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Abstract This paper serves as our first effort to develop a new triangular spectral
element method (TSEM) on unstructured meshes, using the rectangle–triangle map-
ping proposed in the conference note (Li et al. 2011). Here, we provide some new
insights into the originality and distinctive features of the mapping, and show that
this transform only induces a logarithmic singularity, which allows us to devise a
fast, stable and accurate numerical algorithm for its removal. Consequently, any tri-
angular element can be treated as efficiently as a quadrilateral element, which affords
a great flexibility in handling complex computational domains. Benefited from the
fact that the image of the mapping includes the polynomial space as a subset, we
are able to obtain optimal L2- and H 1-estimates of approximation by the proposed
basis functions on triangle. The implementation details and some numerical exam-
ples are provided to validate the efficiency and accuracy of the proposed method.
All these will pave the way for developing an unstructured TSEM based on, e.g., the
hybridizable discontinuous Galerkin formulation.
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1 Introduction

The spectral element method (SEM), originated from Patera [31], integrates the
unparalleled accuracy of spectral methods with the geometric flexibility of finite ele-
ments, and also enjoys a high-level parallel computer architecture. Nowadays, it has
become a pervasive numerical technique for simulating challenging problems in com-
plex domains [4, 10]. While the classical SEM on quadrilateral/hexahedral elements
(QSEM) exhibits the advantages of using tensorial basis functions and naturally diag-
onal mass matrices, the need for high-order methods on unstructured meshes with
robust adaptivity spawns the development of triangular/tetrahedral spectral elements.
In general, research efforts along this line fall into three trends: (1) nodal TSEM
based on high-order polynomial interpolation on special interpolation points [6, 20,
36]; (2) modal TSEM based on the Koornwinder–Dubiner (KD) polynomials [11, 22,
24]; and (3) approximation by non-polynomial functions [5, 26, 34].

The question of how to construct “good” interpolation points for stable high-order
polynomial interpolation on the triangle is still quite subtle and somehow open. The
strict analogy of the Gauss–Lobatto integration rule on quadrilaterals/hexahedra does
not exist on triangles [19], though a “relaxed” rule can be constructed in the sense
of [40]. We refer to [30] for an up-to-date review and a very dedicated comparative
study of various criteria for constructing workable interpolation points on triangle.
In general, such points have low degree of precision (i.e., exactness for integration
of polynomials), and this motivates the use of a different set of points for integration
(see [29]), which are mapped from the Gauss points on the reference square via the
Duffy’s transform [12].

The development of TSEM using KD polynomials as modal basis functions, gen-
erated by the rectangle–triangle mapping (i.e., the Duffy’s transform), can be best
attested to by the monograph [22] and the spectral-element package Nektar++
(http://www.nektar.info/). The analysis of this approach can be found in e.g., [7, 17,
25, 32]. The KD basis is intrinsically built on a warped tensor product, which is
mimic to the spherical harmonic functions. One gain from lacking the full tensorial
structure is the use of polynomials of total degree not more than a cutoff number
N that halves the degrees of freedom involving a usual tensor-based approximation.
One argument against the transform is that the mapped interpolation points are unfa-
vorably clustered near the singular vertex of the triangle. The situation is even severer
in the three-dimensional case, where one face of the reference cube is collapsed into
a vertex of the reference tetrahedron. We remark that a full tensorial rational approx-
imation on triangles was proposed in [34] for elliptic problems, and extended to the
Stokes problem in [5], while this approach was still based on the Duffy’s transform.
It also requires to modify the tensorial polynomial basis to meet the underlying con-
sistency conditions (analogous to “pole conditions” in polar/spherical coordinates)
induced by the singularity of the transform. It is worthwhile to point out that the use
of the Gauss–Radau points, which exclude the endpoint corresponding to the singular
vertex, mitigates some numerical difficulties in dealing with the singularity.

http://www.nektar.info/
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Our mind-set is therefore driven by searching for a method based on a different
rectangle–triangle mapping that can lead to favorable distributions of interpola-
tion/quadrature points on the triangle without loss of accuracy and efficiency of
implementation. With this in mind, we introduced in the conference note [27] a new
mapping that pulls one side (at the middle point) of the triangle to two sides of the
rectangle (cf. Fig. 1a), and results in relatively desirable distributions of the mapped
LGL points (cf. Fig. 1c vs. d). Moreover, this mapping is one–to–one.

The purposes of this paper are threefold: (1) have some new insights into this
mapping; (2) demonstrate that the singularity of the mapping is of logarithmic type,
which can be fully removed; and (3) derive optimal error estimates for approxima-
tion by the associated basis functions. This work will pave the way for developing a
new TSEM on unstructured meshes, which will be explored in the second part. It also
brings about an important viewpoint that any triangular element can be mapped to
the reference square via a composite of the rectangle–triangle mapping and an affine
mapping, and with the successful removal of the singularity, the triangular element
can be treated as efficiently as a quadrilateral element. One implication is that this
allows a mixture of triangular and quadrilateral elements, so one can handle more
complex domains with more regular computational meshes, e.g., by tiling the tri-
angular elements along the boundary of the domain. More importantly, for general
unstructured triangular meshes, we can formulate the underlying variational prob-
lems using the recently enhanced hybridizable discontinuous Galerkin methods [9,
23, 28]. We expect that the QSEM will enjoy a minimal communication between ele-
ments, and a minimum number of globally coupled degrees of freedom, and allow
for implementing a large degree of nonconformity across elements (e.g., the hanging
nodes and mortaring techniques). We leave this development to the second part after
this work.

The rest of this paper is organized as follows. In Section 2, we present some new
insights of the rectangle–triangle mapping. In Section 3, we introduce the basis func-
tions and the efficient algorithm for computing the stiffness and mass matrices with
an emphasis on how to remove the singularity of the rectangle–triangle transform.
We derive some optimal approximation results in Section 4, followed by numerical
results on a triangle in Section 5.

(a) (b) (c) (d)

(−1, 1)

(−1, −1) (1, −1)

(1, 1) (−1, 1)

(−1, −1) (1, −1)

(1, 1)
(0, 1)

(½, ½)

(0, 0) (1, 0) (0, 0) (1, 0)

(0, 1)
D

C

A B

Fig. 1 a � ↔ � mapping; b tensorial Legendre–Gauss–Lobatto (LGL) points on �; c mapped LGL
grids on �; d mapped LGL grids on � using the Duffy’s transform



Numer Algor

2 The rectangle–triangle mapping

We collect in this section some properties of the rectangle–triangle mapping intro-
duced in [27], and provide some insightful perspectives on this transform.

2.1 The rectangle–triangle mapping

Throughout the paper, we denote by

� := {(x, y) : 0 < x, y, x+y < 1
} ⊂ R

2, � := {(ξ, η) : −1 < ξ, η < 1
} ⊂ R

2,

the reference triangle and the reference square, respectively. Here, we denote by R

the set of all real numbers. The rectangle–triangle transform (cf. [27]) T : � → �,

takes the form

x = 1

8
(1 + ξ)(3 − η), y = 1

8
(3 − ξ)(1 + η), ∀ (ξ, η) ∈ �, (2.1)

with the inversion T −1 : � → � :
{

ξ = 1 + (x − y) −√(x − y)2 + 4(1 − x − y),

η = 1 − (x − y) −√(x − y)2 + 4(1 − x − y),
(2.2)

for any (x, y) ∈ �. It maps the vertices (−1, −1), (1, −1) and (−1, 1) of the square
� to the vertices (0, 0), (1, 0) and (0, 1) of the triangle �, respectively, while the
middle point (1/2, 1/2) of the hypotenuse is the image of the vertex (1, 1) of �.
In other words, this mapping deforms two edges (ξ = 1 and η = 1) of � into the
hypotenuse of �, see Fig. 1 for illustration.

Under this mapping, we have

∂x

∂ξ
= 3 − η

8
,

∂x

∂η
= −1 + ξ

8
,

∂y

∂ξ
= −1 + η

8
,

∂y

∂η
= 3 − ξ

8
, (2.3)

and the Jacobian is given by

J = det

(
∂ (x, y)

∂(ξ, η)

)
= 2 − ξ − η

16
=
√

(x − y)2 + 4(1 − x − y)

8
:= χ

8
. (2.4)

For convenience of presentation, we use the notation:

∇̃ = (∂ξ , ∂η), ∇̃⊥ = (−∂η, ∂ξ ), ∇̃ᵀ = (1 − ξ)∂ξ − (1 − η)∂η, (2.5)

where we put “˜” to distinguish them from the differential operators in (x, y).

In what follows, let ω > 0 be a generic weight function on � = � or �. The
weighted Sobolev space Hr

ω(�) with r ≥ 0 is defined as in Adams [1], and its norm
and semi-norm are denoted by ‖ · ‖r,ω,� and | · |r,ω,�, respectively. In particular, if
r = 0, we denote the inner product and norm of L2

ω(�) by (·, ·)ω,� and ‖ · ‖ω,�,
respectively. Moreover, if ω ≡ 1, we drop it from the notation.

Given u : � → R, we define the transformed function: ũ(ξ, η) = (u ◦ T )(ξ, η) =
u(x, y). Then for any u, v ∈ L2(�), we have

(u, v)� =
∫∫

�
u(x, y)v(x, y)dxdy =

∫∫

�
ũ(ξ, η)ṽ(ξ, η)J dξdη. (2.6)
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Moreover, one verifies that

∇u = (∂xu, ∂yu) = χ−1(2(∇̃ · ũ) + (∇̃ᵀũ), 2(∇̃ · ũ) − (∇̃ᵀũ)
)
, (2.7)

and

(∇u, ∇v)� =
∫∫

�

(∇̃ · ũ
)(∇̃ · ṽ

)
χ−1dξdη + 1

4

∫∫

�

(∇̃ᵀũ
)(∇̃ᵀṽ

)
χ−1dξdη. (2.8)

We observe from (2.7)–(2.8) that if ∇u is continuous at the middle point
(1/2, 1/2) of the hypotenuse of �, there automatically holds (note: (∇̃ᵀũ)|(1,1) = 0):

(∇̃ · ũ
)|(1,1) =

(
∂ ũ

∂ξ
+ ∂ ũ

∂η

)∣∣∣∣
(1,1)

= 0, (2.9)

which is referred to as the consistency condition, and can be viewed as an analogy
of the pole condition in the polar/spherical coordinates. In general, we have to build
the condition (2.9) in the approximation space so as to obtain high-order accuracy,
which therefore results in the reduction of dimension and modification of the usual
basis functions (cf. [27]).

One important goal of this paper is to demonstrate that this singularity can be
removed, thanks to the observation:

∫∫

�

1

2 − ξ − η
dξdη = 4 ln 2, (2.10)

which implies that for any f ∈ C(�),

∣∣∣
∫∫

�

f (ξ, η)

2 − ξ − η
dξdη

∣∣∣ ≤ 4M ln 2, (2.11)

where M = max� |f (ξ, η)|. In particular, the coordinate singularity can be
eliminated, if f is a polynomial on � (see Section 3.2).

Now, we present other important features of this mapping. Hereafter, let I =
(−1, 1), and for any integer N ≥ 1, let PN(I) be the set of all algebraic polynomials
of degree at most N . Denote by

PN(�) := span
{
xiyj : 0 ≤ i + j ≤ N

}
, QN(�) := (PN(I))2. (2.12)

The following property shows a characterization of QN(�) in terms of the polyno-
mial space on �.

Proposition 2.1 Let Pk(�) ◦ T = {P ◦ T : P ∈ Pk(�)}. We have

(i) PN(�) ◦ T ⊂ QN(�).

(ii) QN(�) = (PN(�) ◦ T
)⊕ χ

(
PN−1(�) ◦ T

)
.

Here, T is the rectangle–triangle transform defined by (2.1), and χ = (2− ξ −η)/2.

Proof We find from (2.1) that for 0 ≤ i + j ≤ N,

xiyj =
(1 + ξ

2

)i(3 − η

4

)i(3 − ξ

4

)j(1 + η

2

)j ∈ QN(�).

This leads to the inclusion in (i).
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We see that for 0 ≤ i + j ≤ N − 1,

xiyjχ =
(1 + ξ

2

)i(3 − η

4

)i(3 − ξ

4

)j(1 + η

2

)j 2 − ξ − η

2
∈ QN(�),

which implies χ
(
PN−1(�) ◦ T

) ⊂ QN(�).

It remains to prove QN(�) ⊂ (
PN(�) ◦ T

) ⊕ χ
(
PN−1(�) ◦ T

)
, which we will

show by induction. Firstly, by (2.2), it is true for ξ, η, so is ξη, since ξη = 5 −
4x − 4y − 2χ. Now, assume that it holds for ξ iηj with 0 ≤ i, j ≤ N − 1. Then,
for 0 ≤ i, j ≤ N , we find that ξNηj = ξ(ξN−1ηj ), ξ iηN = η(ξ iηN−1), and
ξNηN = (ξη)(ξN−1ηN−1) are all of the form (a+bx+cy+dχ)(p(x, y)+q(x, y)χ),
where a, b, c, d are constants, p ∈ PN−1(�) and q ∈ PN−2(�). It is apparent that

(a +bx +cy +dχ)(p+qχ) = (a +bx +cy)p+dpχ + (a +bx +cy)qχ +dqχ2

(2.2)= (a +bx +cy)p+d
(
(x −y)2 +4(1−x −y)

)
q + (dp+ (a +bx +cy)q

)
χ.

Since (a +bx +cy)p, dχ2q ∈ PN(�) and dp, (a +bx +cy)q ∈ PN−1(�), we have

ξNηj , ξ iηN , ξNηN ∈ (PN(�) ◦ T
)⊕ χ

(
PN−1(�) ◦ T

)
,

for all 0 ≤ i, j ≤ N . This completes the induction.

Proposition 2.2 For any u ∈ H 1(�), we have
√

6

4

∥∥∇̃ · ũ
∥∥

χ−1,� + 1

4

∥∥∇̃⊥ · ũ
∥∥

χ,� ≤ ∥∥∇u
∥∥� ≤

√
5

2

∥∥∇̃ · ũ
∥∥

χ−1,�

+ 1

2

∥∥∇̃⊥ · ũ
∥∥

χ,�, (2.13)

where χ = (2 − ξ − η)/2, ũ = u ◦ T and the differential operators are defined in
(2.5).

Proof By (2.8), we have

∥∥∇u
∥∥2

� = ∥∥∇̃ · ũ
∥∥2

χ−1,� + 1

4

∥∥∇̃ᵀũ
∥∥2

χ−1,�.

Then using the identity:

∇̃ᵀũ = (1 − ξ)∂ξ ũ − (1 − η)∂ηũ = 1

2

(
2χ(∇̃⊥ · ũ) − (ξ − η)(∇̃ · ũ)

)
,

we obtain
∥∥∇u

∥∥2
� = ∥∥∇̃ · ũ

∥∥2
χ−1,� + 1

16

∥∥2χ(∇̃⊥ · ũ) − (ξ − η)(∇̃ · ũ)
∥∥2

χ−1,�. (2.14)

As |ξ − η| ≤ 2, we get
∥∥2χ(∇̃⊥ · ũ) − (ξ − η)(∇̃ · ũ)

∥∥2
χ−1,� ≤ 4

∥∥∇̃⊥ · ũ
∥∥2

χ,� + 4
∥∥∇̃ · ũ

∥∥2
χ−1,�.

Thus, the upper bound of (2.13) is a consequence of (2.14).
It is clear that

−4(ξ − η)χ(∇̃⊥ · ũ)(∇̃ · ũ) ≥ −(2χ2|∇̃⊥ · ũ|2 + 2(ξ − η)2|∇̃ · ũ|2).
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Thus,
(
2χ(∇̃⊥ · ũ) − (ξ − η)(∇̃ · ũ)

)2 ≥ 2χ2|∇̃⊥ · ũ|2 − (ξ − η)2|∇̃ · ũ|2
≥ 2χ2|∇̃⊥ · ũ|2 − 4|∇̃ · ũ|2,

which implies
∥∥2χ(∇̃⊥ · ũ) − (ξ − η)(∇̃ · ũ)

∥∥2
χ−1,� ≥ 2

∥∥∇̃⊥ · ũ
∥∥2

χ,� − 4
∥∥∇̃ · ũ

∥∥2
χ−1,�.

Therefore, the lower bound of (2.13) follows from (2.14) and the fundamental
inequality: A2 + B2 ≥ (A + B)2/2.

Remark 2.1 We find from Proposition 2.2 that under the rectangle–triangle mapping
(2.1), the space H 1(�) is mapped to the weighted space on �:

H̃ 1
χ (�) := {ũ ∈ L2

χ(�) : ∇̃ · ũ ∈ L2
χ−1(�), ∇̃⊥ · ũ ∈ L2

χ(�)
}
, (2.15)

and vice verse.

2.2 Some new perspectives and a comparison study

Next, we have some insights of the rectangle–triangle mapping and compare it with
the Duffy’s transform [12].

Firstly, the transform (2.1) is a special case of the general mapping Tθ : � �→ � :
(x, y) =

(
1 + ξ

2

2 − (1 − θ)(1 + η)

2
,

1 + η

2

2 − θ(1 + ξ)

2

)
, ∀(ξ, η) ∈ �,

(2.16)
with θ = 1/2. We see that this mapping pulls the hypotenuse of � into two edges
of � at the point (θ, 1 − θ). The limiting case with θ = 0 reduces to the Duffy’s
transform: TD : � �→ � :

x = 1

4
(1 + ξ)(1 − η), y = 1

2
(1 + η), ∀ (ξ, η) ∈ �, (2.17)

with the inverse transform: T −1
D : � �→ � :

ξ = 2x

1 − y
− 1, η = 2y − 1, ∀ (x, y) ∈ �.

It collapses one edge, η = 1, of � into the vertex (0, 1) of �. As the singular ver-
tex corresponds to one edge, the Duffy’s transform is not a one-to-one mapping, as
opposite to (2.1). This results in a large portion of mapped LGL points clustered near
the singular vertex of � (see Fig. 1d). The Jacobian of (2.17) is J = (1 − η)/8, and
we have

∇u =
( 4

1 − η
∂ξ ũ,

2(1 + ξ)

1 − η
∂ξ ũ + 2∂ηũ

)
. (2.18)

Different from (2.9), the corresponding consistency condition for the Duffy’s trans-
form becomes ∂ξ ũ(ξ, 1) = 0. In a distinct contrast with (2.10), the integral

∫∫

�

1

1 − η
dξdη = ∞. (2.19)
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Fig. 2 Left Tensorial Legendre–Gauss–Lobatto points on the square. Right The corresponding mapped
LGL points on the unit disc

Consequently, the consistency condition has to be built in the approximation space,
and much care has to be taken to deal with this singularity for the Duffy’s transform-
based methods in terms of implementation and analysis.

Secondly, the nature of the point singularity of (2.1) is reminiscent to that of the
Gordon-Hall mapping [14], which maps the reference square to the unit disc via

x = ξ√
2

√
2 − η2, y = η√

2

√
2 − ξ2, ∀ (ξ, η) ∈ �,

and whose Jacobian is (2 − ξ2 − η2)/
√

(2 − ξ2)(2 − η2). It is clear that this trans-
form induces singularities at the four vertices of the reference square (cf. Fig. 2).
It is worthwhile to point out that the collocation scheme on the unit disc using this
mapping was discussed in [18], and this mapping technique was further examined in
[2].

In addition, we find that the rectangle–triangle transform (2.1) can be derived from
the following symmetric mapping on � :

x̂ = ξ + η, ŷ = ξη, ∀ (ξ, η) ∈ �. (2.20)

It transforms any symmetric polynomial in (ξ, η) to a polynomial in (x̂, ŷ), so it is
referred to as a symmetric mapping [37]. One verifies that the image of this mapping
is the curvilinear triangle (see Fig. 3b):1

� = {(x̂, ŷ) : 1 − x̂ + ŷ, 1 + x̂ + ŷ, x̂2 − 4ŷ > 0
}
.

As the symmetric mapping (2.20), denoted by T̂ : � �→ �, cannot distinguish the
images of (ξ, η) and (η, ξ), it is not one-to-one. To amend this, one may restrict the
domain of T̂ to the upper triangle, denoted by �up, in � (see Fig. 3a), and interest-
ingly, the square of maximum area contained in this subdomain is one-to-one mapped
to the triangle of maximum area included in the curvilinear triangle �, that is,

T̂ : �̂ := (−1, 0) × (0, 1) �−→ �̂ := {(x̂, ŷ) : |x̂| < 1 + ŷ < 1
}
, (2.21)

is a bijective mapping (see the shaded parts in Fig. 3a–b). For clarity of presentation,
we denote the coordinate of any point in �̂ by (ξ̂ , η̂). It is clear that the reference

1It is worthwhile to note that thanks to the symmetric mapping T̂ : � �→ �, Xu [39] discovered the first
example of multivariate Gauss quadrature.
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(a) (b) (c) (d)

Fig. 3 a The reference square �, the upper triangle �up = {(x, y) : −1 < x < y < 1} and the square

�̂ (shaded). b The image � (resp. �̂ (shaded)) of the symmetric mapping T̂ whose domain is �up (resp.

�̂ (shaded)). c Domains obtained from �̂ and the upper triangle �up in a by the affine mapping F1.

d Domains obtained from �̂ and � in b by the affine mapping F2

square � and �̂ are connected by the affine mapping: F1 : � �→ �̂, of the form (see
the shaded parts of Fig. 3a, c):

ξ̂ = ξ − 1

2
, η̂ = 1 − η

2
, ∀(ξ, η) ∈ �, (2.22)

and the affine mapping: F2 : �̂ �→ �, takes the form (see the shaded parts of Fig. 3b,
d):

x = 1

2
(ŷ + x̂ + 1), y = 1

2
(ŷ − x̂ + 1), ∀ (x̂, ŷ) ∈ �̂. (2.23)

In summary, we have � F1�−→ �̂ T̂�−→ �̂ F2�−→ �. Remarkably, this composite mapping
is identical to the rectangle–triangle mapping (2.1), i.e., T = F1 ◦ T̂ ◦ F2.

3 Basis functions and computation of the stiffness matrix

We introduce in this section the modal and nodal basis functions on triangles, and
present a fast and accurate algorithm for computing the stiffness matrix with a focus
on how to deal with the singularity (cf. (2.10)–(2.11)).

3.1 Modal basis

Let I = (−1, 1) as before. We define the space

YN(�) = QN(�) ◦ T −1 = (PN(I))2 ◦ T −1, (3.1)

which consists of the images of the tensor-product polynomials on � under the
inverse mapping T −1 defined in (2.2). As a direct consequence of Proposition 2.1
(ii), we have

YN(�) = PN(�) ⊕ χPN−1(�), (3.2)

where χ = √(x − y)2 + 4(1 − x − y), and we recall that PN(�) is the set of poly-
nomials on � of total degree at most N. This implies that YN(�) contains not only
polynomials, but also special irrational functions: χφ for any φ ∈ PN−1(�).
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Define the modes

φ0(ζ ) = 1 − ζ

2
, φk(ζ ) = 1 − ζ 2

4
J

1,1
k−1(ζ ), 1 ≤ k ≤ N − 1, φN(ζ ) = 1 + ζ

2
,

(3.3)

where J
1,1
k is the Jacobi polynomial of degree k (cf. [35]). It is clear that {φk}Nk=0

forms a basis of PN(I), and we have

QN(�) = span
{
�kl : �kl(ξ, η) = φk(ξ)φl(η), 0 ≤ k, l ≤ N

}
. (3.4)

It is a commonly used C0-modal basis for QSEM, which enjoys a distinct separation
of the interior and boundary modes (including vertex and edge modes): all interior
modes (i.e., �kl, for 0 < k, l < N) are zero on the boundary; the vertex modes (i.e.,
�kl , for k, l ∈ {0, N}) have a unit magnitude at one vertex and are zero at all other
vertices; and the edge modes (i.e., �kl, for all other k, l) only have magnitude along
one edge and are zero at all vertices and at all other edges.

In view of (3.1) and (3.4), we obtain the modal basis for YN(�) :
YN(�) = span

{
�kl : �kl(x, y) = �kl ◦ T −1, 0 ≤ k, l ≤ N

}
. (3.5)

3.2 Computation of the stiffness matrix

Though the singular integral of (2.11)-type has a finite value, some efforts are needed
to compute such integrals in a fast and stable manner. Next, we devise an efficient
algorithm for this purpose.

Let Lk be the Legendre polynomial of degree k ≥ 0, and recall that (see e.g., [35])
for k ≥ 1,

(
1 − ζ 2

)
J

1,1
k−1(ζ ) = 2k

2k + 1

(
Lk−1(ζ ) − Lk+1(ζ )

)
, (3.6)

(2k + 1)Lk(ζ ) = L′
k+1(ζ ) − L′

k−1(ζ ), (3.7)

ζLk(ζ ) = k

2k + 1
Lk−1(ζ ) + k + 1

2k + 1
Lk+1(ζ ). (3.8)

Thus, we have

φ′
0(ζ ) = −1

2
L0(ζ ) = −φ′

N(ζ ), φ′
k(ζ ) = −k

2
Lk(ζ ), 1 ≤ k ≤ N − 1. (3.9)

By (2.5), (2.7) and (3.4),

χ∂x�kl = 2
(
φ′

k(ξ)φl(η)+φk(ξ)φ′
l (η)
)+ [(1−ξ)φ′

k(ξ)φl(η)− (1−η)φk(ξ)φ′
l (η)
]
,

χ∂y�kl = 2
(
φ′

k(ξ)φl(η)+φk(ξ)φ′
l (η)
)− [(1−ξ)φ′

k(ξ)φl(η)− (1−η)φk(ξ)φ′
l (η)
]
.

(3.10)
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Thanks to (3.6)–(3.10), χ∂x�kl and χ∂y�kl can be represented by a linear combina-
tion of {Lk±i (ξ)Ll±j (η)}i,j=0,1. In view of this, we can evaluate the entries of the
stiffness matrix by computing the integrals of the product of Legendre polynomials:

sk′l′
kl :=

∫∫

�
∇�kl ·∇�k′l′ dxdy ←→

∫∫

�

Li(ξ)Lj (η)Li′(ξ)Lj ′(η)

2 − ξ − η
dξdη := a

i′j ′
ij .

(3.11)
Using the fact that the product LmLn can be represented by {Lp}m+n

p=0 :

Lm(ξ)Ln(ξ) =
m+n∑

p=0

cmn
p Lp(ξ), (3.12)

where the expansion coefficient {cmn
p } can be found in e.g., [21], we obtain

a
i′j ′
ij =

i+i′∑

p=0

j+j ′
∑

q=0

cii′
p c

jj ′
q âpq, where âpq =

∫∫

�

Lp(ξ)Lq(η)

2 − ξ − η
dξdη. (3.13)

Now, we describe how to compute {âpq} in a fast and accurate manner. This
essentially relies on the following recurrence relation.

Lemma 3.1 We have

âp,q+1 − âp,q−1

2q + 1
= âp+1,q − âp−1,q

2p + 1
, ∀ p, q ≥ 1. (3.14)

Proof The statement is true for p = q ≥ 1. Since âpq = âqp, it suffices to show
that the recurrence is valid for p > q ≥ 1.

We start with recalling the Legendre functions of the second kind (see [35, For-
mula (4.61.4)]):

Qn(x) = 1

2

∫ 1

−1

Ln(t)

x − t
dt, n ≥ 1; Q0(x) = 1

2
ln

x + 1

x − 1
, ∀x > 1, (3.15)

and the important identity (see [35, Formula (4.62.1)]):

Qn(x) = 1

2

(
ln

x + 1

x − 1

)
Ln(x) − 1

2

∫ 1

−1

Ln(x) − Ln(t)

x − t
dt

= 1

2

(
ln

x + 1

x − 1

)
Ln(x) − L̃n−1(x). (3.16)

Here, L̃n is the Legendre polynomial of the second kind, satisfying

L̃n(x) = 2n + 1

n + 1
xL̃n−1(x) − n

n + 1
L̃n−2(x), n ≥ 1; L̃−1(x) = 0, L̃0(x) = 1,

(3.17)

which follows from (3.16) and [35, Formula (4.62.13)] directly.
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Using (3.15)–(3.17) and the orthogonality of the Legendre polynomials, we find
that for p > q ≥ 1,

âpq =
∫ 1

−1

∫ 1

−1

Lp(ξ)Lq(η)

2 − ξ − η
dξdη = 2

∫ 1

−1
Qq(2 − ξ)Lp(ξ) dξ

=
∫ 1

−1

[(
ln

3 − ξ

1 − ξ

)
Lq(2 − ξ) − 2L̃q−1(2 − ξ)

]
Lp(ξ) dξ

=
∫ 1

−1

(
ln

3 − ξ

1 − ξ

)
Lq(2 − ξ)Lp(ξ) dξ. (3.18)

Thus, we have from (3.7) and integration by parts that

âp,q+1 − âp,q−1

2q + 1
=
∫ 1

−1

(
ln

3 − ξ

1 − ξ

)Lq+1(2 − ξ) − Lq−1(2 − ξ)

2q + 1
Lp(ξ) dξ

=
∫ 1

−1

(
ln

3 − ξ

1 − ξ

)Lq+1(2 − ξ) − Lq−1(2 − ξ)

2q + 1

×
[Lp+1(ξ) − Lp−1(ξ)

2p + 1

]′
dξ

= −
∫ 1

−1

[(
ln

3 − ξ

1 − ξ

)Lq+1(2 − ξ) − Lq−1(2 − ξ)

2q + 1

]′

× Lp+1(ξ) − Lp−1(ξ)

2p + 1
dξ.

Working out the derivative, we obtain

âp,q+1 − âp,q−1

2q + 1

(3.7)=
∫ 1

−1

[
Lq(2 − ξ) ln

(3 − ξ

1 − ξ

)
− Lq+1(2 − ξ) − Lq−1(2 − ξ)

(q + 1/2)(3 − ξ)(1 − ξ)

]

× Lp+1(ξ) − Lp−1(ξ)

2p + 1
dξ

(3.18)= âp+1,q − âp−1,q

2p + 1
−
∫ 1

−1

Lq+1(2 − ξ) − Lq−1(2 − ξ)

(q + 1/2)(3 − ξ)(1 − ξ)

Lp+1(ξ) − Lp−1(ξ)

2p + 1
dξ

(3.6)= âp+1,q − âp−1,q

2p + 1
+ 1

2pq

∫ 1

−1
J

1,1
q−1(2 − ξ)J

1,1
p−1(ξ)(1 − ξ2) dξ

= âp+1,q − âp−1,q

2p + 1
,

where we used the fact p > q and the orthogonality of Jacobi polynomials in the last
step.
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We summarize the algorithm as follows.

Algorithm for computing {âpq}Np,q=0

1. Initialization

(a) For p = 0, 1, · · · , 2N, compute âp0 ;
(b) For p = 1, 2, · · · , 2N − 1, compute âp1 .

2. For q = 2, 3, · · · , N,

For p = q, · · · , 2N − q,

âpq = âp,q−2 + 2q − 1

2p + 1
(âp+1,q−1 − âp−1,q−1), (3.19)

Endfor of p, q.

3. Set âpq = âqp for all 0 ≤ p < q < N.

We describe below the details for computing the initial values.

• We find from (3.18) that

âp0 =
∫ 1

−1
Lp(ξ) ln

3 − ξ

1 − ξ
dξ

=
∫ 1

−1
Lp(ξ) ln

3 − ξ

2
dξ +

∫ 1

−1
Lp(ξ) ln

2

1 − ξ
dξ := αp + βp. (3.20)

It is clear that α0 = 4 ln 2 − 2, and for p ≥ 1, we find from (3.7) and integration
by parts that

αp =
∫ 1

−1
Lp(ξ) ln

3 − ξ

2
dξ = ᾱp+1 − ᾱp−1

2p + 1
, where

ᾱp =
∫ 1

−1

Lp(ξ)

3 − ξ
dξ, p ≥ 0.

Note that {ᾱp} (up to the factor p+1/2) are the Legendre expansion coefficients
of the function 1/(3 − ξ), which merely has a simple pole at ξ = 3 in the com-
plex plane, so the use of a Legendre–Gauss quadrature leads to an exponentially
accurate approximation (see [38]).

We find from e.g., [13] that

βp =
∫ 1

−1
Lp(ξ) ln

2

1 − ξ
dξ =

⎧
⎨

⎩

2, if p = 0,
2

p(p + 1)
, if p ≥ 1.
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• Using (3.13), (3.8) and the orthogonality of Legendre polynomials, we find

âp1 =
∫∫

�

ηLp(ξ)

2 − ξ − η
dξdη

=
∫∫

�

(2 − ξ)Lp(ξ)

2 − ξ − η
dξdη −

∫∫

�

(2 − ξ − η)Lp(ξ)

2 − ξ − η
dξdη

= 2
∫∫

�

Lp(ξ)

2 − ξ − η
dξdη−

∫∫

�

ξLp(ξ)

2 − ξ − η
dξdη−

∫ 1

−1

[∫ 1

−1
Lp(ξ) dξ

]

dη

= 2âp0 − (p + 1)âp+1,0 + pâp−1,0

2p + 1
, p ≥ 1. (3.21)

• We see that with an accurate computation of the initial values {âp0}, marching by
(3.21) and (3.19) is expected to be stable, since the coefficients of terms âpq −
âp′q are all less than 1. In the left of Fig. 4, we provide a schematic illustration
of sweeping the stencils by the algorithm.

Remark 3.1 We see from (3.18) and (3.20) that the rectangle–triangle mapping (2.1)
essentially induces logarithmic singularities. By computing the initial values {âp0}
and {âp1} accurately, we can find {âpq}p≥q in a fast and accurate manner. In fact,
numerical quadrature of an integrand involving a logarithmic weight function, e.g.,∫ 1
−1 f (ξ) ln 2

1−ξ
dξ, is of independent interest (see e.g., [13]).

Here, we provide some numerical results to demonstrate the accuracy of comput-
ing the initial values {âp0}. Consider

Ia :=
∫ 1

−1
exp(a(3 − ξ)) ln

3 − ξ

1 − ξ
dξ

= e4a ln 2 + e2a[Ei(2a) − γ − ln(−2a)] − Ei(4a) + Ei(2a)

a
,

p

q

0 100 200 300 400 500 600
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nz = 15145

Fig. 4 Left Diagram for computing {âpq }Np,q=0 with N = 2, where the stencils marked by “•” are marched
via Steps 1–2 in the Algorithm, and those marked by “◦” are obtained by the symmetric property in Step 3.
Right Sparsity pattern plot of the mass matrix involving the interior basis with N = 24
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where the constant a < 0, Ei(x) is the exponential integral function, and γ (≈
0.5772) is the Euler–Mascheroni constant (see e.g., [15]).

We tabulate in Table 1 the relative errors for various a and N , which shows a
typical spectral accuracy as expected.

Remark 3.2 As a quick note, the mass matrix under this basis is sparse (see Fig. 4
(right)). Indeed, by (2.6),

(u, v)� = 1

8

∫∫

�
ũṽ dξdη − 1

16

∫∫

�
ξ ũṽ dξdη − 1

16

∫∫

�
ηũṽ dξdη, (3.22)

so we claim this from (3.8) and the orthogonality of the Legendre polynomials.

Remark 3.3 With an additional affine mapping, any triangular element �any can be
transformed to the reference square �. It is important to point out that the stiffness
and mass matrices on �any can be precomputed in a similar fashion as above. To
justify this, we consider a general triangle �any with vertices Vi = (xi, yi), i =
1, 2, 3. Like (2.1), we have the mapping from � to �any :

(x, y) = (x1, y1)
(1 − ξ)(1 − η)

4
+(x2, y2)

(1 + ξ)(3 − η)

8
+(x3, y3)

(3 − ξ)(1 + η)

8
,

(3.23)
for all (ξ, η) ∈ �. A direct calculation leads to

(u, v)�any = F

8

∫∫

�
ũṽ dξdη − F

16

∫∫

�
ξ ũṽ dξdη − F

16

∫∫

�
ηũṽ dξdη, (3.24)

and

(∇u, ∇v)�any = A

∫∫

�

(∇̃ · ũ
)(∇̃ · ṽ

)
χ−1dξdη + C

∫∫

�

(∇̃ᵀũ
)(∇̃ᵀṽ

)
χ−1dξdη

− B

∫∫

�

[(∇̃ · ũ
)
(∇̃ᵀṽ

)+ (∇̃ᵀũ
)(∇̃ · ṽ

)]
χ−1dξdη, (3.25)

where χ−1 = 2/(2 − ξ − η), the differential operators are defined in (2.5), and the
constants are given by

F = (x2 − x1)(y3 − y1) − (x3 − x1)(y2 − y1) �= 0,

A = ((x2 − x3)
2 + (y2 − y3)

2)/(2F),

B = ((x2 − x1)
2 + (y2 − y1)

2 − (x3 − x1)
2 − (y3 − y1)

2)/(4F),

C = ((2x1 − x2 − x3)
2 + (2y1 − y2 − y3)

2)/(8F).

Table 1 Relative errors of approximating Ia

N a = −1/4 a = −1/2 a = −3/4 a = −1 a = −5/4 a = −3/2

6 4.828E−12 5.833E−10 9.291E−09 6.420E−08 2.800E−07 9.111E−07

10 1.096E−15 3.003E−16 7.363E−15 1.352E−13 1.411E−12 9.318E−12

14 1.565E−15 6.006E−16 1.416E−15 5.263E−16 4.828E−16 1.752E−15
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In particular, if �any = �, (3.24) and (3.25) (note: B = 0) reduce to (2.6) and (2.8),
respectively.

As with (3.10), we find from (3.6)–(3.9) that ∇̃ · �kl and ∇̃ᵀ�kl can be
expressed in terms of {Lk±i (ξ)Ll±j (η)}i,j=0,1, so the stiffness matrix on �any can
be precomputed by the same algorithm described above.

3.3 Interpolation, quadrature and nodal basis

Through the general mapping (3.23), the operations (e.g., interpolation, quadrature
and numerical differentiation) on a triangular element can be performed on the
reference square �.

Hereafter, let {ζj }Nj=0 be the Legendre–Gauss–Lobatto (LGL) points, i.e., the zeros

of (1 − ζ 2)L′
N(ζ ), and let {hj }Nj=0 be the associated Lagrangian basis polynomials

such that hj ∈ PN(I), 0 ≤ j ≤ N, and hj (ζk) = δkj , 0 ≤ j, k ≤ N (where δkj is
the Kronecker delta). Given v ∈ C(Ī ), the one-dimensional polynomial interpolant
of v is

(
I

ζ
Nv
)

(ζ ) =
N∑

j=0

v(ζj )hj (ζ ) ∈ PN, ∀ ζ ∈ Ī . (3.26)

Recall that the LGL quadrature has degree of precision 2N − 1, i.e.,
∫ 1

−1
φ(ζ )dζ =

N∑

j=0

φ(ζj )ωj , ∀ φ ∈ P2N−1(I ), (3.27)

where {ωj }Nj=0 are the LGL quadrature weights.

Given any u ∈ C(�̄), we define the interpolant of u by

(IIN u)(x, y) = (I
ξ
NI

η
N ũ) ◦ T −1 =

( n∑

i,j=0

(u ◦ T )(ξi, ηj )hi(ξ)hj (η)
)

◦ T −1, (3.28)

where T and T −1 are defined in (2.1) and (2.2) as before, and {ξk = ηk = ζk}Nk=0.
Notice that IIN u ∈ YN(�).

We also extend the LGL quadrature to define the discrete inner product on � as

〈u, v〉N,� = 1

8

N∑

i,j=0

ũ(ξi , ηj )ṽ(ξi , ηj )χ(ξi, ηj )ωiωj , (3.29)

where χ = (2 − ξ − η)/2. As a consequence of (2.6), (3.27) and (3.1)–(3.2), there
holds

〈u, v〉N,� = (u, v)�, ∀ u · v ∈ Y2N−2(�), (3.30)
which also holds for all u · v ∈ P2N−2(�).

Since {hkhl}Nk,l=0 forms the nodal basis for QN(�), we can obtain the nodal basis
for YN(�) :

YN(�) = span
{
�̂kl : �̂kl(x, y) = (hkhl) ◦ T −1 : 0 ≤ k, l ≤ N

}
. (3.31)

In view of (3.22), the mass matrix under this nodal basis can be computed easily as
usual by tensorial LGL quadrature. However, the direct evaluation of the stiffness
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matrix like (3.11) is prohibitive, as there is no recursive way for the computation.
In order to surmount this obstacle, we resort to the notion of “discrete transform”
(cf. [33]). Like (3.10), we have

χ∂x�̂kl = 2(h′
k(ξ)hl(η) + hk(ξ)h′

l (η))

+ [(1 − ξ)h′
k(ξ)hl(η) − (1 − η)hk(ξ)h′

l (η)] ∈ QN(�),

χ∂y�̂kl = 2(h′
k(ξ)hl(η) + hk(ξ)h′

l (η))

− [(1 − ξ)h′
k(ξ)hl(η) − (1 − η)hk(ξ)h′

l (η)] ∈ QN(�).

The idea is to transform {χ∂x�̂kl}Nk,l=0 and {χ∂y�̂kl}Nk,l=0 to {Li(ξ)Lj (η)}Ni,j=0 via a

two-dimensional discrete transform. Then the evaluation boils down to finding {ai′j ′
ij }

in (3.11) as before.

4 Estimates of orthogonal projection and interpolation errors

The section is devoted to obtaining error estimates for orthogonal projection and
interpolation operators on YN(�). These results will be essential for understanding
the approximability properties of the basis functions and provide important tools for
error analysis of the TSEM for PDEs.

To this end, we denote by c a generic positive constant independent of N and any
function.

4.1 Orthogonal projections

We start with considering the projection �N : L2(�) → YN(�), defined by
(
�Nu − u, v

)
� = 0, ∀ v ∈ YN(�). (4.1)

Theorem 4.1 For any u ∈ Hr(�) with r ≥ 0, we have

‖�Nu − u‖� ≤ cN−r |u|r,�. (4.2)

Proof We have

‖�Nu − u‖�
(4.1)= inf

φ∈YN (�)
‖φ − u‖�

(3.2)≤ ‖ψ − u‖�, ∀ψ ∈ PN(�). (4.3)

Now, we take ψ to be the best L2-approximation in PN(�), denoted by πNu. By
[25, Theorem 3.3],

‖πNu − u‖� ≤ cN−r

⎛

⎝
∑

k1+k2+k3=r

∥∥∂k1
x ∂k2

y (∂y − ∂x)
k3u
∥∥2

ωk1,k2,k3 ,�

⎞

⎠

1/2

≤ cN−r |u|r,�, (4.4)

where ωk1,k2,k3 = xk1+k3yk2+k3(1 − x − y)k1+k2 is a Jacobi weight function on �.

Therefore, the estimate (4.2) follows from (4.3)–(4.4).
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We now turn to the H 1
0 -projection: �

1,0
N : H 1

0 (�) → Y 0
N(�) = YN(�) ∩ H 1

0 (�),

defined by
(∇(�

1,0
N u − u), ∇v

)
� = 0, ∀ v ∈ Y 0

N(�), (4.5)

where H 1
0 (�) is defined as usual, i.e., the subspace of H 1(�) with functions

vanishing on the boundary of �.

Theorem 4.2 For any u ∈ H 1
0 (�) ∩ Hr(�) with r ≥ 1, we have

‖�1,0
N u − u‖μ,� ≤ cNμ−r |u|r,�, μ = 0, 1. (4.6)

Proof By the Poincaré inequality, we know that the semi-norm | · |1,� is a norm of
H 1

0 (�). Hence, by the definition (4.5),

‖u − �
1,0
N ‖1,� ≤ c|φ − u|1,� ≤ c‖φ − u‖1,�, ∀ φ ∈ YN(�). (4.7)

It is known from (3.2) that PN(�) ⊂ YN(�), so we can take φ to be the orthogonal
projection π

1,0
N : H 1

0 (�) → P0
N(�) = PN(�) ∩ H 1

0 (�), defined by

(∇(π
1,0
N u − u), ∇v

)
� = 0, ∀ v ∈ P0

N(�). (4.8)

We quote the estimate in [25, Theorem 3.4]:

‖π1,0
N u − u‖1,� ≤ cN1−r

⎛

⎝
∑

k1+k2+k3=r

∥∥∂k1
x ∂k2

y (∂y − ∂x)
k3u
∥∥2

ω
k1,k2,k3+ ,�

⎞

⎠

1/2

≤ cN1−r |u|r,�,

(4.9)

where

ω
k1,k2,k3+ = xmax(k1+k3−1,0)ymax(k2+k3−1,0)(1 − x − y)max(k1+k2−1,0).

Hence, the estimate (4.6) with μ = 1 follows from (4.7) and (4.9).
To show (4.6) with μ = 0, we use a duality argument as in [8], which we sketch

below. Given g ∈ L2(�), we consider the auxiliary problem: Find ug ∈ H 1
0 (�) such

that

a(ug, v) := (∇ug, ∇v)� = (g, v)�, ∀ v ∈ H 1
0 (�). (4.10)

By a standard argument, we can show that this problem has a unique solution with
the regularity ‖ug‖2,� ≤ c‖g‖�.

Now, taking v = u − �
1,0
N u into (4.10), we find from (4.5)–(4.6) with μ = 1 that

∣∣(g, u − �
1,0
N u)�

∣∣ = ∣∣a(ug, u − �
1,0
N u)

∣∣ = ∣∣a(ug − �
1,0
N ug, u − �

1,0
N u)

∣∣

≤ ∣∣ug − �
1,0
N ug

∣∣
1,�
∣∣u − �

1,0
N u

∣∣
1,�

≤ cN−r |ug|2,�|u|r,� ≤ cN−r‖g‖�|u|r,�.
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Finally, we derive

∥∥u − �
1,0
N u

∥∥� = sup
0�=g∈L2(�)

∣∣(g, u − �
1,0
N u)�

∣∣

‖g‖�
≤ cN−r |u|r,�.

This completes the proof.

Remark 4.1 It is seen that benefited from the fact that PN(�) ⊂ YN(�), we are
able to obtain the optimal error estimates directly from the available polynomial
approximation results on triangles.

Remark 4.2 We stress that the estimate of (4.6)-type is also valid for the H 1-
projection with partially homogeneous Dirichlet data. Here, we just consider the one
to be used in Section 5, and outline the derivation below. Let

� = {(x, y) ∈ ∂� : xy = 0
}
, H 1

�(�) = {u ∈ H 1(�) : u|� = 0
}
. (4.11)

The orthogonal projection: �
1,�
N : H 1

�(�) → Y�
N(�) = YN(�) ∩ H 1

�(�) is defined

as in (4.5) with �
1,�
N , H 1

�(�), Y�
N (�) in place of �

1,0
N , H 1

0 (�), Y 0
N(�), respectively.

We claim that for any u ∈ H 1
�(�) ∩ Hr(�) with r ≥ 1, we have

‖�1,�
N u − u‖μ,� ≤ cNμ−r |u|r,�, μ = 0, 1. (4.12)

Clearly, this result with r = μ = 1 follows from the definition of �
1,�
N and the

Poincaré inequality. Next, like the proof of Theorem 4.2, we look for an intermediate
uN ∈ Y�

N(�), enjoying the approximation property:

‖∇(uN − u)‖� ≤ cN1−r |u|r,�, r ≥ 2. (4.13)

The construction of uN essentially follows the idea in [25], and makes use of the
generalized Jacobi polynomials (cf. [16]). Define

J
−1,−1
0 (ζ ) = 1, J

−1,−1
1 (ζ ) = ζ, J−1,−1

n (ζ ) = ζ 2 − 1

4
J

1,1
n−2(ζ ), n ≥ 2,

J
β,−1
0 (ζ ) = 1, J β,−1

n (ζ ) = n+β

n

ζ +1

2
J

β,1
n−1(ζ ), n ≥ 1, β > −1, ζ ∈ (−1, 1).

Then

J −1,−1,−1
l1,l2

(x,y)=(y+x)l1J
−1,−1
l1

(y−x

y+x

)
J

2l1−1,−1
l2

(1−2x−2y), l1 ≥0, l2 ≥0,

form a complete polynomial basis in L2(�). In particular, {J −1,−1,−1
l1,l2

}l1≥2, l2≥0

forms a complete polynomial basis in H 1
�(�). For any u ∈ H 1

�(�), we write

u(x, y) =
∑

l1≥2,l2≥0

ûl1,l2J
−1,−1,−1
l1,l2

(x, y),

and define

uN(x, y) =
∑

l1≥2,l2≥0
l1+l2≤N

ûl1,l2J
−1,−1,−1
l1,l2

(x, y) ∈ Y�
N(�).
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Following the same lines as in the proof of Theorem 3.4 in [25], we can obtain

∥∥∇(u − uN)
∥∥2

� ≤ cN−2
(∥∥∥
(
Id − π

0,0,1
N−2

)
∂x∂yu

∥∥∥
2

ω0,0,1,�

+
∥∥∥
(
Id − π

1,0,0
N−2

)
∂x

(
∂y − ∂x

)
u

∥∥∥
2

ω1,0,0,�

+
∥∥∥
(
Id − π

0,1,0
N−2

)
∂y

(
∂y − ∂x

)
u

∥∥∥
2

ω0,1,0,�

)

≤ cN2−2r
∑

k1+k2+k3=r−2

∥∥∥∂k1+1
x ∂k2+1

y

(
∂y − ∂x

)k3 u

∥∥∥
2

ωk1+k3,k2+k3,k1+k2+1,�

+ cN2−2r
∑

k1+k2+k3=r−2

∥∥∥∂k1
x ∂k2+1

y

(
∂y − ∂x

)k3+1
u

∥∥∥
2

ωk1+k3,k2+k3+1,k1+k2 ,�

+ cN2−2r
∑

k1+k2+k3=r−2

∥∥∥∂k1+1
x ∂k2

y

(
∂y − ∂x

)k3+1
u

∥∥∥
2

ωk1+k3+1,k2+k3,k1+k2 ,�

≤ cN2−2r |u|2r,�, r ≥ 2, (4.14)

where Id is the identity operator, and π
α1,α2,α3
N is the best L2

ωα1,α2,α3 -approximation

in PN(�) as in [25]. Then by the definition of �
1,�
N and the Poincaré inequality, we

have

‖�1,�
N u − u‖1,� ≤ c‖∇(u − uN)‖� ≤ cN1−r |u|r,�, r ≥ 2.

Since the result with r = 1 is shown, we obtain (4.12) for μ = 0 by using the duality
argument as in the proof of Theorem 4.2.

4.2 Estimation of interpolation error

Now, we estimate the error of interpolation by (3.28) on �. The estimate of
the one-dimensional LGL interpolation (cf. (3.26)) is useful for our analysis (see
[33, Theorem 3.44]), that is, for any v ∈ Hr(I) with r ≥ 1, we have

∥∥I ζ
Nv − v

∥∥
L2(I )

≤ cN−r
∥∥(1 − ζ 2)(r−1)/2v(r)

∥∥
L2(I )

. (4.15)

Theorem 4.3 For any u ∈ Hr(�) with r ≥ 2,

‖ IIN u − u‖� ≤ cN−rBr(u), (4.16)

where

Br(u) =
{

|u|2,� + ‖(∂y − ∂x)
2u‖J−1,� + ‖∇ · u‖J−1,�, if r = 2,

|u|r,� + |u|r−1,�, if r ≥ 3,
(4.17)

and J is the Jacobian as defined in (2.4).
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Proof To this end, let Id be the identity operator as before. Using (2.6), (3.28) and
(4.15), we obtain
∥∥ IIN u − u

∥∥� ≤ c
∥∥I ξ

NI
η
N ũ − ũ

∥∥
�

= c
∥∥(I ξ

N − Id)(I
η
N − Id)ũ + (I

ξ
N − Id)ũ + (I

η
N − Id)ũ

∥∥
�

≤ c
(∥∥(I ξ

N − Id)(I
η
N − Id)ũ

∥∥
� + ∥∥(I ξ

N − Id)ũ
∥∥
� + ∥∥(I η

N − Id)ũ
∥∥
�
)

≤ cN−1
∥∥(I η

N − Id)∂ξ ũ
∥∥
� + c

(∥∥(I ξ
N − Id)ũ

∥∥
� + ∥∥(I η

N − Id)ũ
∥∥
�
)

≤ cN−r
(∥∥(1 − η2)(r−2)/2∂ξ ∂

r−1
η ũ

∥∥
� + ∥∥(1 − ξ2)(r−1)/2∂r

ξ ũ
∥∥
�

+∥∥(1 − η2)(r−1)/2∂r
ηũ
∥∥
�
)
.

It remains to transform the variables (ξ, η) back to (x, y) and obtain tight upper
bounds of the right-hand side using norms of u on �. By (2.3),

∂ξ ũ = 1 − η

4
∂yu − 3 − η

8
(∂y − ∂x)u = 1 − η

4
∂xu − 1 + η

8
(∂y − ∂x)u, (4.18)

∂ηũ = 1 − ξ

4
∂xu + 3 − ξ

8
(∂y − ∂x)u = 1 − ξ

4
∂yu + 1 + ξ

8
(∂y − ∂x)u. (4.19)

Thus, we have

∂r
ξ ũ =

r∑

k=0

(−1)k
(

r

k

)(
1 + η

8

)k (1 − η

4

)r−k

∂r−k
x (∂y − ∂x)

ku, (4.20)

and
∥∥(1 − ξ2)(r−1)/2∂r

ξ ũ
∥∥2
� =

∫∫

�
|∂r

ξ ũ|2(1 − ξ2)r−1dξdη

≤ c

r∑

k=0

∫∫

�
∣∣∂r−k

x (∂y − ∂x)
ku
∣∣2 Q(ξ, η; r, k)

J
dxdy,

where

Q(ξ, η; r, k) =
(1 + η

8

)2k(1 − η

4

)2r−2k

(1 − ξ2)r−1.

One verifies readily from (2.1) that

1

4
(1 − ξ)(1 − η) = 1 − x − y, (4.21)

1

4
(1 + ξ)(1 − η) + 1

8
(1 + ξ)(1 + η) = x, (4.22)

1

4
(1 − ξ)(1 + η) + 1

8
(1 + ξ)(1 + η) = y. (4.23)
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Therefore, by (4.21)–(4.23), we derive that for 2 ≤ r ≤ k − 1,

Q(ξ, η; r, k) = 1

2k

[
(1 + ξ)k

(1 + η

8

)k][
(1 − ξ)k

(1 + η

4

)k]

×
( (1 + ξ)(1 − η)

4

)r−k−1( (1 − ξ)(1 − η)

4

)r−k−1 (1 − η)2

16
≤ cxkykxr−k−1(1 − x − y)r−k−1J 2 ≤ c�r−1,k,r−k−1J,

where we used the fact: 1 − η ≤ 2 − ξ − η = 16J, and denoted by �α,β,γ =
xαyβ(1 − x − y)γ . Similarly, for 2 ≤ r = k,

Q(ξ, η; r, k) = 1

2r

( (1 + ξ)(1 + η)

8

)r−1( (1 − ξ)(1 + η)

4

)r−2( (1 + η)

4

)2
(1 − ξ)

≤ cxr−1yr−2J ≤ c�r−1,r−2,0J,

where we used 1 − ξ ≤ 2 − ξ − η = 16J. Consequently, we obtain for r ≥ 2,

∥∥(1 − ξ2)(r−1)/2∂r
ξ ũ
∥∥
�

≤ c

(
r−1∑

k=0

∥∥∂r−k
x (∂y − ∂x)

ku
∥∥2

�r−1,k,r−k−1,� + ∥∥(∂y − ∂x)
ru
∥∥2

�r−1,r−2,0,�

) 1
2

≤ c
(|u|r−1,� + |u|r,�

)
. (4.24)

By swapping x ↔ y and ξ ↔ η, we get that for r ≥ 2,

∥∥(1 − η2)(r−1)/2∂r
ηũ
∥∥
� ≤ c

(|u|r−1,� + |u|r,�
)
. (4.25)

We now turn to deal with the term
∥∥(1 − ξ2)(r−2)/2∂η∂

r−1
ξ ũ

∥∥
�. By (4.19)–(4.20),

∂η∂
r−1
ξ ũ = ∂η

[
r−1∑

k=0

(−1)k
(

r − 1

k

)(
1 + η

8

)k (1 − η

4

)r−k−1

∂r−k−1
x (∂y − ∂x)

ku

]

=
r∑

k=0

W1(ξ, η; r, k)∂r−k
x (∂y − ∂x)

ku

+
r−1∑

k=0

W2(ξ, η; r, k)∂r−k−1
x (∂y − ∂x)

ku, (4.26)

where W1 and W2 are polynomials of ξ and η. Thus, we have

∥∥(1 − ξ2)(r−2)/2∂η∂
r−1
ξ ũ

∥∥2
� ≤ c

r∑

k=0

∫∫

�

∣∣∣∂r−k
x (∂y − ∂x)

ku

∣∣∣
2 (1 − ξ2)r−2

J
dxdy

+ c

r−1∑

k=0

∫∫

�

∣∣∣∂r−k−1
x (∂y − ∂x)

ku

∣∣∣
2 (1 − ξ2)r−2

J
dxdy.
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This implies that for r ≥ 3,

∥∥(1 − ξ2)(r−2)/2∂η∂
r−1
ξ ũ

∥∥
� ≤ c

(|u|r−1,� + |u|r,�
)
. (4.27)

For r = 2, we obtain from a direct calculation that

‖∂ξ ∂ηũ‖� ≤ |u|2,� + 1

256
‖(∂y − ∂x)

2u‖J−1,� + 1

64
‖∇ · u‖J−1,�. (4.28)

A combination of (4.24)–(4.25) and (4.27)–(4.28) leads to the desired result.

Remark 4.3 Like (4.24), we could obtain sharper estimates with semi-norms in the
upper bound of (4.16) featured with the Jacobi-type weight functions �α,β,γ .

Notice that for r = 2, the semi-norms are weighted with J−1, as we cannot factor
out 1 − ξ or 1 − η from W1 and W2 in (4.26) to eliminate J−1. However, we point
out that the value of

∫∫
� J−1dxdy is finite.

5 Numerical results and concluding remarks

In this section, we provide some numerical results to show the high accuracy of the
proposed algorithm for model elliptic problems on �. We also intend to compare
it with the standard tensor-product spectral approximations on rectangles and poly-
nomial approximation using the Duffy’s transform to assess the performance of our
approach.

5.1 The scheme and its convergence

Consider the elliptic equation:

− �u + γ u = f, in � , u|�1 = 0,
∂u

∂ν

∣∣∣
�2

= g, (5.1)

where the constant γ ≥ 0, �1 is the union of the edges x = 0 and y = 0 on �, �2 is
the hypotenuse of �, and ν is the unit outer normal vector to �2.

A weak formulation of (5.1) is to find u ∈ H 1
�1

(�) := {
u ∈ H 1(�) : u|�1 = 0

}

such that

B(u, v) := (∇u, ∇v)� +γ (u, v)� = (f, v)� +γ 〈g, v〉�2 , ∀ v ∈ H 1
�1

(�), (5.2)

where 〈·, ·〉�2 is the inner product of L2(�2). It follows from a standard argument that
if f ∈ L2(�) and g ∈ L2(�2), the problem (5.2) admits a unique solution in H 1

�1
(�).

The spectral-Galerkin approximation of (5.2) is to find uN ∈ Y
�1
N (�) := YN(�)∩

H 1
�1

(�) such that for any vN ∈ Y
�1
N (�),

BN(uN, vN) := (∇uN, ∇vN)�+γ (uN, vN)� = (IIN f, vN)�+〈g, vN 〉N,�2 , (5.3)
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where IIN is the interpolation operator as defined in (3.29), and the discrete inner
product 〈g, vN 〉N,�2 can be defined on the quadrature rule:

∫

�2

g dγ =
√

2

4

[∫ 1

−1
g̃(ξ, 1)dξ +

∫ 1

−1
g̃(1, η)dη

]

∼ 1

2
√

2

⎡

⎣
N∑

j=0

(
g̃(ζj , 1) + g̃(1, ζj )

)
ωj

⎤

⎦ , (5.4)

where {ζj , ωj } are the LGL interpolation nodes and weights as before. More
precisely, we define

〈g, vN 〉N,�2 = 1

2
√

2

N∑

j=0

g̃(ζj , 1)ṽN (ζj , 1)ωj + 1

2
√

2

N∑

j=0

g̃(1, ζj )ṽN (1, ζj )ωj ,

(5.5)
where g̃ = g ◦ T and ṽN = vN ◦ T .

Remark 5.1 Here, we purposely impose the Neumann boundary condition on the
hypotenuse of �, so that the basis functions associated with this “singular” edge are
involved in the computation.

We reiterate that a distinctive difference with the scheme in [27, (25)] lies in
that the consistency condition (2.9) is not needed to be built in the approximation
space, which significantly facilitates the implementation. Note that the approaches
based on the Duffy’s transform also need to modify the basis functions to meet the
corresponding consistency condition (see e.g., [5, 34]).

Apart from the result (4.12) in Remark 4.2, another ingredient for the analysis is to
estimate the error between the continuous and discrete inner products on �2. Given
g ∈ Ht(�2), using [33, Lemma 4.8] leads to

∣∣〈g, vN 〉N,�2 − 〈g, vN 〉�2

∣∣ ≤ cN−t
(∥∥(1 − ξ2)(t−1)/2∂t

ξ g̃(·, 1)
∥∥

L2(I )
‖ṽN (·, 1)‖L2(I )

+ ∥∥(1 − η2)(t−1)/2∂t
ηg̃(1, ·)∥∥

L2(I )
‖ṽN (1, ·)‖L2(I )

)
.

Then we obtain from (4.18)–(4.19) and a derivation similar to the proof of Theo-
rem 4.3 the following estimate:

∣∣〈g, vN 〉N,�2 − 〈g, vN 〉�2

∣∣ ≤ cN−t‖(xy)(t−1)/2(∂y − ∂x)
tg‖�2‖vN‖�2

≤ cN−t |g|t,�2‖vN‖�2 , t ≥ 1.
(5.6)

With the above preparations, we can prove the convergence of the scheme (5.3)
by using (4.12), Theorem 4.3, the estimate (5.6) and a standard argument for error
estimate of spectral approximation of elliptic problems.
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Theorem 5.1 Let u and uN be the solutions of (5.2) and (5.3), respectively. If u ∈
H 1

�1
(�) ∩ Hr(�), f ∈ Hs(�) and g ∈ Ht(�2) with r ≥ 1, s ≥ 2 and t ≥ 1, then

we have

‖u − uN‖μ,� ≤ c
(
Nμ−r |u|r,� + N−sBs(f ) + N−t |g|t,�2

)
,

where μ = 0, 1, Bs(f ) is defined in (4.17), and c is a positive constant independent
of N , u, f and g.

5.2 Numerical results

5.2.1 Example 1

We first intend to show the typical spectral accuracy of the proposed method, so we
particularly test it on (5.1) with γ = 1 and the exact solution:

u(x, y) = ex+y−1 sin
(
3xy
(
y − √

3x/2 + √
3/4
))

, ∀ (x, y) ∈ �. (5.7)

For comparison, we also consider the standard tensor polynomial approximation of
(5.1) on a square S = (0, 1/

√
2)2 (note: it has the same area as �) under a similar set-

ting, i.e., Neumann data on two edges x = 1/
√

2 and y = 1/
√

2, and homogeneous
Dirichlet data on the other two edges. We take the exact solution:

u(x, y) = exp

(
−
(

1√
2

− x

)(
1√
2

− y

))
sin
(
3xy
(
y − √

3x/2 + √
3/4
))

,

∀(x, y) ∈ S. (5.8)

In Fig. 5, we plot the numerical errors of two methods, from which we observe that
they share a very similar convergence behavior and the errors decay like O(e−cN ).

For a fixed N, the accuracy of approximation on S seems to be slightly better than
expected. Indeed, the accuracy is comparable to the existing means in [22, 27, 34].
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Fig. 5 Numerical errors of (5.3) vs. tensorial polynomial approximation on the square S. Left L2- and
L∞-errors using modal basis, (3.4) on � and (3.5) on �. Right L2- and L∞-errors using nodal basis,
{hkhl}Nk,l=0 on � and (3.31) on �
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Fig. 6 Numerical errors of (5.3) vs. tensorial polynomial approximation on the square S with solutions
having finite regularity. Left L2- and L∞-errors using modal basis, (3.4) on � and (3.5) on �. Right L2-
and L∞-errors using nodal basis, {hkhl}Nk,l=0 on � and (3.31) on �

5.2.2 Example 2

In the second test, we choose the exact solution of (5.1) with finite regularity (with
γ = 1):

u(x, y) = (1 − x − y)
5
2 (exy − 1), ∀ (x, y) ∈ �, (5.9)

which belongs to H 3−ε(�) (for small ε > 0). The counterpart on the square S takes

the form:

u(x, y) =
(

1√
2

− x

) 5
2
(

1√
2

− y

) 5
2

(exy − 1), ∀ (x, y) ∈ S. (5.10)

We depict in Fig. 6 the numerical errors of two approaches in log-log scale, where

the slopes of the lines are all roughly −3 as predicted by the theoretical results (cf.
Theorem 5.1).

5.2.3 Comparison with the nodal approach in [27]

We compare our new approach with the method in [27], where the explicit consis-
tency condition (2.9) was built in the approximation space. We test the same problem
with the same exact solution. One can see from Table 2 that both approaches enjoy
a similar convergence behavior. We reiterate that the new method does not require

Table 2 Comparison between
the approach in [27] and the new
method

N Approach in [27] Approach in this paper

L2-error L∞-error L2-error L∞-error

15 2.866E−06 1.018E−05 2.349E−06 8.281E−06

30 3.410E−07 1.203E−06 3.087E−07 1.091E−06

45 9.940E−08 3.513E−07 9.299E−08 3.283E−07
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Fig. 7 L∞-errors against N . Left From [3, Fig. 2.17], where tensorial quadrilateral approach on rectangle
and Dubiner basis on triangle are used. Right Approach in this paper, where the modal basis and nodal
basis are given in (3.5) and (3.31), respectively

to modify the basis function, so with a pre-computation of the stiffness matrix, the
triangular element can be treated as efficiently as the quadrilateral element.

5.2.4 Comparison with the Dubiner basis

Finally, we test our approach on an existing example (see [3, Page 107]), where the
spectral-Galerkin method based on the Dubiner polynomial basis (note: about N2/2
degrees of freedom), is used. We adopt the same setting and solve the Poisson equa-
tion on the triangle {(x, y) : x, y ≥ −1, x + y ≤ 0} with homogeneous Dirichlet
boundary condition and exact solution: (1 + x)(1 + y)(x + y) exp(−(x + y)).

We snapshot the figure in [3, Figure 2.17], and put it in Fig. 7 (left) for reference.
Our result is depicted in Fig. 7 (right). Observe that by using N2 degrees of freedom,
our approach produces slightly better accuracy, and the decay of the errors follows
more closely to the tensorial quadrilateral case.

5.3 Concluding remarks

We initiated in this paper a new TSEM through presenting the detailed implementa-
tion and analysis on a triangle. We demonstrated that the use of the rectangle–triangle
mapping in [27] led to much favorable grid distributions, when compared with the
commonly-used Duffy’s transform. More importantly, we showed the induced singu-
larity could be fully removed. It is anticipated that with this initiative, we can develop
an efficient TSEM on unstructured meshes built on a suitable discontinuous Galerkin
formulation. This will be discussed in a forthcoming work.
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