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Abstract. Mixed triangular spectral element method using nodal basis on unstruc-
tured meshes is investigated in this paper. The method is based on equivalent first
order system of the elliptic problem and rectangle-triangle transforms. It fully enjoys
the tensorial structure and flexibility in handling complex domains by using nodal
basis and unstructured triangular mesh. Different from the usual Galerkin formula-
tion, the mixed form is particularly advantageous in this context, since it can avoid
the singularity induced by the rectangle-triangle transform in the calculation of the
matrices, and does not require the evaluation of the stiffness matrix. An hp a priori
error estimate is presented for the proposed method. The implementation details and
some numerical examples are provided to validate the accuracy and flexibility of the
method.
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1 Introduction

The spectral element method (SEM) (or hp finite element method) [22] integrates the un-
paralleled accuracy of a spectral method and the geometric flexibility of a finite element
method, and also enjoys a high-level parallel computer architecture. As such, it plays an
exceedingly important part in large-scale simulations [4, 8, 13, 14]. For a long time, we
saw SEM through building blocks of quadrilaterals and hexahedra with tensorial struc-
tures (QSEM) [4,8,22]. The use of tensorial nodal basis functions in a QSEM substantially
facilitates both the implementation (e.g., the imposition of continuity across elements)
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and analysis, as many numerical tools and analysis arguments in one dimension can be
directly transplanted to multiple dimensions. However, QSEM usually requires the same
degree of freedom (DoF) on each element, so it may lose the p-adaptive capability.

In the past two decades, much progress has been made in developing triangular or
tetrahedral SEM (TSEM) on unstructured meshes. There are two noticeable trends in de-
signing TSEM. The first is built upon approximation by orthogonal basis related to the
collapsed Duffy’s transform [9, 10, 13, 16, 24, 26] and its important variant [17, 18, 23]. The
second is based on approximation by nodal basis on special nodal points [6,11,12,21,28].
Here, we elaborate more on the former approach. Firstly, the spectral approximation in
triangle using polynomials was much studied (cf. [3, 9, 11, 19, 20, 27, 28]). Recently, some
research efforts have been paid to the non-polynomial spectral approximations in trian-
gle/tetrahedron [5,16,18,24]. By using some rectangle-triangle transforms, these spectral
methods generate rational or irrational basis functions in triangle from standard tenso-
rial basis functions in rectangle. Two typical rectangle-triangle transforms: Duffy’s trans-
form and one-to-one transform (cf. [18]) are frequently adopted. One argument against
the Duffy’s transform is that the mapped interpolation points are unfavourably clus-
tered near the singular vertex of the triangle. The situation is even severer in the three-
dimensional case. To obtain a better distribution of the mapped interpolation points, a
new one-to-one transform is designed by pulling one side of the triangle to two sides
of the rectangle. As long as the development of the spectral approximations in trian-
gles, more and more attention has been paid on corresponding TSEM. Although the new
transform has weaker singularity than the Duffy’s transform, it also leads to singular in-
tegrand in the calculation of stiffness matrix (cf. [18,23]). Either a mode basis (cf. [18,23])
or modified nodal basis [17] is used to handle the singularity. Nevertheless, the special
basis functions increase the difficulty in extending to multi-domain cases. Usually, some
other techniques (e.g. motar finite element [2, 15]) need to be employed.

This paper is the second of a series on developing TSEM based on the transform [18].
In the first paper [23], a detailed analysis of the logarithmic singularity induced by the
transform was conducted and an accurate and stable method to handle such singularities
by using mode basis was implemented. Here, we continue to develop a flexible nodal
TSEM more applicable to multi-domain cases. The new TSEM is drawn on a mixed
formulation using non-polynomial spectral approximations on triangles. Both Duffy’s
transform and the one-to-one transform can be used to generate non-polynomial basis
functions for the method. The main feature of this method is that it is unnecessary to deal
with the consistency condition and no singularity will appear in the calculation of the dis-
crete matrices. Actually, the mixed formulation does not involve the stiffness matrix and
the singularity in the calculation of other matrices can be eliminated by the Jacobian. Al-
though the mixed formulation introduces a new auxiliary variable, it can be efficiently
removed from the discrete linear system due to the fact that the approximated mass ma-
trix is naturally diagonal even in the variable coefficient case. Another main problem to
form a spectral element method using non-polynomial spectral approximations in trian-
gles is how to construct and implement a continuous approximation space. We introduce
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different strategies according to the adopted transform. The proposed TSEM fully enjoys
the tensorial structure as QSEM. Hence an efficient implementation can be expected. In
theoretical aspect, the H1-norm interpolation error estimate presented in this paper con-
tributes to the completion of the approximation theory started in [23]. In addition, an hp
error analysis is performed for the proposed TSEM.

The rest of the paper is organized as follows. In section 2, the rectangle-triangle
transforms are introduced to be the extreme cases of the standard transform between
quadrilaterals. By using these transforms, we then define the spectral element space on
unstructured triangular mesh. Theoretical analysis for interpolations in triangular spec-
tral element space is performed in section 3. H1-norm interpolation error estimate is
obtained. In section 4, we present the numerical formulation of the triangular spectral
element method and conduct an h-p error analysis. Various numerical results are given
to show the accuracy and flexibility.

2 Triangular spectral element space

In this section, we first briefly introduce the rectangle-triangle transform by starting with
the typical transform between quadrilaterals. Then we present some details for the con-
struction of conformable spectral element spaces on unstructured triangular mesh by us-
ing two typical �→4 transforms T0 and T1/2. Implementation techniques for ensuring
the conformability in different cases are discussed. The h-p interpolation error estimates
in both L2 and H1 norms will be provided for the general transform Tθ with 0≤ θ≤1 at
the end of this section.

2.1 The rectangle-triangle transform

Throughout this paper, we denote by

4 :={(x̂,ŷ) : 0< x̂,ŷ, x̂+ ŷ<1}⊂R2, � :={(ξ,η) :−1< ξ,η<1}⊂R2,

the reference triangle and the reference square, respectively. Here, R is the set of all real
numbers. The vertices P̂1(−1,−1),P̂2(1,−1),P̂3(1,1) and P̂4(−1,1) of the square � are
denoted simply by {P̂i(ξi,ηi)}4

i=1. Given an arbitrary convex quadrilateral♦with vertices
denoted by {Pi(xi,yi)}4

i=1, we define the constants:

α1=
1
4

4

∑
i=1

xiξiηi, α2=
1
4

4

∑
i=1

xiξi, α3=
1
4

4

∑
i=1

xiηi, α4=
1
4

4

∑
i=1

xi,

β1=
1
4

4

∑
i=1

yiξiηi, β2=
1
4

4

∑
i=1

yiξi, β3=
1
4

4

∑
i=1

yiηi, β4=
1
4

4

∑
i=1

yi.

(2.1)

It is well known that the iso-parametric transform:

F : x=α1ξη+α2ξ+α3η+α4, y=β1ξη+β2ξ+β3η+β4, ∀(ξ,η)∈�, (2.2)
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is an one-to-one transform from � to ♦. Its Jacobian is

J= |J|=det
(∂(x,y)

∂(ξ,η)

)
=

∣∣∣∣α1η+α2 β1η+β2
α1ξ+α3 β1ξ+β3

∣∣∣∣=D1ξ+D2η+D3, (2.3)

where

D1=

∣∣∣∣α2 β2
α1 β1

∣∣∣∣, D2=

∣∣∣∣α1 β1
α3 β3

∣∣∣∣, D3=

∣∣∣∣α2 β2
α3 β3

∣∣∣∣. (2.4)

If all inner angles of the quadrilateral ♦ is less than π, we have J > 0 and the inverse of
the Jacobian matrix J is

J−1=
1
J

[
β1ξ+β3 −β1η−β2

−α1ξ−α3 α1η+α2

]
. (2.5)

(θ,1−θ)

(−1,1) (1,1)

(1,−1)(−1,−1)

(a) Tθ :� 7→4

(−1,1) (1,1)

(1,−1)(−1,−1)

(b) LGL points on �

(1
2
,1
2
)

(0,1)

(0,0) (1,0)

(c) LGL points by T1/2

(0,1)

(0,0) (1,0)

(d) LGL points by T0

Figure 2.1: The rectangle-quadrilateral transforms.

Choosing P1(0,0),P2(1,0),P3(θ,1−θ),P4(0,1) in the transform defined in (2.1)-(2.2), we
have

α1=α3=
θ−1

4
, α2=α4=

θ+1
4

, β1=β2=−
θ

4
, β3=β4=

2−θ

4
, (2.6)

which leads to � 7→4 transform Tθ (0≤ θ≤1) (cf. [23]):

x̂=
1+ξ

2
2−(1−θ)(1+η)

2
, ŷ=

1+η

2
2−θ(1+ξ)

2
, ∀(ξ,η)∈�. (2.7)

Here, the reference triangle 4 is seen as a quadrilateral with inner angle equal to π.
We see that this transform pulls the hypotenuse of 4 into two edges of � at the point
(θ,1−θ). Substituting (2.6) into (2.4) and then using formula (2.3) gives the Jacobian of
Tθ :

Jθ(ξ,η)=det(Jθ)=

∣∣∣∣∣∣∣∣
(θ−1)η+θ+1

4
−θ(η+1)

4
(θ−1)(ξ+1)

4
−θξ+2−θ

4

∣∣∣∣∣∣∣∣=
1−(θξ+(1−θ)η)

8
. (2.8)
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Further, the Jacobian in (x̂,ŷ) coordinates can be derived from expression (2.7), i.e.,

Jθ(x̂,ŷ)=
√
(θx̂−(1−θ)ŷ)2+1−2θx̂−2(1−θ)ŷ

4
. (2.9)

Clearly, the Jacobian (2.8) has zeros in the reference square � and the inverse of Jθ :

J−1
θ =


∂ξ

∂x̂
∂η

∂x̂
∂ξ

∂ŷ
∂η

∂ŷ

= 1
4Jθ

[
−θξ+2−θ θ(η+1)

−(θ−1)(ξ+1) (θ−1)η+θ+1

]
(2.10)

is not always well defined in the reference square.
The Duffy’s transform (cf. [10]) T0:

x̂=
1
4
(1+ξ)(1−η), ŷ=

1
2
(1+η), ∀(ξ,η)∈�, (2.11)

is the limitting case of (2.7) with θ=0. The new �→4 transform T1
2

:

x̂=
1
8
(1+ξ)(3−η), ŷ=

1
8
(3−ξ)(1+η), ∀(ξ,η)∈�, (2.12)

introduced in [18] is another special case of (2.7) with θ= 1
2 . Their Jacobian matrices are

given by

J0=

∣∣∣∣∣∣∣
1−η

4
0

− ξ+1
4

1
2

∣∣∣∣∣∣∣=
1−η

8
, J 1

2
=

∣∣∣∣∣∣∣
3−η

8
−η+1

8

− ξ+1
8

3−ξ

8

∣∣∣∣∣∣∣=
2−ξ−η

16
, (2.13)

and their inverses are

J−1
0 =

2
1−η

[
2 0

ξ+1 1−η

]
, J−1

1
2
=

2
2−ξ−η

[
3−ξ η+1
ξ+1 3−η

]
. (2.14)

For 0< θ<1, we have the inverse transform T−1
θ :

ξ=
1−θ+(θx̂−(1−θ)ŷ)−4Jθ(x̂,ŷ)

θ
, η=

θ−(θx̂−(1−θ)ŷ)−4Jθ(x̂,ŷ)
1−θ

, (2.15)

where Jθ(x̂,ŷ) is defined in (2.9). On the other hand, we have inverse transforms:

T−1
0 :

ξ=
2x̂

1− ŷ
−1,

η=2ŷ−1,
T−1

1 :

ξ=2x̂−1,

η=
2ŷ

1− x̂
−1,

(2.16)

for limiting cases θ=0,1, respectively.
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2.2 Construction of triangular spectral element space

Hereafter, let I = (−1,1), and for any integer p≥ 1, denote by Pp(I) the set of all alge-
braic polynomials of degree at most p. Two standard polynomial spaces on the reference
square � and4 are

Pp(4) :=span{x̂iŷj : 0≤ i+ j≤ p}, Qp(�) :=(Pp(I))2. (2.17)

The following property (cf. [23]) shows that all polynomials on 4 are still polynomials
on the reference �.

Proposition 2.1. Let Tθ be the rectangle-triangle transform defined in (2.7), and Pk(4)◦
Tθ ={P◦Tθ : P∈Pk(4)}. We have Pp(4)◦Tθ⊂Qp(�) for 0≤ θ≤1.

Define the space
Yp,θ(4)=Qp(�)◦T−1

θ =(Pp(I))2◦T−1
θ , (2.18)

which consists of the images of the tensorior polynomials on � under the transform T−1
θ .

As a direct consequence of Proposition 2.1, Pp(4)⊆Yp,θ(4) for all θ∈ [0,1]. The inverse
transforms (2.15) and (2.16) imply that Yp,θ(4) contains not only polynomials, but also
some special irrational functions. According to the definition (2.18), the basis functions of
Yp,θ(4) can be obtained by applying the transform T−1

θ to the basis functions of Qp(�).
In practice, we use the nodal basis of Qp(�). Denote by {ζi}

p
i=0 the Legendre-Gauss-

Lobatto (LGL) points in I and {hm(ζ)}p
m=0 the corresponding Lagrange interpolating

basis polynomials, i.e., hm ∈ Pp(I) and hm(ζn) = δmn (where δmn is the Kronecker Delta
symbol). Then

Qp(�)=span{ϕmn : ϕmn(ξ,η)=hm(ξ)hn(η), 0≤m,n≤ p}. (2.19)

This gives the nodal basis of Yp,θ(4) :

Yp,θ(4)=span{ψmn : ψmn(x̂,ŷ)=φmn◦T−1
θ (x̂,ŷ), 0≤m,n≤ p}. (2.20)

Let Th := {K} denote a shape regular quasi-uniform triangular mesh of a polygonal
domain Ω. Denote by hK = diam(K) the diameter of element K, h = max{hK}. Th is a
shape regular quasi-uniform mesh if there exists positive constants c0 and c1 such that

max
K∈Th

h2
K
|K| ≤ c0,

h
min
K∈Th

hK
≤ c1, (2.21)

where |K| is the measure of K. The triangular spectral element space on Th is defined as

Sθ
h,p(Th)=

{
vh∈H1(Ω) : vh|K◦FK∈Yp,θ(4),∀K∈Th

}
, (2.22)

where FK :4→K is the standard affine mapping from the reference triangle4 to a phys-
ical element K∈Th. Although the definition of triangular spectral element space Sθ

h,p(Th)
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jV1K

2K

jV1K

2K

3K

3K

Figure 2.2: Physical node distribution via T0 in an unstructured mesh (p=10).

follows the classic way, some cases have to be taken to impose the continuity across ele-
ments due to the singularity introduced by the transform Tθ . In what follows, we elabo-
rate on two typical cases using transforms T0, T1/2 and show how to construct continuous
global basis functions from local basis functions on arbitrary unstructured mesh Th.

Case I: The Duffy’s transform T0. Due to the collapsed Duffy’s transform T0, the
nodes {(x̂m,ŷn)}p

m,n=0 in the reference triangle4 clustered near the singular vertex (0,1)
and all nodes {(x̂m,ŷp)}p

m=0 collapsed to one node at (0,1). After applying the standard
affine mapping FK, the corresponding nodes {(xK

m,xK
n )}

p
m,n=0 in the physical element K

also clustered near one vertex of K. The physical nodes {(xK
m,xK

n )}
p
m,n=0 may be clustered

near any vertex of the physical element K due to the rotational free of the mapping FK.
In an unstructured mesh a vertex Vj may be shared by several elements see Figure 2.2.
In the attached elements, some elements have nodes clustered near Vj and the others do
not, e.g., K2 and K3 in Figure 2.2 have nodes clustered near Vj. Although there are nodes
clustered near vertices, the nodes from neighboring elements matched with each other
on their common edge, e.g., in Figure 2.2 nodes in K1 and K2 mathed on their common
edge. For ensuring the continuity of the numerical solution, we only need to handle the
nodes clustered near vertices. We merge all nodes clustered at a given vertex Vj to one
node. This can be done by assigning one global index to all nodes corresponding to Vj in
the implementation. For example, there are 4+2(p+1) nodes share one global index de-
termined by the vertex Vj in Figure 2.2. It is worthy pointing out that this implementation
technique is equivalent to using polynomial space (cf. [24])

Q̃p(�)={φ∈Pp(I)×Pp(I) : ∂ξφ(ξ,1)=0}. (2.23)

The basis function hp(η)◦T−1
0 (x̂,ŷ) is acutally used for node at vertex (0,1) in the refer-

ence triangle.

Case II: The one-to-one transform T1/2. The transform T1/2 maps the hypotenuse of
the reference triangle 4 to two sides of the reference rectangle �. Therefore, the num-
ber of nodes on the hypotenuse of 4 is twice as many as that on other two sides due to
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1K

1K

2K

2K

3K

4K

4K
3K

Figure 2.3: Inconsistent physical node distribution via T1/2 and arbitrary elemental affine mappings
(p=10).

1K

2K 4K

3K

1K

2K
4K

3K

Figure 2.4: Consistent physical node distribution via T1/2 and adjusted elemental affine mappings (p=
10).

the transform T1/2, see Figure 2.1 (c). As a result, each physical element K inherits such
inconsistency. Since affine mappings FK randomly map edges in K to hypotenuse and
other two edges of refrence triangle4, the images of a common edge of two neighboring
elements may be different edges in 4. If one maps the common edge to the hypotenuse
of 4 and the other maps it to another different side of 4, then the common edge have
differnet number of nodes from two sides (see K3 and K4 in Figure 2.3). This inconsis-
tency will cause great difficulty in the contruction of continuous spectral element space
Sθ

h,p(Th). Fortunately, the inconsistency can be avoid by configuring the elemental affine
mappings FK properly. For any interior edge eij =Ki∩Kj, we choose elemental mappings
FKi and FKj such that FKj mapps eij to the hypotenuse of 4 if and only if FKi mapps eij to
the hypotenuse of 4, see Figure 2.4. The required elemental mapping configuration can
be determined by the mesh beforehand. Numerical examples show that configurations
without producing node inconsistency are available even for complicate unstructured
meshes (see, examples given in Subsection 4.3). Once we have the node consistent el-
emental mappings ready, the implementation of TSEM using transform T1/2 becomes
quite simple. We just view a given triangular mesh as a deformed quadrilateral mesh by
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view each triangular element as a deformed quadrilateral element in which the middle
point of the hypotenuse becomes a new vertex.

3 The approximation properties of Sθ
h,p(Th)

We first introduce some notions. The weighted Sobolev space Hr
w(Ω) with r > 0 is de-

fined as in Adams [1], and its norm and semi-norm are denoted by ||·||r,w,Ω and |·|r,w,Ω,
respectively. In particular, if r= 0, we denote the inner product and norm of L2

w(Ω) by
(·, ·)w,Ω and ||·||w,Ω, respectively. Moreover, if w≡1, we drop it from the notion.

With the LGL points {ζ j}
p
j=0 and corresponding Lagrangian polynomial basis {hj(ζ)}

p
j=0,

the LGL interpolation of given function v∈C( Ī) is defined as

(
Iζ

pv
)
(ζ)=

p

∑
j=0

v(ζ j)hj(ζ)∈Pp, ∀ζ∈ Ī. (3.1)

Moreover, the following estimates hold.

Lemma 3.1. If v∈Hr(I) with r≥1 and µ=0,1, we have

‖ (Iζ
pv−v)(µ) ‖L2(I)≤Cpµ−r ‖ (1−ζ2)(r−1)/2v(r) ‖L2(I) . (3.2)

Proof. For µ= 0, it is the direct result of Theorem 3.44 in [25]. To prove the estimate for
µ=1, one verifies that

v′∈Br−1
0,0 (I) :=

{
w∈L2(I) : w(k)∈L2

ωk,k(I),0≤ k≤ r−1
}

,

for any v∈Hr(I),r≥1. Here ωk,k(ζ)= (1−ζ)k(1+ζ)k is the Jacobi weight function. Ap-
plying the estimate in Lemma 2.3 in [24], we obtain the inequality for µ=1.

For any û∈C(4), define interpolation IIp,θ û(x̂,ŷ)∈Yp,θ(4) such that

IIp,θ û(x̂i,ŷj)= û(x̂i,ŷj), 0≤ i, j≤ p, (3.3)

where {(x̂i,ŷj)= Tθ(ξi,ηj)} are the mapped LGL points. Let ũ(ξ,η)= (û◦Tθ)(ξ,η). One
verifies readily that

(IIp,θ û)(x̂,ŷ)=
(
(Iξ

p Iη
p ũ)◦T−1

θ

)
(x̂,ŷ)=

(
(Iη

p Iξ
p ũ)◦T−1

θ

)
(x̂,ŷ). (3.4)

It is worthy of pointing out that an interpolation with LGL in ξ-direction and JGR points
in η-direction for the case θ=0 was investigated in [24]. Nevertheless, it cannot be used to
define an interpolation in the conformal spectral element space S0

h,p(Th) due to the usage
of JGR points in η-direction. Here the interpolation IIp,θ uses the LGL points in both ξ
and η-directions. Once proper affine mappings FK is set for 0< θ<1 as stated in the last
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section, the global interpolation of any given function u∈C(Ω̄) in the space Sθ
h,p(Th) can

be directly defined as

(Iθ
h,pu)(x,y)=(IIp,θ û)(F−1

K (x,y)), (x,y)∈K, ∀K∈Th, (3.5)

where û(F−1
K (x,y))=u(x,y),∀(x,y)∈K,K∈Th. The continuity of Iθ

h,pu in Ω can be verified
for all 0≤ θ≤1.

An L2-error estimate for IIp, 1
2

has been proved in [23]. However, an H1-error estimate
is usually indispensable in the error analysis of the spectral element method. By using
Lemma 3.1, we can derive the following H1-error estimate.

Theorem 3.1. Suppose û∈H2(4). Then

‖ IIp,θ û−û‖µ,4≤Cpµ−2(|û|2,4+‖(∂ŷ−∂x̂)
2û‖J−1

θ ,4+‖∇̂û‖J−1
θ ,4

)
, µ=0,1, (3.6)

for 0<θ<1, where Jθ is the Jacobian as defined in (2.8). Moreover, if û∈Hr(4) with r≥3, then

‖ IIp,θ û−û‖µ,4≤Cpµ−r(|û|r,4+|û|r−1,4
)
, µ=0,1, (3.7)

for 0≤ θ≤1.

Proof. Let Id be the identity operator and ũ(ξ,η)=(û◦Tθ)(ξ,η). From (2.8) and (2.10), we
have Jθ , Jθ

∂ξ
∂x̂ , Jθ

∂ξ
∂ŷ , Jθ

∂η
∂x̂ , Jθ

∂η
∂ŷ uniformly bounded in � for all 0≤ θ≤1. Then together with

(3.4), we derive that

‖ IIp,θ û−û‖2
4=‖ (Iξ

p Iη
p ũ−ũ)Jθ ‖2

�≤C‖ Iξ
p Iη

p ũ−ũ‖2
�, (3.8)

and

‖ IIp,θ û−û‖2
4+‖∂x̂(IIp,θ û−û)‖2

4+‖∂ŷ(IIp,θ û−û)‖2
4

=‖ (Iξ
p Iη

p ũ−ũ)Jθ ‖2
�+

∥∥∥∂ξ(Iξ
p Iη

p ũ−ũ)
∂ξ

∂x̂
Jθ+∂η(Iξ

p Iη
p ũ−ũ)

∂η

∂x̂
Jθ

∥∥∥2

�

+
∥∥∥∂ξ(Iξ

p Iη
p ũ−ũ)

∂ξ

∂ŷ
Jθ+∂η(Iξ

p Iη
p ũ−ũ)

∂η

∂ŷ
Jθ

∥∥∥2

�

≤C(‖ Iξ
p Iη

p ũ−ũ‖2
�+‖∂ξ(Iξ

p Iη
p ũ−ũ)‖2

�+‖∂η(Iξ
p Iη

p ũ−ũ)‖2
�).

(3.9)

Using the decomposition

Iξ
p Iη

p ũ−ũ=(Iξ
p− Id)(Iη

p− Id)ũ+(Iξ
p− Id)ũ+(Iη

p− Id)ũ,

and the approximation results in Lemma 3.1, we have estimates:

‖Iξ
p I Iη

p ũ−ũ‖4≤C
(
‖ (Iξ

p− Id)(Iη
p− Id)ũ‖�+‖ (Iξ

p− Id)ũ‖�+‖ (Iη
p− Id)ũ‖�

≤Cp−1 ‖ (Iξ
p− Id)∂η ũ‖�+c

(
‖ (Iξ

p− Id)ũ‖�+‖ (Iη
p− Id)ũ‖�

)
≤Cp−r(‖ (1−ξ2)(r−2)/2∂η∂r−1

ξ ũ‖�+‖ (1−ξ2)(r−1)/2∂r
ξ ũ‖�

+‖ (1−η2)(r−1)/2∂r
η ũ‖�

)
,

(3.10)
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and

‖∂ξ(Iξ
p Iη

p ũ−ũ)‖�≤C‖∂ξ [(Iξ
p− Id)(Iη

p− Id)ũ]+∂ξ [(Iξ
p− Id)ũ]+(Iη

p− Id)∂ξ ũ‖�
≤C

(
‖∂ξ [(Iξ

p− Id)(Iη
p− Id)ũ]‖�+‖∂ξ [(Iξ

p− Id)ũ]‖�+‖ (Iη
p− Id)∂ξ ũ‖�

)
≤C‖ (Iη

p− Id)∂ξ ũ‖�+Cp1−r ‖ (1−ξ2)(r−1)/2∂r
ξ ũ‖�

≤Cp1−r(‖ (1−η2)(r−2)/2∂ξ∂r−1
η ũ‖�+‖ (1−ξ2)(r−1)/2∂r

ξ ũ‖�
)
;

‖∂η(Iξ
p Iη

p ũ−ũ)‖�≤Cp1−r(‖ (1−ξ2)(r−2)/2∂η∂r−1
ξ ũ‖�+‖ (1−η2)(r−1)/2∂r

η ũ‖�
)
.

(3.11)

Next, we bound the four terms

E(1)
r,�(ũ)=‖ (1−ξ2)(r−1)/2∂r

ξ ũ‖�, E(2)
r,�(ũ)=‖ (1−η2)(r−1)/2∂r

η ũ‖�,

E(3)
r,�(ũ)=‖ (1−ξ2)(r−2)/2∂η∂r−1

ξ ũ‖�, E(4)
r,�(ũ)=‖ (1−η2)(r−2)/2∂ξ∂r−1

η ũ‖�,
(3.12)

in the right-hand sides using norm of u on 4 one by one. In the following estimate,
we shall only consider the case θ = 0. Other cases θ 6= 0 can be estimated in similar way
(ref. [23]).

Recalling (2.8), we obtain from a direct calculation that

∂ξ x̂=
1−η

4
, ∂ξ ŷ=0, ∂η x̂=−1+ξ

4
, ∂η ŷ=

1
2

,

∂ξ ũ=
(1−η

4

)
∂x̂û,

∂ũ
∂η

=−1+ξ

4
∂x̂û+

1
2

∂ŷû.
(3.13)

Define

a(η,k) :=
(1−η

4

)k
, b(ξ,k)=

(
− 1+ξ

4

)k
.

Then we have

∂r
ξ ũ= a(η,r)∂r

x̂û, ∂r
η ũ=

r

∑
k=0

(
r
k

)
b(ξ,k)

(1
2

)r−k
∂k

x̂∂r−k
ŷ û, (3.14)

and

∂r−1
ξ ∂η ũ=∂η

[
a(η,r−1)∂r−1

x̂ û
]
=− r−1

4
a(η,r−2)∂r−1

x̂ û+a(η,r)∂r
x̂û;

∂ξ∂r−1
η ũ=∂ξ

[ r−1

∑
k=0

(
r−1

k

)
b(ξ,k)

(1
2

)r−k−1
∂k

x̂∂r−k−1
ŷ û

]
=

r−1

∑
k=0

(
r−1

k

)(1
2

)r−k−1[
b(ξ,k+1)∂k+1

x̂ ∂r−k−1
ŷ û

+
b(ξ,k)

2
∂k

x̂∂r−k
ŷ û− k

4
b(ξ,k−1)∂k

x̂∂r−k−1
ŷ û

]
.

(3.15)
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Notice that for all (ξ,η)∈�,

0≤ a(η,k)
J0(ξ,η)

=
(1−η

4

)k 8
1−η

=2a(η,k−1), ∀k≥1, (3.16)

so the following estimates hold

E(1)
r,�=

(∫ ∫
�
(∂r

ξ ũ)2(1−ξ2)r−1dξdη
) 1

2
=
∥∥∥2a
(

η,
2r−1

2

)
(1−ξ2)r−1∂r

x̂û
∥∥∥
4

,

E(2)
r,�=

(∫ ∫
�
(∂r

η ũ)2(1−η2)r−1dξdη
) 1

2 ≤C
r

∑
k=0

∥∥∥b(ξ,k)(1−η2)
r−2

2 (1+η)
1
2 ∂k

x̂∂r−k
ŷ û

∥∥∥
4

,
(3.17)

and

E(3)
r,�=

(∫ ∫
�
(1−ξ2)r−2(∂η∂r−1

ξ ũ)2dξdη
) 1

2

≤C
[∥∥∥(1−ξ2)(r−2)/2a

(
η,

2r−5
2

)
∂r−1

x̂ û
∥∥∥
4
+
∥∥∥(1−ξ2)(r−2)/2a

(
η,

2r−1
2

)
∂r

x̂û
∥∥∥
4

]
,

E(4)
r,�=

(∫ ∫
�
(1−η2)r−2(∂ξ∂r−1

η ũ)2dξdη
) 1

2

≤C
r−1

∑
k=0

[∥∥∥c(η,r)b(ξ,k+1)∂k
x̂∂r−k−1

ŷ û
∥∥∥
4
+
∥∥∥c(η,r)b(ξ,k)∂k

x̂∂r−k
ŷ û

∥∥∥
4

+
∥∥∥c(η,r)b(ξ,k−1)∂k

x̂∂r−k−1
ŷ û

∥∥∥
4

]
,

(3.18)

where c(η,r)=(1−η2)(r−3)/2(1+η)1/2. For r≥3, using the boundedness of a(η, 2r−5
2 ),c(η,r),

b(ξ,r−2), we obtain

E(1)
r,�+E(2)

r,�+E(3)
r,�+E(4)

r,�≤C(|û|r,4+|û|r−1,4). (3.19)

A combination of (3.8)-(3.11) and (3.17)-(3.18) leads to the error estimate (3.7) for θ=0.

Remark 3.1. For 0< θ<1, the integral∫
�

1
Jθ(ξ,η)

dξdη=16(1−ln2(1−θ))− 8
1−θ

[2θ(ln2θ−1)−2(ln2−1)].

is finite. Thus, error estimate for ‖ IIp,θ û−û ‖µ,4,0 < θ < 1 can be obtained using weighted
norm |û|2,4+‖(∂ŷ−∂x̂)

2û‖J−1
θ ,4+‖∇̂û‖J−1

θ ,4 for all û∈H2(4) (ref. [23]). However, the error
estimate for ‖ IIp,0û−û‖µ,4 and ‖ IIp,1û−û‖µ,4 requires û∈Hr(4),r≥3.

Recall that Th is a shape regular quasi-uniform mesh of the domain Ω. There holds the
following scaling results (cf. [7]).
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Lemma 3.2. Let K be an element in Th, and FK be the affine mapping from the reference triangle
4 to K. If u∈Hr(Ω),r≥0, û|K =u◦FK, then

|u|r,K≤Ch1−r|û|r,4, |û|r,4≤Chr−1|u|r,K, (3.20)

The scaling argument leads to the following hp error estimate.

Theorem 3.2. If u∈Hr(Ω),r≥3, and Th is a shape regular quasi-uniform mesh, then

‖u−Iθ
h,pu‖µ,Ω≤Cpµ−r(hr−µ|u|r,Ω+hr−µ−1|u|r−1,Ω

)
, µ=0,1, (3.21)

for 0≤ θ≤1.

Proof. Recalling the definition (3.5) and then applying Lemma 3.2 and Theorem 3.1, we
have

‖u−Iθ
h,pu‖µ,K =‖û◦F−1

K −(IIp,θ û)◦F−1
K ‖µ,K≤Ch1−µ‖û− IIp,θ û‖µ,4

≤Ch1−µ pµ−r(|û|r,4+|û|r−1,4)≤Cpµ−r(hr−µ|u|r,K+hr−µ−1|u|r−1,K
)
,

(3.22)

for all K∈Th. Then the conclusion can be obtained by a direct summation.

4 Triangular spectral element methods in mixed formulation

4.1 The scheme

Consider the elliptic boundary value problem

−∇·(β(x)∇u)+γ(x)u= f , in Ω, u|∂Ω =0, (4.1)

where Ω is an open, bounded and polygonal domain with Lipschitz boundary. We as-
sume that β(x,y) γ(x,y) are given positive functions in Ω. By introducing an auxiliary
variable q, the elliptic equation (4.1) is rewritten to the following first order system

q−β∇u=0 in Ω,
−∇·q+γu= f in Ω, (4.2)

u=0 on∂Ω.

With the standard space L2(Ω) and Sobolev spaces H1(Ω),H1
0(Ω), the variational form

of the problem (4.2) is of the form: find (q,u)∈ (L2(Ω))2×H1
0(Ω) such that

(q, v)−(β∇u, v)=0,
(q,∇w)+(γu,w)=( f , w),

(4.3)

for all (v,w)∈ (L2(Ω))2×H1
0(Ω).
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Define

V θ
p,h(Th)={v∈ (L2(Ω))2 : v|K◦F−1

K ∈ (Yp,θ(4))2,∀K∈Th}. (4.4)

The spectral element formulation of (4.3) is to find (Qh,p,Uh,p) ∈ V θ
h,p(Th)×(Sθ

h,p(Th)∩
H1

0(Ω)), s.t.

(Qh,p, vh,p)−(β∇Uh,p, vh,p)=0,

(Qh,p,∇wh,p)+(γUh,p,wh,p)=( f , wh,p),
(4.5)

for all (vh,p,wh,p)∈V θ
h,p(Th)×(Sθ

h,p(Th)∩H1
0(Ω)).

Theorem 4.1. Let u and Uh,p be the solutions of (4.3) and (4.5), respectively. If u∈H1
0(Ω)∩

Hr(Ω) with r>2, then

‖u−Uh,p ‖µ,Ω≤Chr−µ−1 pµ−r‖u‖r,Ω, µ=0,1, (4.6)

where C is a positive constant independent of h,p and u.

Proof. Set v=∇w in (4.3) and vh,p =∇wh,p in (4.5). The resulted equation implies

(β∇u,∇w)+(γu,w)=( f ,w), ∀w∈H1
0(Ω), (4.7)

and
(β∇Uh,p,∇wh,p)+(γUh,p,wh,p)=( f ,wh,p), ∀wh,p∈Sθ

h,p(Th)∩H1
0(Ω). (4.8)

Taking w=wh,p in (4.7) and then subtracting (4.8) from the resulted equation, we have
standard error equation

(β(∇u−∇Uh,p),∇wh,p)+(γ(u−Uh,p),wh,p))=0, ∀wh,p∈Sθ
h,p(Th)∩H1

0(Ω). (4.9)

The proof can be completed by using the standard error analysis technique with the in-
terpolation estimate given by Theorem 3.2.

4.2 Tensorial structure for efficient implementation

Using the Lagrange nodal basis, we have

Qh,p|Kj =
p

∑
m=0

p

∑
n=0

Q(j)
mnψmn(F−1

Kj
(x,y)), Uh,p|Kj =

p

∑
m=0

p

∑
n=0

U(j)
mnψmn(F−1

Kj
(x,y)), (4.10)

for ∀Kj∈Th. Then the spectral element formulation (4.5) leads to the linear system M 0 −Cx
0 M −Cy
CT

x CT
y Mγ

Qx
Qy
U

=
0

0
F

 (4.11)
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where the global matrices M,Cx,Cy,Mγ and righthand side F is obtained from the local

contributions (or elements) M(j), C
(j)
x ,C(j)

y , M
(j)
γ , F(j) by subassembly. The unknown vec-

tors Qx,Qy,U consist of nodal values of Qh,p and Uh,p. Since the basis functions are con-
structed by the tensor products of one-dimensional Lagrange basis functions {hm(ξ),hn(η)},
we expect to write the local matrices as the Kronecker products of one dimensional local
matrices. Due to the usage of transform from rectangle to triangle, it is more complicate
than that of the QSEM as presented below.

To fix the idea, we assume that β(x) and γ(x) are piecewise constants and β(x) =
β j,γ(x)=γj,∀x∈Kj. Define matrices M̃=(M̃ij),M̂=(M̂ij),C̃=(C̃ij),Ĉ=(Ĉij) with

M̃ij =
∫ 1

−1
hi(ξ)hj(ξ)dξ, M̂ij =

∫ 1

−1
hi(ξ)hj(ξ)ξdξ,

C̃ij =
∫ 1

−1
hi(ξ)h′j(ξ)dξ, Ĉij =

∫ 1

−1
hi(ξ)h′j(ξ)ξdξ,

(4.12)

and denote by
Ψ(j)

mn(x,y) :=ψmn(F−1
Kj

(x,y)), m,n=0,1,··· ,p, (4.13)

i.e., the restrictions of typical basis functions to a given element Kj. Then∫
Kj

Ψ(j)
mn(x,y)Ψ(j)

m′n′(x,y)dxdy=2|Kj|
∫
�

hm(ξ)hn(η)hm′(ξ)hn′(η)Jθ(ξ,η)dξdη

=
|Kj|

4
(M̃mm′ M̃nn′−θM̂mm′ M̃nn′−(1−θ)M̃mm′ M̂nn′).

(4.14)

where the expression (2.8) of Jθ is used. Similarly,∫
Kj

Ψ(j)
mn(x,y)∇Ψ(j)

m′n′(x,y)dxdy

=2|Kj|J−1
FKj

∫
�

hm(ξ)hn(η)JθJ−1
θ

[
h′m′(ξ)hn′(η)
hm′(ξ)h′n′(η)

]
dξdη

=
|Kj|

2
J−1

FKj

[
(−θĈmm′+(2−θ)C̃mm′)M̃nn′+θM̃mm′(Ĉnn′+C̃nn′)

(1−θ)(Ĉmm′+C̃mm′)M̃nn′+M̃mm′((θ−1)Ĉnn′+(1+θ)C̃nn′)

]
,

(4.15)

by the expression (2.8) and (2.10). With the formulations (4.14)-(4.15), the local contri-
butions (or elements) M(j), M

(j)
γ , C

(j)
x , C

(j)
y , F(j) can be written in Kronecker products as

follows

M(j)=
|Kj|

4
(
M̃⊗M̃−θ(M̂⊗M̃−M̃⊗M̂)−M̃⊗M̂

)
,

C
(j)
x =
|Kj|

2
[(

τ
(j)
11 Ĉ+τ

(j)
12 C̃

)
⊗M̃+M̃⊗

(
τ
(j)
13 Ĉ+τ

(j)
14 C̃

)]
,

C
(j)
y =

|Kj|
2
[(

τ
(j)
21 Ĉ+τ

(j)
22 C̃

)
⊗M̃+M̃⊗

(
τ
(j)
23 Ĉ+τ

(j)
24 C̃

)]
,

M
(j)
γ =γjM

(j), F(j)=M(j) f ,

(4.16)
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where f is the vector of interpolant nodal values of f (x) and

(τ
(j)
ij )2×4=J−1

FKj

[
−θ 2−θ θ θ

1−θ 1−θ θ−1 1+θ

]
. (4.17)

The formulation for F(j) results from the insertion of the interpolant of f (x) into the right
handside integration.

Remark 4.1. For general variable coefficients β(x), γ(x), the coefficients are firstly approximated
by LGL interpolation, see more details in [8].

The main advantage of the proposed triangular spectral element mixed formulation
is that it does not involve the stiffness matrix which consists of integral∫ ∫

Kj

∇Ψ(j)
mn ·∇Ψ(j)

m′n′dx̂dŷ=2|Kj|
∫ ∫

�
(J−1

FKj
J−1

θ ∇̃ψmn)·(JθJ−1
FKj

J−1
θ ∇̃ψm′n′)dξdη, (4.18)

where ∇̃=(∂ξ , ∂η)T. Recalling (2.10), J−1
θ has singularities in � and the singularity can

be removed by multiplying Jθ . Therefore, the LGL quadrature can be used to calculate
integrals (4.14) and (4.15) but can not be used to calculate integral (4.18). Some analytic
means for the computation of (4.18) have been intensively studied by using mode ba-
sis (cf. [23]). However, it seems to be not applicable to the case with general variable
coefficients.

Here, LGL quadrature is used to calculate the entries M̃ij,M̂ij,C̃ij,Ĉij. For example, we
actually set

M̃ij =
N

∑
k=0

hi(ξk)hj(ξk)ωk, M̂ij =
N

∑
k=0

hi(ξk)hj(ξk)ξkωk, (4.19)

in the numerical calculation. Since the nodal basis with respect to LGL points is adopted,
M̃ and M̂ become diagonal, i.e., M̃=diag(ωk) and M̂=diag(ξkωk). Together with the
Kronecker product formulation, we conclude that M and Mγ are diagonal too. Therefore
Qx,Qy can be easily solved from U and the linear system (4.11) reduces to

(CT
xM−1Cx+CT

y M−1Cy+Mγ)U =F. (4.20)

Noting that M̃pp=M̂pp for ξp=1, there are zero entries on the diagonal of M(j) due to the
usage of LGL quadrature. In particular for the two typical cases, we have

M(j)=


|Kj|

4
M̃⊗

(
M̃−M̂

)
, θ=0,

|Kj|
4
(
M̃⊗M̃− 1

2
M̂⊗M̃− 1

2
M̃⊗M̂

)
, θ=

1
2

.

It is not difficult to find out that M(j) has p+1 zero entries on the diagonal when θ=0 and
has only one zero entry on the diagonal in the case θ = 1

2 . The existance of zero entries
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on the diagonal makes mass matrix M singular. Therefore the linear system (4.20) is not
available if LGL quadrature with p+1 points is used for the calculation of all entries of
M̂. It is evidence that ∫ 1

−1
h2

p(ξ)dξ 6=
∫ 1

−1
h2

p(ξ)ξdξ. (4.21)

Therefore, M̃pp = M̂pp is due to the fact that resolution of p+1 points LGL quadrature is
not enough to distinguish these two integrals. In order to overcome this difficulty, we
use Legendre-Gauss quadrature with p+1 quadrature points for the special entry M̂pp.
By improving the accuracy of M̂pp, the revised approximated mass matrix M(j) is not
singular and the linear system (4.20) is available.

4.3 Numerical results

Now, we present some numerical examples to verify the accuracy of the proposed TSEMs
using two typical 4 7→� transforms (2.11) and (2.12). Both convergence rates against
polynomial degree p and mesh size h are presented. Complex domains with unstructured
meshes and non-smooth solutions are considered.

In all numerical expreriments, we test the elliptic problem (4.1) on various domains
with β= ex+y,γ=1. Smooth exact solution:

u(x,y)=cos(π(x2+y2)), (4.22)

and non-smooth exact solutions:

u(x,y)=(x+y)
5
2 , (4.23)

and
u(x,y)=(x−y)

8
3 (exy+1), (4.24)

are tested.
Hereafter, we denote by Ep the L2-error of the numerical solution for fixed mesh and

polynomial degree p, Eh the L2-error for fixed polynomial degree and mesh size h. All L2-
errors are calculated by using much higher order Gauss quadrature element-by-element.
The convergence rates against p are defined as

−
lnEpk−lnEpk+1

pk−pk+1
, −

lnEpk−lnEpk+1

lnpk−lnpk+1
,

which are the constants c and r in the expected convergence rates O(e−cp) and O(p−r)
for smooth and non-smooth solutions, respectively. The convergence rate against h is
defined as

lnEhk−lnEhk+1

lnhk−lnhk+1
.
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Example 1: We first test the accuracy of the proposed TSEMs by compared with
QSEM on Cartesian mesh. For this purpose, we set Ω=[0,1]2 and the triangular meshes
are generated by subdividing each element in the corresponding Cartesian meshes into
two tringles, see Figure 4.1 for the initial meshes and corresponding LGL-sepctral ele-
ment nodes distributions. In this case, solution (4.23) and (4.24) have point and line

(a) affine mapping (b) mapping T1/2 (c) mapping T0

Figure 4.1: Initial Cartesian and triangular meshes and LGL-spectral element nodes distribution.

p
SEM TSEM using T0 TSEM using T1/2

error rate error rate error rate

smooth solution

4 2.218E-03 1.482E-03 9.440E-04
8 1.010E-06 1.924 7.168E-07 1.908 4.306E-07 1.923
12 1.340E-10 2.232 1.796E-10 2.073 4.686E-11 2.281
16 8.716E-15 2.410 4.430E-14 2.077 4.049E-14 1.763

non-smooth solution
(4.23)

4 9.142E-06 1.130E-05 7.274E-06
8 9.867E-08 6.534 8.855E-08 6.996 8.888E-08 6.355
12 6.961E-09 6.539 6.485E-09 6.447 6.499E-09 6.451
16 1.037E-09 6.618 9.833E-10 6.557 9.846E-10 6.560
20 2.337E-10 6.678 2.238E-10 6.632 2.241E-10 6.634

non-smooth solution
(4.24)

4 3.215E-04 1.722E-03 4.244E-04
8 2.803E-05 3.520 1.361E-04 3.661 3.203E-05 3.728
12 7.411E-06 3.281 3.620E-05 3.267 8.089E-06 3.394
16 2.926E-06 3.230 1.436E-05 3.213 3.124E-06 3.307
20 1.430E-06 3.209 7.045E-06 3.193 1.507E-06 3.267

Table 4.1: L2-errors and convergence rates against p for fixed mesh.

singularity in the computational domain Ω and belong to H4−α and H3−β, respectively.
L2-errors and corresponding convergence rates presented in Table 4.1 and 4.2, and Figure
4.2 show that QSEM and the proposed TSEMs share very similar convergence behavior.
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(a) smooth solution p
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(b) non-smooth solution (4.23)
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(c) non-smooth solution (4.24)
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(e) non-smooth solution (4.23)
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(f) non-smooth solution (4.24)

Figure 4.2: Comparison of numerical errors between QSEM and TSEMs ((a), (b), (c): errors against p;
(d), (e), (f): errors against h).

(a) Polygonal A (b) Polygonal B

Figure 4.3: Polygonal domains with mixed and unstructured meshes.

For smooth solution (4.22) all their errors decay like O(e−cp) for fixed mesh. Spectral
accuracy is obtained for smooth solution and optimal convergence rate is observed for
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h
SEM TSEM using T0 TSEM using T1/2

error rate error rate error rate

smooth solution

1
2 4.795E-05 5.587E-05 1.945E-05
1
4 4.967E-07 6.593 4.315E-07 7.016 1.962E-07 6.631
1
8 4.571E-09 6.764 3.582E-09 6.912 1.877E-09 6.708
1

16 3.691E-11 6.952 2.878E-11 6.960 1.523E-11 6.946
1

32 3.061E-13 6.914 2.459E-13 6.870 1.580E-13 6.591

non-smooth solution
(4.23)

1
2 6.378E-07 5.491E-07 5.518E-07
1
4 5.716E-08 3.480 4.885E-08 3.491 4.914E-08 3.489
1
8 5.089E-09 3.490 4.332E-09 3.495 4.359E-09 3.495
1

16 4.514E-10 3.495 3.835E-10 3.498 3.860E-10 3.497
1

32 3.998E-11 3.497 3.393E-11 3.499 3.415E-11 3.499

non-smooth solution
(4.24)

1
2 7.407E-05 3.611E-04 8.822E-05
1
4 8.366E-06 3.146 4.023E-05 3.166 9.939E-06 3.150
1
8 9.352E-07 3.161 4.480E-06 3.167 1.110E-06 3.162
1

16 1.042E-07 3.165 4.986E-07 3.168 1.237E-07 3.166
1

32 1.161E-08 3.166 5.551E-08 3.167 1.378E-08 3.166

Table 4.2: L2-errors and convergence rates against h for fixed p=6.

p
TSEM using T0 TSEM using T1/2

error rate error rate

smooth solution

8 4.066E-05 4.176E-05
12 2.840E-08 1.817 2.559E-08 1.849
16 6.171E-12 2.109 6.151E-12 2.083
20 3.515E-14 1.292 2.469E-14 1.380

non-smooth solution
(4.23)

8 9.8672008E-08 9.8672005E-08
12 6.9607996E-09 6.539 6.9608004E-09 6.539
16 1.0369973E-09 6.618 1.0369977E-09 6.618
20 2.3365902E-10 6.678 2.3365938E-10 6.678

non-smooth solution
(4.24)

8 2.804E-05 2.803E-05
12 7.411E-06 3.281 7.411E-06 3.281
16 2.926E-06 3.230 2.926E-06 3.230
20 1.430E-06 3.210 1.430E-06 3.209

Table 4.3: L2-errors and convergence rates against p for fixed mesh (mixed mesh).
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h
TSEM using T0 TSEM using T1/2

error rate error rate

smooth solution

1
4 1.370E-05 1.324E-05
1
8 9.063E-08 7.240 8.685E-08 7.252
1

16 7.253E-10 6.965 6.841E-10 6.988
1

32 5.681E-12 6.996 5.334E-12 7.003

non-smooth solution
(4.23)

1
4 5.71630E-08 5.71618E-08
1
8 5.08885E-09 3.490 5.08885E-09 3.490
1

16 4.51442E-10 3.495 4.51442E-10 3.495
1

32 4.01016E-11 3.493 3.99959E-11 3.497

non-smooth solution
(4.24)

1
4 8.37314E-06 8.36542E-06
1
8 9.35612E-07 3.162 9.35175E-07 3.161
1

16 1.04269E-07 3.166 1.04245E-07 3.165
1

32 1.16131E-08 3.166 1.16117E-08 3.166

Table 4.4: L2-errors and convergence rates against h for fixed p=6 (mixed mesh).

non-smooth solutions. It is worthy to point out that the obtained results also show that
the TSEM using T1/2 is more stable than that using T0.

p
TSEM using T0 TSEM using T1/2 TSEM in [23]

error rate error rate error rate

smooth solution

8 5.225E-05 1.569 1.115E-05 1.794 9.264E-06 1.784
12 2.735E-08 1.889 1.391E-08 1.672 1.319E-08 1.639
16 3.076E-12 2.273 2.097E-12 2.200 2.095E-12 2.187
20 6.809E-13 0.377 2.620E-13 0.520 1.686E-13 0.630

non-smooth solution
(4.23)

8 8.746E-08 7.058 9.294E-08 5.700 9.248E-08 5.484
12 8.938E-09 5.625 1.051E-08 5.376 1.052E-08 5.360
16 1.804E-09 5.563 2.242E-09 5.371 2.253E-09 5.358
20 5.254E-10 5.527 6.748E-10 5.380 6.800E-10 5.368

non-smooth solution
(4.24)

8 1.472E-05 4.450 1.111E-05 3.587 1.118E-05 3.301
12 3.412E-06 3.606 2.816E-06 3.385 2.919E-06 3.312
16 1.619E-06 2.591 1.170E-06 3.054 1.156E-06 3.219
20 7.574E-07 3.405 5.781E-07 3.159 6.042E-07 2.908

Table 4.5: L2-errors and convergence rates against p for fixed mesh (unstructured triangular mesh).

Example 2: This example is to show the feasibility and accuracy of the proposed
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h
TSEM using T0 TSEM using T1/2 TSEM in [23]

error rate error rate error rate

smooth solution

1
4 1.409E-05 6.292 9.948E-06 5.306 9.505E-06 5.297
1
8 1.082E-07 7.024 7.039E-08 7.143 6.746E-08 7.138
1

16 8.179E-10 7.048 5.526E-10 6.993 5.322E-10 6.986
1

32 6.367E-12 7.005 4.350E-12 6.989 4.205E-12 6.984

non-smooth solution
(4.23)

1
4 7.120E-08 2.665 5.524E-08 2.999 5.472E-08 2.998
1
8 7.933E-09 3.166 6.911E-09 2.999 6.848E-09 2.998
1

16 1.046E-09 2.922 8.643E-10 2.999 8.567E-10 2.999
1

32 1.273E-10 3.039 1.089E-10 2.988 1.073E-10 2.997

non-smooth solution
(4.24)

1
4 3.136E-06 3.225 2.689E-06 3.204 2.643E-06 3.199
1
8 3.286E-07 3.255 2.846E-07 3.240 2.793E-07 3.242
1

16 4.782E-08 2.781 3.986E-08 2.836 3.958E-08 2.819
1

32 3.601E-09 3.731 2.813E-09 3.825 3.008E-09 3.718

Table 4.6: L2-errors and convergence rates against h for fixed p=6 (unstructured triangular mesh).

p TSEM in [23] TSEM using T1/2 ratio
4 8378 12514 1.494
6 37610 54453 1.448
8 112249 161924 1.443
10 264606 382459 1.445

Table 4.7: A Comparison of condition numbers of TSEM using T1/2 and TSEM presented in [23] (unstructured
triangular mesh).

TSEMs on complex domains with mixed and unstructured meshes. We consider two
polygonal domains: polygon A and polygon B with vertices given by:

polygon A: (0,0),(1,0),
(

2,
1
2

)
,(1,1),

(
1,

1
2

)
,(0,1)

polygon B: R
(

cosθk+cos
π

8
, sinθk+sin

π

8

)
,

R
(

cosθk+3cos
π

8
+3sin

π

8
, sinθk+sin

π

8

)
, k=0,1,··· ,7,

(4.25)

where θk=
2k+1

8 π, R= 1
2 cos π

8 . Polygon A is triangulated by hybrid meshes (with both rect-
angle and triangle elements) and polygon B is triangulated by unstructured triangular
meshes, see Figure 4.3 for initial meshes and spectral element nodes distributions. Solu-
tion (4.23) and (4.24) also have point and line singularity in the computational domain Ω
and belong to H4−α and H3−β, respectively. The hybrid meshes used here are essentially
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different with that investigated in [17]. Their hybrid mesh actually has a hanging vertex.
The intersection of the triangular element with the neighboring rectangular element is
not an entire edge of the mesh. All hybrid meshes used in this paper are conformal with-
out any hanging points. That is the reason why we can have optimal convergence rates
here. L2-errors and corresponding convergence rates against polynomial degree p and
mesh size h are presented in Table 4.3-4.6 and Figure 4.4-4.5. For smooth solution (4.22),
errors using different TSEMs decay like O(e−cp) for fixed mesh, i.e., spectral accuracy is
obtained. On the other hand, optimal convergence rates are observed for non-smooth
solutions. The TSEM using T1/2 shows some advantages over that using T0 in stability
(see. Figure 4.5: (c), (f)). We make a comparison between the proposed TSEM and the
TSEM presented in [23]. L2-errors and convergence rates presented in Table 4.5 and Table
4.6 show that they share similar accuracy performance. Table 4.3 compares the condition
numbers of corresponding resulted linear systems. Although TSEM using T1/2 has larger
conditon number they are in the same order with respect to p.
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(b) non-smooth solution (4.23)
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(c) non-smooth solution (4.24)
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(f) non-smooth solution (4.24)

Figure 4.4: Numerical errors and convergence rates of TSEMs on mixed (triangular and rectangular)
meshes ((a), (b), (c): errors against p; (d), (e), (f): errors against h).
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(e) non-smooth solution (4.23)
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(f) non-smooth solution (4.24)

Figure 4.5: Numerical errors and convergence rates of TSEMs on unstructured triangular meshes ((a),
(b), (c): errors against p; (d), (e), (f): errors against h).

4.4 Concluding remarks and future work

In this paper, we have introduced a new triangular spectral element method for unstruc-
tured mesh by using a nodal basis and rectangle-triangle transforms. It is a mixed for-
mulation and fully enjoys the tensorial product property and flexibility in handling com-
plex domains. Due to the exemption of the calculation of stiffness matrix, no singularity
appears in the generation of the discrete system. An hp priori error estimate was pre-
sented for the proposed method. The results obtained by this mixed formulation is a
good evidence that discontinuous Galerkin methods based on mixed formulation (e.g.,
LDG, HDG) can be used to handle the singularity and node inconsistency simultane-
ously. The development of discontinuous triangular spectral element method based on
mixed formulation will be our future work.
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