U (so-
lution of (3.11)) and UMN (solution of (4.2)). Our starting point is to analyze the
error of 1-dimensional approximation (4.4).

4.2.1. Analysis of the 1-D scheme. In order to carry out the error analysis,
we define the orthogonal projection 0π

1
N : X → XN by

(4.6)
(
∂r(u−

0
π1
Nu), ∂rvN

)
= 0 ∀vN ∈ XN .

For s ≥ 1 and s ∈ N, we introduce the weighted Sobolev space

Bs(I) :=
{
u ∈ L2(I) : [(r − a)(b− r)]

l−1
2 ∂l

ru ∈ L2(I), 1 ≤ l ≤ s
}
,

with the norm and seminorm

‖u‖Bs =
(
‖u‖2 +

s∑
l=1

∥∥[(r − a)(b− r)]
l−1
2 ∂l

ru
∥∥2

) 1
2

,

|u|Bs =
∥∥[(r − a)(b− r)]

s−1
2 ∂s

ru
∥∥.
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Lemma 4.1. For any u ∈ X ∩Bs(I), with s ≥ 1 and s ∈ N,

(4.7) ‖∂r(0
π1
Nu− u)‖ + N |I|−1‖

0
π1
Nu− u‖ � N1−s|u|Bs .

Proof. This result is a direct consequence of the Legendre polynomial approxi-
mation (with a scaling and a direct extension to complex functions), which can be
found, for instance, in [7], with an improvement of the weighted seminorm in the
upper bound given by [14].

With the aid of Lemmas 3.1 and 4.1, we are able to obtain the following error
estimates.

Theorem 4.2. Let u and uN be, respectively, the solutions of (3.13) and (4.4).
If u ∈ X ∩Bs(I), with integer s ≥ 1, then for d = 2, 3

‖∂r(u− uN )‖ωd−1 +
√
βm‖u− uN‖ωd−3 + k‖u− uN‖ωd−1

� C�(m,N, k; a, b, d)N1−s|u|Bs ,
(4.8)

where

C�(m,N, k; a, b, d) : = (1 +
√
βm)b(d−1)/2 +

√
βma

d−3
2 |I|N−1

+ k1/3(
√
βmb3d/2−2

√
|I|N−1/2 + |I|2bd/2k2N−1).

(4.9)

Proof. Let eN = uN − 0π
1
Nu and ẽN = u−

0π
1
Nu. By (3.13) and (4.4),

(4.10) Bm(u− uN , vN ) = 0 ∀vN ∈ XN .

Then we derive from (3.14), (4.6), and (4.10) that for any vN ∈ XN

Bm(eN , vN ) =Bm(ẽN , vN ) = βm(ẽN , vN )ωd−3

− k2(ẽN , vN )ωd−1 − kbd−1Tm,kẽN (b)vN (b).
(4.11)

Hence, we can view (4.11) in the form of (3.13) with u = eN , h = −kbd−1Tm,kẽN (b),
f = −k2ẽN , and an additional term βm(ẽN , vN )ωd−3 . As with the proof of Theorem
3.1, we take two different test functions vN = eN , 2(r − a)∂reN ∈ XN and treat the
extra term as

(4.12) βm|(ẽN , eN )ωd−3 | ≤ ε6βm‖eN‖2
ωd−3 +

βm

4ε6
‖ẽN‖2

ωd−3

and

2βm|
(
ẽN , (r − a)∂reN

)
ωd−3 | ≤ 2βm

{
bd−3|I|

∣∣ẽN (b)eN (b)
∣∣

+
∣∣(∂r ẽN , (1 − ar−1)eN

)
ωd−2

∣∣ +
∣∣(ẽN , ((d− 2) − a(d− 3)r−1)eN

)
ωd−3

∣∣}
≤ ε7βmbd−3|I||eN (b)|2 +

βmbd−3|I|
ε7

|ẽN (b)|2 + ε8βm‖eN‖2
ωd−3

+
cβm

ε8

(
‖∂r ẽN‖2

ωd−1 + ‖ẽN‖2
ωd−3

)
.

(4.13)

Thus, choosing suitable constants {εj}8
j=6 and following the same lines as for the

proof of Theorem 3.1 (with u = eN , h = −kbd−1Tm,kẽN (b), and f = −k2ẽN ), we can
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derive that

‖∂reN‖2
ωd−1 + βm‖eN‖2

ωd−3 + k2‖eN‖2
ωd−1

� βm

(
‖∂r ẽN‖2

ωd−1 + ‖ẽN‖2
ωd−3

)
+ βmbd−3|I||ẽN (b)|2

+ k2b2(d−1)|Tm,k|2
(√

bd +
√
b|I|Cm,k

)2|ẽN (b)|2

+ k4|I|2C2
m,k‖ẽN‖2

ωd−1 .

(4.14)

To estimate the term |ẽN (b)|, we use the Sobolev inequality and Lemma 4.1 to obtain
that

(4.15) |ẽN (b)|2 �
(
2 + |I|−1

)
‖ẽN‖‖ẽN‖1 � N1−2s|I||u|2Bs .

Next, using the inequality ‖v‖2
ωα ≤ max{bα, aα}‖v‖2 and Lemma 4.1 leads to

‖∂μ
r ẽN‖2

ωd−1 ≤ bd−1‖∂μ
r ẽN‖2 � bd−1|I|2−2μN2μ−2s|u|2Bs , μ = 0, 1,

‖ẽN‖2
ωd−3 ≤ ad−3‖ẽN‖2 � ad−3|I|2N−2s|u|2Bs .

(4.16)

Hence, by the triangle inequality, (4.14)–(4.16), and Lemma 4.1, we have that

‖∂r(u− uN )‖2
ωd−1 + βm‖u− uN‖2

ωd−3 + k2‖u− uN‖2
ωd−1

≤
(
‖∂reN‖2

ωd−1 + βm‖eN‖2
ωd−3 + k2‖eN‖2

ωd−1

)
+
(
‖∂r ẽN‖2

ωd−1 + βm‖ẽN‖2
ωd−3 + k2‖ẽN‖2

ωd−1

)
� (1 + βm)‖∂r ẽN‖2

ωd−1 + βm‖ẽN‖2
ωd−3 + βmbd−3|I||ẽN (b)|2

+ k2b2(d−1)|Tm,k|2
(√

bd +
√
b|I|Cm,k

)2|ẽN (b)|2

+ k4|I|2C2
m,k‖ẽN‖2

ωd−1

� C∗(m,N, k; a, b, d)N2−2s|u|2Bs ,

(4.17)

where

C∗(m,N, k; a, b, d) := (1 + βm)bd−1 + βmad−3|I|2N−2

+ βmbd−3|I|2N−1 + k2b2(d−1)|Tm,k|2
(√

bd +
√
b|I|Cm,k

)2|I|N−1

+ k4|I|4bd−1C2
m,kN

−2.

(4.18)

We now derive an upper bound for C∗(m,N, k; a, b, d). Since by (2.22) and (2.34)

|Tm,k|2 ≤ 1 +
(m + 1)2

(kb)2

and by (3.16) Cm,k � (kb)1/3, we deduce that for N � 1

C∗(m,N, k; a, b, d) � (1 + βm)bd−1 + βmad−3|I|2N−2

+ βmb3d−4|I|k2/3N−1 + |I|4bdk4+2/3N−2.

This implies the desired result.
Remark 4.1. Note that, in the error estimate (4.8), N1−s|u|Bs is the best approx-

imation error, and k2N−1 in C∗ is the so-called “pollution error” which is typical for
the numerical approximations to the Helmholtz equation (cf. [4]). The extra term
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k1/3 in C∗ is due to the asymptotic behavior of the DtN kernel (see section 2), and it
is unlikely that this extra term can be removed.

Remark 4.2. To illustrate how the error behaves with respect to N , k, and b with
a > 0 being fixed, we consider a typical oscillatory function u(r) = eikr − eika. Then,
for any s > 0, we have

|u|2Bs =

∫ b

a

|∂s
ru|2

(
(r − a)(b− r)

)s−1
dr

≤ k2s

∫ b

a

(
(r − a)(b− r)

)s−1
dr � k

(
k
b− a

2

)2s−1

.

(4.19)

Plugging this into (4.8), we find that for this particular but typical solution we have
that for any s ≥ 1

‖∂r(u− uN )‖ωd−1 +
√
βm‖u− uN‖ωd−3 + k‖u− uN‖ωd−1

� C�(m,N, k; a, b, d)k

√
b− a

2

(k(b− a)

2N

)1−s

.
(4.20)

Hence, the error will decay exponentially as soon as k(b−a)
2N < 1, as opposed to the

usual condition kb
2N < 1. Hence, we can significantly reduce the computational cost by

choosing b as close to a as we wish (note, however, that, for scattering from a general
obstacle D = r > a + g(θ) in 2-D or D = r > a + g(θ, φ) in 3-D, we have to make
sure that b > a + ‖g‖L∞).

With the above preparations, we are ready to perform the error analysis of the
full scheme (4.2).

4.2.2. Multidimensional cases. To describe the error, we introduce the fol-
lowing nonisotropic Sobolev space:
(4.21)

Hs,s′

p,ωd−1(Ω) = L2
p

(
S;Bs(I)

)
∩Hs′−1

p

(
S;H1

ωd−1(I)
)
∩Hs′

p

(
S;L2

ωd−3(I) ∩ L2
ωd−1(I)

)
,

with d = 2, 3, s, s′ ≥ 1, and the norm

∥∥U∥∥
Hs,s′

p,ω (Ω)
=
( ∞∑

|m|=0

[
|ûm|2Bs + (1 + m2)s

′−1‖∂rûm‖2
ω

+ (1 + m2)s
′(‖ûm‖2

ω−1 + ‖ûm‖2
ω

)]) 1
2

;

∥∥U∥∥
Hs,s′

p,ω2 (Ω)
=
( ∞∑

m=0

m∑
l=−m

[
|ûlm|2Bs + (1 + m)2s

′−s‖∂rûlm‖2
ω2

+ (1 + m)2s
′(‖ûlm‖2 + ‖ûlm‖2

ω2

)]) 1
2

.

(4.22)

Theorem 4.3. Let U and UMN be the solutions of (3.11) and (4.2), respectively.

If U ∈ L2
p(S;X) ∩Hs,s′

p,ωd−1(Ω), with d = 2, 3 and s, s′ ≥ 1, then we have

‖∇(U − UMN )‖ + k‖U − UMN‖

�
(
C∗(M,N, k; a, b, d)N1−s + (1 + kM−1)M1−s′

)∥∥U∥∥
Hs,s′

p,ωd−1 (Ω)
,

(4.23)
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where

C�(M,N, k; a, b, d) : = (1 + M)b(d−1)/2 + Ma
d−3
2 |I|N−1

+ k1/3(Mb3d/2−2
√
|I|N−1/2 + |I|2bd/2k2N−1).

(4.24)

Proof. Since the proof of d = 2, 3 is quite similar, we shall prove only the case
d = 2. For notational convenience, let EMN = U −UMN and êm = ûm − ûN

m. Thanks
to the orthogonality of the Fourier series, we have that

‖∇EMN‖2 + k2‖EMN‖2 �
M∑

|m|=0

(
‖∂r êm‖2

ω + m2‖êm‖2
ω−1

+ k2‖êm‖2
ω

)
+

∑
|m|>M

(
‖∂rûm‖2

ω + m2‖ûm‖2
ω−1 + k2‖ûm‖2

ω

)
:= S2

1 + S2
2 .

(4.25)

Using Theorem 4.2 leads to

S1 �
(

max
0≤|m|≤M

{
C�(m, . . . )

})
N1−s

( M∑
|m|=0

|ûm|2Bs

) 1
2

� C�(M,N, k; a, b, d)N1−s
∥∥U∥∥

Hs,s′
p,ω (Ω)

.

(4.26)

We treat S2 as

S2 � M1−s′
( ∑

|m|>M

m2s′−2
(
‖∂rûm‖2

ω + m2‖ûm‖2
ω−1

)) 1
2

+ kM−s′
( ∑

|m|>M

m2s′‖ûm‖2
ω

) 1
2

�
(
1 + kM−1

)
M1−s′

∥∥U∥∥
Hs,s′

p,ω (Ω)
.

(4.27)

Hence, a combination of (4.25)–(4.27) yields the desired result.

5. Numerical results and discussions. We now present some numerical re-
sults to complement our error estimates for the spectral-Galerkin scheme (4.2). We
consider the problem (3.1) in 2-D and take

(5.1) F (r, θ) = 0, η(θ) = 0, ξ(θ) = H(1)
m (ka)eimθ.

In this case the exact solution is U(r, θ) = H
(1)
m (kr)eimθ. Since for a given m, eimθ can

be exactly determined with the number of mode M = Nθ ≥ 2m, we will concentrate
on the approximation behavior of our scheme with respect to the frequency k and the
thickness of the annulus b− a.

In the first set of tests, we take a = 1 and b = 2. In Figure 5.1, we present
the relative L2-error versus the number of mode N = Nr for a wide range of wave
numbers. We note that, as soon as Nr > k(b − a)/2, the errors start to decay, for
moderate to large wave numbers, the errors decay slowly until about Nr ∼ k(b− a),
and finally, for Nr > k(b− a), all errors converge to zero at an exponential rate.

In the second set of tests, we take a = 1 and b = 1.25. The results are plotted in
Figure 5.2. We observe similar behaviors as in the first set except that now we have
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Fig. 5.1. Relative L2-error versus Nr as compared to an exact solution: a = 1, b = 2.
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Fig. 5.2. Relative L2-error versus Nr as compared to an exact solution: a = 1, b = 1.25.

b− a = 1
4 and only about 1/4 of the modes are needed to achieve a similar accuracy.

These behaviors are consistent with our error estimates (cf. Remark 4.2).
These results indicate that (i) the approximate solution UNr,Nθ

will converge to
the exact solution U(r, θ) exponentially fast as Nr, Nθ → +∞ provided that all F (r, θ),
ξ(θ), and η(θ) are analytic in Ω, and (ii) our numerical scheme is stable for large Nr

and capable of providing accurate results for moderate to large wave numbers.
To summarize, we have presented a complete analysis for the spectral-Galerkin

method to the Helmholtz equation in exterior domains. We first studied asymptotic
behaviors of the Hankel functions which play essential roles for our error analysis.
Using these asymptotic estimates, we then derived a priori estimates with explicit
dependence on the wave number for both the continuous and the discrete problems.
Finally, we performed an error analysis and derived error bounds with explicit de-
pendence on the wave number. To the authors’ best knowledge, our error estimates
seem to be the first of their kind, i.e., with explicit dependence on the wave number
for a numerical method on bounded obstacle scattering via the DtN map. A particu-
lar advantage of this approach, verified by our error estimates and numerical results,
is that we can choose the artificial boundary very close to the scatterer while still
maintaining the spectral accuracy.

Appendix A. The proof of (2.34). We first prove (2.34a). It is clear that,
by (2.33b), Im(Tm,κ) > 0. On the other hand, since Im(Tm,κ) is a strictly increasing
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(resp., decreasing) function of κ (resp., m), we have

Im(Tm,κ) ≤ Im(T1,κ) < Im(T1,∞) = 1,

due to the asymptotic formula |H(1)
1 (κ)|2 ∼ 2

πκ for κ � 1 (see Formula 9.2.3 of [1]).
We now turn to the proof of (2.34b). Recall that the modified Bessel function of

the second kind of order ν is defined by

(A.1) Kν(z) =

∫ ∞

0

e−z cosh t cosh(νt)dt.

In particular, we have

(A.2) K0(z) =

∫ ∞

0

e−z cosh tdt, K1(z) = −K′
0(z).

By Formula (4) on p. 445 of [31],

J2
m(κ) + Y 2

m(κ) =
8

π2

∫ ∞

0

K0(2κ sinh t) cosh(2mt)dt,(A.3a)

[
JmJm+1 + YmYm+1

]
(κ) =

8

π2

∫ ∞

0

K1(2κ sinh t) sinh
(
(2m + 1)t

)
dt.(A.3b)

Using the identity K1(z) = −K′
0(z) and integration by parts leads to

[
JmJm+1 + YmYm+1

]
(κ) = − 8

π2

∫ ∞

0

sinh
(
(2m + 1)t

)
2κ(sinh t)′

d
(
K0(2κ sinh t)

)
= − 4

κπ2

sinh
(
(2m + 1)t

)
cosh t

K0(2κ sinh t)
∣∣∣∞
0

+
4

κπ2

∫ ∞

0

K0(2κ sinh t)
( sinh

(
(2m + 1)t

)
cosh t

)′
dt

=
4

κπ2

∫ ∞

0

K0(2κ sinh t) cosh(2mt)Wm(t)dt,

where

Wm(t) =
1

cosh(2mt)

( sinh
(
(2m + 1)t

)
cosh t

)′
.

Note that in the last step we used the asymptotic formula (see Formula 9.7. 2 of [1])

(A.4) K0(2κ sinh t) ∼
√

π

2κ sinh t
e−2κ sinh t ∼ e−κet−t/2, t � 1,

to claim that

sinh
(
(2m + 1)t

)
cosh t

K0(2κ sinh t) → 0 as t → ∞.

Using the identities of the hyperbolic functions, Wm(t) can be written as

(A.5) Wm(t) = 2m
(
1 + (tanh t) tanh(2mt)

)
+ sech2t, 0 ≤ t < ∞.
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We now seek the maximum and minimum values of Wm(t). Taking the derivative of
Wm(t) yields

W ′
m(t) = 2m

(
(sech2t) tanh(2mt) + 2m(tanh t)sech2(2mt)

)
− 2(tanh t)sech2t

= 2
(
m tanh(2mt) − tanh t

)
sech2t + 4m2(tanh t)sech2(2mt).

It is obvious that

m tanh(2mt) − tanh t > 0 ∀t > 0, ∀m ≥ 1.

Hence, Wm(t) is an increasing function of t, and consequently,

(A.6) 2m + 1 = Wm(0) ≤ Wm(t) ≤ Wm(∞) = 4m ∀t ≥ 0, ∀m ≥ 1.

Therefore, for m ≥ 1,

(A.7)
2m + 1

2κ
≤ Jm(κ)Jm+1(κ) + Ym(κ)Ym+1(κ)

J2
m(κ) + Y 2

m(κ)
≤ 2m

κ
,

which, together with (2.33a), yields the bounds

−m

κ
≤ Re(Tm,κ) ≤ − 1

2κ
for m ≥ 1.

Finally, for m = 0, (A.5) implies that 0 < W0(t) ≤ 1. Accordingly, we find that

− 1

2κ
≤ Re(T0,κ) < 0.

It remains to prove (2.34c).
Let us first show that Im(T0,κ) is a strictly decreasing function of κ. By (2.33b),

it suffices to show that

f(x) := x|H(1)
0 (x)|2 = x

(
J2

0 (x) + Y 2
0 (x)

)
, x > 0,

is a strictly increasing function of x. Indeed, by (A.3a),

f(x) =
8

π2

∫ ∞

0

xK0(2x sinh t)dt.

Differentiating it gives

f ′(x) =
8

π2

∫ ∞

0

{
K0(2x sinh t) + 2x sinh t K′

0(2x sinh t)
}
dt.

Integrating the second term by parts leads to

f ′(x) =
8

π2
K0(2x sinh t) tanh t

∣∣∞
0

+
8

π2

∫ ∞

0

K0(2x sinh t) tanh2 tdt.

Notice that the first term is zero due to the decay property of K0 (cf. (A.4)). Therefore,
we have

f ′(x) > 0 ∀x > 0.

Finally, (2.34c) follows immediately from (2.33b) and the facts that Im(T0,κ) is a

strictly decreasing function of κ and κ|H(1)
0 (κ)|2 → 2

π as κ → ∞.
This ends the proof of (2.34).
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