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Abstract In this paper, we consider the nonlinear boundary value problems involving the
Caputo fractional derivatives of orderα ∈ (1, 2) on the interval (0, T ).Wepresent a Legendre
spectral collocationmethod for the Caputo fractional boundary value problems.We derive the
error bounds of the Legendre collocation method under the L2- and L∞-norms. Numerical
experiments are included to illustrate the theoretical results.
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1 Introduction

Fractional-order derivatives have recently emerged in the modelling of various processes,
see, e.g., [8,15] for several applications. The fractional calculus and fractional differential
equations (FDEs) have also attracted much attention (see, e.g., the survey paper [14]). In this
paper, we contribute to these developments by describing and analyzing a numerical method
for the following nonlinear two-point boundary value problem involving a Caputo fractional
derivative,
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{
C
0 D

α
t y(t) = f (t, y(t)), t ∈ (0, T ),

y(0) = 0, y(T ) = 0,
(1.1)

where f : [0, T ] × R → R is continuous, and C
0 D

α
t is the left-sided Caputo derivative of

order α ∈ (1, 2). In case of α = 2, C0 D
α
t coincides with the usual second order derivative

y′′(t), and the model (1.1) recovers the classical two point boundary value problem. For any
positive non-integer real number β with n − 1 < β < n, n ∈ N, the (formal) left-sided
Caputo fractional derivative of order β is defined by (see, e.g., [10, pp. 70])

C
0 D

β
t φ = 0 I

n−β
t

(dnφ
dtn

)
, t ∈ (0, T ). (1.2)

here, 0 I
γ
t for γ > 0 is the left-sided Riemann–Liouville integral operator of order γ defined

by

0 I
γ
t φ(t) = 1

�(γ )

∫ t

0
(t − s)γ−1φ(s)ds, (1.3)

which satisfies a semigroup property: for γ , δ > 0 (cf. [10, pp. 73]),

0 I
γ+δ
t φ = 0 I

γ
t 0 I

δ
t φ, ∀φ ∈ L2(0, T ). (1.4)

The Eq. (1.1) stem from the mathematical modeling of anomalous diffusion, especially
super-diffusion, in which the mean squares variance grows faster than that in a Gaussian
process. The space fractional derivative admits a micro interpretation as asymmetric Levy
flights [7]. Such phenomena were observed in applications, e.g., geophysical flows and mag-
netized plasmas [3]. Hence, the accurate simulation of the model (1.1) has great significance
in the field of science and engineering.

During the last decades, there appears a growing interest in developing numerical methods
for solving FDEs, and plenty of literature is available on this subject. Amongst the existing
methods, finite difference methods [18,20] and finite element methods [5,8,9,21] are pre-
dominant. However, these methods are based on local operations and lack the capability to
effectively deal with the problems with non-locality and weakly singularities. To overcome
these challenges, the spectral method is often a good candidate, which appears to be a global
approach and very suitable for non-local problems.

Several spectral methods for FDEs have been proposed recently. For instance, Li and
Xu [13] developed a space-time spectral Galerkin method for the diffusion equation with
a Riemann–Liouville derivatives in time, which is exponentially convergent for smooth
solutions; Esmaeili et al. [6] described a pseudo-spectral method for solving FDEs with
initial conditions and derived the pseudo-spectral differentiation matrix of fractional order;
Mokhtary and Ghoreishi [17] presented a spectral tau method for initial value problems
with a Caputo derivative, which converges exponentially provided that the data in the given
fractional integro-differential equations are smooth; Li et al. [12] derived recursive formulae
based on Legendre, Chebyshev and Jacobi polynomials for approximating the Caputo deriva-
tive, and proposed a collocation method for solving initial/boundary value problems; Chen et
al. [2] established spectral approximation results for a new class of generalized Jacobi func-
tions (GJFs) in weighted Sobolev spaces involving fractional derivatives and constructed
efficient GJF–Petrov–Galerkin methods for a class of prototypical fractional initial value
problems and fractional boundary value problems of general order.

Since the Caputo fractional boundary value problem can be reformulated as a Volterra or
Fredholm integral equation [4], the numerical methods for integral equations can also be used
in solving fractional differential equations, e.g., Kopteva and Stynes [11] reformulated the
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Caputo two-point boundary value problem as a Volterra integral equation of the second kind,
and proposed a multi-step collocation method for the Volterra integral equation. Recently,
Wang et al. [22,23] proposed and analyzed spectral collocation methods for Volterra integral
equations and Volterra functional integro-differential equations. On the basis of the works,
this paper shall further introduce and analyze a Legendre spectral collocation method for
the nonlinear Caputo fractional boundary value problem (1.1). Due to the influence of the
nonlinear term, the convergence analysis of the spectral collocation method becomes very
difficult. To this end, we employ two kinds of polynomial interpolations, i.e., the Legendre–
Gauss and Jacobi–Gauss interpolations. Accordingly, we construct the Legendre spectral
collocation scheme and design the algorithm. We also carry out a rigorous error analysis
of the proposed method and present some numerical experiments to verify the theoretical
results. The main contributions of this paper are summarized as follows:

(i) We convert the nonlinear Caputo boundary value problem (1.1) into a Volterra–
Fredholm integral equation (2.6), and present a Legendre collocation method. Numerical
results show that our method converges quickly for problems with very smooth solutions and
reasonably well for problems with singular solutions.

(ii) We establish a priori error estimate for the numerical scheme in the function spaces
L2(0, T ) and L∞(0, T ), in the case that the original problem has a smooth solution. It shows
that the spectral accuracy can be obtained for the proposed approximation.

The remainder of the paper is organized as follows. In Sect. 2, we reformulate the original
equation as an equivalent Volterra–Fredholm equation and further translate it into an equation
defined on the interval (−1, 1). The existence and uniqueness theorems of the reformulation
are also introduced there. In Sect. 3, we introduce some basic properties of the Legen-
dre/Jacobi polynomial interpolations and propose the Legendre spectral collocation method
for the reformulated nonlinear Volterra–Fredholm equation (2.6). In Sect. 4, we derive the
error bounds of the Legendre collocation method for smooth solutions in the function spaces
L2(0, T ) and L∞(0, T ), respectively. Our theoretical results are verified by the numerical
experiments in Sect. 5.

2 Reformulation of the Boundary Value Problem

We can convert (1.1) into an equivalent Fredholm equation, stated below.

Lemma 2.1 Let 1 < α < 2. Assume that y(t) is a function with an absolutely continuous
first derivative, and f : [0, T ] × R → R is continuous. Then we have that y ∈ C1[0, T ] is
a solution of the boundary value problem (1.1) if and only if it is a solution of the Fredholm
integral equation:

y(t) = 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds − t

T�(α)

∫ T

0
(T − s)α−1 f (s, y(s))ds. (2.1)

Proof This is a direct result of Lemma 6.43 and Theorem 3.1 in [4]. ��
The existence and uniqueness of the solution to (1.1) read as follows.

Lemma 2.2 (see [4, Theorem 6.44]) Assume the hypotheses of Lemma 2.1. Moreover let f
be uniformly bounded by an absolute constant. Then the boundary value problem (1.1) has
a solution y ∈ C1[0, T ].
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Lemma 2.3 Assume the hypothesis of Lemma 2.1. Moreover let f satisfy a Lipschitz con-
dition with respect to the second variable with the Lipschitz constant L <

�(α+1)
2T α . Then the

boundary value problem (1.1) has a unique solution y ∈ C1[0, T ].

Proof The uniqueness of the solution for y ∈ C1[0, T ] can be found in Theorem 6.45 of [4].
Here, we mainly derive the upper bound of the Lipschitz constant L . Define the operator A
by

Ay(t) = 1

�(α)

∫ t

0
(t − s)α−1 f (s, y(s))ds − t

T�(α)

∫ T

0
(T − s)α−1 f (s, y(s))ds.

It is clear that the operator maps C1[0, T ] into itself and that

|Ay(t) − Aŷ(t)| ≤ 1

�(α)

∫ t

0
(t − s)α−1| f (s, y(s)) − f (s, ŷ(s))|ds

+ t

T�(α)

∫ T

0
(T − s)α−1| f (s, y(s)) − f (s, ŷ(s))|ds.

≤ L

�(α)
‖y − ŷ‖L∞(0,T )

( ∫ t

0
(t − s)α−1ds + t

T

∫ T

0
(T − s)α−1ds

)

≤ 2LT α

�(α + 1)
‖y − ŷ‖L∞(0,T ).

Since C1[0, T ] ⊂ L∞(0, T ), this implies, under our assumption, that A is a contraction.
Thus, by Banach’s fixed point theorem, we obtained that A has a unique fixed point. ��

Next, let� = (−1, 1). For ease of analysis, we transfer the problem (2.1) to an equivalent
problem defined in �. More specifically, we use the change of variable

t = 1

2
T (x + 1), x ∈ �

to rewrite the Eq. (2.1) as follows,

y
(1
2
T (x + 1)

)
= 1

�(α)

∫ 1
2 T (x+1)

0

(1
2
T (x + 1) − s

)α−1
f (s, y(s))ds

− x + 1

2�(α)

∫ T

0
(T − ŝ)α−1 f (ŝ, y(ŝ))dŝ.

(2.2)

Moreover, to transfer the integral intervals (0, 1
2T (x + 1)) to (−1, x) and (0, T ) to (−1, 1),

we make the transformation s = 1
2T (ξ + 1) and ŝ = 1

2T (λ + 1). Then, (2.2) reads

y

(
1

2
T (x + 1)

)
= T α

2α�(α)

∫ x

−1
(x − ξ)α−1 f

(
1

2
T (ξ + 1), y

(
1

2
T (ξ + 1)

))
dξ

− T α(x + 1)

2α+1�(α)

∫ 1

−1
(1 − λ)α−1 f

(
1

2
T (λ + 1), y

(
1

2
T (λ + 1)

))
dλ.

(2.3)
Further, let

Y (x) = y
(1
2
T (x + 1)

)
, F(ξ, Y (ξ)) = f

(1
2
T (ξ + 1), y

(1
2
T (ξ + 1)

))
.
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Then, (2.3) can be reduced to

Y (x)= T α

2α�(α)

∫ x

−1

(
x − ξ

)α−1
F(ξ, Y (ξ))dξ− T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1
F(λ, Y (λ))dλ.

(2.4)
Finally, under the linear transformation:

ξ = ξ(x, θ) := x + 1

2
θ + x − 1

2
, θ ∈ �, (2.5)

the Eq. (2.4) becomes

Y (x) = T α(x + 1)α

4α�(α)

∫ 1

−1

(
1 − θ

)α−1
F
(
ξ(x, θ), Y

(
ξ(x, θ)

))
dθ

− T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1
F(λ, Y (λ))dλ.

(2.6)

3 The Spectral Collocation Method

In this section, we shall propose a Legendre spectral collocation method for solving the
Eq. (2.6).

3.1 The Jacobi–Gauss Interpolation

For α, β > −1, let Jα,β
k (x), x ∈ � be the standard Jacobi polynomial of degree k, and

denote the weight function ωα,β(x) = (1− x)α(1+ x)β . The set of Jacobi polynomials is a
complete L2

ωα,β (�)-orthogonal system, i.e.,

∫ 1

−1
Jα,β
k (x)Jα,β

j (x)ωα,β(x)dx = γ
α,β
k δk, j , (3.1)

where δk, j is the Kronecker function, and

γ
α,β
k =

⎧⎪⎪⎨
⎪⎪⎩

2α+β+1�(α + 1)�(β + 1)

�(α + β + 2)
, k = 0,

2α+β+1

(2k + α + β + 1)

�(k + α + 1)�(k + β + 1)

k!�(k + α + β + 1)
, k ≥ 1.

In particular,

Jα,β
0 (x) = 1, Jα,β

1 (x) = 1

2
(α + β + 2)x + 1

2
(α − β). (3.2)

For a given integer N ≥ 0, let PN be the space of all polynomials of degree at most
N . We denote by {xα,β

j , ω
α,β
j }Nj=0 the nodes and the corresponding Christoffel numbers of

the standard Jacobi–Gauss interpolation on the interval �. Then, the standard Jacobi–Gauss
quadrature formula is stated as

∫
�

φ(x)ωα,β(x)dx ≈
N∑
j=0

φ(xα,β
j )ω

α,β
j , (3.3)
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which is exact for any φ(x) ∈ P2N+1. Particularly,

N∑
j=0

Jα,β
p (xα,β

j )Jα,β
q (xα,β

j )ω
α,β
j = γ α,β

p δp,q , ∀ 0 ≤ p + q ≤ 2N + 1. (3.4)

For any v ∈ C(�), we denote by Iα,β
x,N : C(�) → PN the Jacobi–Gauss interpolation

operator in the x-direction, such that

Iα,β
x,Nv(xα,β

j ) = v(xα,β
j ), 0 ≤ j ≤ N . (3.5)

Clearly

Iα,β
x,Nv(x) =

N∑
p=0

vα,β
p Jα,β

p (x), where vα,β
p = 1

γ
α,β
p

N∑
j=0

v(x j )J
α,β
p (x j )ω

α,β
j . (3.6)

In the special case where α = β = 0, the Jacobi polynomial is reduced to the Legendre
polynomial Lk(x). Accordingly, we write x j = x0,0j , ω j = ω

0,0
j and Ix,N = I0,0

x,N for the
purpose of convenience.

3.2 The Legendre Spectral Collocation Scheme

The Legendre spectral collocation scheme for (2.6) is to seek U (x) ∈ PN (�) with N ≥ 1,
such that

U (x) = T α

4α�(α)
Ix,N

[
(x + 1)α

∫ 1

−1

(
1 − θ

)α−1Iα−1,0
θ,N F

(
ξ(x, θ),U

(
ξ(x, θ)

))
dθ
]

− T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N F(λ,U (λ))dλ.

(3.7)

This is an implicit scheme. If F satisfies the Lipschitz conditionwith the Lipschitz constant
L <

�(α+1)
2T α , then (3.7) has a unique solution, see “Appendix” of this paper.

We now describe the numerical implementations of scheme (3.7). To this end, we set

U (x) =
N∑
p=0

u pL p(x),

Ix,NIα−1,0
θ,N

((
x + 1

)α
F
(
ξ(x, θ),U

(
ξ(x, θ)

))) =
N∑
p=0

N∑
p′=0

dp,p′L p(x)J
α−1,0
p′ (θ).

(3.8)

Then by (3.8) and (3.1), a direct computation leads to

T α

4α�(α)

∫ 1

−1

(
1 − θ

)α−1Ix,NIα−1,0
θ,N

((
x + 1

)α
F
(
ξ(x, θ),U

(
ξ(x, θ)

)))
dθ

= T α

4α�(α)

N∑
p=0

N∑
p′=0

dp,p′L p(x)
∫ 1

−1
(1 − θ)α−1 Jα−1,0

p′ (θ)dθ

= T α

2α�(α + 1)

N∑
p=0

dp,0L p(x). (3.9)
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Applying (3.4) to (3.8), one can verify readily that

dp,0 = α(2p + 1)

21+α

N∑
i=0

N∑
j=0

(xi + 1)αF
(
ξ(xi , θ

α−1,0
j ),U

(
ξ(xi , θ

α−1,0
j )

))
L p(xi )ωiω

α−1,0
j .

(3.10)
Moreover, by (3.3) we have

∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N F(λ,U (λ))dλ =

N∑
j=0

F(xα−1,0
j ,U (xα−1,0

j ))ω
α−1,0
j . (3.11)

Hence, by using (3.7)–(3.11) we deduce that

N∑
p=0

u pL p(x)= T α

2α�(α + 1)

N∑
p=0

dp,0L p(x)−T α(x + 1)

2α+1�(α)

N∑
j=0

F(xα−1,0
j ,U (xα−1,0

j ))ω
α−1,0
j .

(3.12)
Comparing the expansion coefficients of (3.12) yields⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
u p = T α

2α�(α + 1)
dp,0 − T α

2α+1�(α)

N∑
j=0

F(xα−1,0
j ,U (xα−1,0

j ))ω
α−1,0
j , for p = 0, 1,

u p = T α

2α�(α + 1)
dp,0, for 2 ≤ p ≤ N .

(3.13)
The system (3.13) can be solved by an iterative process (e.g., the Newton–Raphson iter-

ation method or the successive substitution method).

4 Error Analysis

In this section, we will carry out the error analysis for the numerical scheme (3.7) under
L2(�) and L∞(�), respectively. To this end, we need some preparations.

We first recall some lemmas which will be used later. For any integerm ≥ 0, we introduce
the Jacobi-weighted Sobolev space

Hm
ωα,β (�) =

{
v : ‖v‖Hm

ωα,β
< ∞

}
with the norm and semi-norm

‖v‖Hm
ωα,β

=
(

m∑
k=0

|v|Hm
ωα,β

) 1
2

, |v|Hk
ωα,β

= ‖∂kx v‖ωα+k,β+k ,

where ‖ · ‖ωα,β denotes the weighted L2
ωα,β (�)-norm. In particular, L2(�) = H0

ω0,0(�),
‖ · ‖ = ‖ · ‖L2(�) and ‖ · ‖∞ = ‖ · ‖L∞(�).

Lemma 4.1 (cf. [19, pp. 133]) For any v ∈ Hm
ωα,β (�) with α, β > −1, m ≥ 1 and integers

0 ≤ k ≤ m ≤ N + 1,

‖∂kx (v − Iα,β
x,Nv)‖ωα+k,β+k ≤ cNk−m‖∂mx v‖ωα+m,β+m .
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Moreover, for any v ∈ Hm(�) with 1 ≤ m ≤ N + 1, we have the following result (cf. [1,
pp. 289]),

‖v − Ix,Nv‖H1(�) ≤ cN
3
2−m‖∂mx v‖.

Lemma 4.2 (cf., [16, pp. 330]) Assume that {l j (x)}Nj=0 are the Lagrange basis polynomials
associated with N + 1 Jacobi–Gauss points. Then

‖Iα,β
N ‖∞ =

⎧⎨
⎩ O(log N ), −1 < α, β ≤ −1

2
,

O(N γ+ 1
2 ), γ = max(α, β), otherwise.

(4.1)

Next, let θ ∈ � and Iα−1,0
θ,N : C(�) → PN be the Jacobi–Gauss interpolation operator in

the θ -direction with the parameter (α − 1, 0). As in (2.5), we set

ξ = ξ(x, θ) := x + 1

2
θ + x − 1

2
, θ ∈ �.

It is clear that ξ ∈ (−1, x). Let {θα−1,0
j }Nj=0 be the Jacobi–Gauss points in � and

ξ
α−1,0
j = ξ(x, θα−1,0

j ). We define a new Jacobi–Gauss interpolation operator in the ξ -

direction x Ĩα−1,0
ξ,N : C(−1, x) → PN (−1, x) as follows:

x Ĩα−1,0
ξ,N v

(
ξ

α−1,0
j

)
= v

(
ξ

α−1,0
j

)
, 0 ≤ j ≤ N .

Obviously,

x Ĩα−1,0
ξ,N v

(
ξ

α−1,0
j

)
= v

(
ξ

α−1,0
j

)
= v

(
ξ(x, θα−1,0

j )
)

= Iα−1,0
θ,N v

(
ξ(x, θα−1,0

j )
)

.

Moreover, x Ĩα−1,0
ξ,N v(ξ) andIα−1,0

θ,N v(ξ(x, θ))
∣∣
θ= 2ξ

x+1− x−1
x+1

belong toPN (−1, x) in the variable

ξ . Hence
x Ĩα−1,0

ξ,N v(ξ) = Iα−1,0
θ,N v(ξ(x, θ))

∣∣
θ= 2ξ

x+1− x−1
x+1

. (4.2)

Thus, by (4.2) and (3.3) we obtain

∫ x

−1
(x − ξ)α−1

x Ĩα−1,0
ξ,N v(ξ)dξ =

(1 + x

2

)α
∫ 1

−1
(1 − θ)α−1Iα−1,0

θ,N v(ξ(x, θ))dθ

=
(1 + x

2

)α
N∑
j=0

v
(
ξ
(
x, θα−1,0

j

))
ω

α−1,0
j

=
(1 + x

2

)α
N∑
j=0

v
(
ξ

α−1,0
j

)
ω

α−1,0
j .

(4.3)

Similarly,

∫ x

−1
(x − ξ)α−1

(
x Ĩα−1,0

ξ,N v(ξ)
)2
dξ =

(1 + x

2

)α
N∑
j=0

v2
(
ξ

α−1,0
j

)
ω

α−1,0
j . (4.4)
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Then, according to (4.2) and Lemma 4.1, we get that for integer 1 ≤ m ≤ N + 1,

∫ x

−1
(x − ξ)α−1

∣∣∣v(ξ) − x Ĩα−1,0
ξ,N v(ξ)

∣∣∣2dξ

=
(1 + x

2

)α
∫ 1

−1
(1 − θ)α−1

∣∣∣v(ξ(x, θ)) − Iα−1,0
θ,N v(ξ(x, θ))

∣∣∣2dθ

≤ cN−2m
(1 + x

2

)α
∫ 1

−1

∣∣∂mθ v(ξ(x, θ))
∣∣2(1 − θ)α+m−1(1 + θ)mdθ

= cN−2m
∫ x

−1

∣∣∂mξ v(ξ)
∣∣2(x − ξ)α+m−1(1 + ξ)mdξ.

(4.5)

We now analyze the numerical errors of scheme (3.7). Let e(x) = Y (x)−U (x) and denote
by I the identity operator. Clearly,

‖e‖ ≤ ‖Y − Ix,NY‖ + ‖Ix,NY −U‖. (4.6)

Lemma 4.3 For N ≥ 1, the following inequality holds

‖e‖ ≤
5∑
j=1

‖Bj‖,

where

B1(x) = Y (x) − Ix,NY (x),

B2(x) = T α

2α�(α)
Ix,N

∫ x

−1
(x − ξ)α−1(I − x Ĩα−1,0

ξ,N

)
F(ξ, Y (ξ))dξ,

B3(x) = T α

2α�(α)
Ix,N

∫ x

−1

(
x − ξ

)α−1
x Ĩα−1,0

ξ,N

(
F(ξ, Y (ξ)) − F(ξ,U (ξ))

)
dξ,

B4(x) = T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N

(
F(λ,U (λ)) − F(λ, Y (λ))

)
dλ,

B5(x) = T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1(Iα−1,0
λ,N − I)F(λ, Y (λ))dλ.

Proof Consider the term Ix,NY (x) −U (x). By (2.4) we have that for N ≥ 1,

Ix,NY (x) = T α

2α�(α)
Ix,N

∫ x

−1

(
x − ξ

)α−1
F(ξ, Y (ξ))dξ

− T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1
F(λ, Y (λ))dλ.

(4.7)

Moreover, by (4.2) we deduce that

∫ x

−1
(x − ξ)α−1

x Ĩα−1,0
ξ,N F(ξ,U (ξ))dξ =

( x + 1

2

)α
∫ 1

−1

(
1 − θ

)α−1Iα−1,0
θ,N

F
(
ξ(x, θ),U

(
ξ(x, θ)

))
dθ. (4.8)
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This, along with (3.7), gives that

U (x) = T α

2α�(α)
Ix,N

∫ x

−1
(x − ξ)α−1

x Ĩα−1,0
ξ,N F(ξ,U (ξ))dξ

− T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N F(λ,U (λ))dλ.

(4.9)

By subtracting (4.9) from (4.7), we derive that

Ix,NY (x) −U (x) = T α

2α�(α)
Ix,N

∫ x

−1

(
x − ξ

)α−1
(
F(ξ, Y (ξ)) − x Ĩα−1,0

ξ,N F(ξ,U (ξ))
)
dξ

+ T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1
(
Iα−1,0

λ,N F(λ,U (λ)) − F(λ, Y (λ))
)
dλ.

The previous formula can be rewritten as

Ix,NY (x) −U (x) = T α

2α�(α)
Ix,N

∫ x

−1
(x − ξ)α−1(I − x Ĩα−1,0

ξ,N

)
F(ξ, Y (ξ))dξ

+ T α

2α�(α)
Ix,N

∫ x

−1

(
x − ξ

)α−1
x Ĩα−1,0

ξ,N

(
F(ξ, Y (ξ)) − F(ξ,U (ξ))

)
dξ

+ T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N

(
F(λ,U (λ)) − F(λ,Y (λ))

)
dλ

+ T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1(Iα−1,0
λ,N − I)F(λ,Y (λ))dλ.

(4.10)
This, together with (4.6), leads to the desired result. ��

We define the Nemytskii operator F(Y )(x) := F(x, Y (x)). The following lemma estab-
lishes the convergence of our spectral collocation method in the function space L2(�).

Lemma 4.4 Let Y (x) and U (x) be the the solutions to the Eqs. (2.6) and (3.7), respectively.
Assume that α ∈ (1, 2), Y ∈ Hm

ωm,m (�), F : Hm
ωm,m (�) → Hm

ωα+m−1,m (�) with integer
1 ≤ m ≤ N + 1 and N ≥ 1. Moreover, F fulfills the Lipschitz condition with respect to the
second variable with the Lipschitz constant L <

�(α+1)
2T α . Then we have

‖Y −U‖ ≤ cN−m(‖∂mx Y‖ωm,m + ‖∂mx F(·, Y (·))‖ωα+m−1,m ).

Proof According to Lemma 4.1, we get that for any integer 1 ≤ m ≤ N + 1,

‖B1‖ = ‖Y − Ix,NY‖ ≤ cN−m‖∂mx Y‖ωm,m . (4.11)

Next, by (3.3) we obtain

‖B2‖ = T α

2α�(α)

∥∥∥∥Ix,N
∫ x

−1
(x − ξ)α−1(I − x Ĩα−1,0

ξ,N

)
F(ξ, Y (ξ))dξ

∥∥∥∥
= T α

2α�(α)

⎡
⎣ N∑

j=0

ω j

( ∫ x j

−1
(x j − ξ)α−1(I − x j Ĩα−1,0

ξ,N

)
F(ξ, Y (ξ))dξ

)2⎤⎦
1/2

.
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Using the Cauchy–Schwarz inequality and (4.5), we further get

‖B2‖

≤ T α

2α�(α)

⎡
⎣ N∑

j=0

ω j

∫ x j

−1
(x j − ξ)α−1dξ

∫ x j

−1
(x j − ξ)α−1

∣∣∣(I − x j Ĩα−1,0
ξ,N )F(ξ, Y (ξ))

∣∣∣2dξ

⎤
⎦
1/2

≤ c

⎡
⎣ N∑

j=0

ω j (x j + 1)α
∫ x j

−1
(x j − ξ)α−1

∣∣∣(I − x j Ĩα−1,0
ξ,N )F(ξ, Y (ξ))

∣∣∣2dξ

⎤
⎦
1/2

≤ cN−m

⎡
⎣ N∑

j=0

ω j (x j + 1)α
∫ x j

−1

∣∣∂mξ F(ξ, Y (ξ))
∣∣2(x j − ξ)α+m−1(1 + ξ)mdξ

⎤
⎦
1/2

≤ cN−m
∥∥∥∂mξ F(·, Y (·))

∥∥∥
ωα+m−1,m

.

(4.12)
Similarly, by (3.3), (4.4) and the Cauchy–Schwarz inequality, we derive that

‖B3‖
= T α

2α�(α)

∥∥∥Ix,N
∫ x

−1
(x − ξ)α−1

x Ĩα−1,0
ξ,N

(
F(ξ, Y (ξ)) − F(ξ,U (ξ))

)
dξ

∥∥∥
= T α

2α�(α)

⎡
⎣ N∑

j=0

ω j

( ∫ x j

−1
(x j − ξ)α−1

x j Ĩα−1,0
ξ,N

(
F(ξ, Y (ξ)) − F(ξ,U (ξ))

)
dξ
)2⎤⎦

1/2

≤ T α

2α�(α)

⎡
⎣ N∑

j=0

ω j

∫ x j

−1
(x j − ξ)α−1dξ

∫ x j

−1
(x j − ξ)α−1

∣∣∣x j Ĩα−1,0
ξ,N

(
F(ξ, Y (ξ))

−F(ξ,U (ξ))
)∣∣∣2dξ

]1/2

= T α

2α�(α)

⎡
⎣ N∑

j=0

ω j
(x j + 1)2α

2αα

N∑
k=0

∣∣∣F(ξ
α−1,0
k , Y (ξ

α−1,0
k ))

−F(ξ
α−1,0
k ,U (ξ

α−1,0
k ))

∣∣∣2ωα−1,0
k

]1/2
.

Next, for any given x j ∈ (−1, 1), let g(t) = (x j + 1)t . Since

d2

dt2
g(t) = (x j + 1)t ln2(x j + 1) > 0,

and hence g(t) is a convex function of t. Thus by Jensen’s inequality we know that for
t ∈ [1, 2],

g(t) = g(2 − t + 2(t − 1)) ≤ (2 − t)g(1) + (t − 1)g(2).
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Applying the previous inequality yields

N∑
j=0

ω j (x j + 1)α ≤
N∑
j=0

ω j

[
(2 − α)(x j + 1) + (α − 1)(x j + 1)2

]

= (2 − α)

∫
�

(x + 1)dx + (α − 1)
∫

�

(x + 1)2dx

= 4

3
+ 2α

3
≤ 8

3
, ∀α ∈ [1, 2].

(4.13)

Therefore, by (4.4), (4.5), (4.13), the Lipschitz condition and the triangle inequality, we
further deduce that for L <

�(α+1)
2T α ,

‖B3‖ ≤ LT α

2α�(α)

⎡
⎣ N∑

j=0

ω j
(x j + 1)2α

2αα

N∑
k=0

∣∣∣Y (ξ
α−1,0
k ) −U (ξ

α−1,0
k )

∣∣∣2ωα−1,0
k

⎤
⎦
1/2

≤ α

2α+1

⎡
⎣ N∑

j=0

ω j
(x j + 1)α

α

∫ x j

−1
(x j − ξ)α−1

∣∣∣x j Ĩα−1,0
ξ,N

(
Y (ξ) −U (ξ)

)∣∣∣2dξ

⎤
⎦
1/2

≤ α

2α+1

⎛
⎝ N∑

j=0

ω j
(x j + 1)α

α

⎞
⎠
1/2

max
0≤ j≤N

(∫ x j

−1
(x j − ξ)α−1

∣∣∣x j Ĩα−1,0
ξ,N (Y (ξ) −U (ξ))

∣∣∣2dξ

)1/2

≤ α

2α+1

√
8

3α
max

0≤ j≤N

[(∫ x j

−1
(x j − ξ)α−1

∣∣∣x j Ĩα−1,0
ξ,N Y (ξ) − Y (ξ)

∣∣∣2dξ

)1/2

+
(∫ x j

−1
(x j − ξ)α−1

∣∣∣Y (ξ) −U (ξ)

∣∣∣2dξ

)1/2]

≤ cN−m max
0≤ j≤N

(∫ x j

−1
(x j − ξ)α+m−1(1 + ξ)m

∣∣∣∂mξ Y (ξ)

∣∣∣2dξ

)1/2

+ α

2α+1

√
8

3α
max

0≤ j≤N

(∫ x j

−1
(x j − ξ)α−1

∣∣∣Y (ξ) −U (ξ)

∣∣∣2dξ

)1/2

≤ cN−m∥∥∂mx Y
∥∥
ωα+m−1,m + α

2α+1

√
2α+2

3α

(∫ 1

−1

∣∣∣Y (ξ) −U (ξ)

∣∣∣2dξ

)1/2

≤ cN−m‖∂mx Y‖ωα+m−1,m +
√

α

3 × 2α
‖e‖. (4.14)

We next estimate the term ‖B4‖. By the Cauchy–Schwarz inequality, we know that

‖B4‖ = T α‖x + 1‖
2α+1�(α)

∣∣∣ ∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N

(
F(λ,U (λ)) − F(λ, Y (λ))

)
dλ

∣∣∣
≤ T α

2α+1�(α)

√
2α+3

3α

[∫ 1

−1

(
1 − λ

)α−1
∣∣∣Iα−1,0

λ,N

(
F(λ,U (λ)) − F(λ, Y (λ))

)∣∣∣2dλ

]1/2
.

The previous result, along with (3.3), Lemma 4.1 and the Lipschitz condition, yields

‖B4‖ ≤ T α

2α+1�(α)

√
2α+3

3α

⎛
⎝ N∑

j=0

ω
α−1,0
j

∣∣∣F (xα−1,0
j ,U

(
xα−1,0
j

))
− F

(
xα−1,0
j , Y

(
xα−1,0
j

)) ∣∣∣2
⎞
⎠

1/2

≤ LT α

2α+1�(α)

√
2α+3

3α

⎛
⎝ N∑

j=0

ω
α−1,0
j

∣∣∣U (xα−1,0
j

)
− Y

(
xα−1,0
j

) ∣∣∣2
⎞
⎠

1/2
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= LT α

2α+1�(α)

√
2α+3

3α

(∫ 1

−1

(
1 − λ

)α−1
∣∣∣U (λ) − Iα−1,0

λ,N Y (λ)

∣∣∣2dλ

)1/2

≤
√

α

3 × 2α+1

(
‖U − Y‖ωα−1,0 + ‖Y − Iα−1,0

λ,N Y‖ωα−1,0

)

≤
√

α

12
‖e‖ + cN−m‖∂mx Y‖ωα+m−1,m . (4.15)

It remains to estimate the term ‖B5‖. By Lemma 4.1 we have

‖B5‖ = T α‖x + 1‖
2α+1�(α)

∣∣∣ ∫ 1

−1

(
1 − λ

)α−1
(Iα−1,0

λ,N − I)F(λ, Y (λ))dλ

∣∣∣
≤ c

(∫ 1

−1

(
1 − λ

)α−1
dλ

)1/2 (∫ 1

−1

(
1 − λ

)α−1
∣∣∣(Iα−1,0

λ,N − I)F(λ, Y (λ))

∣∣∣2dλ

)1/2

≤ cN−m‖∂mx F(·, Y (·))‖ωα+m−1,m .

(4.16)
Obviously, √

α

3 × 2α
+
√

α

12
< 1, ∀α ∈ (1, 2).

Hence, a combination of (4.11), (4.12), (4.14), (4.15) and (4.16) leads to the desired result.
��

Let u(t) := U ( 2tT − 1) be the numerical solution of y(t) with t ∈ (0, T ) and χα,β(t) :=
(T − t)αtβ be the weight function. Define the Nemytskii operator K(y)(t) := f (t, y(t)).
Then, by the previous result, we obtain the following theorem.

Theorem 4.1 Let y(t) be the exact solution to the Eq. (1.1), and u(t) be the numerical
solution defined above. Assume that α ∈ (1, 2), y ∈ Hm

χm,m (0, T ), K : Hm
χm,m (0, T ) →

Hm
χα+m−1,m (0, T ) with integer 1 ≤ m ≤ N + 1 and N ≥ 1. Moreover, f fulfills the Lipschitz

condition with respect to the second variable with the Lipschitz constant L <
�(α+1)
2T α . Then

we have

‖y − u‖L2(0,T ) ≤ cN−m
(

‖∂mt y‖L2
χm,m (0,T ) + ‖∂mt f (·, y(·))‖L2

χα+m−1,m (0,T )

)
.

We now derive the error estimation in the function space L∞(�).

Lemma 4.5 Let Y (x) and U (x) be the the solutions to the Eqs. (2.6) and (3.7), respectively.
Assume that α ∈ (1, 2), Y ∈ L∞(�) ∩ Hm(�), F : Hm(�) → Hm

ωα+m−1,m (�) with integer
1 ≤ m ≤ N + 1 and N ≥ 1. Moreover, F fulfills the Lipschitz condition with respect to the
second variable with the Lipschitz constant L <

�(α+1)
2T α . Then we have

‖Y −U‖∞ ≤ cN
3
4−m‖∂mx Y‖ + cN

1
2−m‖∂mx F(·, Y (·))‖ωα+m−1,m .

Proof Clearly, by (4.10) we deduce readily that

‖e‖∞ ≤ ‖Y − Ix,NY‖∞ + ‖Ix,NY −U‖∞ ≤
5∑
j=1

‖Bj‖∞. (4.17)

Moreover, according to the Sobolev inequality and Lemma 4.1, we get that for any integer
1 ≤ m ≤ N + 1,

‖B1‖∞ ≤ c‖Y − Ix,NY‖ 1
2 ‖Y − Ix,NY‖

1
2
H1(�)

≤ cN
3
4−m‖∂mx Y‖. (4.18)
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Next, by Lemma 4.2 we obtain

|B2| = T α

2α�(α)

∣∣∣Ix,N
∫ x

−1
(x − ξ)α−1(I − x Ĩα−1,0

ξ,N

)
F(ξ, Y (ξ))dξ

∣∣∣
≤ T α

2α�(α)
‖Ix,N‖∞ max−1≤x≤1

∣∣∣ ∫ x

−1
(x − ξ)α−1(I − x Ĩα−1,0

ξ,N

)
F(ξ, Y (ξ))dξ

∣∣∣
≤ cN

1
2 max−1≤x≤1

∣∣∣ ∫ x

−1
(x − ξ)α−1(I − x Ĩα−1,0

ξ,N

)
F(ξ, Y (ξ))dξ

∣∣∣.
Using the Cauchy–Schwarz inequality and (4.5), we further get

|B2| ≤ cN
1
2 max−1≤x≤1

[∫ x

−1
(x − ξ)α−1dξ

∫ x

−1
(x − ξ)α−1

∣∣∣(I − x Ĩα−1,0
ξ,N )F(ξ, Y (ξ))

∣∣∣2dξ

] 1
2

≤ cN
1
2 max−1≤x≤1

[∫ x

−1
(x − ξ)α−1

∣∣∣(I − x Ĩα−1,0
ξ,N )F(ξ, Y (ξ))

∣∣∣2dξ

] 1
2

≤ cN
1
2−m max−1≤x≤1

[∫ x

−1

∣∣∣∂mξ F(ξ, Y (ξ))

∣∣∣2(x − ξ)α+m−1(1 + ξ)mdξ

] 1
2

≤ cN
1
2−m

∥∥∥∂mξ F(·, Y (·))
∥∥∥

ωα+m−1,m
.

(4.19)
Similarly, by Lemma 4.2, (4.4) and the Cauchy–Schwarz inequality, we derive that

|B3| = T α

2α�(α)

∣∣∣Ix,N
∫ x

−1
(x − ξ)α−1

x Ĩα−1,0
ξ,N

(
F(ξ, Y (ξ)) − F(ξ,U (ξ))

)
dξ

∣∣∣
≤ c‖Ix,N ‖∞ max−1≤x≤1

∣∣∣ ∫ x

−1
(x − ξ)α−1

x Ĩα−1,0
ξ,N

(
F(ξ, Y (ξ)) − F(ξ,U (ξ))

)
dξ

∣∣∣
≤ cN

1
2 max−1≤x≤1

[∫ x

−1
(x − ξ)α−1dξ

∫ x

−1
(x − ξ)α−1

∣∣∣x Ĩα−1,0
ξ,N

(
F(ξ, Y (ξ))

−F(ξ,U (ξ))
)∣∣∣2dξ

] 1
2

≤ cN
1
2 max−1≤x≤1

⎡
⎣(1 + x

2

)α N∑
k=0

∣∣∣F(ξ
α−1,0
k , Y (ξ

α−1,0
k )) − F(ξ

α−1,0
k ,U (ξ

α−1,0
k ))

∣∣∣2ωα−1,0
k

⎤
⎦

1
2

.

Further, by using (4.4), (4.5) and a similar argument as in Theorem 4.4, we deduce that for
L <

�(α+1)
2T α ,

|B3| ≤ cN
1
2 max−1≤x≤1

[( x + 1

2

)α
N∑

k=0

∣∣∣Y (ξ
α−1,0
k ) −U (ξ

α−1,0
k )

∣∣∣2ωα−1,0
k

] 1
2

≤ cN
1
2 max−1≤x≤1

[∫ x

−1
(x − ξ)α−1

∣∣∣x Ĩα−1,0
ξ,N Y (ξ) −U (ξ)

∣∣∣2dξ

] 1
2

≤ cN
1
2 max−1≤x≤1

[∫ x

−1
(x − ξ)α−1

(∣∣∣x Ĩα−1,0
ξ,N Y (ξ) − Y (ξ)

∣∣∣2 +
∣∣∣Y (ξ) −U (ξ)

∣∣∣2)dξ

] 1
2

≤ cN
1
2−m‖∂mx Y‖ωα+m−1,m + cN

1
2 ‖e‖.

(4.20)
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We next estimate the term ‖B4‖∞. By the Cauchy–Schwarz inequality we know that

|B4| =
∣∣∣T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N

(
F(λ,U (λ)) − F(λ, Y (λ))

)
dλ

∣∣∣
≤ T α

2α�(α)

∣∣∣ ∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N

(
F(λ,U (λ)) − F(λ, Y (λ))

)
dλ

∣∣∣
≤ T α

2α�(α)

(2α

α

) 1
2
( ∫ 1

−1

(
1 − λ

)α−1
∣∣∣Iα−1,0

λ,N

(
F(λ,U (λ)) − F(λ, Y (λ))

)∣∣∣2dλ
) 1

2
.

The previous result, along with (3.3), Lemma 4.1 and the Lipschitz condition, yields

|B4| ≤ T α

2α�(α)

(
2α

α

) 1
2

⎛
⎝ N∑

j=0

ω
α−1,0
j

∣∣∣F(xα−1,0
j ,U (xα−1,0

j )) − F(xα−1,0
j , Y (xα−1,0

j ))

∣∣∣2
⎞
⎠

1
2

≤ LT α

2α�(α)

(
2α

α

) 1
2

⎛
⎝ N∑

j=0

ω
α−1,0
j

∣∣∣U (xα−1,0
j ) − Y (xα−1,0

j )

∣∣∣2
⎞
⎠

1
2

= LT α

2α�(α)

(
2α

α

) 1
2
(∫ 1

−1
(1 − λ)α−1

∣∣∣U (λ) − Iα−1,0
λ,N Y (λ)

∣∣∣2dλ

) 1
2

≤ LT α

2α�(α)

(
2α

α

) 1
2 (‖U − Y‖ωα−1,0 + ‖Y − Iα−1,0

λ,N Y‖ωα−1,0

)

≤ 1

2
‖U − Y‖∞ + cN−m‖∂mx Y‖ωα+m−1,m . (4.21)

Furthermore, by the Cauchy–Schwarz inequality and Lemma 4.1 we have

|B5| ≤ T α

2α�(α)

∣∣∣ ∫ 1

−1
(1 − λ)α−1 (Iα−1,0

λ,N − I)F(λ, Y (λ))dλ

∣∣∣
≤ c

(∫ 1

−1

(
1 − λ

)α−1
dλ

∫ 1

−1

(
1 − λ

)α−1∣∣(Iα−1,0
λ,N − I)F(λ, Y (λ))

∣∣2dλ

) 1
2

≤ cN−m‖∂mx F(·, Y (·))‖ωα+m−1,m .

(4.22)

A combination of (4.17), (4.18), (4.19), (4.20), (4.21), (4.22) and Theorem 4.4 leads to the
desired result. ��

By Lemma 4.5, we derive the following theorem.

Theorem 4.2 Let y(t) and u(t) be the exact solution and the numerical solution, respectively.
Assume that α ∈ (1, 2), y ∈ L∞(0, T ) ∩ Hm(0, T ), K : Hm(0, T ) → Hm

χα+m−1,m (0, T )

with integer 1 ≤ m ≤ N + 1 and N ≥ 1. Moreover, f fulfills the Lipschitz condition with
respect to the second variable with the Lipschitz constant L <

�(α+1)
2T α . Then we have

‖y − u‖L∞(0,T ) ≤ cN
3
4−m‖∂mt y‖L2(0,T ) + cN

1
2−m‖∂mt f (·, y(·))‖L2

χα+m−1,m (0,T ).
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5 Numerical Experiments

In this section, we present some numerical results to illustrate the efficiency of the Legendre
spectral collocation method.

5.1 Linear Problems with Smooth Solutions

We start by considering the linear boundary problems with a Caputo derivative as follows
(cf. [7]): {

C
0 D

α
t y(t) = q(t)y(t) + g(t), t ∈ (0, 1),

y(0) = y(1) = 0,
(5.1)

where q(t) = 20t3(1 − t)e−t , g(t) = − �(128/17)

�(128/17 − α)
t111/17−α − q(t)(t − t111/17). The

solution of this problem can be written as y(t) = t − t111/17, which is smooth on the interval
[0, 1].

In Figs. 1 and 2, we show the discrete L∞- and L2-errors of the Legendre spectral col-
location method, respectively. The numerical results demonstrate that the method converges

Fig. 1 L∞-errors of (5.1)
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Fig. 2 L2-errors of (5.1)
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rapidly for this case, irrespective of α, since the true solution y is very smooth. They also
indicate clearly the efficiency and accuracy of the suggested method for smooth solutions.

5.2 Linear Problems with Weakly Singular Solutions

Usually for fractional elliptic problems, the solution cannot be arbitrarily smooth, even if the
source term is very smooth [8]: it contains a leading term cαt1+α for t close to the origin.
Next, we use our method to solve a kind of linear problem with weakly singular solutions:{

C
0 D

α
t y(t) = q(t)y(t) + g(t), t ∈ (0, 1),

y(0) = y(1) = 0,
(5.2)

where q(t) = 20t3(1 − t)e−t , g(t) = −�(α + 2)t − q(t)(t − t1+α). The solution of this
problem can be written as y(t) = t − t1+α , which is weakly singular at the endpoint t = 0.

In Figs. 3 and 4, we show the discrete L∞- and L2-errors of the Legendre spectral col-
location method, respectively. The method converges slower due to limited regularity of the
solution. Nonetheless, for all three α and two kinds of errors, algebraic rates of convergence
are observed. This example also examines the influence of the fractional order α: the solution
y becomes smoother as the order α increases.

Fig. 3 L∞-errors of (5.2)
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Fig. 4 L2-errors of (5.2)
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5.3 Nonlinear Problem with Smooth Solutions

We next consider the nonlinear boundary problem with a Caputo derivative as follows:

{
C
0 D

α
t y(t) = y2(t) + g(t), t ∈ (0, 1),

y(0) = y(1) = 0,
(5.3)

where g(t) = − �(128/17)

�(128/17 − α)
t111/17−α − (t − t111/17)2. The solution of this problem can

be written as y(t) = t − t111/17, which is smooth on the interval [0, 1].
In Figs. 5 and 6, we show the discrete L∞- and L2-errors of the Legendre spectral col-

location method, respectively. The numerical results show again that the method converges
rapidly for this case, irrespective of α. They also indicate clearly the efficiency and accuracy.

Fig. 5 L∞-errors of (5.3)
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Fig. 6 L2-errors of (5.3)
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5.4 Nonlinear Problems with Weakly Singular Solutions

Wealso apply ourmethod to solve a kind of nonlinear problemwithweakly singular solutions
as follows: {

C
0 D

α
t y(t) = y2(t) + g(t), t ∈ (0, 1),

y(0) = y(1) = 0,
(5.4)

where g(t) = −�(2 + α)t − (t − t1+α)2. The solution of this problem can be written as
y(t) = t − t1+α , which is weakly singular at the endpoint t = 0.

In Figs. 7 and 8, we show the discrete L∞- and L2- errors of the Legendre spectral collo-
cation method, respectively. Analogously, for all three α and two kinds of errors, algebraic
rates of convergence are observed. They also indicate that, as α increases from α = 5/4 to
α = 7/4, the convergence rate improves accordingly. The numerical results show that the
method converges reasonably well for nonlinear problems with weakly singular solution.

To exhibit the numerical stability of the proposed method for the nonlinear problem (5.4),
we present the L∞- and L2- errors for α = 5

4 and large N in Figs. 9 and 10. We find that this
method is numerically stable even if the polynomial degree N is extremely large.

Fig. 7 L∞-errors of (5.4)
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Fig. 8 L2-errors of (5.4)
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Fig. 9 L∞-errors of (5.4) for
large N
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Fig. 10 L2-errors of (5.4) for
large N
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Appendix

In this appendix, we verify the existence and uniqueness of scheme (3.7) with the Lipschitz
constant L <

�(α+1)
2T α . We consider the following iteration process:

Um(x) = T α

4α�(α)
Ix,N

[
(x + 1)α

∫ 1

−1

(
1 − θ

)α−1Iα−1,0
θ,N F

(
ξ(x, θ),Um−1(ξ(x, θ)

))
dθ

]

− T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N F(λ,Um−1(λ))dλ.

(5.5)
Let Ũm(x) = Um(x) −Um−1(x). Then we have from (5.5) and (4.8) that

Ũm(x) = T α

2α�(α)
Ix,N

[∫ x

−1

(
x − ξ

)α−1
x Ĩα−1,0

ξ,N

(
F
(
ξ,Um−1(ξ)

)− F
(
ξ,Um−2(ξ)

))
dξ

]

− T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N

(
F(λ,Um−1(λ)) − F(λ,Um−2(λ))

)
dλ

=: A1 + A2,

(5.6)
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where

A1 = T α

2α�(α)
Ix,N

[∫ x

−1

(
x − ξ

)α−1
x Ĩα−1,0

ξ,N

(
F
(
ξ,Um−1(ξ)

)− F
(
ξ,Um−2(ξ)

))
dξ

]
,

A2 = −T α(x + 1)

2α+1�(α)

∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N

(
F(λ,Um−1(λ)) − F(λ,Um−2(λ))

)
dλ.

By (3.3), (4.4) and the Cauchy–Schwarz inequality, we derive that

‖A1‖
= T α

2α�(α)

∥∥∥Ix,N
∫ x

−1
(x − ξ)α−1

x Ĩα−1,0
ξ,N

(
F(ξ,Um−1(ξ)) − F(ξ,Um−2(ξ))

)
dξ

∥∥∥

= T α

2α�(α)

⎡
⎣ N∑

j=0

ω j

(∫ x j

−1
(x j − ξ)α−1

x j Ĩα−1,0
ξ,N

(
F(ξ,Um−1(ξ)) − F(ξ,Um−2(ξ))

)
dξ

)2
⎤
⎦

1
2

≤ T α

2α�(α)

⎡
⎣ N∑

j=0

ω j

∫ x j

−1
(x j − ξ)α−1dξ

∫ x j

−1
(x j − ξ)α−1

∣∣∣x j Ĩα−1,0
ξ,N

(
F(ξ,Um−1(ξ))

−F(ξ,Um−2(ξ))
)∣∣∣2dξ

] 1
2

= T α

2α�(α)

⎡
⎣ N∑

j=0

ω j
(x j + 1)2α

2αα

N∑
k=0

∣∣∣F(ξ
α−1,0
k ,Um−1(ξ

α−1,0
k ))

−F(ξ
α−1,0
k ,Um−2(ξ

α−1,0
k ))

∣∣∣2ωα−1,0
k

] 1
2

.

Therefore, by (4.4), (4.13) and theLipschitz condition,we further deduce that for L <
�(α+1)
2T α ,

‖A1‖ ≤ LT α

2α�(α)

⎡
⎣ N∑

j=0

ω j
(x j + 1)2α

2αα

N∑
k=0

∣∣∣Um−1(ξ
α−1,0
k ) −Um−2(ξ

α−1,0
k )

∣∣∣2ωα−1,0
k

⎤
⎦

1
2

≤ α

2α+1

⎡
⎣ N∑

j=0

ω j
(x j + 1)α

α

∫ x j

−1
(x j − ξ)α−1

∣∣∣x j Ĩα−1,0
ξ,N Ũm−1(ξ)

∣∣∣2dξ

⎤
⎦

1
2

≤ α

2α+1

⎛
⎝ N∑

j=0

ω j
(x j + 1)α

α

⎞
⎠

1
2

max
0≤ j≤N

(∫ x j

−1
(x j − ξ)α−1

∣∣∣x j Ĩα−1,0
ξ,N Ũm−1(ξ)

∣∣∣2dξ

) 1
2

= α

2α+1

⎛
⎝ N∑

j=0

ω j
(x j + 1)α

α

⎞
⎠

1
2

max
0≤ j≤N

(∫ x j

−1
(x j − ξ)α−1

∣∣∣Ũm−1(ξ)

∣∣∣2dξ

) 1
2

≤ α

2α+1

√
8

3α
max

0≤ j≤N

(∫ x j

−1
(x j − ξ)α−1

∣∣∣Ũm−1(ξ)

∣∣∣2dξ

) 1
2

≤ α

2α+1

√
2α+2

3α

(∫ 1

−1

∣∣∣Ũm−1(ξ)

∣∣∣2dξ

) 1
2

=
√

α

3 × 2α
‖Ũm−1‖.
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We next estimate the term ‖A2‖. By the Cauchy–Schwarz inequality, we know that

‖A2‖ = T α‖x + 1‖
2α+1�(α)

∣∣∣ ∫ 1

−1

(
1 − λ

)α−1Iα−1,0
λ,N

(
F(λ,Um−1(λ)) − F(λ,Um−2(λ))

)
dλ

∣∣∣
≤ T α

2α+1�(α)

√
2α+3

3α

[ ∫ 1

−1

(
1 − λ

)α−1
∣∣∣Iα−1,0

λ,N

(
F(λ,Um−1(λ)) − F(λ,Um−2(λ))

)∣∣∣2dλ
] 1
2
.

The previous result, along with (3.3) and the Lipschitz condition, yields

‖A2‖ ≤ T α

2α+1�(α)

√
2α+3

3α

⎛
⎝ N∑

j=0

ω
α−1,0
j

∣∣∣F (xα−1,0
j ,Um−1(xα−1,0

j )
)

−F
(
xα−1,0
j ,Um−2(xα−1,0

j )
) ∣∣∣2)

1
2

≤ LT α

2α+1�(α)

√
2α+3

3α

⎛
⎝ N∑

j=0

ω
α−1,0
j

∣∣∣Ũm−1(xα−1,0
j )

∣∣∣2
⎞
⎠

1
2

= LT α

2α+1�(α)

√
2α+3

3α

(∫ 1

−1

(
1 − λ

)α−1
∣∣∣Ũm−1(λ)

∣∣∣2dλ

) 1
2

≤
√

α

12
‖Ũm−1‖, ∀α ∈ (1, 2). (5.7)

Hence

‖Ũm‖ ≤
(√

α

3 × 2α
+
√

α

12

)
‖Ũm−1‖.

Since √
α

3 × 2α
+
√

α

12
< 1, ∀α ∈ (1, 2),

we have ‖Ũm‖ → 0 as m → ∞. This implies the existence of solution of (3.7). It is easy to
prove the uniqueness of solution of (3.7).
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