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Abstract An adaptive wavelet-based method is proposed for solving TV(total
variation)–Allen–Cahn type models for multi-phase image segmentation. The
adaptive algorithm integrates (i) grid adaptation based on a threshold of
the sparse wavelet representation of the locally-structured solution; and (ii)
effective finite difference on irregular stencils. The compactly supported
interpolating-type wavelets enjoy very fast wavelet transforms, and act as a
piecewise constant function filter. These lead to fairly sparse computational
grids, and relax the stiffness of the nonlinear PDEs. Equipped with this algo-
rithm, the proposed sharp interface model becomes very effective for multi-
phase image segmentation. This method is also applied to image restoration
and similar advantages are observed.
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1 Introduction

The solutions of many evolution partial differential equations (PDEs) dynam-
ically exhibit localized structures such as spikes, shock waves and singular
layers. A successful implementation of adaptive strategies for such PDEs can
significantly reduce the computational cost and increase the accuracy of nu-
merical approximations. Various adaptive techniques based on domain and/or
solution adaptivity have been developed, which include moving mesh methods
(see, e.g., [10, 28, 34]), mesh refinement methods (see, e.g., [5, 6, 10, 20, 44]),
and wavelet-based methods (see, e.g., [2, 7–9, 16, 25–27, 42, 55, 56, 59, 60]).
Typically, a wavelet-based method takes the advantage of the compression
capability of wavelets (cf. [19]) and dynamically evolves the sparse representa-
tion of the locally-structured solution through certain thresholding technique.
The existing approaches can be roughly classified into wavelet-Galerkin and
wavelet-collocation methods. The former approach solves the problems in
frequency space, so one needs to transform back and forth between the phys-
ical and wavelet domains. The wavelet-collocation method is implemented in
physical space on a dynamically adaptive grid, so it is well-suited for solving
nonlinear problems and treating general boundary conditions. In contrast with
many approaches based on purely manipulating the wavelet bases, another
more effective method is to use wavelets as a tool to analyze and update the
solution representation, and to perform numerical differentiations by finite
difference (see, e.g., [25, 26, 29, 30, 55]). Our approach will integrate the
wavelet analysis and finite-difference methods, so it falls into this category.

Image segmentation is a fundamental task in image processing and com-
puter vision. Various variational and PDE-based models have been proposed
for such a task [31, 43]. The level set method [46] has become a very useful
tool for the formulation and solution of segmentation problems [11, 57]. The
main idea is to represent and evolve a contour or a surface implicitly by
imbedding them into a higher dimensional level set function, which allows
for automatic change of topology, such as merging and breaking, and use of
fixed regular grids for computations. Recently, a piecewise constant level-
set method (PCLSM) was proposed in [36, 37] for image segmentation and
interface problems. The key point is to represent and identify an evolving
curve or surface through discontinuities of a piecewise constant function. The
use of PCLSM allows for representing arbitrary number of phases by one
single level set function, and avoiding the re-initialization required in classical
level set methods. The application of PCLSM for Mumford and Shah image
segmentation [43] leads to models closely related to phase-field models (see
e.g., [1, 33, 37]). Compared with the Allen–Cahn model [1], the Laplacian
operator is replaced by the nonlinear total-variation (TV) operator in [33, 37].
Due to this nonlinear nature of the model, it will add some difficulties to
solve the corresponding equations. However, this new model will avoid the
difficulties with mesh refinement around the singular layers [24, 49]. Moreover,
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both models can approximate the TV-norm of the function. To distinguish
it from the Allen–Cahn model, we term this new models as TV–Allen–Cahn
model in case of two-phase problems.

Some algorithms have been developed and tested for the TV–Allen–Cahn
model [3, 4, 15, 17, 33, 36, 37, 40]. In [36, 37], the traditional Augmented
Lagrangian method was developed, but the numerical convergence is normally
slow. In [17, 33, 40], the AOS scheme of [38, 39, 58] was used to get faster
iterative solvers for the nonlinear TV operator. In addition, multigrid methods
were tested in [15] and graph-cut methods were proposed in [3, 4]. For real
applications, there is a great demand for even faster and stable algorithms.
It is important to notice that the TV–Allen–Cahn models evolve piecewise
constant level set functions. Hence, such locally-structured solutions will
be well-suited for exploiting the sparsity and compression capability of the
wavelet methods. Motivated by several earlier works, the adaptive algorithm
to be developed consists of two main components: (i) grid adaptation using
a threshold of the locally compact interpolating-type wavelet decomposition
of the piecewise constant dominant solutions, and (ii) a fast finite difference
solver on irregular stencils. A key to efficiency is to associate every wavelet
uniquely with a collocation point, so the threshold of wavelet representations
adapts the computational grids automatically. Moreover, the wavelets act as a
piecewise constant function pass filter, which favors solutions with piecewise
constant structures such as edges, frames and boundaries. These lead to very
sparse solution representations and nearly-optimal computational grids. In this
context, the wavelets are used to select the significant grids (i.e., for coarsening,
and the grid refinement can also be done easily, if necessary). Indeed, this can
relax the stiffness of the models. The sparse representation leads to significant
savings in the number of flops needed to achieve a solution with a certain
accuracy. This could also gain in CPU time, if implemented with a sparse data
structure (cf. [26]).

Similar ideas have been discussed and applied in applications such as
fluid dynamics. To use this for image processing and nonlinear degenerated
diffusion operators, some novel techniques are needed. It is well known that
wavelets have many remarkable applications in signal and image processing
Interestingly, some recent works (see, e.g., [14]) have shown that the algorithm
combines the denoising property of wavelet methods with that of TV model,
produces results superior to each method when implemented alone. Although
different types of wavelets were used in e.g., [14], in this aspect, our algorithm
also inherits such a merit for simultaneous image segmentation and denoising.

The rest of the paper is organized as follows. In Section 2, we briefly review
the PCLSM for Mumford and Shah image segmentation, and present the TV–
Allen–Cahn models. In Section 3, we introduce the multi-resolution wavelet
analysis and interpolating-type wavelet transforms based on the subdivision
scheme and lifting techniques. We describe the adaptive wavelet collocation
algorithms in Section 4, and the final section is for various numerical experi-
ments on multi-phase image segmentation and restoration.
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2 Image segmentation using PCLSM

Image segmentation is one of the fundamental tasks in image processing and
computer vision, and it aims to extract objects of interest by partitioning a
given image into a finite number of important regions. Consider for example
the partition of an open bounded domain � ∈ R

2 into two disjunctive subdo-
mains by a closed curve �. It is known that the classical level-set approach is
to embed � into a two-dimensional surface z = φ(x, y), and identify � as the
zero level set: � = {(x, y) ∈ � : φ(x, y) = 0}. A typical choice of φ is the signed
distance function:

φ(x, y) =
{

dist(x, �), x = (x, y) ∈ inside(�),

−dist(x, �), x = (x, y) ∈ outside(�).
(2.1)

As a variance, the binary level set method in [36] identifies the contour � as
the discontinuity of the piecewise constant level set function:

φ(x, y) =
{

1, (x, y) ∈ inside(�),

−1, (x, y) ∈ outside(�).
(2.2)

We plot in Fig. 1 an illustration of two level set functions.
The original Mumford and Shah model [43] for image segmentation can be

formulated as: given an image u0, find a partition �i of �, and an optimal
piecewise smooth approximation u of u0 such that u varies smoothly within
each region �i, and rapidly and discontinuously across the boundaries of
�i. More precisely, this task can be carried out by solving the minimization
problem:

inf
u,�

{
F MS(u, �) =

∫
�

|u − u0|2dx + μ

∫
�\�

|∇u|2dx + ν|�|
}
, (2.3)

where |�| is the length of �, and μ, ν > 0 are fixed parameters to weight the
terms in the cost functional.

0

1
0 0.5 1

0

0.2

0.4

0.6

0
0.5

1

0
0.5

1

0

0.5

1

Fig. 1 Signed distance function (left) versus piecewise constant function (right)



Adaptive wavelet methods for image segmentation 105

Assuming that u0 consists of two phases of approximately piecewise con-
stant intensities c1 and c2, we seek the approximation u of u0 :

u = c1
1 + φ

2
+ c2

1 − φ

2
≈ u0, (2.4)

characterized by the piecewise constant level set function (2.2). Accordingly,
the Mumford and Shah model (2.3) is reduced to

inf
c1,c2, φ

{
F(c1, c2, φ) =

∫
�

|u − u0|2dx + β

∫
�

|∇φ|dx
}
, β > 0, (2.5)

subject to the constraint: φ2 = 1. In [37], the constraint was treated by the aug-
mented Lagrangian technique. Here, we merely use the penalization method,
so the corresponding model becomes

inf
c1,c2, φ

⎧⎨
⎩L(c1, c2, φ) =

∫
�

|u − u0|2dx + β

∫
�

|∇φ|dx

+γ

4

∫
�

(φ2 − 1)2dx

⎫⎬
⎭ . β, γ > 0, (2.6)

The associated Euler–Lagrange equation in gradient descent formulation
reads

∂φ

∂t
= βdiv

( ∇φ

|∇φ|
)

− (u − u0)
∂u
∂φ

+ γφ
(
1 − φ2

)
, in �. (2.7)

It is closely related to the phase field models [1, 33]. To distinguish it from
the original Allen–Cahn model, we term this binary model as the TV–Allen–
Cahn equation. In contrast to the traditional diffusive phase-field models, the
(2.7) contains a nonlinear TV-diffusion operator rather than a linear Laplacian
diffusion. This induces some difficulties for numerical solutions, but since the
TV-term has the capability to preserve discontinuities and edges, the TV-
model might avoid mesh refinement as usually required for phase-field models
[24, 49].

This model can also be used for multi-phase segmentation [36, 37]. In
classical level set methods, the sign of n level set functions are used to identity
up to 2n phases [57]. Here, we use one single piecewise constant function to
locate arbitrary number of phases. Basically, in order to decompose the image
domain � into n separated regions {�i}n

i=1, we label each one by an integer and
define the piecewise constant level set function as

φ(x, y) = i, if (x, y) ∈ �i, i = 1, 2, · · · , n. (2.8)

The characteristic function of �i is given by the Lagrange basis polynomial:

χi = 1

αi

n∏
j=1
j�=i

(φ − j) and αi =
n∏

k=1
k�=i

(i − k). (2.9)
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Like (2.4), we seek an n-phase piecewise constant function u to approximate
the original image u0,

u =
n∑

i=1

ciχi ≈ u0, (2.10)

where the unknown constants {ci} are the approximations of intensities of u0

in �i. Similarly, the constraint φ2 = 1 in (2.5) is replaced by

K(φ) ≡ (φ − 1)(φ − 2) · · · (φ − n) ≡
n∏

i=1

(φ − i) = 0. (2.11)

This guarantees there is no vacuum and overlap between different phases, that
is, each point x ∈ � can take one and only one phase value. With the above
setup, we reduce the Mumford and Shah model (2.3) to

min
c, φ

K(φ)=0

⎧⎨
⎩F(c, φ) =

∫
�

|u − u0|2dx + β

∫
�

|∇φ|dx

⎫⎬
⎭ , β > 0, (2.12)

where vector c = (c1, c2, · · · , cn). The penalization method and the gradient
descent technique give us the flow (cf. [54]):

∂φ

∂t
= βdiv

( ∇φ

|∇φ|
)

− (u − u0)
∂u
∂φ

− γ

2
K(φ)K′(φ), in �, (2.13)

which we call the multi-phase TV–Allen–Cahn model. For a given φ, the phase
values {ci} are determined by solving the n × n linear system:

n∑
j=1

c j

∫
�

χiχ j dx =
∫
�

u0χi dx, for i = 1, 2, · · · n, (2.14)

and u is updated by using (2.10).
Several numerical methods have been proposed to solve this nonlinear stiff

model (2.13) and (2.14), see [3, 4, 15, 17, 33, 40]. Here, we adopt a splitting
scheme (or operator splitting, cf. [41, 50]) similar to the ones of [17, 33, 40],
which allows to solve the following two problems consecutively and recursively
at each time step:

φt = β∇ ·
( ∇φ

|∇φ|
)

− (u − u0)
∂u
∂φ

, (2.15)

and

φt = −γ

2
K(φ)K′(φ). (2.16)

The latter is an ordinary differential equation (2.16), which can be solved
efficiently (analytically for two-phase case), so we focus on the adaptive
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algorithm for solving (2.15). In view of this, the proposed method can easily
be applied to the ROF model [47] for image denoising:

φt = β∇ ·
( ∇φ

|∇φ|
)

− (φ − u0), (2.17)

where u0 is a given noisy image, and φ at the steady state gives the restored
image.

More generally, we consider the curvature equation [45]:

∂φ

∂t
= βdiv

( ∇φ

|∇φ|
)

+ F(φ), in �,

∂φ

∂n
= 0, on ∂�; φ(x, 0) = φ0, in �. (2.18)

where n is the unit outer normal vector of ∂� and F(φ) is a functional of φ. We
next introduce multi-resolution analysis based on interpolating-type wavelet
transforms, and describe the adaptive algorithms for (2.18).

3 Interpolating wavelets, transforms and differentiation

In this section, we briefly review the subdivision scheme by Deslauriers and
Dubuc [21, 23] and introduce the multi-resolution framework. A standard
wavelet multi-resolution analysis is induced by the scaling functions {ϕk

j }, and
the wavelets {ψk

j }, which are usually generated from a single scaling and
wavelet function through transition and dilation [19]. However, for adaptive
solutions of PDEs, we use the notion of the subdivision scheme [21, 23] (also
called the cascade algorithm [52]) to derive interpolating wavelets on dyadic
grids (see, e.g., [22, 25, 26]), which leads to more effective algorithms.

3.1 Dyadic grids and multi-resolution analysis

Let I = (0, 1), and preassign a set of dyadic grids on Ī :

G j =
{

x j
k = k

2 j
: 0 ≤ k ≤ 2 j

}
, j ≥ 0, (3.1)

where the superscript j represents the level of resolution, and the subscript k
indicates the spatial location. Denote

F j := G j+1 \ G j =
{

y j
k = 2k + 1

2 j+1
: 0 ≤ k ≤ 2 j − 1

}
, j ≥ 0. (3.2)

Note that we have used x j
k and y j

k to represent the grids in G j and F j,
respectively. It is obvious that

x j
k = x j+1

2k ∈ G j, y j
k = x j+1

2k+1 ∈ F j, 0 ≤ k ≤ 2 j, (3.3)
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and {G j} j≥0 forms a sequence of nested grid sets, i.e., G j ⊂ G j+1. An illustration
of one dimensional and two-dimensional tensorial dyadic grids is given in
Fig. 2.

Now, we are ready to introduce the multi-resolution analysis. Let {ϕ j
k} (the

scaling basis) and {ψ j
k} (the wavelet basis) be the sets of basis functions (to be

specified later) associated with G j and F j, respectively. We define

V j = span
{
ϕ

j
k : k ∈ G j}, W j = span

{
ψ

j
k : k ∈ F j}, j ≥ 0. (3.4)

Here, the notation k ∈ G j means the grid point x j
k ∈ G j and likewise for other

similar expressions. Formally, by construction, we have

V0 ⊂ V1 ⊂ · · · ⊂ V j ⊂ · · · ; V j+1 = V j + W j. (3.5)

The multi-resolution decomposition from level J down to a coarser level J0 is
performed as

VJ = VJ0 + WJ0 + WJ0+1 + · · · + WJ−1, J0 ≥ 0, J ≥ 1, (3.6)

so equivalently we have the wavelet representation:

f (x) ∼
∑

k∈G J0

sJ0
k ϕ

J0
k (x) +

∑
J0≤ j≤J−1

∑
k∈F j

d j
kψ

j
k(x), ∀x ∈ Ī, (3.7)

where the wavelet coefficients {d j
k} encode the solution structures on succes-

sive multi-scales. The reconstruction process is carried out reversely.
The significance of wavelets is that most wavelet coefficients of functions

with isolated small scales on a large-scale background are very small. There-
fore, a large number of wavelets can be discarded through thresholding.
Furthermore, we shall use interpolating-type wavelets, where each physical
point uniquely associates with one wavelet, so the computational grids can be
adapted via analyzing the wavelet coefficients. At this point, two important
issues need to be addressed: (i) the construction of wavelets with high compres-
sion capabilities; (ii) the efficiency of wavelet transforms and grid adaption.
In this paper, we focus on some interpolating-type wavelets with an aim to
achieve a good trade-off between (i) and (ii).

Fig. 2 Illustration of dyadic
grids

Gj

Fj

Gj+1

Fj+1

Gj+2
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3.2 Interpolating-type wavelets and transforms

We first introduce an interpolating wavelet basis using the subdivision scheme
by Deslauriers and Dubuc [21, 23], followed by the second-generation wavelets
obtained by a lifting technique [51–53].

3.2.1 Scaling functions and wavelets

We begin with the successively local polynomial interpolation on the dyadic
grids {G j}. Given a sampling

{
f j
k := f (x j

k), ∀x j
k ∈ G j

}
of f (x), we want to

predict the physical values of f on F j by polynomial interpolation of degree
2N − 1. More precisely, for a specific point y j

k ∈ F j, we choose 2N closest
points in G j (note that y j

k and these points are all in G j+1), which could
be centered around y j

k or one-sided distributed if y j
k is near the endpoints

of the interval. For notational convenience, we denote this set of points by
{x j

l ∈ G j : l ∈ ϒ
j

k}, where ϒ
j

k is an index set of cardinality 2N. Further, let{
h j

l (x) : l ∈ ϒ
j

k

}
be the associated Lagrange basis polynomials. It is clear that

the interpolant on F j is given by

f̃ j
k =

∑
l∈ϒ

j
k

ω
j
k,l f j

l with ω
j
k,l = h j

l

(
y j

k

)
, ∀ l ∈ ϒ

j
k, ∀ k ∈ F j. (3.8)

In view of G j+1 = G j ∪ F j, we obtain the data on G j+1 by setting

f j+1
2k = f j

k, f j+1
2k+1 = f̃ j

k. (3.9)

By performing such a procedure consecutively up to any level J ≥ j, we can
obtain the interpolating scaling functions and wavelets. More precisely, the
scaling function ϕ

j
k(x) at level j corresponding to x j

k ∈ G j is obtained by feeding
the data { f j

p = δpk}2 j

p=0 in the above interpolating algorithm, and running it up
to an infinite high level of resolution (i.e., J → ∞). Due to this construction,
we find

ϕ
j
k

(
x j

p

) = δkp, ∀ x j
p ∈ G j; ϕ

j
k

(
y j

p

) = w
j
p,k = h j

k

(
y j

p

)
, ∀ y j

p ∈ F j, (3.10)

and for fixed k, one-step interpolation from level j to j + 1 yields the data:

∀p ∈ G j, f j+1
2p = δpk; ∀p ∈ F j, f j+1

2p+1 =
⎧⎨
⎩

w
j
p,k, if k ∈ ϒ

j
p ,

0, if k �∈ ϒ
j
p .

(3.11)

As a matter of fact, performing this scheme with the initial data (3.11) at level
j + 1 also converges to ϕ

j
k(x) (cf. [53]), so we have the two-scale relation:

ϕ
j
k(x) = ϕ

j+1
2k (x) +

∑
p∈F j

w
j
p,kϕ

j+1
2p+1(x), (3.12)
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where we have defined w
j
p,k = 0 if k �∈ ϒ

j
p. The wavelets are defined as

ψ
j

k(x) = 2ϕ
j+1
2k+1(x), ∀ k ∈ F j. (3.13)

Thanks to (3.12) and (3.13), {ϕ j
k, ψ

j
k} generates a multi-resolution analysis as

defined in (3.4)–(3.7). Some properties of {ϕ j
k} are summarized below:

• they are compactly supported with the support
[
(−2N + 1)2− j, (2N −

1)2− j
]
;

• ϕ
j
k(x) satisfies the interpolation property: ϕ

j
k(x j

l ) = δkl;
• linear combinations of ϕ

j
k(x) reproduce the polynomials up to degree

2N − 1.

We plot in Fig. 3 several samples of the scaling functions with j = 4 and N = 2.
Some comments on the weights {w j

k,l} are in order. Such a polynomial
interpolation on uniform dyadic grids on the whole line leads to uniform
weights, i.e., independent of j and k. For the finite interval, the weights are
independent of the level j, and have the same values for the case when local
2N points are symmetrically centered around y j

k (i.e., ϒ
j

k = {l : −N + k + 1 ≤
l ≤ N + k}), but they take different values when y j

k is near or at the boundaries
of the interval. On the other hand, for nonuniform nested grids (such as
Chebyshev–Gauss–Lobatto points), such a scheme yields weights depending
on both k and j.
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We tabulate in Table 1 some sample weights for N = 2, where Nleft and
Nright are the number of points on the left and right of y j

k.

3.2.2 Wavelet transforms

Let {V j, W j} be a multi-resolution analysis generated by the foregoing polyno-
mial interpolation scaling functions and wavelets {ϕ j

k, ψ
j

k}. For any f j+1(x) ∈
V j+1, we have the decomposition

f j+1(x) = f j(x) + d j(x), f j(x) ∈ V j, d j(x) ∈ W j. (3.14)

Equivalently, it can be expressed in terms of the basis functions:∑
k∈G j+1

c j+1
k ϕ

j+1
k (x) =

∑
l∈G j

c j
l ϕ

j
l (x) +

∑
m∈F j

d j
mψ j

m(x), (3.15)

where {c j+1
k }, {c j

l } and {d j
m} are the expansion coefficients of f j+1, f j and d j,

respectively. Thanks to the interpolating property of the scaling functions (cf.
(3.10)), we have

c j+1
k = f j+1(x j+1

k ), c j
k = f j(x j

k).

Hence, substituting x = x j+1
2k , x j+1

2k−1 into the (3.15), and using the two-scale
relation (3.12) and the interpolation property (3.10), we derive the forward
wavelet transform (decomposition):

d j
k = 1

2

⎛
⎝c j+1

2k+1 −
∑
l∈G j

w
j
k,lc

j+1
2l

⎞
⎠ ; c j

k = c j+1
2k , (3.16)

where w
j
k,l = 0 if l �∈ ϒ

j
k as before.

On the other hand, given f j and d j in (3.14), we can recover the expansion
coefficients {c j+1

k } of f j+1 by the inverse wavelet transform (reconstruction):

c j+1
2k = c j

k; c j+1
2k+1 = 2d j

k +
∑
l∈G j

w
j
k,lc

j
l . (3.17)

It is worthwhile to point out that the transform can be carried out efficiently
with around 2 jN operations.

Some variances of the subdivision polynomial interpolation have been
considered by several authors. For example, Jain et al. [29] proposed to use the

Table 1 Weights for N = 2

Nleft Nright w
j
k,k−3 w

j
k,k−2 w

j
k,k−1 w

j
k,k w

j
k,k+1 w

j
k,k+2 w

j
k,k+3 w

j
k,k+4

0 4 2.1875 −2.1875 1.3125 −0.3125
1 3 0.3125 0.9375 −0.3125 0.0625
2 2 −0.0625 0.5625 0.5625 −0.0625
3 1 0.0625 −0.3125 0.9375 0.3125
4 0 −0.3125 1.3125 −2.1875 2.1875
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points not only on the coarse level but also on the same level to compute the
interpolation, and Chan and Zhou [12, 13] suggested the use of ENO-wavelets
(cf. [25]) to avoid artificial numerical oscillations and nonphysical interpolation
of the data. Such treatments can enhance the compression capability of the
wavelets, but might complicate the implementation of grid adaption in multi-
dimensions.

Sweldens [51] constructed some second-generation wavelets by applying a
lifting technique to the existing scaling functions and wavelets, which allows
to impose some desired properties such as the vanishing moments to the
underlying wavelets. The basic idea is to modify the wavelets in (3.13) by
adding a linear combination of the scaling functions at the same level:

ψ
j,new

k (x) = ψ
j

k(x) −
∑
l∈ϒ̃

j
k

w̃
j
l,kϕ

j
l (x), (3.18)

where {w̃ j
l,k} are the lifting coefficients and ϒ̃

j
k is an index set of cardinality 2Ñ

(as ϒ
j

k in (3.8)), to be determined by the specified properties. Typically, we
require that the new wavelets have 2Ñ vanishing moments, namely,∫ 1

0
xmψ

j,new
k (x)dx = 0, 0 ≤ m ≤ 2Ñ − 1. (3.19)

Hence, {w̃ j
l,k} can be determined by the linear system:

2M j+1
2k+1,m −

∑
l∈ϒ̃

j
k

w̃
j
l,kM

j
l,m = 0, 0 ≤ m ≤ 2Ñ − 1, (3.20)

where

M j
k,m :=

∫ 1

0
xmϕ

j
k(x)dx.

We plot in Fig. 4 a sample of the original wavelet and the lifted version with
N = Ñ = 2.

The wavelet transforms involving
{
ϕ

j,new
k = ϕ

j
k, ψ

j,new
k

}
can be derived in

the same fashion as for (3.16) and (3.17). Basically, let {c̃ j
k, c̃ j+1

k , d̃ j
k} be the

expansion coefficients of { f j+1, f j, d j} in (3.14) and (3.15) in terms of the new
basis. As the counterparts of (3.16) and (3.17), the wavelet decomposition is
carried out by

d̃ j
k = 1

2

⎛
⎝c̃ j+1

2k+1 −
∑
l∈G j

w
j
k,l c̃

j+1
2l

⎞
⎠ ; c̃ j

k = c̃ j+1
2k +

∑
l∈F j

w̃
j
k,l d̃

j
l , (3.21)

and the reconstruction can be implemented by

c̃ j+1
2k = c̃ j

k −
∑
l∈F j

w̃
j
k,l d̃

j
l ; c̃ j+1

2k+1 = 2d̃ j
k +

∑
l∈G j

w
j
k,l c̃

j+1
2l , (3.22)

where w̃
j
k,l = 0, if k �∈ ϒ̃

j
l .
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(a) Interpolating wavelet
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(b) Lifted interpolating wavelet

Fig. 4 ψ4
7 (x) (left) versus ψ

4,new
7 (x) (right)

We point out that the choice of Ñ could be different from the parameter
N in (3.8), and the lifting coefficients {w̃ j

k,l} are independent of the level j. We
see that with little additional cost for solving (3.20), the transforms (3.21) and
(3.22) can be performed as efficiently as (3.16) and (3.17). Thanks to (3.19),
the lifted wavelets provide a good low-pass filter with a better scale separation.
Some other advantages were addressed in e.g., Sweldens [51, 52]. Vasilyev et al.
[32, 55] adopted the lifted basis in adaptive collocation methods for simulations
of fluid dynamics. However, we realize that the constant-pass filter interpolat-
ing wavelets lead to much sparser grids and solution representations for the
segmentation problems, where the piecewise constant structures are mostly
favored. To illustrate this, we present some numerical comparisons of the
compression capability of the interpolating wavelets and lifted counterparts.
Conventionally, given a threshold ε, we analyze the wavelet coefficients and
rewrite the approximation (3.7) as

f J(x) = f J
≥(x) + f J

<(x), (3.23)

where

f J
≥(x) =

∑
k∈G J0

cJ0
k ϕ

J0
k (x) +

J−1∑
j=J0

∑
l∈F j,

∣∣∣d j
l

∣∣∣≥ε

d j
l ψ

j
l (x), (3.24)

and

f J
<(x) =

J−1∑
j=J0

∑
l∈F j,

∣∣∣d j
l

∣∣∣<ε

d j
l ψ

j
l (x). (3.25)

We reconstruct f J by f J≥, and it is expected that (cf. Donoho [22]):∣∣ f J(x) − f J
≥(x)

∣∣ = O(ε). (3.26)
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We test the compression and reconstruction of the smooth function with large
variation:

g1(x) = sin(2πx) + exp
( − 1000(x − 0.3)2

) + exp
( − 1000(x − 0.7)2

)
,

and the piecewise-constant function

g2(x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ x < 0.2,

2, 0.2 ≤ x < 0.4,

3, 0.4 ≤ x < 0.6,

2, 0.6 ≤ x < 0.8,

1, 0.8 ≤ x ≤ 1.

We plot in Fig. 5 the distributions of the significant wavelet coefficients
{|d j

k| ≥ ε} with J0 = 3, J = 8, N = Ñ = 3 and ε = 10−3. We see that for smooth
functions with large variations, two types of wavelets essentially have similar
performance, but the piece-wise constant structures, the interpolating wavelets
gives sparser representations and therefore more efficient grid adaptation. The
restoration in both cases confirms (3.26).

3.3 Multi-dimensional wavelets and transforms

Multidimensional wavelets can be introduced by using tensor products of one-
dimensional wavelets [19, 32] or constructing non-separable multi-dimensional

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
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(a) function g1
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(b) no lifting, 52 coefficients
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(c) lifting, 53 coefficients
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Fig. 5 Test functions ((a) and (d)); Distribution of significant wavelets coefficients for ε > 10−3

((b), (c), (e) and (f)). The L∞ errors: (b) 2.244 ∗ 10−3; (c) 1.523 ∗ 10−3; (e) 0; (f) 1.216 ∗ 10−3
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wavelets [18, 48]. Since the underlying image domain � is usually rectangular,
we consider tensor-product wavelets and restrict the description to two dimen-
sional case.

Let {G j
x,F j

x}J
j=J0

and {G j
y,F j

y}J
j=J0

be the sets of nested grids in x- and y-

directions, respectively, as defined in (3.1) and (3.2), and let {ϕ j
x,k, ψ

j
x,k} and

{ϕ j
y,k, ψ

j
y,k} be the associated interpolating scaling functions and wavelets.

Define G j
xy = G j

x ⊗ G j
y, and denote the three separated subsets of G j+1

xy \ G j
xy by

F j,1
xy = G j

x ⊗ F j
y, F j,2

xy = F j
x ⊗ G j

y, F j,3
xy = F j

x ⊗ F j
y, (3.27)

see Fig. 2 (right) for an illustration. The two-dimensional scaling function is
given by

ϕ
j
i,k(x, y) = ϕ

j
x,i(x)ϕ

j
y,k(y), ∀(i, k) ∈ G j

xy,

and the wavelets are defined as

∀(i, k) ∈ F j,μ
xy , ψ

j,μ
i,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ
j

x,i(x)ϕ
j
y,k(y), μ = 1,

ϕ
j
x,i(x)ψ

j
y,k(y), μ = 2,

ψ
j

x,i(x)ψ
j
y,k(y), μ = 3.

(3.28)

Similarly, the lifted two-dimensional wavelets can be obtained by replacing ψ j

by ψ j,new (cf. (3.18)). The tensor-based wavelet transforms can be performed
in a dimension-wise fashion, and the decomposition from level-J to level-J0 is
carried out as follows:

(i) set j = J − 1;
(ii) apply the one-dimensional transform (3.16) (or (3.21)) to sweep all the

rows of G j+1
xy , i.e., in x−direction;

(iii) apply the transform (3.16) (or (3.21)) to the updated data and sweep all
the columns in G j+1

xy ;
(iv) set j = j − 1, and goto step (ii) if j ≥ J0.

The reconstruction process is manipulated conversely by applying (3.17) (or
(3.22)) in y-direction then x-direction.

Now, we test the performance of the wavelets in image compression, and
consider three typical images of size 256 × 256 in the first row of Fig. 6. Here
the compression rate is defined as

Compression rate = Number of used wavelets (pixels)
Size of image

× 100%. (3.29)

In Table 2, we tabulate the compression rate of two versions of wavelets with
J = 8, J0 = 4, Ñ = N, and various threshold ε, where for each case, the rates
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(a) Triangle (b) Satellite (c) Lena

(d) Compression rate: 2.8% (e) Compression rate: 17.8% (f) Compression rate: 60.0%

(g) Compression rate: 5.2% (h) Compression rate: 22.7% (i) Compression rate: 57.6%

Fig. 6 Original images (row 1) and recovered images after thresholding: no lifting with N = 1, ε =
0.9 (row 2); lifting with N = Ñ = 1 and ε = 0.9 (row 3). Errors: (d) 0.0; (e) 0.35; (f) 1.23; (g) 0.14;
(h) 0.43; (i) 0.92

of the lifted wavelets are listed in the latter column. We see that for images with
more localized structures, the use of interpolating wavelets leads to a much
lower compression rate, but for images with more detailed features, the saving
is relatively less. This motivates us to employ the interpolating wavelets in the
adaptive algorithm, which is anticipated to give more sparser representation
for image segmentation.
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Table 2 A comparison of compression rate

ε Triangle Satellite Lena
N = 1 N = 2 N = 1 N = 2 N = 1 N = 2

0.9 2.80 5.20 7.20 8.60 17.8 22.7 22.8 25.2 60.0 57.6 61.4 58.2
0.3 2.80 5.30 7.20 9.50 19.6 25.5 25.7 30.1 83.5 84.4 85.9 84.3
0.09 2.80 5.70 8.10 11.0 21.5 28.2 28.1 34.1 94.5 95.4 96.1 95.3
0.03 2.80 5.90 8.10 12.0 22.1 30.7 29.4 36.9 96.0 98.7 99.0 98.5

4 Adaptive wavelet collocation algorithms

We are in a position to describe the adaptive wavelet algorithms for image
segmentation and restoration models (2.18) in Section 2. For clarity of presen-
tation, we assume that u0 is a given image of size (2J + 1)2 (i.e., the level with
finest grids), and let level J0 be the prescribed coarsest level with (2J0 + 1)2

pixels. Although the algorithms can refine the grids to a level > J, in this
application, we only use wavelets to select the significant grid points. Further,
let φ0 = φ(x, 0) and φm be the adaptive wavelet approximation of φ at tm = mτ

for 1 ≤ m ≤ M, where τ is the time step and M is the terminated step.
We outline the adaptive wavelet algorithm as follows.

Step 0 Perform wavelet decomposition of φ0 from level J to J0, and analyze
the wavelet coefficients by thresholding, which leads to the grid M0,J

≥ .

For m = 0, 1, · · · , M,

Step 1 Update the computational grid Mm,J
≥ by adding the points whose

corresponding wavelet coefficients may become significant at tm+1. We
denote the new grid by M̃m,J

≥ .

Step 2 Solve the (2.18) on M̃m,J
≥ by finite difference and obtain φm+1 with

physical values on M̃m,J
≥ .

Step 3 Analyze φm+1 by computing the wavelet coefficients associated with
the points in M̃m,J

≥ , and remove the insignificant ones through thresh-
olding, which yields the adapted grid Mm+1,J

≥ . Go to Step 1.

Next, we present more detailed description of Steps 1–3.

Step 1

For an evolution PDE, the solution may develop and/or dismiss local
structures rapidly with time. In order to adapt to such features and to avoid
numerical instability, it is necessary to expand the grid MJ≥ (resulted from
wavelet thresholding at the current time step) to include some points that
might become significant in the next time step (cf. [26, 29, 35, 55]). Typically,
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the candidates are the points corresponding to neighboring wavelets (i.e.,
physical points). For instance, for y j

k ∈ MJ≥, we may add the points in{
y j′

k′ ∈ F j′ : j − L1 ≤ j′ ≤ j + L2, |2 j′− j(k + 0.5) − 0.5 − k′| ≤ L3

}
,

L1, L2, L3 ≥ 0, (4.1)

where L1 (resp. L2) is the number of coarser (resp. finer) levels, and L3 is
the number of points to be added at each level. The values of L1, L2 and
L3 depend on the evolution of the underlying solution. In this paper, we
choose L1 = L3 = 1 and L2 = 0, which admits a good trade-off between grid
adaptation and efficiency of the implementation.

Step 2

We now describe the finite difference to update φm+1 on the expanded grid
M̃m,J

≥ by solving the (2.18) with input φm on the adapted gird Mm,J
≥ . In practice,

the explicit Euler scheme is commonly used in time to evolve the nonlinear
TV-equation, and the full scheme with collocation in space is formulated as

φm+1 = φm + τβdiv
( ∇φm

|∇φm|δ

)
+ τ F(φm), ∀ x ∈ M̃m,J

≥ , (4.2)

where F is a generic functional as before and

|∇φm|δ :=
√

(φm
x )2 + (φm

x )2 + δ2 (4.3)

is a regularization of the TV-term to avoid division by zero. We may also adopt
some explicit multi-step schemes such as Runge–Kutta methods. Essentially, at
each step, one needs to evaluate numerical derivatives on the incomplete grid
M̃m,J

≥ .
On the other hand, to relax the time-step constraint induced by an explicit

method, we may utilize a semi-implicit time-stepping scheme on the linearized
equation, e.g.,

φm+1 − τβdiv
(∇φm+1

|∇φm|δ

)
= φm + τ F(φm), ∀ x ∈ M̃m,J

≥ . (4.4)

We also point out that the additive operator splitting (AOS) scheme has been
widely applied in image processing [58], and historically, it was first developed
for Navier–Stokes equations in [38, 39]. We see that such solvers need to
resolve a linear system on M̃m,J

≥ at time step, which might be solved by a direct
or an iterative method.

At this point, two important issues need to be addressed:

(i) How to recover the values of φm (merely has physical values on Mm,J
≥ )

on M̃m,J
≥ ?

(ii) How to compute the spatial derivatives on the incomplete grid M̃m,J
≥ ?

The first question will be answered in the description of Step 3 below, so we
first assume that φm is well-defined on the expanded grid M̃m,J

≥ , and discuss
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the second issue by considering the finite difference approximation of the TV-
term in (4.2). We present two approaches.

Firstly, for any point x = (xi, y j) ∈ M̃m,J
≥ , let φm

i, j be the finite difference
approximation, and let h be the (regular) mesh size. The central difference
discretization of the TV-term reads

1

h2

(
Cm

i+ 1
2 , j

(
φm

i+1, j − φm
i, j

)
− Cm

i− 1
2 , j

(
φm

i, j − φm
i−1, j

)
+ Dm

i, j+ 1
2

(
φm

i, j+1 − φm
i, j

)
− Dm

i, j− 1
2

(
φm

i, j − φm
i, j−1

))
, (4.5)

where the coefficients

Cm
i+ 1

2 , j =
⎛
⎜⎝(�x

+φm
i, j

)2 +
(
�

y
+φm

i+ 1
2 , j

)2

2
+

(
�

y
−φm

i+ 1
2 , j

)2

2
+ δ2

⎞
⎟⎠

− 1
2

, (4.6)

and

Dm
i, j+ 1

2
=
⎛
⎜⎝(�y

+φm
i, j

)2 +
(
�x+φm

i, j+ 1
2

)2

2
+

(
�x−φm

i, j+ 1
2

)2

2
+ δ2

⎞
⎟⎠

− 1
2

. (4.7)

Here, �x+, �x−, �
y
+ and �

y
− are forward and backward differences in x-direction

and y-direction, respectively, and

φm
i+ 1

2 , j = 1

2
φm

i, j +
1

2
φm

i+1, j, φm
i, j+ 1

2
= 1

2
φm

i, j +
1

2
φm

i, j+1. (4.8)

We see that (4.5) involves eight neighboring points, which might not sit in
M̃m,J

≥ . In this case, we interpolate the physical values of the missing points from
a coarser level as described in Algorithm 1 of Step 3 below, just as indicated by
[26]. Another similar technique was proposed by [55], which takes advantage
of the multiresolution wavelet decomposition. However, this technique is not
appropriate for the AOS scheme, as it will destroy the tridiagonal property of
the system. In this case, it is preferable to use finite differences on nonuniform
grids.

Again, we consider the finite difference discretization of the TV-term at
x = (ξp, ηq) ∈ M̃m,J

≥ . Denote by (ξp−1, ηq) ∈ M̃m,J
≥ (resp. (ξp+1, ηq)) the left

(resp. right) neighboring point in x-direction, and likewise for (ξp, ηq−1) and
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(ξp, ηq+1) in y-direction. Let hx,p = ξp+1 − ξp and hy,q = ηq+1 − ηq. The finite
difference approximation is

div
(∇φm+1

|∇φm|δ

)∣∣∣∣
(ξp,ηq)

∼ 2

hx,p + hx,p−1

(
Cm

p+ 1
2 ,q

φm+1
p+1,q − φm+1

p,q

hx,p
− Cm

p− 1
2 ,q

φm+1
p,q − φm+1

p−1,q

hx,p−1

)

+ 2

hy,q + hy,q−1

(
Dm

p,q+ 1
2

φm+1
p,q+1 − φm+1

p,q

hy,q
− Dm

p,q− 1
2

φm+1
p,q − φm+1

p,q−1

hy,q−1

)
,

(4.9)
where the coefficients Cm

p+ 1
2 ,q

and Dm
p,q+ 1

2
can be computed by (4.6) and (4.7),

or by finite difference on nonuniform grids in a similar fashion (note: in this
case, an interpolation from Mm,J

≥ to M̃m,J
≥ is also needed).

Step 3

The purpose of this step is to analyze the solution φm+1 obtained from Step 2 to
generate the new grid Mm+1,J

≥ for the next time step. This procedure involves
an interpolation which also makes the difference (4.5)–(4.7) feasible.

Let us focus on the interpolation process first. For clarity of presentation,
we mainly describe the one-dimensional implementation, and the idea can be
extended to multiple dimensions straightforwardly. Hereafter, the notation
is the same as before (cf. (3.1), (3.2), (3.8) and (3.16)), and recall that the
coefficients {c j

k} associated with the scaling functions are physical values of
φm+1 at {x j

k} ⊂ G j. Our objective is to calculate φm+1(x j
l ) for x j

l �∈ M̃m,J
≥ . In

view of the dyadic structure of the grids and the fact G J0 ⊂ M̃m+1,J
≥ , the point

x j
l ∈ F j′ and corresponds to y j′

m, i.e., x j
l = y j′

m = x j′+1
2m+1 (cf. (3.3)). Thus, we

have φm+1(x j
l ) = φm+1(x j′+1

2m+1) = c j′+1
2m+1. Notice that |d j′

m| ≤ ε, so we compute
φm+1(x j

l ) by (3.17):

c j′+1
2m+1 = 2d j′

m +
∑

n∈ϒ
j′

m

w j′
m,nc j′+1

n ∼
∑

n∈ϒ
j′

m

w j′
m,nc j′

n =
∑

n∈ϒ
j′

m

w j′
m,nφ

m+1
(
x j′

n

)
, (4.10)

where if x j′
n �∈ M̃m,J

≥ , then we apply the above procedure downwards recur-
sively to recover φm+1(x j′

n ). The recursion would be terminated at the coarsest
level-J0, where all points xJ0

l ∈ M̃m,J
≥ . We summarize the above in Algo-

rithm 1.
Now, we are ready to carry out Step 3, that is, to generate a new grid

Mm+1,J
≥ by applying wavelet thresholding analysis to φm+1 obtained from

Step 2. In other words, we have to find the wavelet decomposition of φm+1

on the incomplete grid M̃m,J
≥ . For clarity, we still focus on one-dimensional

implementation. By (3.16), the wavelet coefficient d j
k is computed from c j+1

2k+1 =
φm+1(x j+1

2k+1), and the closest 2N physical values c j+1
2l = φm+1(x j+1

2l ) for all l ∈
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Algorithm 1

Input the grid M̃m,J
≥ , the physical values φm+1(M̃m,J

≥ ) and the point x j
l . Output

φm+1(x j
l ).

(i) If x j
l ∈ M̃m,J

≥ , return φm+1(x j
l ).

(ii) If x j
l �∈ M̃m,J

≥ , find j′, m such that y j′
m = x j

l .

(iii) For ∀n ∈ ϒ
j′

m, apply this algorithm recursively to compute φm+1(x j′
n ).

(iv) Compute

φm+1(x j
l ) ∼

∑
n∈ϒ

j′
m

w j′
m,nφ

m+1(x j′
n ).

ϒ
j

k. If x j+1
2l �∈ M̃m,J

≥ , we call Algorithm 1 to interpolate its value φm+1(x j+1
2l ).

The algorithm for generating the new grid Mm+1,J
≥ is summarized in Algo-

rithm 2.
Alternatively, we may directly perform the decomposition of φm+1 on the

incomplete grid M̃m,J
≥ by solving the linear system∑

l∈G J0

cJ0
l ϕ

J0
l

(
x j′

k′
) +

∑
j,k,y j

k∈M̃m,J
≥

d j
kψ

j
k

(
x j′

k′
) = φm+1

(
x j′

k′
)
, ∀ x j′

k′ ∈ M̃m,J
≥ . (4.11)

This takes the advantage of the interpolating wavelets:

ϕ
J0
l

(
xJ0

k′
) = δJ0,k′ , ψ

j
k

(
x j′

k′
) = 2ϕ

j+1
2k+1

(
x j′

k′
) = 2δ2k+1,k′δ j+1, j′, j′ ≤ j + 1,

which can be solved from the coarsest level-J0 up to the finest level-J − 1 by
backward substitution. More precisely, we first take x j′

k′ = xJ0
l for l ∈ G J0 in

(4.11). This leads to cJ0
l = φm+1(xJ0

l ), so by (4.11),

2dJ0
k = φm+1

(
xJ0+1

2k+1

)
−

∑
l∈G J0

cJ0
l ϕ

J0
l

(
xJ0+1

2k+1

)
for yJ0

k ∈ M̃m,J
≥ .

Setting j′ = J0 + 1, we can find {dJ0+1
k } by substituting {cJ0

l } and {dJ0
k } into

(4.11). Repeating this procedure gives all the wavelets coefficients on M̃m,J
≥ .

It is worthwhile to point out that this algorithm is easier to implement and
extend to higher dimension, but it requires to compute the scaling function φ

at the points of all levels.

5 Numerical results

We present in this section ample numerical examples to validate the efficiency
of the adaptive algorithms for the TV–Allen–Cahn image segmentation and
ROF image denoising. We shall see that the proposed methods lead to nearly-
optimal computational grids, which are adapted to the local structures of
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Algorithm 2

Input the grid M̃m,J
≥ and the physical values φm+1(M̃m,J

≥ ). Output the new grid
Mm+1,J

≥ .
Set cJ0

k = φm+1(xJ0
k ), for all k ∈ G J0 ;

For j = J − 1, · · · , J0,

For all k ∈ F j,

If y j
k �∈ M̃m,J

≥ , then d j
k = 0;

If y j
k ∈ M̃m,J

≥ ,
For all l ∈ ϒ

j
k, compute φm+1(x j+1

2l ) by Algorithm 1;
Compute d j

k by (3.16);
End

End
Analyze the wavelet coefficients by thresholding and derive the new grid
Mm+1,J

≥ .

the image. The use of this technique can relax the stiffness of the systems,
largely reduce the computational memory, and save the flops to achieve
certain accuracy. Moreover, the methods are also not sensitive to the choice
of thresholding parameters.

5.1 Examples of image segmentation

We start with the test of the adaptive methods for the (2.13). We use a first-
order operator splitting scheme and employ an explicit time discretization
to integrate the (2.15). As usual, we utilize the quantity signal-to-noise-ratio
(SNR) to indicate the amount of noise in the observed data,

SNR = variance of data
variance of noise

,

and adopt the compression rate defined in (3.29) to qualify the grid com-
pression and adaptation. The stopping criteria is based on the l2 error of the
computational phase value vector c between two consecutive time steps less
than 10−4, which ensures the fidelity of the data in the minimization of cost
functional.

We first consider a two-phase segmentation with a noise (with SNR 1.4)
five-star image of size 300 × 250. In the following computations, the para-
meters are chosen as: (i) five-level wavelet transforms, i.e., J − J0 = 5, (ii)
the regularization parameter in the TV-term (cf. (4.3)): δ2 = 1e − 16, and (iii)
β = 6.48e + 7 and γ = 2e + 8. Notice that since the parameter β in the leading
TV-term of (2.15) is big and δ2 is close to machine zero, the time step must
be small and we take τ = 5e − 11 (which is roughly 1e − 3 by scaling out β).
We test the methods based on the interpolating wavelets with local supports
N = 1, 2 and with various thresholding parameter ε. We also compare the
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(a) u0 (SNR 1.4) (b) Full grid (c) N = 1 = 1.0 (d) N = 1 = 0.2 (e) N = 1 = 0.1

(f) N = 1 = 0.05 (g) N = 2 = 0.05 (h) N = 3 = 0.05 (i) Ñ = N = 1 = 0.05 (j) Ñ = N = 2 = 0.05 

Fig. 7 Segmentation for fivestar image. (a) Observed image; (b)–(j) Segmented images

performance against the full grid in terms of compression rate, number of
iterations and quality of segmentation.

We plot in Fig. 7 the given noise image u0 and the segmented images
obtained from the adaptive methods using two types of wavelets with different
threshold ε and local support parameter N/Ñ. In all cases, the initial phase
function φ0 is given in Fig. 9a. To illustrate the adaptation of the grids and
compression of the wavelets, we depict in Fig. 8 the grid distribution at various
time steps, and tabulate in Table 3 the compression rates for various cases,
where the last column is the number of steps needed to meet the stopping
criteria. We also plot in Fig. 9b the snapshot of the level set function at the
final step, which converges to a piecewise constant function segmenting the
given noise image. In Fig. 9c and d, we plot the numerical energy of the cost
functional: ∫

�

|u − u0|2dx + β

∫
�

|∇φ|dx + γ

4

∫
�

(φ2 − 1)2dx.

for regular full grid finite difference and the adaptive algorithms. In all cases,
the energy decreases with time, and the proposed methods give slightly smaller
numerical energy.

(a) time step: 20 (b) time step: 40 (c) time step: 60 (d) final time step: 250

Fig. 8 Illustration of the computational grids at different time with N = 1 and ε = 0.1
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Table 3 Compression rate of computational grid at different time step

20 30 40 50 60 70 80 Final Steps

N = 1, ε = 0.2 18.80 13.52 11.20 10.11 9.62 9.32 9.21 9.17 268
N = 1, ε = 0.1 56.25 33.32 21.21 15.89 13.50 12.62 12.13 11.65 250
N = 1, ε = 0.05 87.66 62.25 37.52 23.39 17.33 14.84 13.84 12.33 271
N = 2, ε = 0.05 90.15 65.45 40.46 25.60 18.66 16.06 15.11 14.42 445
N = 3, ε = 0.05 91.37 67.63 42.82 27.84 20.30 17.29 16.07 14.87 253
Lifted Ñ = N = 1, ε = 0.05 99.48 89.14 59.51 35.77 24.89 21.04 19.77 18.77 446
Lifted Ñ = N = 2, ε = 0.05 99.81 94.77 70.69 44.16 30.24 25.57 23.68 22.39 301

These results show that

(i) the adaptive algorithm for the TV–Allen–Cahn segmentation is not so
sensitive to the choice of the thresholding parameter ε, as satisfactory
results can usually be obtained by setting 0.05 ≤ ε ≤ 0.3. As the expected
solution is piecewise constant, the choice of ε is rather loose (to ensure a
piecewise constant pass filter);

(a) Initial (b) at convergence
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full grid
N=1, eps=0.05
N=2, eps=0.05
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(c) Decay of energy: 1-240 steps
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(d) Decay of energy: 60-240 steps

Fig. 9 Profiles of the initial and final phase functions with N = 1 and ε = 0.1 ((a) and (b)), and
the decay of numerical energy ((c) and (d))
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(a) u0 (SNR=1.7) (b) full grid (c) N = 1 = 0.1

(d) step: 30 (e) step: 60 (f) step: 90 (g) step: 120

(h) step: 150 (i) step: 210 (j) step: 270 (k) step: 500

Fig. 10 (a) Given noise image; (b)–(c) Segmented images; (d)–(k) Distributions of the computa-
tional grids at different time steps, and the number of points used in the final step is about 27% of
the given image size

(ii) the use of wavelets with smaller supports leads to higher compression
rate (i.e., sparser computational grids), and normally for image segmen-
tation, the choice N = 1 gives nearly-optimal grids. Moreover, as with
the tests in the previous section, the lifted wavelets oftentimes do not
really improve the overall performance of the algorithms. Notice that the
Algorithms 1 and 2 in the previous section should be slightly modified
for lifted wavelets. One might use perfect reconstruction technique
proposed in [55] to add some points into computational grid M̃m,J

≥ . This
would include some extra grids so it may reduce compression rate of

(a) u0 (SNR=5.2) (b) full grid (c) N = 1 = 0.5

0
20

40
60 80

100 0
20

40
60

80
100

0

1

2

3

4

5

(d) at convergence

(e) step: 20 (f) step: 40 (g) step: 60 (h) final step: 500

Fig. 11 (a) Given noise image; (b)–(c) Segmented images; (d) The profile of the level set function
at convergence; (e)–(h) distributions of the computational grids at different time steps, and the
number of points used in the final step is about 38% of the given image size
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(a) u0 (SNR = 6) (b) full grid (c) N = 1 = 5.0 (d) N = 1 = 1.0 (e) N = 1 = 0.5

(f) N = 1 = 0.2 (g) N = 2 = 0.2 (h) Ñ = N = 1 = 0.2 (i) Ñ= N = 2 = 0.2 (j) grid N = 1 = 0.2

Fig. 12 (a) Noise image u0; (b)–(i) Restored images; (j) Grid distribution with N = 1, ε = 0.2, and
the compression rate is 23.30%

grid. However, the intrinsic vanishing moments of the lifted wavelets are
low-pass filters, so these might be useful for imaging denoising as to be
shown later on;

(iii) the proposed method usually outperforms the finite difference method
on a uniform grids in terms of iterations particular for problems with
locally structured solutions. Here, no comparison was made in terms of
computational time, since our current implementation is not based on
sparse data structure. However, the method should be competitive also
in CPU time.

As a second example, we test the model and adaptive algorithm on a natural
car-plate image of size 239 × 57. In the computation, we use three level wavelet
transforms: J − J0 = 3, and take δ2 = 1e − 16, β = 4.08e6, γ = 1e7, τ = 1e − 8,
N = 1 and ε = 0.1. In Fig. 10, we plot the images segmented by the TV–
Allen–Cahn models using regular finite difference on uniform grids and the
proposed adaptive method, and we also depict the dynamical distribution of
the computational grids. As with the previous example, we find the use of

Table 4 Comparison of PSNR

Full grid N = 1 N = 2 N = 3

ε 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1

PSNR 34.08 33.67 33.89 34.20 33.96 34.07 34.23 33.90 34.34 34.19

Ñ = N = 1 Ñ = N = 2 Ñ = N = 3

ε 0.5 0.2 0.1 0.5 0.2 0.1 0.5 0.2 0.1

PSNR 34.50 34.19 34.30 34.08 34.28 34.14 34.11 34.14 34.36
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Table 5 Comparison of grid compression

ε 150 200 250 300 350 400 Final Steps

Full grid 100 100 100 100 100 100 100 493
N = 1, ε = 1.0 97.52 76.19 42.16 24.31 20.34 19.30 19.10 418
N = 1, ε = 0.5 99.69 89.66 61.30 34.22 24.17 21.73 20.67 475
N = 1, ε = 0.2 99.98 97.27 80.46 54.83 34.25 25.42 23.30 482
N = 1, ε = 0.1 100 99.14 89.47 68.80 47.12 31.70 26.33 460
Lifted Ñ = N = 1, ε = 0.5 100 99.34 84.41 53.33 41.10 37.83 37.57 410
Lifted Ñ = N = 1, ε = 0.2 100 99.95 96.41 76.17 52.40 42.36 40.14 464
Lifted Ñ = N = 2, ε = 0.5 100 99.54 89.08 66.28 54.69 49.88 48.10 488
Lifted Ñ = N = 2, ε = 0.2 100 99.98 97.33 83.15 66.55 56.81 53.17 464

the interpolating wavelets with the smallest support N = 1 produces a high
compression rate and reduces about 50 iterations when compared with the
regular finite difference method.

Next, we test a four-phase segmentation problem, where the image contains
three objects as shown in Fig. 11a. In the computation, we take J − J0 = 4,
δ2 = 1e − 16, β = 1.62e7, γ = 5e6, τ = 6e − 10, N = 1 and ε = 0.5. In Fig.
11d, we plot the phase function φ at convergence, which approximates the
piecewise constant phase values φ = 1 ∨ 2 ∨ 3 ∨ 4 as expected. The quality of
segmentation compared with the full grids is demonstrated in Fig. 11b and c.
Similar performance is observed as with the two-phase cases.

5.2 Examples of image denoising

Next, we test the algorithms on ROF denoising model (2.17). As usual, we
use the peak-signal-to-noise (PSNR) as a criteria for the quality of restoration,
which is expressed

PSNR = 10 log10

( ∑
i,j=1 2552∑

i,j=1(φi,j − u0i,j)
2

)

(a) u0 (SNR = 26.37) N = 1 = 1.0 (d) Ñ = N = 1 = 1.0 (e) grid N = 1 = 1.0(b) full grid (c)

Fig. 13 (a) Noise image u0; (b)–(d) Restored images with PSNR: 27.35, 27.24, 27.71, respectively;
(e) Grid distribution with N = 1, ε = 1.0, and the compression rate is 40%
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(a) u0 (SNR=8.93) N = 1 = 0.5 Ñ = N = 1 = 0.5 (e) grid N = 1 = 0.5(b) full grid (c) (d)

Fig. 14 (a) Noise image u0; (b)–(d) Restored images with PSNR: 28.03, 28.40, 28.40, respectively;
(e) Grid distribution with N = 1, ε = 1.0, and the compression rate is 89%

where {φi, j − u0i, j} are the difference of the pixel values between the restored
and given image u0. In this context, the stopping rule is based on the errors of
the numerical TV-energy

Ek
TV =

∫
�

β|∇uk| + 1

2
(uk − u0)

2dx,

between two subsequential steps such that |Em+1
TV − Em

TV | < 0.5. We take
three typical images: rectangle-bar (256 × 256), satellite (512 × 512) and Lena
(512 × 512).

For the first example, we choose the parameters J − J0 = 4, δ2 = 1e − 16,
β = 244.76, and τ = 4e − 4. Firstly, we fix the support N = 1 to examine
the influence of thresholding parameter ε. We demonstrate in Fig. 12 the
restored images obtained by regular finite difference method on full grid and
the adaptive wavelet methods with various choices of wavelets. We observe
that the proposed methods provide reliable restoration in all cases. Due to
the vanishing moments, the lifted wavelets normally produce slightly better
results with relatively higher PSNR values (cf. Table 4), but might lead to
denser computational grids (cf. Table 5). Moreover, Table 5 also shows of
the reduction of the number of iterations (compared with the regular finite
difference method).

We note that the result for ε = 0.5 is better than the results for ε = 0.2, 0.1
(cf. Table 4, PSNR 34.50 vs. 34.19 and 34.30) for case Ñ = N = 1. Once again,
we are interested in the piecewise constant solution, so a bigger threshold may
discard finer scale and lead to a better representation of the expected solution.

In the last two examples, we apply the methods with J − J0 = 4, δ2 = 1e−16,
β = 24.48 and τ = 4e − 4. The original images and restored ones are plotted in
Figs. 13 and 14. We see that the quality of restoration of different methods
is almost the same, and similar advantages are observed as previous tests.
It is anticipated that for images full of finer scales, e.g., Lena, the strength
of adaptive algorithms is not as much as for those with simple structures.
However, the use of lifted wavelets together with ROF models usually produce
a better restoration than a single technique.
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