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1. Introduction

The fundamental task of image denoising is to restore a noise-free image u from an observed, noise polluted image f ,
that is, to remove noisy component from f . This problem can be modeled by f = u + n, where n is the unknown noise. A
general way to obtain this decomposition is to solve the problem

inf
u∈X

{J(u) + λH(u − f )} , (1)

where J(·) andH(·) are two non-negative functionals defined over a suitable functional space X , and λ > 0 is a parameter to
balance the two terms. Various models with different combinations of {X;H, J} have been proposed for image restoration
and/or decomposition. The seminal ROF model [1], referred to as the total-variation regularized L2-model or TV -L2 model,
takes the form

inf
u∈BV (Ω)


TV(u) +

λ

2
‖u − f ‖2

L2(Ω)


. (2)

Here, the total variation of the function u(x) ∈ L1loc(Ω) is defined to be [2,3]:

TV(u) =

∫
Ω

|∇u|dx := sup
p∈S

∫
Ω

u(x)div p(x)dx, (3)

where S = {p ∈ C1
c (Ω; R2) : |p(x)| ≤ 1, ∀x ∈ R2

}, and the space BV (Ω) =

u ∈ L1(Ω) : ‖u‖BV < ∞


with the norm

‖u‖BV := ‖u‖L1(Ω) + TV(u). As an important variant, the TV -L1 model (see, e.g., [4–7]) has also been used for denoising
and cartoon-texture decomposition. In contrast to the ROF model, it has some interesting properties like morphological
invariance and feature extraction by scale. Interestingly, some finer TV-regularized models with G (cf. [8]), H−1 (cf. [9]),
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div(BMO) (cf. [10]) and Besov-type (cf. [11]) fidelity term have also been proposed for image decomposition. We also point
out that [12,13] considered some generalized fidelity function for a better denoising effect. On the other hand, somemodels
using regularization term other than TV, e.g., the LLT model [14] and the model with J(u) :=


Ω

|∇u|γ dx with γ > 1
(cf. [15]), have been adopted to overcome the stair-case effect of the ROF model.

In the last two decades, extensive numerical study has been devoted to thesemodels, but it is also worthwhile to provide
some theoretical insights for a better understanding of the models. Using the notion of G-norm ‖ · ‖∗, Meyer [8] showed
that for a given image f , if λ > ‖f ‖−1

∗
, then the minimizer uλ of the ROF model meets ‖f − uλ‖∗ = λ−1. This observation

inspired several subsequential works. For instance, Osher and Scherzer [16] extended this analysis to a more general class
of regression models. Scherzer et al. [17] generalized the concept of G-norms, i.e., G-sets, which is used to characterize
minimizers of non-differentiable regularization functionals. Tadmor et al. [18] proposed amulti-scale image decomposition
based on a hierarchical representation for image features. Moreover, a more subtler analysis has been conducted for the
TV -L1 model in [6,19]. Chan and Esedoglu [6] showed some geometric properties of the TV -L1 model with implications
for scale selection and multi-scale decomposition. Yin et al. [19] provided an analytic expression of scale based on the
G-value [17].

Motivated by [6,19], we consider in this paper the geometric properties and scale separation of the TV -Lp model with
0 < p < +∞:

min
u∈BV (Ω)


TVLpλ(u) := TV(u) +

λ

p

∫
Ω

|f − u|pdx


, λ > 0, (4)

and discuss the numerical algorithms for this generalmodel.We first formulate the cost functional TVLpλ(·) into an equivalent
geometry energy in terms of upper level sets, which provides some insights for a better understanding of the original
model. More importantly, by using the notion of G-norm (for p > 1), we characterize the range of λ that allows to extract
geometric features of a given scale. Different from the G-value for the TV -L1 setting, the G-norm depends on both the scale
and intensity values of the features. As a result, given two features with the same scale and different intensities, the TV -L1
model fails to distinguish them, but the TV -Lp(p > 1)model is capable of extracting them.We provide a rigorous theoretical
proof and numerical evidences of such a property. Accordingly, this study could be useful for object recognition and image
segmentation. Indeed, the ideas and techniques used in this paper can be applied to a much wider class of minimization
problems with a convex regularization term.

The rest of the paper is organized as follows. In Section 2, the TV -Lp (0 < p < +∞)model is formulated as an equivalent
geometry problem in terms of upper level sets, and some properties of the geometry problem are derived. In Section 3, the
properties of minimizers of the TV -Lp (1 < p < +∞) model are provided. In particular, based on the G-norm, the scale
selection of features is well studied. In Section 4, numerical algorithms based on augmented Lagrangian algorithm for the
TV -Lp (1 ≤ p < +∞) model are introduced and some numerical results consistent with the analysis are given, followed by
concluding remarks in Section 5.

2. Geometric properties of the TV -Lp model

This section aims to study the behavior of the TV -Lp model. Motivated by [6,19,17], we start with reformulating the
model as a geometry problem, and then present some properties of the underlying geometry problem. This provides some
new insights of this model with general p.

For simplicity of presentation, we assume Ω = R2 for the moment, and recall that the perimeter of a Borel measurable
set Σ ⊂ Ω is defined by

Per(Σ) := TV(1Σ ) =

∫
Ω

|∇1Σ |dx, (5)

where 1Σ is the characteristic function of Σ . For a given image f and any ξ ∈ R, we define the upper level set

Γf := Γf (ξ) = {x ∈ Ω : f (x) > ξ}. (6)

For clarity, we particularly denote Σu(ξ) := Γu(ξ), where u is the restored image. We shall also use the co-area formula
(see, e.g., [20,3]):

TV(u) =

∫
+∞

−∞

Per (Σu(ξ)) dξ =

∫
+∞

−∞

TV(1Σu(ξ)) dξ . (7)

The following important result shows that the TV -Lp functional (0 < p < ∞) in (4) can be expressed in an equivalent
form in terms of the level sets.

Theorem 2.1. Define

C(Σu, Γf ) := Per(Σu) + λ

∫
Σu\Γf

(ξ − f )p−1dx +

∫
Γf \Σu

(f − ξ)p−1dx


. (8)
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Then for all 0 < p < ∞,

TV(u) +
λ

p
‖u − f ‖p

Lp =

∫
+∞

−∞

C(Σu, Γf )dξ . (9)

Proof. We have that

‖u − f ‖p
Lp =

∫
{u>f }

(u − f )pdx +

∫
{f>u}

(f − u)pdx

= p
[∫

{u>f }

∫ u

f
(ξ − f )p−1 dξdx +

∫
{f>u}

∫ f

u
(f − ξ)p−1 dξdx

]
.

= p
[∫

{u>f }

∫
+∞

−∞

(ξ − f )p−11[f ,u] dξdx +

∫
{f>u}

∫
+∞

−∞

(f − ξ)p−11[u,f ] dξdx
]

= p
[∫

Ω

∫
+∞

−∞

(ξ − f )p−11[f ,u]1Σu\Γf dξdx +

∫
Ω

∫
+∞

−∞

(f − ξ)p−11[u,f ]1Γf \Σu dξdx
]

= p
[∫

+∞

−∞

∫
Ω

(ξ − f )p−11[f ,u]1Σu\Γf dx dξ +

∫
+∞

−∞

∫
Ω

(f − ξ)p−11[u,f ]1Γf \Σudx dξ
]

.

Here, 1[a,b] is the characteristic function of the interval [a, b] ⊂ R. Observe that∫
Ω

1[u,f ]1Σu\Γf dx =

∫
Σu\Γf

dx,

and likewise for 1[u,f ]1Γf \Σu . Hence, we obtain

‖u − f ‖p
Lp = p

∫
+∞

−∞

∫
Σu\Γf

(ξ − f )p−1dx +

∫
Γf \Σu

(f − ξ)p−1dx


dξ . (10)

A combination of (7) and (10) leads to the desired result. �

It is important to point out that for a given image f , the functional C(Σ, Γf ) in (8) is well-defined for any Lebesgue
measurable subset Σ ⊆ Ω . In particular, when Σ = Σu, the equivalence (9) holds. This suggests that we consider the
geometry minimization problem for each level set:

min
Σ

C(Σ, Γf (ξ)) for given ξ ∈ R and f . (11)

Next,wepresent two fundamental properties of the functional C . Hereafter, for ξ1 < ξ2, we denoteΓ i
f := Γf (ξi) (i = 1, 2)

as defined in (6). It is clear that Γ 1
f ⊇ Γ 2

f . The functional C enjoys the following ‘‘monotone’’ property.

Theorem 2.2. Assume that Σ1 and Σ2 are the minimizers of (11) corresponding to Γf = Γ 1
f and Γf = Γ 2

f , respectively, and
have finite perimeters. Then we have

C(Σ2, Γ 1
f ) − C(Σ1

∩ Σ2, Γ 1
f ) ≥ C(Σ1

∪ Σ2, Γ 1
f ) − C(Σ1, Γ 1

f ) ≥ 0, (12)

and

0 ≥ C(Σ2, Γ 2
f ) − C(Σ1

∩ Σ2, Γ 2
f ) ≥ C(Σ2, Γ 1

f ) − C(Σ1
∩ Σ2, Γ 1

f ). (13)

Proof. We first prove (12). By the definition (8),

C(Σ2, Γ 1
f ) − C(Σ1

∩ Σ2, Γ 1
f ) − C(Σ1

∪ Σ2, Γ 1
f ) + C(Σ1, Γ 1

f ) (14)

= Per(Σ2) − Per(Σ1
∩ Σ2) − Per(Σ1

∪ Σ2) + Per(Σ1) (15)

+ λ

∫
Σ2\Γ 1

f

(ξ − f )p−1dx −

∫
(Σ1∩Σ2)\Γ 1

f

(ξ − f )p−1dx


(16)

−

∫
(Σ1∪Σ2)\Γ 1

f

(ξ − f )p−1dx −

∫
Σ1\Γ 1

f

(ξ − f )p−1dx


(17)
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+ λ

∫
Γ 1
f \Σ2

(f − ξ)p−1dx −

∫
Γ 1
f \(Σ1∩Σ2)

(f − ξ)p−1dx


(18)

−

∫
Γ 1
f \(Σ1∪Σ2)

(f − ξ)p−1dx −

∫
Γ 1
f \Σ1

(f − ξ)p−1dx


. (19)

One verifies readily that
Σ2

\ Γ 1
f


\

(Σ1

∩ Σ2) \ Γ 1
f


= (Σ2

\ Σ1) \ Γ 1
f ,

and 
(Σ1

∪ Σ2) \ Γ 1
f


\

Σ1

\ Γ 1
f


= (Σ2

\ Σ1) \ Γ 1
f .

Thus the summation in the square brackets in (16) and (17) vanishes. Similarly, as Σ2
⊇ (Σ1

∩ Σ2), we have
Γ 1
f \ (Σ1

∩ Σ2)

\

Γ 1
f \ Σ2

= (Γ 1
f ∩ Σ2) \ Σ1,

and 
Γ 1
f \ Σ1

\

Γ 1
f \ (Σ1

∪ Σ2)


= (Γ 1
f ∩ Σ2) \ Σ1,

which imply that the summation in (18) and (19) is zero. Hence, a combination of the above facts leads to

C(Σ2, Γ 1
f ) − C(Σ1

∩ Σ2, Γ 1
f ) − C(Σ1

∪ Σ2, Γ 1
f ) + C(Σ1, Γ 1

f )

= Per(Σ2) − Per(Σ1
∩ Σ2) − Per(Σ1

∪ Σ2) + Per(Σ1). (20)

Therefore, the formula (12) follows from the property of the Per-functional (see, e.g., [21]):

Per(Σ2) + Per(Σ1) ≥ Per(Σ1
∩ Σ2) + Per(Σ1

∪ Σ2),

and the assumption that Σ1 is the minimizer with Γf = Γ 1
f .

Now, we turn to the derivation of (13). Similarly, by (12),

C(Σ2, Γ 2
f ) − C(Σ1

∩ Σ2, Γ 2
f ) − C(Σ2, Γ 1

f ) + C(Σ1
∩ Σ2, Γ 1

f ) (21)

=

Per(Σ2) − Per(Σ1

∩ Σ2)

−

Per(Σ2) − Per(Σ1

∩ Σ2)


(22)

+ λ

∫
Σ2\Γ 2

f

(ξ − f )p−1dx −

∫
(Σ1∩Σ2)\Γ 2

f

(ξ − f )p−1dx


(23)

−

∫
Σ2\Γ 1

f

(ξ − f )p−1dx −

∫
(Σ1∩Σ2)\Γ 1

f

(ξ − f )p−1dx


(24)

+ λ

∫
Γ 2
f \Σ2

(f − ξ)p−1dx −

∫
Γ 2
f \(Σ1∩Σ2)

(f − ξ)p−1dx


(25)

−

∫
Γ 1
f \Σ2

(f − ξ)p−1dx −

∫
Γ 1
f \(Σ1∩Σ2)

(f − ξ)p−1dx


. (26)

Obviously, (22) is zero, and for i = 1, 2,
Σ2

\ Γ i
f


\

(Σ1

∩ Σ2) \ Γ i
f


= (Σ2

\ Σ1) \ Γ i
f , (27)

and 
Γ i
f \ (Σ1

∩ Σ2)

\

Γ i
f \ Σ2

= (Γ i
f ∩ Σ2) \ Σ1. (28)

By (27), the summation in (23) and (24) becomes

λ

∫
(Σ2\Σ1)\Γ 2

f

(ξ − f )p−1dx −

∫
(Σ2\Σ1)\Γ 1

f

(ξ − f )p−1dx


≥ 0,

where we have used the fact: Γ 1
f ⊇ Γ 2

f and (Σ2
\ Σ1) \ Γ 2

f ⊇ (Σ2
\ Σ1) \ Γ 1

f . Similarly, we can show that the summation
in (25) and (26) is nonnegative. Hence, (13) follows from the above facts and the assumption that Σ2 is the minimizer with
Γf = Γ 2

f . �
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An important consequence of the above property is as follows.

Corollary 2.1. Assuming that Σ1 and Σ2 are the minimizers of (11) corresponding to Γf = Γ 1
f and Γf = Γ 2

f , respectively. If
Γ 1
f ⊇ Γ 2

f , i.e., ξ1 < ξ2, then the same inclusion holds for a pair of minimizers.

Proof. As a direct consequence of Theorem 2.2, we have

0 ≥ C(Σ2, Γ 2
f ) − C(Σ1

∩ Σ2, Γ 2
f ) ≥ C(Σ2, Γ 1

f ) − C(Σ1
∩ Σ2, Γ 1

f )

≥ C(Σ1
∪ Σ2, Γ 1

f ) − C(Σ1, Γ 1
f ) ≥ 0.

Thus, all inequalities above hold as equalities, that is, Σ1
∩ Σ2 and Σ1

∪ Σ2 are minimizers of (11) with Γ = Γ 2
f and

Γ = Γ 1
f , respectively. It is clear that the former is included in the latter. �

It is seen that for p = 1, the above formulas have simpler representations, and similar analysis for the TV -L1 model can
be found in [6,19]. Moreover, we may apply an analogous argument in [19] to construct a minimizer u of the original TV -Lp
model from a series of minimizers of C(Σ, Γf ).

3. Properties of the minimizers

In this section, we study properties of the minimizers of the TV -Lp model. The purpose is to provide some quantitative
guidelines for the selection of the parameter λ, which allows for extracting and separating different scales and intensities.

The first result indicates a close relation between the minimizer and the parameter.

Theorem 3.1. For 1 < p < +∞ and λ > 0, uλ is a minimizer of the TV-Lp model (4), if and only if λ satisfies

λ

∫
Ω

|uλ − f |p−2(uλ − f )hdx ≥ TV (uλ) − TV (uλ + h), ∀h ∈ BV (Ω). (29)

Proof. If uλ is a minimizer of (4), we have that for any h ∈ BV (Ω) and ϵ > 0,

TV (uλ) +
λ

p

∫
Ω

|uλ − f |pdx ≤ TV (uλ + ϵh) +
λ

p

∫
Ω

|uλ + ϵh − f |pdx

≤ TV (uλ + ϵh) +
λ

p

∫
Ω

|uλ − f |pdx

+ λϵ

∫
Ω

|uλ − f |p−2(uλ − f )hdx + λϵη(ϵ; p, uλ, h), (30)

where η(ϵ; p, uλ, h) = o(ϵ). This implies

− λ

∫
Ω

|uλ − f |p−2(uλ − f )hdx ≤
TV (uλ + ϵh) − TV (uλ)

ϵ
+ λη(ϵ; p, uλ, h). (31)

The convexity of TV (u) implies

TV (uλ + ϵh) − TV (uλ)

ϵ
≤ TV (uλ + h) − TV (uλ), 0 < ϵ < 1.

Hence, letting ϵ → 0 in (31) leads to

−λ

∫
Ω

|uλ − f |p−2(uλ − f )hdx ≤ TV (uλ + h) − TV (uλ).

Therefore, λ satisfies (29).
Conversely, by (29) and the convexity of | · |

p (1 < p), we obtain that

TV (uλ + h) +
λ

p

∫
Ω

|uλ + h − f |pdx ≥ TV (uλ) +
λ

p

∫
Ω

|uλ − f |pdx

+ λ

∫
Ω

|uλ − f |p−2(uλ − f )hdx + TV (uλ + h) − TV (uλ)

≥ TV (uλ) +
λ

p

∫
Ω

|uλ − f |pdx. (32)

This ends the proof. �
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Remark 1. The property (29) is valid for 1 < p < ∞. For p = 1, we refer to [17] the following result.

For f ∈ L1(Ω), uλ is the minimizer of the TV -L1 model, if and only if λ satisfies that for any h ∈ BV (Ω),

λ


−

∫
uλ≠f

sign(uλ − f )hdx −

∫
uλ=f

|h|dx


≤ TV (uλ + h) − TV (h). (33)

Indeed, we can view (33) as a limiting case of (29) (i.e., p → 1+). We find that the derivation of (33) in [17] is different
from that of (29).

Remark 2. If the regularization term TV (u) in (1) is replaced by

Jγ (u) :=

∫
Ω

|∇u|γ dx, γ > 1.

(refer to, e.g., [15,22,23] for the applications of such models), then Theorem 3.1 still holds with Jγ (·) in place of TV (·).

For a fixed λ, the TV -Lp model returns an image uλ with certain features. In some applications, it is interesting to choose
some λ, so as to extract desirable feature. Such a critical value is characterized by the so-called G-norm of the underlying
feature.

We first recall the definition of the G-norm (see, e.g., [8,24]).
For v = div g with g = (g1, g2) and gi ∈ L∞(Ω), i = 1, 2, the G-norm of v is defined as

G(v) := ‖v‖G = inf
g

g2
1 + g2

2


L∞

. (34)

If Ω is a bounded connected open domain of R2 with a Lipschitz boundary, g · n = 0 should be imposed on ∂Ω , where n is
the unit outer normal. As shown in [25], the G-norm is equivalent to

G(v) = sup
h∈BV (Ω),h≠0


Ω

v(x)h(x)dx
TV (h)

. (35)

We have the following important result.

Theorem 3.2. uλ = 0 is a minimizer of the TV-Lp model (4) with 1 < p < +∞, if and only if

0 < λ ≤
1

G(|f |p−1)
. (36)

Proof. It follows from Theorem 3.1 that uλ = 0 is a minimizer if and only if

−λ

∫
Ω

|f |p−2fhdx ≥ −TV (h) ⇔ λ

∫
Ω

|f |p−1hdx ≤ TV (h), ∀h ∈ BV (Ω),

where we used the fact that the (pixel) intensity of f ≥ 0. In view of (35), we have λG(|f |p−1) ≤ 1, so (36) follows. �

Remark 3. For p = 1, we refer to [17,19] the following result.

Let ∂|f | be the set-valued sub-derivative of |f |, i.e.,

∂|f |(x) =


sign(f ), if f (x) ≠ 0,
[−1, 1], if f (x) = 0. (37)

Then, uλ = 0 is theminimizer of the TV -L1 model if and only if λ ≤
1

G(∂|f |) , where (G(∂|f |)) is called as the G-value of f .

Remark 4. As a simple illustration, we assume that the observed image f = 1Br (0), where Br(0) ⊂ Ω is a disk centered at
the origin with radius r . Notice that

G(|1Br (0)|
p−1) = G(|1Br (0)|) =

r
2
.

Theorem 3.2 indicates that Br(0) vanishes when λ ≤
2
r . In the forthcoming section, we shall provide numerical results to

verify this theoretical result.

The next result shows the feature separation capability of the TV -Lp model, which follows from Theorems 3.1 and 3.2.

Corollary 3.1. Let f be an observed image defined inΩ , which consists of two separated (with some distance) piecewise constant
features in the disjoint subregions Ω1 and Ω2 over a black background, that is, f = fΩ11Ω1 + fΩ21Ω2 , where fΩi is the restriction
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of f in Ωi (i = 1, 2), and likewise for uΩi below. Suppose that G(|fΩ2 |
p−1) > G(|fΩ1 |

p−1) and u is a minimizer of TV -Lp
model (4) with 1 < p < +∞. If λ is chosen such that

1
G(|fΩ2 |

p−1)
< λ <

1
G(|fΩ1 |

p−1)
, (38)

then we have uΩ1 = 0 and uΩ2 ≠ 0.

Proof. In this proof, let 0 < ϵ < 1 and h be an arbitrary function in BV (Ω).
We first prove uΩ2 ≠ 0 by contradiction. The convexity of TV (u) and | · |

p (1 < p < +∞) implies

ϵTV (h) ≥ TV (uΩ\Ω2 + ϵh) − TV (uΩ\Ω2), (39)

and

λ

p

∫
Ω2

|fΩ2 |
pdx −

λ

p

∫
Ω2

|fΩ2 − ϵh|pdx ≥ ϵλ

∫
Ω2

|fΩ2 − ϵh|p−2(fΩ2 − ϵh)hdx. (40)

Since u is a minimizer of (4), assuming uΩ2 = 0 leads to

TV (uΩ\Ω2) +
λ

p

∫
Ω2

|fΩ2 |
pdx +

λ

p

∫
Ω\Ω2

|uΩ\Ω2 − fΩ\Ω2 |
pdx

≤ TV (uΩ\Ω2 + ϵh) +
λ

p

∫
Ω2

|fΩ2 − ϵh|pdx +
λ

p

∫
Ω\Ω2

|uΩ\Ω2 − fΩ\Ω2 |
pdx. (41)

Hence, a direct consequence of (39)–(41) is

ϵTV (h) ≥ TV (uΩ\Ω2 + ϵh) − TV (uΩ\Ω2)

≥
λ

p

∫
Ω2

|fΩ2 |
pdx −

λ

p

∫
Ω2

|fΩ2 − ϵh|pdx

≥ ϵλ

∫
Ω2

|fΩ2 − ϵh|p−2(fΩ2 − ϵh)hdx.

That is,

TV (h) ≥ λ

∫
Ω2

|fΩ2 − ϵh|p−2(fΩ2 − ϵh)hdx. (42)

Letting ϵ → 0 in (42) yields

TV (h) ≥ λ

∫
Ω2

|fΩ2 |
p−1h dx, ∀ h ∈ BV (Ω), (43)

where we used the fact fΩ2 ≥ 0. In view of the definition (35) and the condition (38), there exists 0 ≠ h0 ∈ BV (Ω) such
that

λ

∫
Ω2

|fΩ2 |
p−1h0dx > TV (h0), (44)

which contradicts to (43). Therefore, uΩ2 ≠ 0.
Now, we turn to proving uΩ1 = 0 by contradiction. As a preparation, we first show that the intensity of the minimizer u

in the region of the background, denoted by uΩb , is zero, where we denote Ωb = Ω \ (Ω1 ∪Ω2) and Ωc
b = Ω1 ∪Ω2. Indeed,

by the definition of the total variation (3),

TV (uΩb + uΩc
b
) = sup

p∈S

∫
Ω

uΩbdiv p dx +

∫
Ω

uΩc
b
div p dx


≥ sup

p∈S

∫
Ω

uΩc
b
div p dx = TV (uΩc

b
). (45)

If uΩb ≠ 0, then we have from the fact u is a minimizer that

TV (uΩb + uΩc
b
) +

λ

p

∫
Ω

|uΩb − fΩb |
pdx +

λ

p

∫
Ω

|uΩc
b
− fΩc

b
|
pdx

≤ TV (uΩc
b
) +

λ

p

∫
Ω

|fΩb |
pdx +

λ

p

∫
Ω

|uΩc
b
− fΩc

b
|
pdx. (46)
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In view of fΩb = 0, (46) implies

TV (uΩb + uΩc
b
) +

λ

p

∫
Ω

|uΩc
b
|
pdx ≤ TV (uΩc

b
),

which contradicts to (45). Thus the minimizer u of (4) must satisfy uΩb = 0.
Now, we are ready to prove uΩ1 = 0 by contradiction again. By the convexity of | · |

p (1 < p < +∞),

λ

p

∫
Ω1

|fΩ1 |
pdx −

λ

p

∫
Ω1

|fΩ1 − h|pdx ≤ λ

∫
Ω1

|fΩ1 |
p−1hdx. (47)

Assume that u is aminimizer of (4) with uΩ1 ≠ 0. Using the facts that uΩb = 0 andΩ1, Ω2 are separatedwith some distance,
we obtain

TVLpλ(uΩ\Ω1) ≥ TVLpλ(uΩ\Ω1 + uΩ1)

=

∫
Ω\Ω1

|∇uΩ\Ω1 |dx +

∫
Ω1

|∇uΩ1 |dx

+
λ

p

∫
Ω\Ω1

|uΩ\Ω1 − fΩ\Ω1 |
pdx +

λ

p

∫
Ω1

|fΩ1 − uΩ1 |
pdx

= TVLpλ(uΩ\Ω1) +

∫
Ω1

|∇uΩ1 |dx +
λ

p

∫
Ω1

|fΩ1 − uΩ1 |
pdx −

λ

p

∫
Ω1

|fΩ1 |
pdx, (48)

which implies∫
Ω1

|∇uΩ1 |dx ≤
λ

p

∫
Ω1

|fΩ1 |
pdx −

λ

p

∫
Ω1

|fΩ1 − uΩ1 |
pdx. (49)

Thus, by (47) and (49),

TV (uΩ1) =

∫
Ω1

|∇uΩ1 |dx ≤
λ

p

∫
Ω1

|fΩ1 |
p−1uΩ1dx. (50)

On the other hand, we obtain from the definition (35) and the condition (38) that

TV (h) > λ

∫
Ω1

|fΩ1 |
p−1hdx, ∀ h ∈ BV (Ω). (51)

Taking h = uΩ1 in the above inequality leads to a contradiction. Therefore, uΩ1 = 0. �

4. Algorithms and numerical results

In this section, we discuss numerical methods for solving the TV -Lp model so as to provide some numerical justifications
of the theoretical results.

There have been quite a few types of numerical methods proposed for the TV -L2 (i.e., ROF) model, which roughly can
be classified into the categories: gradient descent method [1], the lagged diffusivity fixed-point iteration [26], the dual
approach [27], the graph-cutsmethod [28], the Bregman iteration [29], the FTVdmethod [30] and themultigridmethod [31].
It is interesting to point out that as shown in [32–34], the dual approach, the operator splitting, and the Bregman iteration can
be derived from the augmented Lagrangianmethod. However, there is much less work for the TV -L1 model as the L1-fidelity
term induces nonlinearity and non-differentiability. [35] proposed an operator splitting method, and [36,19,37] showed the
numerical results using the commercial optimization package Mosek (cf. http://www.mosek.com) formulating the TV -L1
model as second-order cone program (SOCP) [38,39]. The G-norm can be computed in an SOCP as in [37].

In the sequel, we adopt the augmented Lagrangian method [34], and describe the algorithm below.

4.1. Augmented Lagrangian method for the TV-Lp model

The augmented Lagrangian functional for the TV -Lp model is as follows:

min
u,q,z

max
λq,λz


G(u, q, z, λq, λz) =

∫
Ω

|q|dx +
λ

p
‖z − f ‖p

Lp + (λq, q − ∇u) + (λz, z − u)

+
r
2
‖q − ∇u‖2

L2 +
rz
2

‖z − u‖2
L2


, (52)

http://www.mosek.com
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where the bold face letters denote the vectors, and r and rz are positive constants. Here, (·, ·) is the L2-inner product.
This method is to seek a saddle point of the augmented Lagrangian functional G(u, q, z, λq, λz), and the algorithm can be
summarized as follows.

Algorithm. Augmented Lagrangian method for TV -Lp model.
1. Initialization: λ0

z = 0, λ0
q = 0;

2. For k = 1, 2, . . . ,
(i) Compute the minimizer (uk+1, qk+1, zk+1):

uk+1, qk+1, zk+1
= argmin

u,q,z
G(u, q, z, λk

q, λ
k
z). (53)

(ii) Update the Lagrangian multipliers:
λk+1
q = λk

q + r(qk+1
− ∇uk+1),

λk+1
z = λk

z + rz(zk+1
− uk+1).

(54)

3. Goto step 2 until some stopping rule is met.

We see that it is essential to solve the minimization problem (53), i.e., (52) with fixed λk
q and λk

z, which can be split into
three sub-problems.
• u-subproblem for given q and z:

min
u


−(λk

q, ∇u) + (λk
z, −u) +

r
2
‖q − ∇u‖2

L2 +
rz
2

‖z − u‖2
L2


. (55)

• q-subproblem for given u and z:

min
q

∫
Ω

|q|dx + (λk
q, q) +

r
2
‖q − ∇u‖2

L2


. (56)

• z-subproblem for given u and q:

min
z


λ

p
‖z − f ‖p

Lp + (λk
z, z) +

rz
2

‖z − u‖2
L2


. (57)

In contrast with the TV -L2 case, an additional auxiliary variable z is introduced to circumvent the nonlinearity induced
by the Lp-fidelity term with p ≠ 2. This does not add any complexity to the algorithm, since the problem (57) can be solved
analytically. To show the main idea, we rewrite (57) as

min
z


λ

p
‖z − f ‖p

Lp +
rz
2

‖z − (u − λk
z/rz)‖

2
L2


. (58)

This motivates us to seek

z = (1 − β)f + β(u − λk
z/rz), 0 ≤ β ≤ 1,

as in [34] and the problem (58) can be simplified to the one-dimensional problem:

min
0≤β≤1


E(β) :=

λk
zβ

p

p

u −
λk
z

rz
− f

p
Lp

+
rz
2

(β − 1)2
u −

λk
z

rz
− f

2
L2


. (59)

Denote s = |u − λk
z/rz − f |. The minimization problem (59) is converted to

min
0≤β≤1


λ

p
βpsp +

rz(β − 1)2

2
s2


, (60)

which turns out to be a simple calculus problem.
In the computations, the stopping rule is based on the discrete l2-error:

‖∇uk
− qk

‖l2 + ‖zk − uk
‖l2 ≤ ε, (61)

for some prescribed error tolerance ε > 0.

4.2. Numerical results

In the sequel, we present some numerical results computed by using the foregoing augmented Lagrangian method to
justify the main theoretical results.

Here, we are interested in extracting the objects {si}3i=1 embedded in a black background image, as depicted in Fig. 1 (left).
Purposely, we put their centers on a horizontal line so that we can plot the profile of the intensity along this line (see Fig. 1
(right)), and examine the change of the intensity with different choices of λ and p in the TV -Lp model.



2232 Y. Shi et al. / Journal of Computational and Applied Mathematics 236 (2012) 2223–2234

Fig. 1. Left: the given image f with three embedded objects {si}3i=1. Right: the profile of the intensity along the line of the centers.

Table 1
The G-norm or G-value of the objects, and λ = λmin

p,i or λmax
p,i for {si}3i=1 and p = 3, 1.5, 1.

p s1 s2 s3

3 G(|si|p−1) 2.6077e+4 1.0431e+5 5.7513e+4
λmin
p,i 1.1504e−5 2.8760e−6 5.2162e−6

λmax
p,i 1.4061e−5 3.5152e−6 6.3754e−6

1.5 G(|si|p−1) 26.0767 36.8780 43.7492
λmin
p,i 0.0345 0.0244 0.0206

λmax
p,i 0.0422 0.0298 0.0251

1 G(∂|si|) 2.6076 2.6076 3.7869
λmin
p,i 0.3451 0.3451 0.2377

λmax
p,i 0.4218 0.4218 0.2905

We follow [37] to compute the G-norm, denoted by G(|si|p−1) for p > 1, and these values are listed in Table 1. We
find from the definition (37) that the G-value is independent of the intensity, but the G-norm depends on both the size
and intensity. Hence, the objects s1 and s2 have the same size and G-value, but possess different G-norms. In the numerical
experiments, we choose λ = λmin

p,i or λmax
p,i in the model, where

λmin
p,i G(|si|p−1) = 0.9, λmax

p,i G(|si|p−1) = 1.1, i = 1, 2, 3, 1 < p < ∞, (62)

and if p = 1, the G-value is in place of the G-norm. We take r = rz = 80 in (52), and the error tolerance in (61) to be
ε = 4 × 10−8.

Observe from Table 1 that for p = 3,

G(|s1|p−1) < G(|s3|p−1) < G(|s2|p−1).

Accordingly, if we choose λ sequentially to be

λmin
p,2 < λmax

p,2 < λmin
p,3 < λmax

p,3 < λmin
p,1 < λmax

p,1 , (63)

then by Theorem 3.2, the objects will be ‘‘switched on’’ in turn. More precisely, if λ = λmin
p,2 , then all three objects will

merge into the background as shown by the sub-figs of row 1 and columns 1 and 2 in Fig. 2. On the other hand, taking
λ = λmax

p,2 (resp. λmax
p,3 ) turns on s2 (resp. s2 and s3). Such a pattern can be visualized from Fig. 2, which verifies the prediction

by Theorem 3.2. We also find from profiles of the intensity that the model with p = 3 cannot preserve the contrast, which
differs from the TV -L1 model. And, the G-norm depends on both the intensity and size, therefore the model can distinguish
them, while based on the G-value, the TV -L1 model cannot do this (cf. Fig. 4).

We plot in Fig. 3 the output images of the TV -Lp model with p = 1.5. Once again, the numerical evidences verify the
theoretical prediction in Theorem 3.2.

To further test the numerical algorithm, we conduct the same experiment on the TV -L1 model. Noting that the G-values
of s1 and s2 are the same, we sequentially choose λ = λmin

1,3 , λmax
1,3 , λmin

1,2 , λmax
1,2 , and by Remark 3, s3 and s1/s2 are ‘‘switched

on’’ in turn, which can be visualized from Fig. 4. We also observe from the profiles of the intensity that the contrast is well-
preserved, which is an important feature of TV -L1 model. It also shows that the algorithm produces very good numerical
results.
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Fig. 2. Restored images by TV -Lp(p = 3) model and the profiles of the intensity of {si}3i=1 with different λ. Row 1: λ = λmin
p,2 , λmin

p,3 , λmin
p,1 , and Row 2:

λ = λmax
p,2 , λmax

p,3 , λmax
p,1 .

Fig. 3. Restored images by TV -Lp(p = 1.5) model and the profiles of the intensity of {si}3i=1 with different λ. Row 1: λ = λmin
p,3 , λmin

p,2 , λmin
p,1 , and Row 2:

λ = λmax
p,3 , λmax

p,2 , λmax
p,1 .

Fig. 4. Restored images by TV -L1 model and the profiles of the intensity of {si}3i=1 with different λ. Row 1: λ = λmin
1,3 , λmin

1,1 (= λmin
1,2 ), and Row 2:

λ = λmax
1,3 , λmax

1,1 (= λmax
1,2 ).

5. Concluding remarks

In this paper,we investigated various properties of the TV -Lp modelwith general real p. Aswith the TV -L1 model,we could
formulate the model as a geometric problem, which provides some insights for the original model. By using the notion of
G-norm, we characterized some important properties of the minimizer of the model, and gave a quantitative criteria for the
choice of the parameter λ for extracting image features and separating scales. We implemented the augmented Lagrangian
method for the minimization problem, and provided illustrative numerical results to verify the analysis. Indeed, the TV -Lp
(with 1 < p < ∞) model exhibited some different properties when compared with the TV -L1 model.
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