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Highlights
• An efficient iterative method is proposed for solving multiple scattering problem in locally inhomogeneous media.
• At each iteration, only single scattering problems need to be solved. An effective way is introduced to handle the

communication between scatterers.
• The convergence of the iterative method is proved by using the compactness of involved integral operators.

Abstract

In this paper, an efficient iterative method is proposed for solving multiple scattering problem in locally inhomogeneous
media. The key idea is to enclose the inhomogeneity of the media by well separated artificial boundaries and then apply purely
outgoing wave decomposition for the scattering field outside the enclosed region. As a result, the original multiple scattering
problem can be decomposed into a finite number of single scattering problems, where each of them communicates with the
other scattering problems only through its surrounding artificial boundary. Accordingly, they can be solved in a parallel manner
at each iteration. This framework enjoys a great flexibility in using different combinations of iterative algorithms and single
scattering problem solvers. The spectral element method seamlessly integrated with the non-reflecting boundary condition and
the GMRES iteration is advocated and implemented in this work. The convergence of the proposed method is proved by
using the compactness of involved integral operators. Ample numerical examples are presented to show its high accuracy and
efficiency.
c⃝ 2019 Elsevier B.V. All rights reserved.

Keywords: Multiple scattering; Inhomogeneous media; Iterative method; Spectral element method; Non-reflecting boundary condition; GMRES
iteration

1. Introduction

The acquaintance of many physical phenomena and engineering processes can be significantly enhanced by
accurately simulating the multiple scattering problems involving configurations of many obstacles. Typically, for
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Fig. 1.1. Configurations of multiple scattering. (a): Scatterers embedded in homogeneous media; (b): Well-separated scatterers with
inhomogeneous media in colored area. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

two-dimensional time-harmonic acoustic multiple scattering in inhomogeneous media, we consider the Helmholtz
equation of the form

∆u(x) + κ2n2(x)u(x) = 0, in R2
\ Ω , (1.1)

where u = usc
+ uin is the total field, κ is the wave number, n2(x) is the index of refraction, Ω is a region

occupied by M impenetrable scatterers in R2, see Fig. 1.1. The scattering field usc satisfies the Sommerfeld radiation
condition

∂usc

∂r
− iκusc

= o
(
r−1/2), as r := |x| → ∞. (1.2)

On the boundaries of the scatterers, the Dirichlet, Neumann or Robin boundary conditions can be imposed according
to different materials of the scatterers. Here, let M1, M2, M3 be the number of scatterers with Dirichlet, Neumann and
Robin boundary conditions, respectively, and denote by Ω1 j , Ω2 j , Ω3 j the j th scatterer in each group. Accordingly,
we denote the domain of all obstacles and its boundary by

Ω = Ω1 ∪ Ω2 ∪ Ω3, ∂Ω = ∂Ω1 ∪ ∂Ω2 ∪ ∂Ω3 with Ωi =

Mi⋃
j=1

Ωi j , (1.3)

for i = 1, 2, 3 corresponding to the Dirichlet, Neumann and Robin boundary conditions, respectively. For notational
convenience, we express these three types of boundary conditions on the scatterers as

Bi u = 0, x ∈ ∂Ωi , i = 1, 2, 3, (1.4)

where

B1 = I, B2 =
∂

∂n
, B3 =

∂

∂n
+ hI. (1.5)

Here, I is the identity operator, n is the unit outward normal on ∂Ω2 and h is a given function defined on ∂Ω3.
It is known that analytic solutions for wave scattering problems from multiple arbitrary shaped obstacles

embedded in inhomogeneous media are not available. Partially for this reason, many early works are mostly
restricted to cylindrical and spherical obstacles embedded in homogeneous media, where the modal expansions of the
scattered fields play an essential role (cf. [1–5]). We highlight that the reader-friendly monograph by Martin [6] was
largely concerned with time-harmonic waves with multiple obstacles and with exact methods including separation
of variables, integral equations and T -matrices, but only the last chapter is concerned with some numerics.

Among limited works for multiple scattering problems with general bounded scatterers (compared with intensive
studies of single scattering problems), the boundary integral method is one of the methods of choice. By
reformulating a scattering problem into an integral equation on the boundary of scatterers (cf. [7–9]), numerical
methods (e.g., boundary element methods) have been developed based on the Galerkin or collocation formulations
(cf. [10,11]). Very recently, the boundary integral method with fast multipole acceleration and hybrid numerical-
asymptotic boundary element method have been investigated for relatively low frequency (cf. [12]) and high
frequency problems (cf. [13,14]), respectively. However, it is noteworthy that the boundary integral method relies
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on the Green’s function to derive integral equation on the boundary, which in general is not applicable to
inhomogeneous media.

In analogue with solving general single scattering problems, one can reduce the unbounded domain by a proper
domain truncation technique, before applying a finite-domain solver, e.g., the finite element method. Grote and
Kirsch [15] proposed the non-reflecting boundary conditions (NRBC) based on Dirichlet-to-Neumann operators for
truncating multiple time-harmonic acoustic scattering problems with well-separated scatterers in two dimensions,
where each scatterer is surrounded by an NRBC. The framework therein is well-suited for numerical discretization,
but it requires to solve coupled systems. Indeed, Acosta and Villamizar [16,17] discussed the multiple acoustic
scattering from scatterers of complex shape using coupling of Dirichlet-to-Neumann boundary condition and the
finite difference method. In practice, the iterative method is more desirable. Based on the decomposition of the
scattering wave into purely outgoing waves, Neumann iterative method was proposed in [18], where at each
iteration, only single scattering problems need to be solved. This iterative technique has been further developed
for high frequency problems with a large number of scatterers, see [11,19–22] and the references therein. Recently,
a block Gauss–Seidel iterative method was employed to solve the linear systems resulted from the finite element
discretization (cf. [23–25]). Error estimates between the iterative scheme at continuous level and its finite element
discretization was analyzed in [24]. Most of the aforementioned works are for homogeneous media.

In this paper, we propose an efficient iterative method for solving multiple scattering problem in locally
inhomogeneous media, and show the convergence of the method. The algorithm consists of three components.
Firstly, the scatterers and inhomogeneity of the media are enclosed by well-separated artificial boundaries such
that purely outgoing wave decomposition is applicable outside the enclosed domains. Then the scattering field is
decomposed into purely outgoing waves and boundary integral equations with respect to density functions on the
artificial boundaries are formulated. Secondly, we change the unknowns in the resulted boundary integral equations
by using solution operators of the interior and exterior problems. New equations using the value of purely outgoing
fields and total field on the artificial boundaries as unknowns can be derived. Thirdly, the iterative methodology
(e.g., Gauss–Seidel, general minimum residue) is applied.

The proposed method enjoys the advantage that only the interior problems (together with analytic formulas for
solutions of exterior problems) with respect to single scatterer need to be solved separately at each iteration. Various
single scattering problem solvers and iterative methods can be applied. Thus, this approach possesses excellent
flexibility and high parallelizability. In this work, the high order spectral element method with non-reflecting
boundary condition (NRBC) and GMRES iterative method is adopted. We remark that other numerical PDE solvers
(e.g., finite element method or finite difference method) can also be used for solving single scattering problems.
Here, we basically solve a boundary integral equation on the artificial boundaries. The convergence of the method
can be proved by using the compactness of involved integral operators. Moreover, the well-conditioning feature of
the boundary integral equation leads to a small number of iterations for convergence. This is the main difference
between our method and the Neumann iterative method. Numerical results show that the number of iterations is
nearly independent of the mesh size and polynomial degree used in the discretization. This paper will focus on two
dimensional scenarios, but the proposed method is extendable to three dimensional cases.

Note that the final discrete systems resulted from the discretization proposed by [15–17] have block structure, so
the block iterative methods can be directly applied (e.g., block Gauss–Seidel iterative method [23,24]). Although
the pursuit of “decoupling” between scatterers is similar to these works, the derivation of our iterative algorithm
is from the boundary integral equations that leads to more effective communication between scatterers. Moreover,
this allows us to conduct the convergence analysis based on the tools in the boundary integral equations. Indeed,
the numerical comparisons show that such a treatment of the interactions between scatterers is more effective than
the existing approaches in particular for a large number of scatterers. This also can relax the assumption of the well
separateness of the scatterers when the problems in homogeneous media are tackled.

The rest of this paper is organized as follows. In Section 2, we use the multiple scattering problem in
homogeneous media to illustrate the main idea of the iterative method. By using the classic potential theory, the
boundary integral equations with respect to purely outgoing fields are derived for three typical boundary conditions.
Then the iterative algorithm using GMRES iteration is presented. In Section 3, the iterative method in locally
inhomogeneous media is proposed. We first introduce artificial boundaries to enclose the inhomogeneity of the
media and then show that an outgoing wave decomposition can be used to derive equations with respect to outgoing
fields and total field on the artificial boundaries. Iterative method together with spectral element discretization is
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proposed for the coupled equations. In Section 4, we give theoretical proof for the convergence of the iterative
method by using the compactness of the involved integral operators. Various numerical examples are presented in
Section 5. By comparing with a direct spectral element discretization to the truncation using one sufficiently large
artificial boundary to enclose all scatterers inside, we validate the effectiveness of our method. The more efficient
communication strategy between scatterers is also validated by numerical comparisons with the approach in [15].

2. Iterative method for multiple scattering in homogeneous media

In this section, we focus on the multiple scattering problem in homogeneous media, i.e., n(x) ≡ 1 in (1.1),
and propose an iterative method based on the boundary integral equations on the scatterers. As we shall see in
the next section, this actually paves the way for the algorithm and analysis of the multiple scattering in locally
inhomogeneous media, where the boundary integral formulations on the artificial boundaries can be seamlessly
integrated with the interior solver for each single scatterer. In particular, due to the circular artificial boundaries, the
integral operators related to the single scattering problems (3.2) can be solved analytically, so the boundary integral
operators are only used in the derivation and the convergence analysis.

2.1. Integral equations on the boundaries of the scatterers

Given a generic bounded domain D ⊂ R2 and a density function φ ∈ L2(∂D), the corresponding single-layer
and double-layer potentials are defined as (cf. [7,26]):

Sφ(x) :=

∫
∂D

Gκ (x, y)φ( y) d y, Dφ(x) :=

∫
∂D

∂Gκ (x, y)
∂n( y)

φ( y) dSy, x /∈ ∂D, (2.1)

where

Gκ (x, y) = −
i
4

H (1)
0 (κ|x − y|), (2.2)

is the Green’s function in free space. For any function v(x), we distinguish its limit values obtained by approaching
the boundary ∂D from inside R2

\ D̄ and D, respectively, by

v+(x) = lim
y→x
y/∈D

v( y), v−(x) = lim
y→x
y∈D

v( y), x ∈ ∂D. (2.3)

Similarly, we denote the limit values of the normal derivative at x ∈ ∂D from two sides by

∂+

n v(x) := lim
y→x
y/∈D

∇v( y) · nx, ∂−

n v(x) := lim
y→x
y∈D

∇u( y) · nx, x ∈ ∂D. (2.4)

Although the Green’s function is singular as x → y, the limits of Sφ(x),Dφ(x) as x approach ∂D remain finite
and well-defined. Indeed, in electrostatics, they represent a physical potential and an electric field generated by finite
charge or dipole densities. According to the potential theory (cf. [7,27]), they are given by the following Cauchy
principle value (p.v.) and Hadamard finite part (p.f.).

Proposition 2.1. The single layer potential Sφ(x) is continuous across the boundary ∂D, and

Sφ(x) = p.v.
∫
∂D

Gκ (x, y)φ( y)dSy, x ∈ ∂D, (2.5)

while ∂Sφ(x)
∂n has a jump, namely

∂±

n Sφ(x) = p.v.
∫
∂D

∂Gκ (x, y)
∂n(x)

φ( y)dSy ∓
φ(x)

2
, x ∈ ∂D, (2.6)

which implies

J∂nSφ(x)K := ∂+

n Sφ(x) − ∂−

n Sφ(x) = −φ(x), x ∈ ∂D. (2.7)

Proposition 2.2. The double layer potential Dφ(x) is discontinuous across ∂D, and there holds

(Dφ(x))± = p.v.
∫
∂D

∂Gκ (x, y)
∂n( y)

φ( y)dSy ±
φ(x)

2
, x ∈ ∂D, (2.8)
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and

JDφ(x)K := (Dφ(x))+ − (Dφ(x))− = φ(x), x ∈ ∂D. (2.9)

Meanwhile, the normal derivative of the double layer potential is continuous across ∂D and

∂nDφ(x) = p.f.
∫
∂D

∂2Gκ (x, y)
∂n(x)∂n( y)

φ( y)dSy, x ∈ ∂D. (2.10)

The potential theory introduced above can be directly used to derive boundary integral equations for multiple
scattering problem in homogeneous media. However, it will lead to a very large linear system when a large number
of scatterers are involved. To overcome this, we formulate the boundary integral equations based on the decomposed
form derived from the superposition principle. It is known that the scattering field usc of the multiple scattering
problem (1.1)–(1.4) in homogeneous media has the following unique decomposition (cf. [28]):

usc(x) =

M1∑
j=1

w1 j (x) +

M2∑
j=1

w2 j (x) +

M3∑
j=1

w3 j (x), (2.11)

where wi j are the solutions of the single scattering problems⎧⎪⎪⎨⎪⎪⎩
∆wi j + κ2wi j = 0, in Ω∞

i j := R2
\Ω̄i j , (a)

Bi jwi j = gi j , on ∂Ωi j , (b)
∂wi j

∂n
− ikwi j = o

(
r−

1
2
)
, as r := |x| → ∞, (c)

(2.12)

for j = 1, . . . ,Mi , i = 1, 2, 3. The input data is given by

gi j = −Bi j uin
−

Mi∑
k=1,k ̸= j

Bi jwik −

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

Bi jwℓk . (2.13)

The last two terms in (2.13) involve the scattering fields from all other scatterers. It is seen that due to the interaction
between the scatterers, the incident wave gi j for the j th scatterer in the i th group is the combination of uin and the
scattering fields generated by all other scatterers. This shows how the multiple scattering system is coupled.

According to the potential theory, the single and double-layer potentials defined by (2.1) satisfy the Helmholtz
equation in R2

\∂D and the Sommerfeld radiation condition at infinity. For the uniqueness of the resulted boundary
integral equations, we define the mixed potentials (cf. [7,8]):

K1 jφ1 j := D1 jφ1 j + iηS1 jφ1 j , Ki jφi j := −iηDi jφi j − Si jφi j , i = 2, 3, (2.14)

for the densities {φ1 j , φ2 j , φ3 j }, where

Si jφi j :=

∫
∂Ωi j

Gκ (x, y)φi j ( y)d y, Di jφi j (x) :=

∫
∂Ωi j

∂Gκ (x, y)
∂n( y)

φi j ( y)dSy, ∀x /∈ ∂Ωi j ,

are single and double layer potentials on ∂Ωi j , and η is a given constant satisfying ηReκ ≥ 0. Then the solutions
of single scattering problems (2.12)(a)–(c) have the form

wi j (x) = Ki jφi j (x), x /∈ ∂Ωi j , (2.15)

while the density functions {φi j } satisfy boundary integral equations:

1
2
φi j + K̂i jφi j = gi j , x ∈ ∂Ωi j , j = 1, 2, . . . ,Mi , i = 1, 2, 3. (2.16)

The boundary integral operators K̂i j are defined as

K̂1 j := D̂1 j + iηŜ1 j , K̂2 j := −iηD̂2 j − Ŝ2 j , K̂3 j := −iηD̂3 j − Ŝ3 j −
i
2
ηh, (2.17)
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where

Ŝ1 jφ1 j (x) := p.v.
∫
∂Ω1 j

Gκ (x, y)φ1 j ( y)dSy, D̂1 jφ1 j (x) := p.v.
∫
∂Ω1 j

∂Gκ (x, y)
∂n( y)

φ1 j ( y)dSy,

Ŝ2 jφ2 j (x) := p.v.
∫
∂Ω2 j

∂Gκ (x, y)
∂n(x)

φ2 j ( y)dSy, D̂2 jφ2 j (x) := p.f.
∫
∂Ω2 j

∂2Gκ (x, y)
∂n(x)∂n( y)

φ2 j ( y)dSy,

Ŝ3 jφ3 j (x) := h
(

p.v.
∫
∂Ω3 j

Gκ (x, y)φ3 j ( y)dSy

)
+ p.v.

∫
∂Ω3 j

∂Gκ (x, y)
∂n(x)

φ3 j ( y)dSy,

D̂3 jφ3 j (x) := h
(

p.v.
∫
∂Ω3 j

∂Gκ (x, y)
∂n(y)

φ3 j ( y)dSy

)
+ p.f.

∫
∂Ω3 j

∂2Gκ (x, y)
∂n(x)∂n( y)

φ3 j ( y)dSy.

Applying the integral representations (2.15) to (2.13) gives

gi j (x) = −Bi j uin(x) −

Mi∑
k=1,k ̸= j

Bi jKikφik(x) −

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

Bi jKℓkφℓk(x), ∀x ∈ ∂Ωi j . (2.18)

Then, substituting (2.18) into (2.16) leads to the following system of boundary integral equations, which is uniquely
solvable (cf. [7]).

Proposition 2.3. The boundary integral equations of the problem (2.12)–(2.13) take the form:

1
2
φi j + K̂i jφi j +

Mi∑
k=1,k ̸= j

Bi jKikφik +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

Bi jKℓkφℓk = −Bi j uin, (2.19)

for all x ∈ ∂Ωi j , j = 1, 2, . . . ,Mi , i = 1, 2, 3. The scattering field usc can be obtained by using (2.11) and (2.15).

2.2. Iterative method

Recall that wi j and φi j are, respectively, the solution and the density of the scattering problem (2.12), so we
have (1

2
I + K̂i j

)
φi j = Wi j := Bi jwi j , on ∂Ωi j . (2.20)

According to the boundary integral equation theory (cf. [7]), the operator K̃i j :=
1
2I + K̂i j is invertible and its

inverse is bounded. Substituting φi j = K̃ −1
i j Wi j into (2.19), leads to

Wi j +

Mi∑
k=1,k ̸= j

Bi jKikK̃
−1

ik Wik +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

Bi jKℓkK̃
−1
ℓk Wℓk = −Bi j uin, on ∂Ωi j . (2.21)

Let Si j : C(∂Ωi j ) ↦→ C2(R2
\ Ω i j ) be the solution operator of the single scattering problem⎧⎪⎪⎨⎪⎪⎩

∆v + κ2v = 0, x ∈ R2
\ Ω i j ,

Bi jv = ψ, x ∈ ∂Ωi j ,
∂v

∂r
− iκv = o

(
r−

1
2
)
, as r := |x| → ∞.

(2.22)

We find readily from (2.15)–(2.16) and (2.22) (with ψ = gi j ) that

Ki jK̃
−1

i j = Si j . (2.23)

Thus, the operators Ki jK̃
−1

i j in (2.21) can be replaced by the solution operator Si j . As a result, we have the
following system

(I + K) W = b, (2.24)
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where W = (W11, . . . ,W1M1 ,W21, . . . ,W2M2 ,W31, . . . ,W3M3 )T, and

K =

⎛⎜⎜⎜⎝
O B11 · · · B11

B12 O · · · B12
...

...
. . .

...

B3M3 B3M3 · · · O

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

S11 O · · · O
O S12 · · · O
...

...
. . .

...

O O · · · S3M3

⎞⎟⎟⎟⎠ . (2.25)

Different from the classic boundary integral method, which usually solves (2.19) for the density, we use an
iterative method to solve (2.24)–(2.25) with different unknowns (note: it is equivalent to the integral equation (2.21)).
In fact, many iterative approaches (e.g., Gauss–Seidel or generalized minimal residue) can be employed. For the
sake of convergence analysis, we choose the generalized minimal residual (GMRES cf. [29]) iterative method (see
Algorithm 1).

As we have seen in the proposed iterative algorithm, the key part in GMRES iteration is the computation of the
terms Si j W

(k)
i j in (I +K)W (k), where W (k)

i j is given boundary data. Here, we will apply the spectral element solver
with NRBC truncation to the single scattering problems in (2.22). We first truncate the unbounded computational
domain R2

\ Ωi j by using a circular artificial boundary namely Γ i j centered at ci j = (xc
i j , yc

i j ) with radius Ri j (see
Fig. 2.1). Denote by Bi j the domain enclosed by Γ i j . Then the scattering problem (2.22) can be reduced to the
following boundary value problems (BVPs):⎧⎪⎨⎪⎩

∆v + κ2v = 0, x ∈ Bi j\Ωi j ,

Bi jv = ψ x ∈ ∂Ωi j ,

∂nv = Ti jv, x ∈ Γ i j ,

(2.26)

Algorithm 1 Iterative algorithm for multiple scattering in homogeneous media

Initialization

(i) Given W (0) on the boundary of {Ωi j }, stopping threshold: ε and the maximum number of iterations: nmax ;

(ii) Solve (2.22) with ψ = W (0)
i j for w(0)

i j = Si j W
(0)
i j , i = 1, 2, 3, j = 1, 2, · · · ,Mi ;

(iii) Compute r (0)
= b − (I + K)W (0), and v(1)

= r (0)/∥r (0)
∥.

Iterative steps

for n = 1, 2, · · · , nmax do
for k = 2 → n do

Solve (2.22) with ψ = v
(k−1)
i j for ṽi j = Si jv

(k−1)
i j , i = 1, 2, 3, j = 1, 2, · · · ,Mi ;

Compute v(k)
= (I + K)v(k−1);

for m = 1 → k − 1 do

hm,k−1 = (v(m), v(k)); v(k)
= v(k)

− hm,k−1v
(m)

; (2.27)

end for
hk,k−1 = ∥v(k)

∥, v(k)
= v(k)/hk,k−1;

end for
Compute W (n)

= W 0
+

∑n−1
i=1 yivi , where y = (y1, y2, · · · , yn−1)T minimizes

J ( y) := ∥(∥r0∥e1) − H̄n−1 y∥. (2.28)

if J ( y) ≤ ε then
Stop iteration.

end if
end for
Final step

Solve (2.22) with ψ = W (n)
i j for w(n)

i j , j = 1, 2, · · · ,Mi , i = 1, 2, 3.
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Fig. 2.1. Left: Intersecting artificial boundaries. Right: Well-separated artificial boundaries and spectral element mesh for inhomogeneous
media problem.

where the DtN operators in the NRBC are given by

Ti jv :=

∞∑
n=−∞

κ
H (1)′

n (κRi j )

H (1)
n (κRi j )

v̂neinθi j . (2.29)

Here, (ri j , θi j ) are the polar coordinates of x − ci j , {H (1)
n (z)} are the Hankel functions of the first kind, and

v̂n =
1

2π

∫ 2π

0
v(xc

i j + Ri j cos θi j , yc
i j + Ri j sin θi j )einθi j dθi j , (2.30)

are the Fourier coefficients of v on the artificial boundary Γ i j . The scattering fields outside the truncated domains
will be calculated from the data along the artificial boundaries by using the separation of variable method. More
details on the discretization will be provided in the next section.

Remark 2.1. Artificial boundaries in other forms (e.g., ellipse) can also be used in (2.26) for better adaptation to
the shapes of the scatterers. Different from the well separated artificial boundaries required by the DtN boundary
condition proposed in [15], the artificial boundaries Γ i j used here are independent of each other. They are used
individually in the truncation of each single scattering problem (2.22). Therefore overlapped artificial boundaries
can be used as shown in Fig. 2.1 (Left). This can relax the assumption of the well separateness of the scatterers.

Although the essential unknowns are the boundary data Wi j on ∂Ωi j , the purely outgoing components wi j in the
exterior domains R2

\Ω i j will be calculated in the iterations. According to the algorithm, only M single scattering
problems need to be solved individually at each iteration. Since the system (2.21) is an equivalent form of the
boundary integral system (2.19), it enjoys the nice property of relatively small condition number. Consequently,
the proposed iterative method converges within a small number of iterations. It will be validated by the numerical
examples in Section 5 that the number of iterations is nearly independent of the mesh size and polynomial degree
used in the discretization.

3. Iterative method for the multiple scattering in locally inhomogeneous media

In this section, we present the iterative method for multiple scattering problems in locally inhomogeneous
media. In general, purely outgoing wave decomposition is not available when inhomogeneous medium is involved.
Nevertheless, it is usually reasonable to assume that the inhomogeneity of the medium is confined in a finite
domain [15].

3.1. Integral equations on the artificial boundaries

Assuming that all scatterers are well separated, we can surround them by M non-intersecting circles {Γ i j
}

Mi
j=1, i =

1, 2, 3 centered at {ci j = (xc
i j , yc

i j )} with radii Ri j (see Fig. 2.1). Denote by Bi j the domain enclosed by Γ i j ,
Bi = ∪

Mi
j=1 Bi j and B = B1 ∪ B2 ∪ B3. We further assume that 1 − n(x) vanishes outside the finite region B,

i.e., the inhomogeneity is confined inside B (see Fig. 2.1 (right)). A medium under this assumption is called a
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locally inhomogeneous medium. As such, the medium outside the region B is homogeneous, and the scattering
field usc

= u − uin outside B has a unique decomposition (cf. [15,28]):

usc(x) =

M1∑
j=1

w1 j (x) +

M2∑
j=1

w2 j (x) +

M3∑
j=1

w3 j (x), x ∈ R2
\ B̄, (3.1)

where {wi j }
Mi
j=1 are the solutions of the scattering problems:⎧⎪⎪⎨⎪⎪⎩

∆wi j + κ2wi j = 0, in R2
\B̄i j ,

wi j = gi j , on Γ i j ,
∂wi j

∂r
− iκwi j = o

(
r−

1
2
)
, as r := |x| → ∞,

(3.2)

for j = 1, . . . ,Mi , i = 1, 2, 3. The boundary data {gi j } are

gi j = u − uin
−

Mi∑
k=1,k ̸= j

wik −

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

wℓk, on Γ i j . (3.3)

It is worthy pointing out that we have used the total field u to determine gi j . For notational convenience, we define

S̃i j : C(Γi j ) ↦→ C2(R2
\ Bi j ) (3.4)

as the solution operator of the exterior problem (3.2).

Remark 3.1. In the model problem, the inhomogeneity of the medium is assumed to be in the neighborhood of
each scatterer and well-separated. If the inhomogeneity around some scatterers is not well-separated, these scatterers
should be treated as a group surrounded by a relatively larger artificial boundary.

As in (2.14), we define the mixed potentials K ′

i jφi j = D′

i jφi j + iηS ′

i jφi j with the densities φi j , where S ′

i jφi j ,
D′

i jφi j are single and double layer potentials on Γ i j , and η is a given constant such that ηReκ ≥ 0. According
to the boundary integral theory, the solutions of the local scattering problems (3.2) have the following integral
representations:

wi j (x) = K ′

i jφi j (x), ∀x ∈ R2
\ B̄i j , (3.5)

where the density functions {φi j } satisfy the boundary integral equations

K̂ ′

i jφi j +
1
2
φi j = gi j , x ∈ Γ i j , j = 1, 2, . . . ,Mi , i = 1, 2, 3, (3.6)

with the boundary integral operators given by

K̂ ′

i jφi j = iη p.v.
∫
Γ i j

Gκ (x, y)φi j ( y) dSy + p.v.
∫
Γ i j

∂Gκ (x, y)
∂n( y)

φi j ( y)dSy. (3.7)

Boundary integral equations (3.6) are derived by applying the Dirichlet boundary conditions in (3.2) and the limiting
properties given in Propositions 2.1 and 2.2. Then substituting (3.5) into (3.3), gives

gi j = u − uin
−

Mi∑
k=1,k ̸= j

K ′

ikφik −

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

K ′

ℓkφℓk, on Γ i j , (3.8)

As a direct consequence of (3.6) and (3.8), we have the following system of integral equations:

1
2
φi j + K̂ ′

i jφi j +

Mi∑
k=1,k ̸= j

K ′

ikφik +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

K ′

ℓkφℓk − u = −uin, on Γ i j , (3.9)

for j = 1, 2, . . . ,Mi , i = 1, 2, 3.
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3.2. Iterative method

It is seen that Eq. (3.9) involves the total field u restricted to the artificial boundaries Γ i j . Nevertheless, they
can be determined by the densities {φi j }

Mi
j=1, i = 1, 2, 3 via solving the boundary value problems in Bi j \ Ω i j ,

respectively. To show this, let

S ′

i j : H−
1
2 (Γi j ) ↦→ H 1(Bi j \ Ω i j ), (3.10)

be the solution operator of the inhomogeneous interior problem⎧⎪⎨⎪⎩
∆v(x) + κ2n(x)v(x) = 0, x ∈ Bi j \ Ω i j ,

Bi jv = 0, x ∈ ∂Ωi j ,

T ′

i jv = T ′

i j u
in

+ ψ, x ∈ Γ i j ,

(3.11)

where T ′

i j :=
∂
∂n − Ti j , and Ti j is the DtN operator defined in (2.29). Recall that by the decomposition (3.1), the

total field on Γ i j has the decomposition:

u(x) = uin(x) +

3∑
ℓ=1

Mℓ∑
k=1

wℓk(x), x ∈ Γ i j . (3.12)

Moreover, the purely outgoing wave wi j satisfies the boundary condition T ′

i jwi j (x) = 0 for all x ∈ Γ i j . Then, from
(3.12), we have

T ′

i j u = T ′

i j

(
uin

+

Mi∑
k=1,k ̸= j

wik +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

wℓk

)
, x ∈ Γ i j , (3.13)

which implies that u in the domain B̄i j \ Ωi j is the solution of (3.11) with the boundary data

ψ = T ′

i j

( Mi∑
k=1,k ̸= j

wik +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

wℓk

)
. (3.14)

The following classical result ensures the well-posedness of the BVP (3.11) (cf. [30]).

Theorem 3.1. Let Ωi j be a Lipschitz domain, n(x) ∈ L∞(Bi j \ Ω i j ), ψ ∈ H−
1
2 (Γ i j ). Then (3.11) has a unique

weak solution in H 1(Bi j \ Ω i j ) such that

∥v∥H1(Bi j \Ω i j ) ≤ C∥ψ∥
H−

1
2 (Γ i j )

. (3.15)

In view of (3.5) and (3.14), the total field u in B̄i j \ Ωi j can be represented by the solution operator S ′

i j as

u(x) = S ′

i jT
′

i j

( Mi∑
k=1,k ̸= j

K ′

ikφik +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

K ′

ℓkφℓk

)
, x ∈ B̄i j \ Ωi j . (3.16)

Substituting it into (3.9), we obtain the equations:

1
2
φi j + K̂ ′

i jφi j + (I − S ′

i jT
′

i j )
( Mi∑

k=1,k ̸= j

K ′

ikφik +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

K ′

ℓkφℓk

)
= −uin, on Γ i j . (3.17)

Recall that wi j and φi j are the scattering fields and the corresponding densities of the single scattering problems
(3.2). Then(1

2
I + K̂ ′

i j

)
φi j = Wi j := wi j

⏐⏐
Γ i j . (3.18)
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Again the boundary integral equation theory (cf. [7]) implies that the operator K̃ ′

i j :=
1
2I + K̂ ′

i j is invertible and
its inverse is a bounded linear operator. Substituting φi j = K̃ ′−1

i j Wi j into (3.17), leads to

Wi j + (I − S ′

i jT
′

i j )
( Mi∑

k=1,k ̸= j

K ′

ikK̃
′−1

ik Wik +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
k=1

K ′

ℓkK̃
′−1
ℓk Wℓk

)
= −uin, on Γ i j (3.19)

for j = 1, 2, . . . ,Mi and i = 1, 2, 3. As in the case of homogeneous media (cf. (2.23)), we find similar equivalence
from the above discussions:

K ′

ℓkK̃
′−1
ℓk = S̃ℓk, (3.20)

and the replacement of the operators K ′

ℓkK̃
′−1
ℓk by the solution operators S̃ℓk can also be applied to (3.19). Then,

equations given in (3.19) are rewritten as

(I + K′
− S′K′) W = b, (3.21)

where W = (W11, . . . ,W1M1 ,W21, . . . ,W2M2 ,W31, . . . ,W3M3 )T, and

S′
=

⎛⎜⎝S ′

11T
′

11 · · · O
...

. . .
...

O · · · S ′

3M3
T ′

3M3

⎞⎟⎠ , K′
=

⎛⎜⎜⎜⎝
O S̃12 · · · S̃3M3

S̃11 O · · · S̃3M3
...

...
. . .

...

S̃11 S̃12 · · · O

⎞⎟⎟⎟⎠ . (3.22)

Now, we apply the GMRES iterative method to solve the system (3.21)–(3.22). We refer to Algorithm 2 for a
summary of the algorithm.

Different from the homogeneous media case, we have two types of solution operators S ′

i j and S̃ℓk involved in
(3.21)–(3.22). For S ′

i j , we need to solve boundary value problems (3.11), which involve variable refraction index
n(x). On the other hand, the solution operators S̃ℓk of the exterior problems can also be seen as the extension of
the purely outgoing components outside the artificial boundaries Γ i j similar to the homogeneous case. High order
discretization for the BVP (3.11) (including (2.26) as a special case) and the solution of the exterior problem (3.2)
will be discussed in the next two subsections.

Remark 3.2. Although the boundary data Wi j of purely outgoing components wi j on Γ i j are the unknowns in
(3.21), the total field u(x) in truncated domains Bi j \ Ωi j will be calculated in all the iterations.

3.3. High order spectral element discretization for BVPs

Without loss of generality, we take the BVP (3.11) w.r.t a sound soft scatterer Ω1 j as an example to show the
details of the high order spectral element discretization. Similar spectral element discretization can be extended
to other situations straightforwardly. Let T = {K e

}
E
e=1 be a non-overlapping quadrilateral partition of the domain

B1 j\Ω1 j (see Fig. 3.2 (Right)). Assume that each element K e in the partition T can be obtained by a transformation
Fe from the reference square

K̂ = {̂x = (ξ, η) : −1 ⩽ ξ, η ⩽ 1} = [−1, 1]2. (3.23)

Let

Q̂ p = span
{
ξ p1ηp2 : −1 ⩽ ξ, η ⩽ 1, 0 ⩽ p1, p2 ⩽ p

}
, (3.24)

be the space of polynomials of degree less than p along each coordinate direction. For any subdomain K e
∈ T ,

we define the finite dimensional space

Wp(K e) =
{
ϕ : ϕ = ϕ̂ ◦ (Fe)−1, ϕ̂ ∈ Q̂ p

}
. (3.25)

Then the spectral element approximation space is given by

V p =

{
vp ∈ H 1(B1 j\Ω1 j ) : vp

⏐⏐
K e ∈ Wp(K e), vp

⏐⏐
∂Ω1 j

= 0
}
. (3.26)
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Algorithm 2 Iterative algorithm for multiple scattering in locally inhomogeneous media

Initialization
(i) Given W (0) on {Γ i j

}, stop residue ε and maximum iteration steps nmax .
(ii) Solve (3.2) with gi j = W (0)

i j for w(0)
i j = S̃i j W

(0)
i j outside Bi j , j = 1, 2, · · · ,Mi , i = 1, 2, 3.

(iii) Solve (3.11) with

ψ = T ′

i j

( Mi∑
m=1,m ̸= j

w
(0)
im +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
m=1

w
(0)
ℓm

)
,

for the total field u(0)(x) = S ′

i jψ in Bi j \ Ω i j , j = 1, 2, · · · ,Mi , i = 1, 2, 3.
(iv) Use w(0)

i j and u(0) to compute r (0)
= b − (I + K′

− S′K′)W (0), and v(1)
= r (0)/∥r (0)

∥.
Iterative steps
for n = 1, 2, · · · , nmax do

for k = 2 → n do
Solve (3.2) with gi j = v

(k−1)
i j for w(k−1)

i j = S̃i jv
(k−1)
i j outside Bi j .

Solve (3.11) with

ψ = T ′

i j

( Mi∑
m=1,m ̸= j

w
(k−1)
im +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
m=1

w
(k−1)
ℓm

)
,

for ṽi j = S ′

i jψ , j = 1, 2, · · · ,Mi , i = 1, 2, 3.
Use w(k−1)

i j and ṽi j to compute v(k)
= (I + K′

− S′K′)v(k−1);
for m = 1 → k − 1 do

hm,k−1 = (v(m), v(k)); v(k)
= v(k)

− hm,k−1v
(m).

end for
hk,k−1 = ∥v(k)

∥, v(k)
= v(k)/hk,k−1.

end for
Compute W (n)

= W 0
+

∑n−1
i=1 yivi , where y = (y1, y2, · · · , yn−1)T minimizes

J ( y) :=
∥r0∥e1 − H̄n−1 y

.
if J ( y) ≤ ε then

Stop iteration.
end if

end for
Final step

Solve (3.2) with gi j = W (n)
i j for w(n)

i j = S̃i j W
(n)
i j outside Bi j , j = 1, 2, · · · ,Mi , i = 1, 2, 3.

Solve (3.11) with

ψ = T ′

i j

( Mi∑
m=1,m ̸= j

w
(n)
im +

3∑
ℓ=1,ℓ̸=i

Mℓ∑
m=1

w
(n)
ℓm

)
,

for total field u(n)
i j = S ′

i jψ in Bi j \ Ω i j , j = 1, 2, · · · ,Mi , i = 1, 2, 3.

The spectral element discretization of (3.11) is to find vp ∈ V p such that

A(vp, w) = −⟨T ′

1 j u
in

+ ψ,w⟩Γ1 j , ∀w ∈ V p, (3.27)

where

A(vp, w) = −(∇vp,∇w)B1 j \Ω1 j + κ2(n(x)vp, w)B1 j \Ω1 j + ⟨T1 jvp, w⟩Γ1 j . (3.28)
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Fig. 3.1. Curvilinear elements and tensorial LGL points on the reference square and a curvilinear element via the new elemental mapping
based on Gordon–Hall transformation.

Remark 3.3. In real computation, the DtN boundary condition (2.29) needs to be approximated by the truncation:

T N
i j [v] :=

∑N
|n|=0 κ

H (1)′
n (κRi j )

H (1)
n (κRi j )

v̂neinθi j with a suitable cut-off number N . Harari and Hughes [31] showed that the

choice of N ≥ κRi j could guarantee the solvability of the approximate problem with a certified accuracy. We
also refer to [32] for the error analysis and numerical studies on the selection of an optimal cut-off number N . In
practice, the choice N ≥ κRi j is always safe although it is conservative at times. Grote and Keller [33] suggested
a different modification of the DtN boundary condition to remove the constraint on κRi j for any fixed N .

In the spectral element discretization, Lagrange nodal basis based on the Legendre–Gauss–Lobatto (LGL) points
is used and the continuous inner product (·, ·)B1 j \Ω1 j can be evaluated by element-wise discrete inner product based
on tensorial Legendre–Gauss–Lobatto (LGL) quadrature (see e.g., [34]). However, much care is needed to deal
with the term ⟨T N

1 j vp, w⟩Γ1 j , as the DtN operator is global, but the spectral-element approximation is piecewise.
One can evaluate by using the fast Fourier transform (FFT), but this requires an intermediate interpolation to
interplay between spectral-element grids and Fourier points. Since vp|Γ1 j ∈ C0 a naive interpolation only results in
a first-order convergence. Here the semi-analytic means introduced in [35] is adopted to compute ⟨T N

1 j vp, w⟩Γ1 j .
Let us recap on the semi-analytic formula for the computation of ⟨T N

1 j vp, w⟩Γ i j . Denote by {ξk = ηk}
p
k=0 (in

ascending order) the LGL points in [−1, 1], and {lk}
p
k=0 the associated Lagrange interpolating basis polynomials.

Correspondingly, the spectral-element grids and basis on K e are given by

xkℓ = Fe(ξk, ηℓ), ψkℓ(x) = lk(ξ )lℓ(η), 0 ≤ k, ℓ ≤ p, (3.29)

where Fe is the Gordon–Hall transform [36]. Formally, we can write

vp(x, y)
⏐⏐

K e =

∑
k,ℓ

ṽe
kℓ lk(ξ )lℓ(η), (3.30)

where the unknowns {ṽe
kℓ} are determined by the scheme (3.27).

We choose to use the Gordon–Hall transform for the mapping between reference square to our curvilinear
element K e. In particular, we consider a curvilinear element K e with vertices {(xe

k , ye
k )}4

k=1 along Γ 1 j . Let {π e
k(t) =

(π e
k1(t), π e

k2(t)), t ∈ [−1, 1]}4
k=1 be, respectively, the parametric form of four sides such that

π e
1(−1) = π e

4(1), π e
1(1) = π e

2(1), π e
2(−1) = π e

3(1), π e
3(−1) = π e

4(−1), (3.31)

see Fig. 3.1(b). In this case, the Gordon–Hall transform takes the form

x = Fe(ξ, η) = π e
1(ξ )

1 + η

2
+ π e

3(ξ )
1 − η

2
+

1 + ξ

2
π e

2(η) +
1 − ξ

2
π e

4(η)

−

(
π e

1(−1)
1 − ξ

2
+ π e

1(1)
1 + ξ

2

)
1 + η

2
−

(
π e

3(−1)
1 − ξ

2
+ π e

3(1)
1 + ξ

2

)
1 − η

2
,

(3.32)

where the edge η = 1 of K̂ is mapped to the arc Γ e
= {r = Ri j , θ ∈ (θe, θe+1)} of K e, i.e.,

Γ e
: x = π e

11(ξ ), y = π e
12(ξ ), ∀ ξ ∈ [−1, 1]. (3.33)
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Accordingly, the spectral-element grids in shifted polar coordinates on Γ e (see Fig. 3.1) satisfy

cos θ e
k = R−1

1 j (π e
11(ξk) − xc

1 j ) or sin θ e
k = R−1

1 j (π e
12(ξk) − yc

1 j ), 0 ≤ k ≤ p. (3.34)

Thanks to (2.29) and (3.30), the calculation of ⟨T N
i j vp, w⟩Γ i j needs to evaluate∫ 2π

0
vp(x, y)

⏐⏐
Γ1 j e−inθ dθ =

EΓ∑
e=1

∑
k

ṽe
kp

∫ 1

−1
lk(ξ )e−inθ(ξ ) dθ

dξ
dξ, (3.35)

where EΓ is the number of elements which have one edge coincide with Γ 1 j . As the nodal basis {lk} can be
represented in terms of Legendre polynomials, it suffices to compute

Ie
nm :=

∫ 1

−1
Pm(ξ ) e−inθ (ξ ) dθ

dξ
dξ, for m ≥ 0, (3.36)

where Pm is the Legendre polynomial of degree m, and by (3.33),

dθ
dξ

=
1
R 1 j

dγ
dξ

= R−1
1 j

√[
∂ξπ

e
11(ξ )

]2
+

[
∂ξπ

e
12(ξ )

]2
. (3.37)

It is seen that the integrand is highly oscillatory for large |m|, and the efficiency and accuracy in computing Ie
nm

essentially relies on the choice of the parametric form for π e
1(ξ ). It has been shown in [35] that the parametric

π e
1(ξ ) =

(
π e

11(ξ ), π e
12(ξ )

)
=

(
R1 j cos(θ̂eξ + βe) + xc

1 j , R1 j sin(θ̂eξ + βe) − yc
1 j

)
, (3.38)

with

θ̂e =
θ e+1

− θ e

2
, βe =

θ e
+ θ e+1

2
, (3.39)

has a very important property that θ linearly depends on parameter ξ . So the Gordon–Hall transformation (3.32)
with parametric (3.38), we have

θ (ξ ) = θ̂eξ + βe,
dθ
dξ

= θ̂e, (3.40)

in (3.36). This leads to the following analytic formula (cf. [35]) for the integral (3.36):

Ie
n0 = 2θ̂eδn0; Ie

nm =
2θ̂e R1 j

in

√
π

2mθ̂e
Jn+1/2(mθ̂e) e−imβe , (3.41)

and Ie
n,−m = (Ie

nm)∗ for n ≥ 0, m ≥ 1, where Jn+1/2 is the Bessel function of the first kind.

3.4. Computation of the scattering field outside the artificial boundary

Since the purely outgoing wave wℓk with respect to the scatterer Ωℓk will be an incident wave of all other
scatterers, we need to compute wℓk on ∂Ωi j and Γi j for multiple scattering problems in homogeneous or locally
inhomogeneous media, respectively, in the implementation of the iterative algorithm. We denote by Ωi j another
scatterer away from Ωℓk , and denote by Γ i j another artificial boundary away from Γ ℓk .

For the homogeneous media case, we can set the artificial boundary Γ ℓk used for truncation (2.26) large enough
(cf. [21]) to enclose all other scatterers {Ωi j } inside, see Fig. 3.2 (Left) for an example of two scatterers case. In
this case, all boundary information on ∂Ω3 j (colored in red) can be obtained via the numerical solution of the BVP
(2.26) with respect to Ω1 j . However, enclosing all other scatterers leads to a large computational domain and hence
high computation cost. It is more efficient to set artificial boundaries close to the scatterers (see Fig. 3.2 (Right)).
In fact, the part of the boundary of the scatterer Ω3 j (colored in blue) can be inside the domain B1 j and the rest
part of ∂Ω3 j (colored in red) can be outside B1 j . The boundary information w1 j on the blue part can be obtained
via spectral element solution of the BVP (2.26) with respect to scatterer Ω1 j . However, the boundary information
on the red part requires an extension of the numerical solution outside B1 j . In general, the extension of the spectral
element approximation in Bℓk \ Ωℓk can be obtained by using the values on the artificial boundary Γ ℓk . Since Γ ℓk



Z. Xie, R. Zhang, B. Wang et al. / Computer Methods in Applied Mechanics and Engineering 358 (2020) 112642 15

Fig. 3.2. Left: Large artificial boundary to enclose other scatterers. Right: Small artificial boundary intersecting with the boundaries of other
scatterers.

here has a circular shape, the extension of a given spectral element solution vp outside Bℓk is the separation variable
solution given by

vext
p (x) =

∞∑
n=−∞

v̂n
p

H (1)
h (κRℓk)

H (1)
n (κrℓk)einθℓk , x /∈ Bℓk, (3.42)

where (rℓk, θℓk) is the polar coordinate of x − cℓk ,

v̂n
p =

1
2π

∫ 2π

0
vp(xc

ℓk + Ri j cos θℓk, yc
ℓk + Rℓk sin θℓk)e−inθℓk dθℓk, (3.43)

is the Fourier coefficients of vp|Γ ℓk . By using the analytic formula (3.41), the Fourier coefficients {̂vn
p} can be

calculated accurately and efficiently for arbitrary high modes.
The scattering problems given by (3.2) will also be solved by using the separation variable method in the same

manner due to the circular shape of the artificial boundary Γ ℓk .

3.5. A comparison with the Grote–Kirsch’s approach in [15]

In Grote and Kirsch [15], the reduction of a multiple scattering problem with well separated scatterers using the
circular/spherical DtN technique was proposed as an extension of the DtN for a single scattering problem. Consider
for example (1.1)–(1.4) with the sound soft scatterers, i.e., Bi = I, i = 1, 2, 3. The reduced problem therein is to
find u and {w j }

M
j=1 satisfying⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆u + κ2u = 0 in B \ Ω̄ ,

u = g, on ∂Ω ,

∂nu =

M∑
j=1

Ti [w j ], u =

M∑
j=1

Pi [w j ], on ∂Bi , i = 1, 2, . . . ,M,
(3.44)

where the transport and propagation operators are defined by

Ti [wi ](θi ) :=

∞∑
|n|=0

ŵi
n
κH (1)′

n (κRi )

H (1)
n (κRi )

einθi ,

Ti [w j ](θi ) :=

∞∑
|n|=0

ŵ j
n

(κH (1)′
n (κr j (x))

H (1)
n (κR j )

∂r j (x)
∂ri

+
inH (1)

n (κr j (x))

H (1)
n (κR j )

∂θ j (x)
∂ri

)
einθ j (x̂), j ̸= i,

Pi [wi ](θi ) := wi (θi ) Pi [w j ](θi ) :=

∞∑
|n|=0

ŵ j
n

H (1)
n (κr j (x))

H (1)
n (κR j )

einθ j (x), j ̸= i,
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for x = (Ri cos θi +xc
i , Ri sin θi + yc

i ) ∈ ∂Bi . As mentioned in [15], one can apply any finite-domain solver, e.g., the
finite element or spectral element discretization, which typically leads to the linear system:⎛⎜⎝ OK

−T
O M −P

⎞⎟⎠
⎛⎜⎝ uh

Ω

uh
∂B

wh

⎞⎟⎠ =

(
g
0

)
, (3.45)

where {uh
Ω , uh

∂B} and wh are the unknowns for the approximation of u and w, respectively. Denote by {Φi } and
N = NΩ ∪ N∂Ω ∪ N∂B the nodal basis and nodes used in the discretization. Then the entries of K, T, M, P and
g are given by

Ki j = (∇Φ j ,∇Φi )Ω − κ2(Φ j ,Φi )Ω , i, j : xi , x j ∈ NΩ ∪ N∂B,

Ti j = ⟨T Φ j ,Φi ⟩∂B, Mi j = ⟨Φ j ,Φi ⟩∂B Mi j = ⟨PΦ j ,Φi ⟩∂B, i, j : xi , x j ∈ N∂B,

gi = −

∑
j :x j ∈N∂Ω

g(x j )Ki j , i : xi ∈ N∂Ω ,

where the operators T and P consist of {Ti } and {Pi }. In fact, the matrix K in (3.45) is block diagonal and
the coupling of the scatterers is along the artificial boundary of each scatterer. Indeed, the block iterative method
(e.g., block Gauss–Seidel iterative method [23,24]) can be applied.

Although our approach follows the same spirit of “decoupling” the scatterers based on the superposition of waves
and suitable iterative solvers, it is different from the existing methods in several aspects. Most importantly, we reduce
the multiple scattering problem from a different perspective, which allows us to conduct the convergence analysis
and also leads to more efficient algorithm. Indeed, we derive the single scattering problems from the boundary
integral theory, and the communications between the scatterers are made simpler through the purely outgoing
waves. The use of the GMRES iteration can effectively decouple the interior solver for the single scatterer and
interactions from other scatterers (see e.g., Algorithm 2). Through the intrinsic connections between the boundary
integral formulation (for the incident waves from other scatterers) and the DtN operator (for the interior solver) on
the artificial boundary (cf. (2.23) and (3.19)), we are able to handle the interactions between the scatterers more
efficiently and also show the convergence of the iterative approach from the boundary integral theory. In fact, this
provides a more flexible numerical framework for multiple scattering problems, and can relax the well separateness
assumption of scatterers in [15]. The advantages of our approach are also verified by numerical comparisons with
the Grote–Kirsch’s approach in Section 5.

4. Convergence analysis for GMRES iteration

In this section, we prove the convergence of the GMRES iteration for (2.24) and (3.21). The key step is to show
the compactness of operators K and K′

−S′K′. We find it is crucial to use the compactness of the integral operators.
In view of the equivalence shown in (2.21) and (2.24); (3.19) and (3.21), we can reformulate K and K′ in terms of
the integral operators. More precisely, we have

K =

⎛⎜⎜⎜⎝
O B11 · · · B11

B12 O · · · B12
...

...
. . .

...

B3M3 B3M3 · · · O

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

K11K̃
−1

11 O · · · O
O K12K̃

−1
12 · · · O

...
...

. . .
...

O O · · · K3M3K̃
−1

3M3

⎞⎟⎟⎟⎠ , (4.1)

and

K′
=

⎛⎜⎜⎜⎝
O K ′

12K̃
′−1

12 · · · K ′

3M3
K̃ ′−1

3M3

K ′

11K̃
′−1

11 O · · · K ′

3M3
K̃ ′−1

3M3
...

...
. . .

...

K ′

11K̃
′−1

11 K ′

12K̃
′−1

12 · · · O

⎞⎟⎟⎟⎠ . (4.2)

We start with reviewing some properties of the usual integral operator defined by

(A φ)(x) :=

∫
G

K (x, y)φ( y)d y, (4.3)
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where G is a measurable compact set in R2. The following conclusion can be found in many text books on linear
integral equations (cf. [37,38]).

Theorem 4.2. If the kernel K (x, y) is continuous or weakly singular, then the integral operator A is a compact
operator on L2(G).

Theorem 4.3. Let X be a normed linear space, A : X → X a compact linear operator, and let I − A be
injective. Then the inverse operator (I − A )−1 exists and is bounded.

Let us first consider the operator K involved in homogeneous media case. It consists of the composition of
operators Bi j , Kℓk and K̃ −1

ℓk .

Theorem 4.4. Suppose Ωi j and Ωℓk are two different scatterers with C2 boundary, Bi j are differential operators
induced by boundary conditions on ∂Ωi j , Kℓk are boundary integral operators defined in (2.14). Then the
composition Bi jKℓk are compact operators from L2(∂Ωℓk) to L2(∂Ωi j ).

Proof. From the definition of Bi j and Kℓk , we have

(Bi jKℓk)φℓk(x) =

{
Bi jD1kφ1k + iηBi jS1kφ1k ℓ = 1,
−iηBi jDℓkφℓk − Bi jSℓkφℓk, ℓ = 2 or 3.

(4.4)

Since ∂Ωℓk is a closed curve of class C2, we have

(Bi jS1k)φ1k(x) =

∫
∂Ω1k

Bi j Gκ (x, y)φ1k( y)d Sy, x ∈ ∂Ωi j ,

(Bi jD1k)φ1k(x) =

∫
∂Ω1k

Bi j

[∂Gκ (x, y)
∂ny

]
φ1k( y)d Sy, x ∈ ∂Ωi j .

(4.5)

Moreover,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B1 j Gκ (x, y) = Gκ (x, y), B1 j

[∂Gκ (x, y)
∂ny

]
=
∂Gκ (x, y)
∂ny

,

B2 j Gκ (x, y) =
∂Gκ (x, y)
∂n(x)

B2 j

[∂Gκ (x, y)
∂ny

]
=
∂2Gκ (x, y)
∂nx∂ny

,

B3 j Gκ (x, y) =
∂Gκ (x, y)
∂n(x)

+ hGκ (x, y),

B3 j

[∂Gκ (x, y)
∂ny

]
=
∂2Gκ (x, y)
∂nx∂ny

+ h
∂Gκ (x, y)
∂ny

,

(4.6)

are all continuous for x ̸= y. By using Theorem 4.2, we conclude that Bi jD1k and Bi jS1k are compact operators
from L2(∂Ω1k) to L2(∂Ωi j ). Therefore, Bi jK1k are compact operators from L2(∂Ω1k) to L2(∂Ωi j ). The compactness
of operators Bi jKℓk : L2(∂Ωℓk) → L2(∂Ωi j ), ℓ = 2, 3 can be proved in the same way. □

Note that K̃ −1
i j are the solution operators of the linear integral equations (2.20). The well-posedness of the

boundary integral equations (2.20) implies the boundedness of K̃ −1
i j .

Theorem 4.5. Assume that all boundaries ∂Ωℓk is of class C2, Im(κ̄h) ⩾ 0 and wavenumber κ satisfying Imκ ⩾ 0.
Then K̃ −1

ℓk are bounded linear operators on L2(∂Ωℓk).

Proof. The boundedness of operator K̃ −1
1k : L2(∂Ω1k) → L2(∂Ω1k) is a direct consequence of Theorems 4.2 and

4.3, since

K̃1k =
1
2
I + K̂1k =

1
2
I + D̂1k + iηŜ1k,

is obviously injective in L2(∂Ω1k) and D̂1k and Ŝ1k are integral operators with weakly singular kernels.
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For operators K̃ −1
2k , K̃

−1
3k , we need to introduce integral operators

D̂0
ℓkφℓk(x) := p.f.

∫
∂Ωℓk

∂2Gκ0 (x, y)
∂n(x)∂n( y)

φℓk( y)dSy, x ∈ Ωℓk, ℓ = 2, 3, (4.7)

where κ0 is a picked wave number which is not an interior eigenvalue to the corresponding Dirichlet and Neumann
problems. An important result is that their inverse (D̂0

ℓk)−1 exists and are compact on L2(∂Ωℓk) (cf. [37,38]). Then
the boundary integral equations (2.20) for i = 2, 3 can be transformed into the equivalent forms

(D̂0
2k)−1

(1
2
I − iη(D̂2k − D̂0

2k) − Ŝ2k

)
φ2k − iηφ2k = (D̂0

2k)−1W2k,

(D̂0
3k)−1

(1 − iηh
2

I − iη(D̂3k − D̂0
3k) − Ŝ3k

)
φ3k − iηφ3k = (D̂0

3k)−1W3k .

(4.8)

One can verify that D̂ℓk − D̂0
ℓk, ℓ = 2, 3 are integral operators with weakly singular kernels, so they are compact

on L2(∂Ωℓk), ℓ = 2, 3. Together with the compactness of (D̂0
ℓk)−1 and Ŝℓk , we conclude that

(D̂0
2k)−1

(1
2
I − iη(D̂2k − D̂0

2k) − Ŝ2k

)
, (D̂0

3k)−1
(1 − iηh

2
I − iη(D̂3k − D̂0

3k) − Ŝ3k

)
, (4.9)

are compact operators on L2(∂Ωℓk), ℓ = 2, 3. Then, the boundedness of K̃ −1
2k and K̃ −1

3k can be obtained from
Theorem 4.3 and the following representations

K̃ −1
2k =

[
I − (iηD̂0

2k)−1
(1

2
I − iη(D̂2k − D̂0

2k) − Ŝ2k

)]−1(
iηD̂0

2k

)−1
,

K̃ −1
3k =

[
I − (iηD̂0

3k)−1
(1 − iηh

2
I − iη(D̂3k − D̂0

3k) − Ŝ3k

)]−1(
iηD̂0

3k

)−1
.

(4.10)

This ends the proof. □

From Theorems 4.4 and 4.5, we conclude that Bi jKℓkK̃
−1
ℓk are compact operators from L2(∂Ωℓk) to L2(∂Ωi j ).

Now we consider K which is an operator on the product space

L2(∂Ω ) := L2(∂Ω11) × · · · × L2(∂Ω1M1 ) × · · · × L2(∂Ω31) × · · · × L2(∂Ω3M3 ),

with the inner product

(u, v)L2(∂Ω) :=

3∑
i=1

Mi∑
j=1

(ui j , vi j )L2(∂Ωi j ), (4.11)

and the norm ∥u∥
2
L2(∂Ω)

= (u, u)L2(∂Ω). It is evident that L2(∂Ω ) is a Hilbert space.

Theorem 4.6. The operator K defined in (2.25) is compact on the Hilbert space L2(∂Ω ).

Proof. For any bounded sequence v(n)
= (v(n)

11 , . . . , v
(n)
1M1
, . . . , v

(n)
31 , . . . , v

(n)
3M3

)T, n = 1, 2, . . ., in L2(∂Ω ), denote
ṽ(n)

= Kv(n). Then

ṽ
(n)
i j =

Mi∑
k=1,k ̸= j

Bi jKikK̃
−1

ik v
(n)
ik +

3∑
ℓ=1,ℓ̸=k

Mℓ∑
k=1

Bi jKℓkK̃
−1
ℓk v

(n)
ℓk . (4.12)

For each scatterer Ωℓk , {v
(n)
ℓk }

∞

n=1 is a bounded sequence in L2(∂Ωℓk) and Bi jKℓkK̃
−1
ℓk are compact operators from

L2(∂Ωℓk) to L2(∂Ωi j ). Thus, each sequence {Bi jKℓkK̃
−1
ℓk v

(n)
ℓk }

∞

n=1 in L2(∂Ωi j ) has a convergent subsequence if Ωi j

and Ωℓk are different scatterers. Denote the convergent subsequence by {v
(n)
i j,ℓk}

∞

n=1. Then the sequence

v̂
(n)
i j =

Mi∑
k=1,k ̸= j

v
(n)
i j,ik +

3∑
ℓ=1,ℓ̸=k

Mℓ∑
k=1

v
(n)
i j,ℓk, n = 1, 2, . . .

defined as the finite sum of convergent sequences is a convergent subsequence of {ṽ(n)
}
∞

n=1 in L2(∂Ω ). This
completes the proof of the compactness of operator K on L2(∂Ω ). □
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According to the spectral theorem for compact operator (cf. [39]), I+K has a countable sequence of eigenvalues
with 1 being the only possible accumulation point. This means the set of eigenvalues λ j for which |λ j − 1| > ρ

for any ρ < 1 is finite. Then the convergence of GMRES iteration method for Eq. (2.24) can be concluded from
the following result (cf. [40] Proposition 6.1):

Theorem 4.7. Given a system of linear equations (I + A )w = b where A is a compact linear operator. Let the
eigenvalues of I + A be numbered so that |λ j − 1| ⩾ |λ j+1 − 1|, for j ⩾ 1. Given ρ > 0, determine 0 ⩽ M < ∞

so that {λ j }
M
j=1 ⊂ {z : |z − 1| > ρ}, are the outliers and {λ j } j⩾M+1 ⊂ {z : |z − 1| < ρ} is cluster. Define the

distance of the outliers from the cluster as

δ := max
|z−1|=ρ

max
1⩽ j⩽M

|λ j − z|
|λ j |

.

Then for any b, and w0

∥rd+k∥ ⩽ Cδρ
k
∥r0∥,

where rk is the residual generated by GMRES iteration at kth step, and the constant Cδ is independent of k.

Next, we consider the convergence of the proposed iterative method for the multiple scattering problem in locally
inhomogeneous media. Following the same proof for homogeneous media case, we can verify that K′ is compact
on Hilbert space

L2(Γ ) := L2(Γ 11) × · · · × L2(Γ 1M1 ) × · · · × L2(Γ 31) × · · · × L2(Γ 3M3 ). (4.13)

Therefore, we now focus on the operator S′K′, which consists of S ′

i jT
′

i jK
′

ℓkK̃
′−1
ℓk .

Lemma 4.1. Suppose Γ i j and Γ ℓk are different artificial boundaries. Then (K ′

ℓkφℓk)(x) : L2(Γ ℓk) → H
1
2 (Γ i j ),

x ∈ Γ i j is a compact operator.

Proof. Let U be a bounded set in L2(Γ ℓk), i.e., ∥φℓk∥L2(Γ ℓk ) ≤ C for all φℓk ∈ U and some C > 0. Then

|(K ′

ℓkφℓk)(x)| ≤

∫
Γ ℓk

⏐⏐⏐∂Gκ (x, y)
∂n( y)

⏐⏐⏐|φℓk( y)|dSy + |η|

∫
Γ ℓk

|Gκ (x, y)||φℓk( y)|dSy

≤C |Γ ℓk
|

1
2 max

y∈Γ ℓk

(⏐⏐⏐∂Gκ (x, y)
∂n( y)

⏐⏐⏐ + |η||Gκ (x, y)|
)
,

(4.14)

for all x ∈ Γ i j and all φℓk ∈ U , i.e., K ′

ℓkU is bounded in maximum norm. Since ∂Gκ (x, y)
∂n( y) and Gκ (x, y) are uniformly

continuous on the compact set Γ i j
× Γ ℓk , for every ε > 0, there exists δ > 0 such that⏐⏐⏐∂Gκ (x, z)

∂n(z)
−
∂Gκ ( y, z)
∂n(z)

⏐⏐⏐ ≤
ε

2C |Γ ℓk |
1
2
, |Gκ (x, z) − Gκ ( y, z)| ≤

ε

2C |η||Γ ℓk |
1
2
, (4.15)

for all x, y ∈ Γ i j , z ∈ Γ ℓk with |x − y| < δ. Then

|(K ′

ℓkφℓk)(x) − (K ′

ℓkφℓk)( y)| ≤ ε (4.16)

for all x, y ∈ Γ i j with |x − y| < δ and all φℓk ∈ U , i.e., K ′

ℓkU is equicontinuous. By the smoothness of the Green’s
function Gκ (x, y) for x ̸= y, we can further prove that {∇(K ′

ℓkφℓk) : φℓk ∈ U } is bounded and equicontinuous in
the same way. Therefore (K ′

ℓkφℓk)(x) : L2(Γ ℓk) → C1(Γ i j ) are compact. Then the statement of this lemma follows
from the facts that C1(Γ i j ) is dense in H

1
2 (Γ i j ) and C1-norm is stronger than H

1
2 -norm. □

Together with the well-posedness of the reduced boundary value problem (3.11), we can draw the conclusion on
the compactness of S ′

i jT
′

i jK
′

ℓkK̃
′−1
ℓk .

Theorem 4.8. Suppose Γ i j and Γ ℓk are different artificial boundaries, then

(S ′

i jT
′

i jK
′

ℓkK̃
′−1
ℓk Wℓk)(x) : L2(Γ ℓk) → H 1(Bi j \ Ωi j )

is a compact operator.
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Fig. 5.1. Left: Artificial boundaries and spectral element grid for iterative method, Right: Artificial boundary and spectral element grid for
reference solution.

Proof. According to the trace theorem in Sobolev space, the DtN operator T ′

i j is a bounded linear operator from

H
1
2 (Γ i j ) to H−

1
2 (Γ i j ) (cf. [30,41]). Moreover, the well-posedness of the boundary value problem (3.11) implies that

S ′

i j is a bounded operator from H−
1
2 (Γ i j ) to H 1(Bi j \Ωi j ). Hence S ′

i jT
′

i j is bounded from H
1
2 (Γ i j ) to H 1(Bi j \Ωi j ).

Note that K̂ ′

ℓk is an integral operator with weakly singular kernel, i.e., compact on L2(Γ ℓk). By Theorem 4.3, we
conclude that K̃ ′−1

ℓk =
( 1

2I + K̂ ′

ℓk

)−1 is a bounded operator on L2(Γ ℓk). Together with the boundedness of S ′

i jT
′

i j
in Theorem 3.1 and Lemma 4.1, we complete the proof. □

With the compactness of operators S ′

i jT
′

i jK
′

ℓkK̃
′−1
ℓk , it is not difficult to verify the compactness of S′K′ on

L2(Γ ) by following the same proof in Theorem 4.6. Then the convergence of the iterative method for Eq. (3.21) is
ensured by Theorem 4.7.

5. Numerical examples

In this section, numerical examples are presented to show the performance of the proposed iterative algorithms.
The shape of the scatterers is determined by the parametric form of the boundary curve:

ri = a sin k(θi − θ0) + b, θ ∈ [0, 2π ], (5.1)

where (ri , θi ) is the polar coordinate of x with respect to a given center ci . In all experiments, we take the plane
wave eiκy as the incident wave.

5.1. Homogeneous media

Example 1. We first test the accuracy of Algorithm 1. Consider two scatterers determined by (5.1) with k = 2, a =

0.3, b = 0.7, θ0 = π/4, c1(0, 0) and c2(2.6, 0). The GMRES iteration is set to stop at the tolerance 1.0e−11. Since
the exact solution is not available, we use the numerical solution computed by spectral element discretization with
polynomial of degree p = 40 as reference solution uref. In the computation of the reference solution, we use a large
artificial boundary to enclose the two scatterers inside (see Fig. 5.1 (Right)) and impose non-reflecting boundary
condition on it. Instead, small artificial boundaries are used for the iterative method, see Fig. 5.1 (Left).

The approximate scattering field with polynomial degree p = 20 for the case κ = 20 is compared with the
reference solution in Figs. 5.4 and 5.5. Convergence rates in L2-norm for cases with wavenumber κ = 10, 20, 30
are plotted in Fig. 5.2. It shows that the iterative method has spectral accuracy with respect to polynomial degree
p. In addition, we plot in Fig. 5.3 the residuals against the number of iterations for different wave number κ and
polynomial degree p. Clearly, we see that residuals achieve the machine accuracy in almost the same number of
iterations for different polynomial degree p = 10, 15, 20, 30. That means the condition number of the iterative
method is nearly independent of the degree of freedom used in the spectral element discretization.

To compare with the numerical method proposed in [15], we also adopt the SEM to discretize the truncated
problem (3.44) and obtain the linear system (3.45). Then, the GMRES and block GMRES iterative method are
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Fig. 5.2. Convergence rates in L2-norm against polynomial degree p.

Fig. 5.3. Residuals against the number of iterations (homogeneous media).

Fig. 5.4. Real parts of iterative numerical solution (p = 20), reference solution and error for κ = 20.

applied to solve it. The iterations are set to stop at residual less than 1.0e−11. We compare the number of iterations
and CPU time required by different methods in Table 5.1. For CPU time comparison, all computations were done
on a MacBook Pro with one Intel core i5 2.9 GHz processor and 8 GB RAM. The numerical results show that our
iterative method requires fewer iterations and less CPU time than numerical method proposed in [15] combined
with block GMRES iterative method for the resulted linear system. This implies that the proposed communication
strategy between scatterers in our iterative algorithm is more efficient.

Example 2. As already discussed in Remark 2.1, our iterative method is able to solve the multiple scattering problem
with the scatterers being not well-separated. In this example, we consider two scatterers which are close to each
other. The parametric expressions of the scatterers are given by (5.1) with k = 2, a = 0.3, b = 0.7, θ0 = π/4. The
centers of the scatterers are set to be c1(0, 0) and c2(1.1, 0.5). GMRES iteration is set to stop at residual less than
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Table 5.1
The number of iterations and CPU time using different numerical methods for multiple scattering
problem in homogeneous media.

κ p GMRES for (3.45) Block GMRES for (3.45) Our iterative algorithm

#iterations Time (s) #iterations Time (s) #iterations Time (s)

10

10 554 13.8 97 3.4 9 1.8
15 1400 46.9 106 11.3 10 4.7
20 2744 118.2 112 39.7 11 12.3
25 4328 504.7 117 120.9 11 33.6

20

15 1009 45.3 127 13.4 12 5.3
20 1686 108.8 147 52.7 13 15.7
25 3807 497.5 153 158.3 13 42.6
30 5381 862.3 208 397.2 14 112.3

Fig. 5.5. Imaginary parts of iterative numerical solution (p = 20), reference solution and error for κ = 20.

Fig. 5.6. Real parts of the approximate scattering fields due to sound soft scatterers.

1.0e−11. Highly accurate approximation of the real part of the scattering field for the case κ = 20 is plotted in
Fig. 5.6(a).

Example 3. Consider the multiple scattering problem with a large number of scatterers determined by (5.1) with
k = 5, a = 0.2, b = 0.7, θ0 = 0. An array of sound soft (Dirichlet boundary condition) scatterers with centers
located at the grid points {(2.2n, 2.2m)}6

n,m=0 are tested. The real part of approximate scattering field is plotted in
Fig. 5.6(b).

Example 4. The scatterers can have different shapes and be randomly distributed. We plot the approximate scattering
field due to 16 randomly distributed sound soft scatterers in Fig. 5.7(a). We also test the problem with sound hard
(Neumann boundary condition) scatterers, see the approximate scattering field plotted in Fig. 5.7(b).
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Fig. 5.7. Real parts of the approximate scattering fields (p = 20) due to 16 randomly distributed scatterers (κ = 20).

Fig. 5.8. Refraction indices of locally inhomogeneous media.

5.2. Locally inhomogeneous media

Example 5. For accuracy test of Algorithm 2, we consider the same two scatterers problem used in Example 1. All
other settings are exactly the same as used in Example 1 except the locally inhomogeneous refraction index

n(x) =

{
exp(−1/(1 − 16(|x − ci | − 1)2)) + 1, 1.0 < |x − ci | < 1.25,
1, otherwise.

(5.2)

It is a function of |x − ci | in the vicinity of the scatterer centered at ci , see Fig. 5.8(a). L2-errors of the numerical
solutions and corresponding convergence rates are plotted in Fig. 5.9 and an approximate scattering field with
p = 20 for the case κ = 20 are compared with reference solution in Fig. 5.10 (real part). Results presented in
Fig. 5.9 also show that the iterative method has spectral accuracy. From the decaying rates of residuals plotted in
Fig. 5.11, we see that they have similar decaying rates for different polynomial degree p = 10, 15, 20, 30 in all tests.
Further, the convergence rates of our iterative method and block GMRES iterative method together with numerical
discretization proposed in [15] are compared in Table 5.2. All the iterations are set to stop at residual less than
1.0e−11 and the same MacBook Pro is used for CPU time comparison as in Example 1. The comparison results
show that our iterative method requires much fewer iterations and accordingly much less CPU time to achieve the
given accuracy, which further validates the fact that the way used in our iterative algorithm for the communication
between scatterers is more efficient.

Example 6. Set the refraction index

n(x) =

{
x exp(−1/(1 − 16(|x − ci | − 0.5)2)) + 1, 0.25 < |x − ci | < 0.75;

1, otherwise.
(5.3)

The contour of n(x) is plotted in Fig. 5.8(b). Four scatterers determined by (5.1) with k = 5, a = 0.3, b = 0.7, θ0 =

0 and centers (2.2n, 2.2m), n,m = 0, 1 are considered. The real part of the approximate scattering field is plotted
in Fig. 5.12(a). Clearly, we can see stronger scattering in the region which has larger refraction index.
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Fig. 5.9. L2-errors against polynomial degree p (inhomogeneous media).

Fig. 5.10. Real parts of iterative numerical solution (p = 20), reference solution and error for κ = 20 and inhomogeneous refraction index
given by (5.2).

Fig. 5.11. Residuals against the number of iterations (inhomogeneous media).

Fig. 5.12. Real parts of approximate scattering fields (p = 20) due to 4 and 16 scatterers (κ = 20).
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Table 5.2
The number of iterations and CPU time using different numerical methods for multiple scattering
problems in locally inhomogeneous media.

κ p GMRES for (3.45) Block GMRES for (3.45) Our iterative algorithm

#iterations Time (s) #iterations Time (s) #iterations Time (s)

10

10 303 8.7 80 2.9 10 1.9
15 937 35.8 112 13.6 11 5.1
20 2764 120.1 120 41.6 11 12.8
25 3978 347.8 126 136.2 12 34.8

20

15 742 32.8 100 10.1 11 4.6
20 1719 118.7 153 61.3 12 13.4
25 4021 568.3 166 198.2 14 46.2
30 5769 923.1 284 489.2 16 121.1

Example 7. Consider the scattering problem with 16 scatterers discussed in Example 3. Set the refraction index

n(x) =

{
exp(−1/(1 − 16(|x − ci | − 0.5)2)) + 1, 0.25 < |x − ci | < 0.75;

1, otherwise,
(5.4)

where the contour is plotted in Fig. 5.8(c). The real part of the approximate scattering field is plotted in Fig. 5.12(b).

Conclusion and future work

In this paper, an efficient iterative method for the multiple scattering problem in locally inhomogeneous media
is proposed and analyzed. This method is based on boundary integral equations on artificial boundaries. Thus, the
iteration converges within a small number of iterations which is nearly independent of the degree of freedom of
discretization. At each iteration, only the interior and exterior problems (solved analytically for circular geometry)
with respect to single scatterer need to be solved individually. Therefore it has advantages in solving problems with a
large number of scatterers. Moreover, it enjoys a great flexibility due to the capability of using various combinations
of iterative algorithms and single scattering problem solvers.

For the future work, we will investigate the extension to penetrable scatterers and 3D multiple scattering
problems. A preconditioned version for extremely large number of scatterers will also be considered.
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