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Abstract

The generalized Gegenbauer functions of fractional degree (GGF-Fs), denoted by rG(λ)
ν (x) (right

GGF-Fs) and l G(λ)
ν (x) (left GGF-Fs) with x ∈ (−1, 1), λ > −1/2 and real ν ≥ 0, are special functions

(usually non-polynomials), which are defined upon the hypergeometric representation of the classical
Gegenbauer polynomial by allowing integer degree to be real fractional degree. Remarkably, the GGF-Fs
become indispensable for optimal error estimates of polynomial approximation to singular functions,
and have intimate relations with several families of nonstandard basis functions recently introduced
for solving fractional differential equations. However, some properties of GGF-Fs, which are important
pieces for the analysis and applications, are unknown or under explored. The purposes of this paper are
twofold. The first is to show that for λ > −1/2 and x = cos θ with θ ∈ (0, π),

(sin θ )λ rG(λ)
ν (cos θ ) =

2λΓ (λ + 1/2)
√

π (ν + λ)λ
cos((ν + λ)θ − λπ/2) + R(λ)

ν (θ ),

and derive the precise expression of the “residual" term R(λ)
ν (θ ) for all real ν ≥ ν0 (with some ν0 > 0).

With this at our disposal, we obtain the bounds of GGF-Fs uniform in ν. Under an appropriate weight
function, the bounds are uniform for θ ∈ [0, π] as well. Moreover, we can study the asymptotics of
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GGF-Fs with large fractional degree ν. The second is to present miscellaneous properties of GGF-Fs
for better understanding of this family of useful special functions.
c⃝ 2020 Elsevier Inc. All rights reserved.
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1. Introduction

Undoubtedly, polynomial approximation theory occupies a central place in algorithm de-
velopment and numerical analysis of perhaps most of computational methods. Indeed, one
finds numerous approximation results in various senses documented in a large volume of
literature, which particularly include orthogonal polynomial approximation results related
to spectral methods and hp-version finite element methods (see, e.g., [6,20,21,24] and the
references therein). Typically, such results are established in Jacobi-weighted Sobolev spaces
with integral-order regularity exponentials (see, e.g., [11,21]), or weighted Besov spaces with
fractional regularity exponentials using the notion of space interpolation (see, e.g., [3–5]).
In a very recent work [13], we introduced a new framework of fractional Sobolev-type
spaces involving Riemann–Liouville (RL) fractional integrals and derivatives in the study of
polynomial approximation to singular functions. Such spaces are naturally arisen from exact
representations of orthogonal polynomial expansion coefficients, and could best characterize
the fractional differentiability/regularity, leading to optimal error estimates. A very important
piece of the puzzle therein is the so-called GGF-Fs that generalize the classical Gegenbauer
polynomials of integer degree to functions of fractional degree. It is noteworthy that the GGF-Fs
can be generalized by different means, e.g., the Rodrigues’ formula and hypergeometric
function representation. For instance, the right GGF-F: rG(λ)

ν (x) can be viewed as special
g-Jacobi functions (see Mirevski et al. [15]), defined by replacing the integer-order derivative
in the Rodrigues’ formula of the Jacobi polynomials by the RL fractional derivative. However,
both the definition and derivation of some properties in [15] have flaws (see Remark 4.1).
On the other hand, the Handbook [17, (15.9.15)] listed rG(λ)

ν (x) but without presented any
of their properties. Interestingly, as pointed out in [13], the GGF-Fs have a direct bearing
on Jacobi polyfractonomials (cf. [28]) and generalized Jacobi functions (cf. [7,10]) recently
introduced in developing efficient spectral methods for fractional differential equations. It is
also noteworthy that the seminal work of Gui and Babuška [9] on hp-estimates of Legendre
approximation of singular functions essentially relied on some non-classical Jacobi polynomials
with the parameter α or β < −1, which turned out closely related to GGF-Fs. In a nutshell, the
GGF-Fs (and more generally the generalized Jacobi functions of fractional degree) can be of
great value for numerical analysis and computational algorithms, but many of their properties
are still under explored.

It is known that the study of asymptotics has been a longstanding subject of special functions
and their far reaching applications (see, e.g., [16,17,23]). Most of the asymptotic results of
classical orthogonal polynomials can be found in the books [17,22], and are reported in the
review papers [14,26,27] in more general senses. We highlight that the asymptotic formulas of
the hypergeometric function: 2 F1(a − µ, b + µ; c; (1 − z)/2) in terms of Bessel functions for
large µ, were derived in Jones [12] following the idea of Olver [16] using differential equations,
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where the representations with fewer restrictions on the parameters different from those in
Watson [25] could be obtained. Farid Khwaja and Olde Daalhuis [8] discussed asymptotics of
2 F1(a − e1µ, b + e2µ; c + e3µ; (1 − z)/2) with e j = 0, ±1, j = 1, 2, 3 in terms of Bessel
functions by using the contour integrals.

One of the main objectives of this paper is to derive the uniform bounds for the GGF-Fs,
which are valid for real degree ν > 0 with fixed λ, and also for all θ ∈ [0, π] but with a
suitable weight function to absorb the singularities at the endpoints. As such, we can obtain
the asymptotic formulas for large degree ν, and some other useful estimates of the GGF-Fs. Our
delicate analysis is based on an integral representation from a very useful fractional integral
formula in [13] (see (2.7) and Lemma 2.1). In fact, the Watson’s Lemma and asymptotic
analysis for Legendre polynomials (cf. [16]) indeed cast light on our study. It is important
to point out the GGF-Fs are defined as hypergeometric functions with special parameters (see
Definition 2.1), so some asymptotic results follow from [8,12] for large parameters in terms
of Bessel functions. However, we intend to derive the results uniform for the degree and the
variable, and the estimates for large parameters are directly consequences. In other words, our
study can lead to different and more explicitly informative estimates. As such, the results herein
can offer useful tools for analysis of polynomial approximation and applications of this family
of special functions. A second purpose of this paper is to present various properties of GGF-Fs.
These particularly include singular behaviors of GGF-Fs in the vicinity of the endpoints, and
useful fractional calculus formulas.

The paper is organized as follows. In Section 2, we first introduce the definition of GGF-Fs,
and then present the main results. We then provide their proofs in Section 3. In Section 4,
we present assorted properties of GGF-Fs for better understanding of this family of special
functions.

2. Main results

2.1. Generalized Gegenbauer functions of fractional degree

Different from Mirevski et al. [15], we follow [13] to define two types of GGF-Fs by the
hypergeometric function.

Definition 2.1. For real λ > −1/2, we define the right GGF-F on (−1, 1) of real degree
ν ≥ 0 as

rG(λ)
ν (x) = 2 F1

(
−ν, ν + 2λ; λ +

1
2
;

1 − x
2

)
= 1 +

∞∑
j=1

(−ν) j (ν + 2λ) j

j ! (λ + 1/2) j

(1 − x
2

) j
, (2.1)

and the left GGF-F of real degree ν ≥ 0 as

l G(λ)
ν (x) = (−1)[ν]

2 F1

(
−ν, ν + 2λ; λ +

1
2
;

1 + x
2

)
= (−1)[ν] rG(λ)

ν (−x), (2.2)

where [ν] is the largest integer ≤ ν, and the Pochhammer symbol: (a) j = a(a+1) · · · (a+ j−1).

In the above, the hypergeometric function is a power series given by

2 F1(a, b; c; z) = 1 +

∞∑
j=1

(a) j (b) j

(c) j

z j

j !
, (2.3)

where a, b, c are real, and −c ̸∈ N := {1, 2, . . .} (see, e.g., [2]).



4 W. Liu and L.-L. Wang / Journal of Approximation Theory 253 (2020) 105378

Note that if ν = n ∈ N0 := {0} ∪ N, we have

rG(λ)
n (x) =

l G(λ)
n (x) = G(λ)

n (x) =
P (λ−1/2,λ−1/2)

n (x)

P (λ−1/2,λ−1/2)
n (1)

, λ > −
1
2
, (2.4)

where P (α,β)
n (x) is the classical Jacobi polynomial as defined in Szegö [22]. For λ = 1/2, the

right GGF-F turns to be the Legendre function (cf. [23]): r G(1/2)
ν (x) = Pν(x). For λ = 0, we

have

rG(0)
ν (x) =

rG(0)
ν (cos θ ) = cos(νθ ) = cos(ν arccos x) := Tν(x), (2.5)

thanks to the property (cf. [1, (15.1.17)]):

2 F1(−a, a, 1/2 ; sin2 t) = cos(2at), a, t ∈ R := (−∞, ∞). (2.6)

Remark 2.1. The GGF-Fs rG(λ)
n−λ+1/2(x) and l G(λ)

n−λ+1/2(x) with integer n up to some constant
multiple, coincide with some nonstandard singular basis functions introduced in [7,28] for
accurate solution of fractional differential equations.

Inherited from the Bateman’s fractional integral formula for hypergeometric functions
(cf. [2, P. 313]), we can derive the following very useful formula (cf. [13, Thm. 3.1]): for
λ > −1/2, and real ν ≥ s ≥ 0,

x I s
1

{
(1 − x2)λ−1/2 rG(λ)

ν (x)
}

=
1

Γ (s)

∫ 1

x

(1 − y2)λ−1/2 rG(λ)
ν (y)

(y − x)1−s
dy

=
Γ (λ + 1/2)

2sΓ (λ + s + 1/2)
(1 − x2)λ+s−1/2 rG(λ+s)

ν−s (x),
(2.7)

where x I s
1 is the right-sided RL fractional integral operator defined by

x I s
1 u(x) =

1
Γ (s)

∫ 1

x

u(y)
(y − x)1−s

dy. (2.8)

Note that a similar formula is available for the left GGF-F l G(λ)
ν (x) but associated with the

left-sided RL fractional integral.
Thanks to (2.7), we can derive the following formula crucial for the analysis.

Lemma 2.1. For real ν, λ ≥ 0, we have

(sin θ )2λ−1 rG(λ)
ν (cos θ ) =

2λ Γ (λ + 1/2)
√

π Γ (λ)

∫ θ

0

cos((ν + λ)φ)
(cos φ − cos θ )1−λ

dφ, (2.9)

for any θ ∈ (0, π).

Proof. From (2.5) and (2.7) with λ = 0, we obtain immediately that for ν ≥ s ≥ 0,

(1 − x2)s−1/2 rG(s)
ν−s(x) =

2s Γ (s + 1/2)
√

π Γ (s)

∫ 1

x

1
(y − x)1−s

Tν(y)√
1 − y2

dy. (2.10)

Substituting s and ν in the above identity by λ and ν + λ, respectively, and using a change of
variables: x = cos θ and y = cos φ, we derive (2.9) from (2.10) straightforwardly. □
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Remark 2.2. If λ = 1/2 and ν = n, the identity (2.9) leads to the first Dirichlet–Mehler
formula for the Legendre polynomial (cf. [23, (6.51)]):

Pn(cos θ ) =

√
2

π

∫ θ

0

cos(n + 1/2)φ
√

cos φ − cos θ
dφ, θ ∈ (0, π), n ∈ N0. (2.11)

One approach to obtain the asymptotic formula for Legendre polynomial with n → ∞ is
based on this formula, and the Watson’s lemma (cf. [16, P. 113]). This useful argument indeed
sheds light on the study of GGF-Fs herein. However, we aim to study the behavior of GGF-Fs
uniform for all ν, so the route appears very different, delicate and more involved.

2.2. Main results

We first state the results, whose proofs are given in Section 3. Here, we only consider the
right GGF-Fs, but in view of (2.2), similar results can be obtained for the left counterparts.
Note from (2.5) that if λ = 0, then R(0)

ν (θ ) ≡ 0 in (2.12). Thus, in what follows, we exclude
this trivial case and assume that λ ̸= 0.

Theorem 2.1. If λ > −1/2 and λ ̸= 0, then for all θ ∈ (0, π), we have

(sin θ )λ rG(λ)
ν (cos θ ) =

2λΓ (λ + 1/2)
√

π (ν + λ)λ
cos((ν + λ)θ − λπ/2) + R(λ)

ν (θ ), (2.12)

where the “residual” term R(λ)
ν (θ ) with a representation is given by (3.33), and there holds

|R(λ)
ν (θ )| ≤ S (λ)

ν (θ ), ∀ θ ∈ (0, π). (2.13)

Here, the bound S (λ)
ν (θ ) is given by

(i) for 0 < λ ≤ 2, ν + λ > 1 and ν > 0,

S (λ)
ν (θ ) =

λ|λ − 1|2λΓ (λ + 1/2)
√

π (ν + λ − 1)λ+1

{
| cot θ | +

2
3

λ + 1
ν + λ − 1

}
; (2.14)

(ii) for λ > 2, ν > λ − 3 and ν > 0,

S (λ)
ν (θ ) =

λ(λ − 1)23λ/2Γ (λ + 1/2)
√

π (ν + 1)λ+1

{
| cot θ | +

2
3

λ + 1
ν + 1

+
22−λΓ (2λ − 1)

Γ (λ + 1)
(ν + 1)λ+1

(ν − λ + 3)2λ−1 | cot θ |
λ−2

(
| cot θ | +

2
3

2λ − 1
ν − λ + 3

) }
;

(2.15)

(iii) for −1/2 < λ < 0 and ν ≥ 2,

S (λ)
ν (θ ) =

2λΓ (λ + 1/2)
√

π (ν + λ − 1)λ+1

{
2(λ + 1/2)| cot θ | +

(λ + 1)2

ν + λ

+ (λ + 2)(λ + 1)
(

1 +
2

ν + λ − 1
−

λ(λ + 2)
(ν + λ − 1)2

)(
| cot θ | +

2
3

λ + 3
ν + λ − 1

) }
.

(2.16)

With Theorem 2.1 at our disposal, we can obtain the bound of S (λ)
ν (θ ), and characterize its

explicit dependence of θ and decay rate in ν.

Corollary 2.1. If λ > −1/2 and λ ̸= 0, then we have⏐⏐⏐(sin θ )λ rG(λ)
ν (cos θ ) −

2λΓ (λ + 1/2)
√

π (ν + λ)λ
cos((ν + λ)θ − λπ/2)

⏐⏐⏐ ≤
B(λ)

ν

νλ+1 sin θ
, (2.17)
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where the constant B(λ)
ν is given by

(i) for 0 < λ ≤ 2 and ν + λ > 1,

B(λ)
ν =

λ |λ − 1| 2λ Γ (λ + 1/2)
√

π

3ν + 5λ − 1
3(ν + λ − 1)

exp
( 1 − λ2

ν + λ − 1

)
, (2.18)

and the bound (2.17) holds for all θ ∈ (0, π);
(ii) for λ > 2 and ν > λ − 3, we have

B(λ)
ν =

λ(λ − 1)23λ/2Γ (λ + 1/2)
3
√

π

{
3ν + 2λ + 5

ν + 1

+ (cπ )λ−2 Γ (2λ − 1)
Γ (λ + 1)

3ν + λ + 7
ν − λ + 3

exp
( (2λ − 5)(λ + 1)

ν − λ + 3

) }
,

(2.19)

and the bound (2.17) holds for all θ ∈ [cν−1, π − cν−1] with c being a fixed positive
constant;

(iii) for −1/2 < λ < 0 and ν ≥ 2,

B(λ)
ν =

2λΓ (λ + 1/2)
√

π

νλ+1

(ν + λ − 1)λ+1

{
2(λ + 1/2) +

(λ + 1)2

ν + λ

+ (λ + 2)(λ + 1)
(

1 +
2

ν + λ − 1
−

λ(λ + 2)
(ν + λ − 1)2

)(
1 +

2
3

λ + 3
ν + λ − 1

) }
,

(2.20)

and the bound (2.17) holds for all θ ∈ (0, π).

We provide the derivation of the above bounds right after the proof of Theorem 2.1. Note that
in the second case: λ > 2, the bound is only available for θ ∈ [cν−1, π −cν−1] with some fixed
constant c > 0. Indeed, the situation is reminiscent to the classical Gegenbauer polynomial with
asymptotics only valid for θ ∈ [cn−1, π − cn−1] with large n, as we remark below.

Remark 2.3. From (2.4) and Theorem 2.1, we obtain that for ν = n ∈ N,

(sin θ )λ P (λ−1/2,λ−1/2)
n (cos θ ) = (sin θ )λ P (λ−1/2,λ−1/2)

n (1) G(λ)
n (cos θ )

=
2λΓ (n + λ + 1/2)
√

π n! (n + λ)λ
cos((n + λ)θ − λπ/2) +

Γ (n + λ + 1/2)
Γ (λ + 1/2)n!

R(λ)
n (θ ).

(2.21)

Then from Corollary 2.1, we can derive the bounds uniform for n. In fact, we can re-
cover the asymptotic formula for the classical Gegenbauer polynomial with large n (cf.
[22, Thm 8.21.13]):

(sin θ )λ P (λ−1/2,λ−1/2)
n (cos θ ) =

2λ

√
πn

{
cos

(
(n + λ)θ − λπ/2

)
+

(
n sin θ

)−1 O(1)
}
, (2.22)

for all λ > −1/2, λ ̸= 0 and θ ∈ [cn−1, π − cn−1] with n ≫ 1 and c being a fixed positive
constant. Indeed, using the property of the Gamma function (cf. [1, (6.1.38)]):

Γ (x + 1) =
√

2π x x+1/2 exp
(
−x +

η

12x

)
, x > 0, 0 < η < 1, (2.23)

and the bounds of R(λ)
n (θ ) in Corollary 2.1, we can deduce (2.22) straightforwardly.
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Thanks to Theorem 2.1, we can derive the following uniform bounds for θ ∈ [0, π], and
nearly all fractional degree ν > 0. We refer to Section 3.4 for its proof.

Theorem 2.2. (i) If −1/2 < λ < 0 and ν ≥ 2; or 0 < λ ≤ 2, ν + λ > 1 and ν > 0, then we
have

|R̃(λ)
ν (θ )| =

⏐⏐⏐(sin θ )λ+1 rG(λ)
ν (cos θ ) −

2λΓ (λ + 1/2)
√

π (ν + λ)λ
(sin θ ) cos((ν + λ)θ − λπ/2)

⏐⏐⏐
≤ S̃ (λ)

ν (θ ), (2.24)

for all θ ∈ [0, π], where R̃(λ)
ν (θ ) = (sin θ )R(λ)

ν (θ ) and S̃ (λ)
ν (θ ) = (sin θ )S (λ)

ν (θ ).
(ii) If λ > 2, ν > λ − 3 and ν > 0, then we have

|R̃(λ)
ν (θ )| =

⏐⏐⏐(sin θ )2λ−1 rG(λ)
ν (cos θ ) −

2λΓ (λ + 1/2)
√

π (ν + λ)λ
(sin θ )λ−1cos((ν + λ)θ − λπ/2)

⏐⏐⏐
≤ S̃ (λ)

ν (θ ),

(2.25)

for all θ ∈ [0, π], where

R̃(λ)
ν (θ ) = (sin θ )λ−1 R(λ)

ν (θ ), S̃ (λ)
ν (θ ) = (sin θ )λ−1 S (λ)

ν (θ ).

In the end of this section, we provide some numerical illustrations of the uniform bounds in
Theorem 2.2. In Fig. 2.1, we plot the graphs of |R̃(λ)

ν (θ )| and S̃ (λ)
ν (θ ) for θ ∈ [0, π] and with

λ = −0.4, −0.2, 0.7, 1.6, 2.3, 3.1, ν = 20.3. Indeed, we observe that in all cases, the curves
of the upper bounds are on the top of |R̃(λ)

ν (θ )|, and the “sharp” corner of S̃ (λ)
ν (θ ) at θ = π/2

is largely due to the involved | cos θ |.

3. Proofs of the main results

3.1. Some lemmas

As the proofs of the main results are quite involved, we take several steps and summarize
the intermediate results in three lemmas.

Lemma 3.1. For real λ > 0, θ ∈ (0, π) and t > 0, define

g(θ, t) :=
cos(θ − it) − cos θ

t
=

cos θ (cosh t − 1) + i sin θ sinh t
t

,

f (λ)(θ, t) :=
gλ−1(θ, t) − gλ−1(θ, 0)

t
, g(θ, 0) := lim

t→0+
g(θ, t) = i sin θ.

(3.1)

Then we have for θ ∈ (0, π) and t > 0,

(i) for 0 < λ ≤ 2,

| f (λ)(θ, t)| ≤ |λ − 1| (sin θ )λ−1
(
| cot θ | +

2t
3

)
et

; (3.2)

(ii) for λ > 2,

| f (λ)(θ, t)| ≤ 2λ/2 (λ− 1) (sin θ )λ−1
(
| cot θ |+

2t
3

)(
1 +

| cot θ |
λ−2

2λ−2 tλ−2e(λ−2)t
)

e(λ−1)t .

(3.3)
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Fig. 2.1. Plots of |R̃(λ)
ν (θ )| and S̃(λ)

ν (θ ) in Theorem 2.2, where θ ∈ [0, π], λ = −0.4, −0.2, 0.7, 1.6, 2.3, 3.1 and
ν = 20.3.

To avoid distracting from proving the main result, we put this a bit lengthy proof but only
involving fundamental calculus in Appendix A.

A critical step is to show that the integral in (2.9) satisfies the following identity.

Lemma 3.2. For real ν, λ ≥ 0, and θ ∈ (0, π), we have∫ θ

0

cos((ν + λ)φ)
(cos φ − cos θ )1−λ

dφ =
Γ (λ)

(ν + λ)λ
cos((ν + λ)θ − λπ/2)

(sin θ )1−λ
+ R̆(λ)

ν (θ ), (3.4)

where

R̆(λ)
ν (θ ) :=

∫
∞

0
ℜ

{
i e−i(ν+λ)θ f (λ)(θ, t)

}
tλe−(ν+λ)t dt, (3.5)

and f (λ)(θ, t) is defined in (3.1).
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Fig. 3.2. Contour integral for (3.8). Left: for λ ≥ 1; Right: for 0 < λ < 1.

Proof. It is evident that by the parity, we have∫ θ

0

cos((ν + λ)φ)
(cos φ − cos θ )1−λ

dφ =
1
2

∫ θ

−θ

F (λ)
ν (θ, φ) dφ , (3.6)

where we denote

F (λ)
ν (θ, φ) :=

ei(ν+λ)φ

(cos φ − cos θ )1−λ
. (3.7)

We consider the cases with λ ≥ 1 and 0 < λ < 1, separately.

(i) Proof of (3.4) with λ ≥ 1. From the Cauchy–Goursat theorem, we infer that for any fixed
θ ∈ (0, π) and real ν > 0, the contour integration of F (λ)

ν (θ, ·) (with an extension to the
complex plane) along the rectangular contour in Fig. 3.2 (left), is zero. Thus, we have∫ θ

−θ

F (λ)
ν (θ, φ) dφ =

∫
−θ+iR

−θ

F (λ)
ν (θ, φ) dφ −

∫ θ+iR

θ

F (λ)
ν (θ, φ) dφ

+

∫ θ+iR

−θ+iR
F (λ)

ν (θ, φ) dφ

= i
∫ R

0

{
F (λ)

ν (θ, −θ + it) − F (λ)
ν (θ, θ + it)

}
dt

+

∫ θ

−θ

F (λ)
ν (θ, t + iR) dt,

(3.8)

where we made the change of variables for three integrals: φ = −θ + it, θ + it, t + iR,
respectively.

For λ ≥ 1 and R > 0, we have

|F (λ)
ν (θ, t + iR)| =

|ei(ν+λ)t−(ν+λ)R
|

| cos(t + iR) − cos θ |
1−λ

= e−(ν+λ)R(
(cos t cosh R − cos θ )2

+ sin2 t sinh2 R
)(λ−1)/2

≤ e−(ν+λ)R(
(cosh R + 1)2

+ sinh2 R
)(λ−1)/2

= 2(1−λ)/2e−(ν+1)R(
1 + 2e−R

+ 2e−2R
+ 2e−3R

+ e−4R)(λ−1)/2

< 2λ−1e−(ν+1)R .

(3.9)

Thus, we have

lim
R→∞

∫ θ+iR

−θ+iR
F (λ)

ν (θ, φ) dφ = lim
R→∞

∫ θ

−θ

F (λ)
ν (θ, t + iR) dt = 0. (3.10)
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Recall the notation in (3.1): tg(θ, t) = cos(θ − it) − cos θ . In view of (3.1), we can write

gλ−1(θ, t) = gλ−1(θ, 0) + t f (λ)(θ, t). Thus, by a direct calculation, we obtain

iF (λ)
ν (θ, −θ + it) − iF (λ)

ν (θ, θ + it)

=
{
i gλ−1(θ, t)e−i(ν+λ)θ

+
(
i gλ−1(θ, t)e−i(ν+λ)θ)∗}tλ−1e−(ν+λ)t

= 2 ℜ
{
i gλ−1(θ, t)e−i(ν+λ)θ}tλ−1e−(ν+λ)t

= 2 ℜ
{
i gλ−1(θ, 0)e−i(ν+λ)θ}tλ−1e−(ν+λ)t

+ 2 ℜ
{
i f (λ)(θ, t)e−i(ν+λ)θ}tλe−(ν+λ)t .

(3.11)

Since i = eiπ/2 and g(θ, 0) = (i sin θ )λ−1, we have

ℜ
{
i gλ−1(θ, 0)e−i(ν+λ)θ}

= ℜ
{
i (i sin θ )λ−1 e−i(ν+λ)θ}

= (sin θ )λ−1
ℜ

{
e−i((ν+λ)θ−λπ/2)}

= (sin θ )λ−1 cos((ν + λ)θ − λπ/2).

(3.12)

Using the definition of the Gamma function, we find that for any a > 0, z > −1,∫
∞

0
t ze−at dt =

Γ (z + 1)
az+1 , as Γ (z + 1) =

∫
∞

0
e−t t zdt. (3.13)

As a direct consequence of (3.12)–(3.13), we have

2
∫

∞

0
ℜ

{
i gλ−1(θ, 0)e−i(ν+λ)θ}tλ−1e−(ν+λ)t dt =

2Γ (λ)
(ν + λ)λ

cos((ν + λ)θ − λπ/2)
(sin θ )1−λ

. (3.14)

Letting R → ∞ in (3.8), we obtain (3.4)–(3.5) from (3.6), (3.10)–(3.11) and (3.14) directly.

(ii) Proof of (3.4) with 0 < λ < 1. In this case, we integrate along a similar contour but

exclude singular points φ = ±θ , as depicted in Fig. 3.2 (right), where 0 < ϵ < θ . Like (3.8),

we have∫ θ−ϵ

−θ+ϵ

F (λ)
ν (θ, φ) dφ = I1(ϵ, R) + I2(R) + I3(ϵ) + I4(ϵ), (3.15)

where

I1(ϵ, R) :=

∫
−θ+iR

−θ+iϵ
F (λ)

ν (θ, φ) dφ −

∫ θ+iR

θ+iϵ
F (λ)

ν (θ, φ) dφ,

I2(R) :=

∫ θ+iR

−θ+iR
F (λ)

ν (θ, φ) dφ,

I3(ϵ) :=

∫
−θ+ϵ+iϵ

−θ+ϵ

F (λ)
ν (θ, φ) dφ −

∫ θ−ϵ+iϵ

θ−ϵ

F (λ)
ν (θ, φ) dφ

I4(ϵ) := −

∫
−θ+ϵ+iϵ

−θ+iϵ
F (λ)

ν (θ, φ) dφ −

∫ θ+iϵ

θ−ϵ+iϵ
F (λ)

ν (θ, φ) dφ.

(3.16)
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Using a change of variable: φ = ±θ + it , and noting that the derivation in (3.11)–(3.12) is
valid for 0 < λ < 1, we have

I1(ϵ, R) = i
∫ R

ϵ

{
F (λ)

ν (θ, −θ + it) − F (λ)
ν (θ, θ + it)

}
dt

= 2
cos((ν + λ)θ − λπ/2)

(sin θ )1−λ

∫ R

ϵ

tλ−1e−(ν+λ)t dt

+ 2
∫ R

ϵ

ℜ
{
i f (λ)(θ, t)e−i(ν+λ)θ}tλe−(ν+λ)t dt.

(3.17)

From (3.2) and (3.13)–(3.14), we infer that

lim
ϵ→0;R→∞

I1(ϵ, R) =
2Γ (λ)

(ν + λ)λ
cos((ν + λ)θ − λπ/2)

(sin θ )1−λ

+ 2
∫

∞

0
ℜ

{
i f (λ)(θ, t)e−i(ν+λ)θ}tλe−(ν+λ)t dt.

(3.18)

Therefore, it suffices to show

lim
R→∞

I2(R) = 0, lim
ϵ→0

I3(ϵ) = lim
ϵ→0

I4(ϵ) = 0. (3.19)

By (3.8), we have

I2(R) =

∫ θ

−θ

F (λ)
ν (θ, t + iR) dt, (3.20)

and

|F (λ)
ν (θ, t + iR)| =

|ei(ν+λ)t−(ν+λ)R
|

| cos(t + iR) − cos θ |
1−λ

= e−(ν+λ)R(
(cos t cosh R − cos θ )2

+ sin2 t sinh2 R
)(λ−1)/2

≤ e−(ν+λ)R(sinh R)λ−1
| sin t |λ−1.

(3.21)

Thus, for 0 < λ < 1 and θ ∈ (0, π),

|I2(R)| ≤
2e−(ν+λ)R

(sinh R)1−λ

∫ θ

0

1
(sin t)1−λ

dt → 0, as R → ∞. (3.22)

Next, using a change of variable: θ = −θ + ϵ + it, θ − ϵ + it , respectively, for two integrals,
we obtain from a direct calculation that

I3(ϵ) = i
∫ ϵ

0

{
F (λ)

ν (θ, −θ + ϵ + it) − F (λ)
ν (θ, θ − ϵ + it)

}
dt

= 2
∫ ϵ

0
ℜ

{ ie−i(ν+λ)(θ−ϵ)

(cos(θ − ϵ − it) − cos θ )1−λ

}
e−(ν+λ)t dt.

(3.23)

Note that we have
| cos(θ − ϵ − it) − cos θ | = ((cos(θ − ϵ) cosh t − cos θ )2

+ sin2(θ − ϵ) sinh2 t)1/2

≥ | sin(θ − ϵ)∥ sinh t | ≥ | sin(θ − ϵ)∥ sin t |,
(3.24)

where we used the inequality: |sin t | ≤ sinh t for t > 0 (cf. [17, (4.18.9)]). Therefore, for
0 < λ < 1, we have

|I3(ϵ)| ≤
2

(sin(θ − ϵ))1−λ

∫ ϵ

0
(sin t)λ−1dt → 0, as ϵ → 0. (3.25)
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Similarly, with a change of variable: θ = −θ + iϵ + t, θ + iϵ − t , respectively, for two
integrals, we derive

I4(ϵ) = −

∫ ϵ

0

{
F (λ)

ν (θ, −θ + iϵ + t) + F (λ)
ν (θ, θ + iϵ − t)

}
dt

= −2e−ϵ(ν+λ)
∫ ϵ

0
ℜ

{ ei(ν+λ)(t−θ )

(cos(t − θ + iϵ) − cos θ )1−λ

}
dt.

(3.26)

It is evident that

| cos(t − θ + iϵ) − cos θ | =
(

(cos(t − θ ) cosh ϵ − cos θ )2

+ sin2(t − θ ) sinh2 ϵ
)1/2

≥ sin(θ − t) sinh ϵ,
(3.27)

where as 0 < θ < π and 0 < t < ϵ < θ , we have

0 < θ − ϵ < θ − t < θ < π.

Using the fundamental inequalities:

2
π

z ≤ sin z ≤ z, z ∈ (0, π/2), (3.28)

we find
1

sin z
=

1
sin(π − z)

≤
π

2
max

{1
z
,

1
π − z

}
, z ∈ (0, π). (3.29)

This implies

sin(θ − t) ≥
2
π

min
{
θ − t, π − θ + t

}
>

2
π

min
{
θ − ϵ, π − θ

}
. (3.30)

From (3.26) and (3.30), we obtain

|I4(ϵ)| ≤ 2e−ϵ(ν+λ)
∫ ϵ

0
| cos(t − θ + iϵ) − cos θ |

λ−1dt

≤
2λ

πλ−1

ϵ

(sinh ϵ)1−λ
max

{
(θ − ϵ)λ−1, (π − θ )λ−1}

→ 0, as ϵ → 0.

(3.31)

Thus, letting ϵ → 0 and R → ∞ in (3.15), we obtain (3.4)–(3.5) with 0 < λ < 1 from (3.6),
(3.18), (3.22), (3.25) and (3.31). □

In order to get a uniform coefficient in front of the cosine in (2.12) of Theorem 2.1 for
the case −

1
2 < λ < 0, we need to use the following bound, which can be derived from

[13, Thms 2.1-2.2] (see Proposition 4.7), and whose derivation is sketched in Appendix B.

Lemma 3.3. For 0 < λ < 1 and real ν ≥ 0, we have

max
|x |≤1

{
(1 − x2)λ/2

⏐⏐rG(λ)
ν (x)

⏐⏐} ≤
2λΓ (λ + 1/2)
√

π (ν + λ)λ
. (3.32)

3.2. Proof of Theorem 2.1

Equipped with Lemmas 3.1–3.3, we are ready to prove the main results stated in
Theorem 2.1. We first show Case-(i) and Case-(ii), as the proof of Case-(iii) needs to use
the results of these two cases.
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From (2.9) and Lemma 3.2, we derive

R(λ)
ν (θ ) =

2λ Γ (λ + 1/2)
√

π Γ (λ)
(sin θ )1−λ R̆(λ)

ν (θ )

=
2λ Γ (λ + 1/2)

√
π Γ (λ)

(sin θ )1−λ

∫
∞

0
ℜ

{
i e−i(ν+λ)θ f (λ)(θ, t)

}
tλe−(ν+λ)t dt.

(3.33)

We now estimate R̆(λ)
ν (θ ) in (3.4)–(3.5) by using Lemma 3.1.

(i) For 0 < λ ≤ 2 and ν + λ > 1, we obtain from (3.2) and (3.13) that

|R̆(λ)
ν (θ )| ≤

∫
∞

0
| f (λ)(θ, t)| tλe−(ν+λ)t dt

≤ |λ − 1| (sin θ )λ−1
∫

∞

0

(
| cot θ | +

2t
3

)
tλe−(ν+λ−1)t dt

=
|λ − 1|Γ (λ + 1)
(ν + λ − 1)λ+1 (sin θ )λ−1(

| cot θ | +
2
3

λ + 1
ν + λ − 1

)
.

(3.34)

(ii) For λ > 2 and ν > λ − 3, we derive from (3.3) and (3.13) that

|R̆(λ)
ν (θ )| ≤

∫
∞

0
| f (λ)(θ, t)| tλe−(ν+λ)t dt ≤ 2λ/2(λ − 1)(sin θ )λ−1

×

∫
∞

0

(
| cot θ | +

2t
3

)(
1 +

| cot θ |
λ−2

2λ−2 tλ−2e(λ−2)t
)

tλe−(ν+1)t dt

=
2λ/2(λ − 1)Γ (λ + 1)

(ν + 1)λ+1 (sin θ )λ−1
{

| cot θ | +
2
3

λ + 1
ν + 1

+
22−λΓ (2λ − 1)

Γ (λ + 1)
(ν + 1)λ+1

(ν − λ + 3)2λ−1 | cot θ |
λ−2

(
| cot θ | +

2
3

2λ − 1
ν − λ + 3

) }
.

(3.35)

Thus, we can derive the bounds in (2.14)–(2.15) from (3.33) and (3.34)–(3.35), respectively.
(iii) We now turn to the case with −

1
2 < λ < 0, and start with the identity

rG(λ)
ν (x) = x rG(λ+1)

ν−1 (x) −
(ν − 1)(ν + 2λ + 1)
4(λ + 1/2)(λ + 3/2)

(1 − x2) rG(λ+2)
ν−2 (x), ν ≥ 2, (3.36)

which can be derived from (2.1) and the property of hypergeometric functions (see Proposi-
tion 4.5). Taking x = cos θ in (3.36) and multiplying the resulted identity by (sin θ )λ, yields

(sin θ )λ rG(λ)
ν (cos θ ) = (sin θ )λ cos θ rG(λ+1)

ν−1 (cos θ )

−
(ν − 1)(ν + 2λ + 1)
4(λ + 1/2)(λ + 3/2)

(sin θ )λ+2 rG(λ+2)
ν−2 (cos θ ).

(3.37)

Thus, we have

R(λ)
ν (θ ) = (sin θ )λ cos θ rG(λ+1)

ν−1 (cos θ ) + R̂(λ)
ν (θ ), (3.38)

where

R̂(λ)
ν (θ ) := −

(ν − 1)(ν + 2λ + 1)
4(λ + 1/2)(λ + 3/2)

(sin θ )λ+2 rG(λ+2)
ν−2 (cos θ )

−
2λΓ (λ + 1/2)
√

π (ν + λ)λ
cos((ν + λ)θ − λπ/2).
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Using Lemma 3.3 with λ + 1 ∈ (1/2, 1), we can bound the first term in (3.38) by⏐⏐(sin θ )λ cos θ rG(λ+1)
ν−1 (cos θ )

⏐⏐ =
⏐⏐ cot θ (sin θ )λ+1 rG(λ+1)

ν−1 (cos θ )
⏐⏐

≤
2λ+1Γ (λ + 3/2)
√

π (ν + λ)λ+1
| cot θ |.

(3.39)

Now, we deal with R̂(λ)
ν (θ ). Using the proved result (2.12) with λ + 2 ∈ (3/2, 2), we obtain

that for ν ≥ 2,

(sin θ )λ+2 rG(λ+2)
ν−2 (cos θ ) = −

2λ+2Γ (λ + 5/2)
√

π (ν + λ)λ+2
cos((ν + λ)θ − λπ/2) + R(λ+2)

ν−2 (θ ).

Inserting it into R̂(λ)
ν (θ ) leads to

R̂(λ)
ν (θ )

=

{
2λΓ (λ + 1/2)(ν − 1)(ν + 2λ + 1)

√
π (ν + λ)λ+2

−
2λΓ (λ + 1/2)
√

π (ν + λ)λ

}
cos((ν + λ)θ − λπ/2)

−
(ν − 1)(ν + 2λ + 1)
4(λ + 1/2)(λ + 3/2)

R(λ+2)
ν−2 (θ ).

(3.40)

Direct calculation yields

⏐⏐⏐2λΓ (λ + 1/2)(ν − 1)(ν + 2λ + 1)
√

π (ν + λ)λ+2
−

2λΓ (λ + 1/2)
√

π (ν + λ)λ

⏐⏐⏐⏐⏐cos((ν + λ)θ − λπ/2)
⏐⏐

≤
2λ(λ + 1)2Γ (λ + 1/2)

√
π (ν + λ)λ+2

.

(3.41)

Using the proved bound in (2.14), we find

(ν − 1)(ν + 2λ + 1)
4(λ + 1/2)(λ + 3/2)

⏐⏐R(λ+2)
ν−2 (θ )

⏐⏐ ≤
(λ + 2)(λ + 1)2λΓ (λ + 1/2)

√
π (ν + λ − 1)λ+1

×

{
1 +

2
ν + λ − 1

−
λ(λ + 2)

(ν + λ − 1)2

}{
| cot θ | +

2
3

λ + 3
ν + λ − 1

}
.

(3.42)

In view of (3.41)–(3.42), we obtain from (3.40) that

⏐⏐R̂(λ)
ν (θ )

⏐⏐ ≤
2λ(λ + 1)2Γ (λ + 1/2)

√
π (ν + λ)λ+2

+
(λ + 2)(λ + 1)2λΓ (λ + 1/2)

√
π (ν + λ − 1)λ+1

×

{
1 +

2
ν + λ − 1

−
λ(λ + 2)

(ν + λ − 1)2

}{
| cot θ | +

2
3

λ + 3
ν + λ − 1

}
.

(3.43)

Thanks to (3.39) and (3.43), we obtain from (3.38) the bound (2.16). This completes the proof

of Theorem 2.1.
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3.3. Proof of Corollary 2.1

We prove three cases separately.

(i) We obtain from (2.14) that

νλ+1 sin θ |R(λ)
ν (θ )|

≤
λ|λ − 1|2λΓ (λ + 1/2)

√
π

(
| cos θ | +

2
3

(λ + 1) sin θ

ν + λ − 1

)(
1 +

1 − λ

ν + λ − 1

)λ+1

≤
λ|λ − 1|2λΓ (λ + 1/2)

√
π

(
1 +

2
3

λ + 1
ν + λ − 1

)(
1 +

1 − λ

ν + λ − 1

)λ+1
.

Using the basic inequality: ln(1 + z) ≤ z for z > −1, we find(
1 +

1 − λ

ν + λ − 1

)λ+1
= exp

(
(λ + 1) ln

(
1 +

1 − λ

ν + λ − 1

))
≤ exp

( 1 − λ2

ν + λ − 1

)
.

Thus, we obtain B(λ)
ν immediately from the above for this case.

(ii) For λ > 2, ν − λ + 3 ≥ 0 and θ ∈ [cν−1, π − cν−1], we obtain from (2.15) that

νλ+1 sin θ |R(λ)
ν (θ )| ≤

λ(λ − 1)23/2λΓ (λ + 1/2)
√

π

νλ+1

(ν + 1)λ+1

{
| cos θ | +

2
3

λ + 1
ν + 1

sin θ

+
22−λΓ (2λ − 1)

Γ (λ + 1)
(ν + 1)λ+1

(ν − λ + 3)2λ−1 | cot θ |
λ−2

(
| cos θ | +

2
3

2λ − 1
ν − λ + 3

sin θ
) }

.

It is evident that

| cos θ | +
2
3

λ + 1
ν + 1

sin θ ≤
3ν + 2λ + 5

3(ν + 1)
, | cos θ | +

2
3

2λ − 1
ν − λ + 3

sin θ ≤
3ν + λ + 7

3(ν − λ + 3)
.

We write

(ν + 1)λ+1
| cot θ |

λ−2

(ν − λ + 3)2λ−1 =

( ν + 1
ν − λ + 3

)λ+1 ( ν

ν − λ + 3

)λ−2 (
| cot θ |

ν

)λ−2
.

Using the inequality: ln(1 + z) ≤ z for z > −1 again, we derive( ν + 1
ν − λ + 3

)λ+1
= exp

(
(λ + 1) ln

(
1 +

λ − 2
ν − λ + 3

))
≤ exp

( (λ − 2)(λ + 1)
ν − λ + 3

)
,

and ( ν

ν − λ + 3

)λ−2
= exp

(
(λ − 2) ln

(
1 +

λ − 3
ν − λ + 3

))
≤ exp

( (λ − 3)(λ + 1)
ν − λ + 3

)
.

By (3.29), we have

1
ν sin θ

≤
π

2
max

{ 1
νθ

,
1

ν(π − θ )

}
≤

cπ
2

,

which implies(
| cot θ |

ν

)λ−2
= | cos θ |

λ−2
( 1
ν sin θ

)λ−2
≤

(cπ
2

)λ−2
.

We therefore derive from the above B(λ)
ν in the second case.
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(iii) From (2.16), we obtain

νλ+1 sin θ |R(λ)
ν (θ )|

≤
2λΓ (λ + 1/2)

√
π

νλ+1

(ν + λ − 1)λ+1

{
2(λ + 1/2)| cos θ | +

(λ + 1)2

ν + λ
sin θ

+ (λ + 2)(λ + 1)
(

1 +
2

ν + λ − 1
−

λ(λ + 2)
(ν + λ − 1)2

)
×

(
| cos θ | +

2
3

λ + 3
ν + λ − 1

sin θ
) }

≤
2λΓ (λ + 1/2)

√
π

νλ+1

(ν + λ − 1)λ+1

{
2(λ + 1/2) +

(λ + 1)2

ν + λ

+ (λ + 2)(λ + 1)
(

1 +
2

ν + λ − 1
−

λ(λ + 2)
(ν + λ − 1)2

)(
1 +

2
3

λ + 3
ν + λ − 1

) }
.

This yields (2.20), and then the proof is completed.

3.4. Proof of Theorem 2.2

For θ ∈ (0, π), we can derive the bounds (2.24)–(2.25) from (2.13) by multiplying sin θ and
(sin θ )λ−1, respectively.

In order to obtain the upper bounds uniform for both ν and θ , it is necessary to study the
behaviors of rG(λ)

ν (x) at x = ±1 (i.e., θ = 0, π). It is evident that by (2.1), rG(λ)
ν (1) = 1 for

all λ > −1/2 and ν ≥ 0. We now examine the behavior of the right GGF-Fs at x = −1. It is
clear that if ν = n ∈ N0, we have rG(λ)

n (−1) = (−1)n rG(λ)
n (1) = (−1)n . We now consider the

case with ν /∈ N0. Note that for −1/2 < λ < 1/2 (cf. [13, Prop. 2.3]):

rG(λ)
ν (−1) =

cos((ν + λ)π )
cos(λπ )

, (3.44)

so rG(λ)
ν (x) is continuous on [−1, 1]. However, for λ ≥ 1/2 and ν ̸∈ N0, rG(λ)

ν (x) is singular at
x = −1. Indeed, according to [13, Prop. 2.3], we have

lim
x→−1+

rG(1/2)
ν (x)

ln(1 + x)
=

sin(νπ )
π

, ν ̸∈ N0 ; (3.45)

and for λ > 1/2 and ν ̸∈ N0, we have

lim
x→−1+

(1 + x
2

)λ−1/2
rG(λ)

ν (x)

= −
sin(νπ )

π

Γ (λ − 1/2)Γ (λ + 1/2)Γ (ν + 1)
Γ (ν + 2λ)

:= Q(λ)
ν .

(3.46)

We remark that (3.46) also holds for ν = n ∈ N0, as Q(λ)
n = 0.

We now consider the case with θ = 0. As rG(λ)
ν (1) = 1, taking the limit θ → 0, and find

readily that the above bounds hold (note: R̃(λ)
ν (0) = 0, but S̃ (λ)

ν (θ ) > 0 in (2.24)–(2.25)).
It remains to consider θ → π−, i.e., x → −1+. Apparently, we have sin θ =

√
1 − x2. As

a direct consequence of (3.44)–(3.45), we have that for 0 < λ ≤ 1/2,

lim
θ→π−

R̃(λ)
ν (θ ) = lim

θ→π−

{
(sin θ )λ+1 rG(λ)

ν (cos θ )
}

= lim
x→−1+

(1 − x2)(λ+1)/2 rG(λ)
ν (x) = 0.

(3.47)
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Similarly, by (3.46), we have that for 1/2 < λ < 2,

lim
θ→π−

R̃(λ)
ν (θ ) = lim

x→−1+

{
(1 − x2)1−λ/2(1 − x2)λ−1/2 rG(λ)

ν (x)
}

= 0. (3.48)

For λ ≥ 2, we find from (3.46) that

lim
θ→π−

R̃(λ)
ν (θ ) = lim

θ→π−

{
(sin θ )2λ−1 rG(λ)

ν (cos θ )
}

= lim
x→−1+

(1 − x2)λ−1/2 rG(λ)
ν (x)

= 22λ−1 Q(λ)
ν .

(3.49)

(i) For 0 < λ ≤ 2, ν + λ > 1 and ν > 0, we find from (2.14) that

lim
θ→π−

S̃ (λ)
ν (θ ) =

λ|λ − 1|2λΓ (λ + 1/2)
√

π (ν + λ − 1)λ+1
. (3.50)

Thus, in this case, it is evident that by (3.47)–(3.48) and (3.50), (2.24) holds for 0 < λ < 2.
For λ = 2, we obtain from (3.49)–(3.50) that

lim
θ→π−

R̃(2)
ν (θ ) = 23 Q(2)

ν = −
3 sin(νπ )

(ν + 1)(ν + 2)(ν + 3)
, lim

θ→π−
S̃ (2)

ν (θ ) =
6

(ν + 1)3 .

Hence, (2.24) holds for λ = 2.
(ii) For λ > 2, ν > λ − 3 and ν > 0, we obtain from (2.15) that

lim
θ→π−

S̃ (λ)
ν (θ ) =

22+λ/2Γ (λ + 1/2)Γ (2λ − 1)
√

π (ν − λ + 3)2λ−1Γ (λ − 1)
=

λ 25λ/2Γ (λ − 1/2)Γ (λ + 1/2)
π (ν − λ + 3)2λ−1 , (3.51)

where we used the identity (cf. [1, (6.1.18)]):

Γ (2z) = π−1/222z−1Γ (z)Γ (z + 1/2).

Using the inequality (cf. [17, (5.6.7)]): for b − a ≥ 1, a ≥ 0, and z > 0,
Γ (z + a)
Γ (z + b)

≤ za−b,

we get

Γ (ν + 1)
Γ (ν + 2λ)

=
Γ

(
(ν − λ + 3) + (λ − 2)

)
Γ

(
(ν − λ + 3) + (3λ − 3)

) ≤ (ν − λ + 3)1−2λ
≤

λ 2λ/2+1

(ν − λ + 3)2λ−1 . (3.52)

Thus, from (3.46) and (3.51)–(3.52), we derive that for λ ≥ 2,

lim
θ→π−

|R̃(λ)
ν (θ )| = 22λ−1

|Q(λ)
ν | ≤ lim

θ→π−
S̃ (λ)

ν (θ ).

(iii) For −
1
2 < λ < 0 and ν ≥ 2, as rG(λ)

ν (x) is continuous on [−1, 1], both R̃(λ)
ν (θ ) and

S̃ (λ)
ν (θ ) are continuous on [0, π].

Therefore, the bounds in Theorem 2.2 are valid for all cases.

4. Some relevant properties of GGF-Fs

The GGF-Fs enjoy a rich collection of properties particularly in the fractional calculus
framework. In this section, we present assorted properties of GGF-Fs, and most of them follow
directly from the properties of the hypergeometric functions. These can provide a better picture
of this family of very useful special functions.

Recall the definition of the right-sided Riemann–Liouville fractional derivative of order
s > 0 (cf. [19]):

R
x Ds

1 u(x) = (−1)k Dk{
x I k−s

1 u
}
(x), s ∈ [k − 1, k), (4.1)
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where Dk with k ∈ N is the ordinary kth derivative, and x I µ

1 is the RL fractional derivative
operator defined in (2.8). We have the explicit formulas (cf. [19]): for real η > −1 and s > 0,

x I s
1 (1− x)η =

Γ (η + 1)
Γ (η + s + 1)

(1− x)η+s
;

R
x Ds

1 (1− x)η =
Γ (η + 1)

Γ (η − s + 1)
(1− x)η−s . (4.2)

Proposition 4.1 (See [13, Thm. 3.1]). For real λ > s − 1/2, real ν ≥ 0 and x ∈ (−1, 1),

R
x Ds

1

{
(1 − x2)λ−1/2 rG(λ)

ν (x)
}

=
2s Γ (λ + 1/2)
Γ (λ − s + 1/2)

(1 − x2)λ−s−1/2 rG(λ−s)
ν+s (x). (4.3)

Note that we just list the properties for the right GGF-F rG(λ)
ν (x), but similar formulas are

valid for the left GGF-F l G(λ)
ν (x) (cf. (2.2)) under the left RL fractional derivative (cf. [13]).

As a generalization of Gegenbauer polynomials, the GGF-Fs satisfy the following fractional
Rodrigues’ formula.

Proposition 4.2. For real λ > −1/2 and real ν ≥ 0, the GGF-Fs defined in (2.1) satisfy

rG(λ)
ν (x) =

Γ (λ + 1/2)
2ν Γ (ν + λ + 1/2)

(1 − x2)−λ+1/2 R
x Dν

1

{
(1 − x2)ν+λ−1/2}. (4.4)

Proof. Substituting ν, λ, s in (4.3) by 0, ν + λ, ν, respectively, yields

R
x Dν

1

{
(1 − x2)ν+λ−1/2}

=
2ν Γ (ν + λ + 1/2)

Γ (λ + 1/2)
(1 − x2)λ−1/2 rG(λ)

ν (x),

which implies (4.4). □

Remark 4.1. Mirevski et al. [15, Definition 9] defined the (generalized or) g-Jacobi function
through the (fractional) Rodrigues’ formula and derived an equivalent representation in terms
of the hypergeometric function (cf. [15, Thm. 12]). However, we point out that the left
RL fractional derivative operator R

0 Dν
x therein should be replaced by the right RL fractional

derivative operator R
x Dν

1 as in (4.4). Then the flaws in the derivation of [15, Thm. 12] can be
fixed accordingly.

Proposition 4.3. For real λ > −1/2 and real ν ≥ 0, the GGF-Fs have the series
representation:

rG(λ)
ν (x) =

Γ (λ + 1/2)Γ (ν + 1)
2νΓ (ν + λ + 1/2)

∞∑
k=0

(
ν + λ − 1/2

ν − k

)(
ν + λ − 1/2

k

)
(x − 1)k(1 + x)ν−k .

Proof. Using the fractional Leibniz rule (cf. [18, (2.202)]), we obtain from (4.2) that

R
x Dν

1

{
(1 − x2)ν+λ−1/2}

=

∞∑
k=0

(
ν

k

)
R
x Dν−k

1 (1 − x)ν+λ−1/2 (−1)k Dk(1 + x)ν+λ−1/2

= (1 − x2)λ−1/2
∞∑

k=0

(
ν

k

)
Γ 2(ν + λ + 1/2)(x − 1)k(1 + x)ν−k

Γ (k + λ + 1/2)Γ (ν − k + λ + 1/2)
.

Recall the definition of the binomial coefficient(
ν

k

)
=

Γ (ν + 1)
Γ (ν − k + 1)Γ (k + 1)

.
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Thus, we have(
ν + λ − 1/2

ν − k

)
=

Γ (ν + λ + 1/2)
Γ (k + λ + 1/2)Γ (ν − k + 1)

,(
ν + λ − 1/2

k

)
=

Γ (ν + λ + 1/2)
Γ (ν − k + λ + 1/2)Γ (k + 1)

.

Then the desired representation follows from the above. □

Remark 4.2. Alternatively, we can derive the above identity from (2.1), (2.3) and the Pfaff’s
formula (cf. [2, Theorem 2.2.5]):

2 F1(a, b; c; z) = (1 − z)−a
2 F1(a, c − b; c; z/(1 − z)).

We next present some recurrence relations that generalize the corresponding formulas for
the Gegenbauer polynomials.

Proposition 4.4. For real λ > −1/2, the GGF-Fs satisfy the recurrence formulas

(ν + 2λ) rG(λ)
ν+1(x) = 2(ν + λ) x rG(λ)

ν (x) − ν rG(λ)
ν−1(x), ν ≥ 1, (4.5)

and

rG(λ)
ν (x) = x rG(λ+1)

ν−1 (x) −
(ν − 1)(ν + 2λ + 1)
4(λ + 1/2)(λ + 3/2)

(1 − x2) rG(λ+2)
ν−2 (x), ν ≥ 2. (4.6)

Proof. Recall the formula (cf. [2, (2.5.15)]):

2b(c − a)(b − a − 1) 2 F1(a − 1, b + 1; c; z)

−
(
(1 − 2z)(b − a − 1)3 + (b − a)(b + a − 1)(2c − b − a − 1)

)
2 F1(a, b; c; z)

− 2a(b − c)(b − a + 1) 2 F1(a + 1, b − 1; c; z) = 0.

(4.7)

Substituting a, b, c and z in (4.7) by −ν, ν + 2λ, λ + 1/2 and (1 − x)/2, respectively, and
using (2.1), we obtain

2(ν + 2λ)(ν + λ + 1/2)(2ν + 2λ − 1) rG(λ)
ν+1(x) − (2ν + 2λ − 1)3 x rG(λ)

ν (x)

+ 2ν(ν + λ + 1/2)(2ν + 2λ − 1) rG(λ)
ν−1(x) = 0,

(4.8)

which implies (4.5).
Recall (cf. [2, (2.5.2)])

z(1 − z)
(a + 1)(b + 1)

c(c + 1) 2 F1(a + 2, b + 2; c + 2; z)

+
(c − (a + b + 1)z)

c 2 F1(a + 1, b + 1; c + 1; z) − 2 F1(a, b; c; z) = 0.

(4.9)

Substituting a, b, c and z in (4.9) by −ν, ν + 2λ, λ + 1/2 and (1 − x)/2, respectively, leads to

rG(λ)
ν (x) = x rG(λ+1)

ν−1 (x) −
(ν − 1)(ν + 2λ + 1)
4(λ + 1/2)(λ + 3/2)

(1 − x2) rG(λ+2)
ν−2 (x).

This completes the proof. □

Proposition 4.5. For real λ > −1/2 and real ν ≥ 0, the GGF-Fs satisfy the Sturm–Liouville
equation

(1 − x2)(rG(λ)
ν (x))′′ − (2λ + 1)x (rG(λ)

ν (x))′ + ν(ν + 2λ) rG(λ)
ν (x) = 0, (4.10)
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or equivalently,(
(1 − x2)λ+1/2 (rG(λ)

ν (x))′
)′

+ ν(ν + 2λ)(1 − x2)λ−1/2 rG(λ)
ν (x) = 0. (4.11)

Proof. Note that F := 2 F1(a, b; c; z) satisfies the second-order equation (cf. [2, P. 94]):

z(1 − z)F ′′
+

(
c − (a + b + 1)z

)
F ′

− abF = 0. (4.12)

Substituting a, b, c and z in (4.12) by −ν, ν + 2λ, λ + 1/2 and (1 − x)/2, respectively, we
derive (4.10) from (2.1). □

Similar to the Gegenbauer polynomials, we have the following derivative relations.

Proposition 4.6. For real ν ≥ k ∈ N, we have

dk

dxk
rG(λ)

ν (x) = (−1)k (−ν)k(ν + 2λ)k

2k(λ + 1/2)k

rG(λ+k)
ν−k (x). (4.13)

In particular, if k = 1, we have

d
dx

rG(λ)
ν (x) =

ν(ν + 2λ)
2λ + 1

rG(λ+1)
ν−1 (x), ν ≥ 1. (4.14)

Proof. The formula (4.13) is derived directly from the identity (cf. [17, (15.5.2)]):

dk

dzk 2 F1(a, b; c; z) =
(a)k(b)k

(c)k
2 F1(a + k, b + k; c + k; z), (4.15)

and (2.1). □

For completeness, we quote the following estimates, which were very useful in the error
analysis in [13].

Proposition 4.7 (See [13, Thms 2.1-2.2]). For 0 < λ < 1 and real ν ≥ 0, we have

max
|x |≤1

{
(1 − x2)λ/2

⏐⏐rG(λ)
ν (x)

⏐⏐} ≤ ϱ(λ)
ν , (4.16)

where

ϱ(λ)
ν =

Γ (λ + 1/2)
√

π

(
cos2(πν/2)Γ 2(ν/2 + 1/2)

Γ 2((ν + 1)/2 + λ)
+

4 sin2(πν/2
)

ν2 + 2λν + λ

Γ 2(ν/2 + 1)
Γ 2(ν/2 + λ)

)1/2

.

(4.17)

For λ ≥ 1 and real ν ≥ 0, we have

max
|x |≤1

{
(1 − x2)λ−1/2

⏐⏐rG(λ)
ν (x)

⏐⏐} ≤ κ (λ)
ν , (4.18)
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where

κ (λ)
ν =

Γ (λ + 1/2)
√

π

(
cos2(πν/2)Γ 2((ν + 1)/2)

Γ 2((ν + 1)/2 + λ)
+

4 sin2(πν/2
)

2λ − 1 + ν(ν + 2λ)
Γ 2(ν/2 + 1)
Γ 2(ν/2 + λ)

)1/2

.

It is seen from Lemma 3.3 and its proof in Appendix B that the bound (4.16) is useful for
the derivation of the main result (2.16) in Theorem 2.1. Moreover, the special case with ν = n
improves the existing bound related to the usual Gegenbauer polynomials as remarked blow.

Remark 4.3. Recall the bound of Gegenbauer polynomial of degree n (cf. [17, (18.14.7)]):
for 0 < λ < 1 and integer n ≥ 0,

max
|x |≤1

{
(1 − x2)λ/2

⏐⏐G(λ)
n (x)

⏐⏐} ≤
21−λΓ (2λ)Γ (n + 1)
Γ (λ)Γ (n + 2λ)

(n + λ)λ−1. (4.19)

In fact, we can show that

ϱ(λ)
n ≤

Γ (λ + 1/2)
√

π

Γ ((n + 1)/2)
Γ ((n + 1)/2 + λ)

≤
21−λΓ (2λ)Γ (n + 1)
Γ (λ)Γ (n + 2λ)

(n + λ)λ−1. (4.20)

Therefore, the bound (4.16) is sharper than that of (4.19). The inequalities in (4.20) can be
proved by following the same argument as for Lemma 3.3 in Appendix B. Here, we omit the
derivation.

Appendix A. Proof of Lemma 3.1

We first show that
t2

4
cos2 θ (cosh(t/2))

4
3 + sin2 θ (cosh t)

2
3 < |g(θ, t)|2

<
t2

4
cos2 θ cosh4(t/2) + sin2 θ cosh2 t,

(A.1)

and

|∂t g(θ, t)| ≤

( t
3

sin θ +
1
2
| cos θ |

)
cosh t. (A.2)

It is clear that

|g(θ, t)|2 =
cos2 θ (cosh t − 1)2

+ sin2 θ sinh2 t
t2 . (A.3)

Recall the properties of hyperbolic functions (cf. [17, (4.32.1), (4.32.2), (4.35.20)]): for t > 0,

(cosh t)
1
3 <

sinh t
t

; tanh t < t; sinh
t
2

=

(cosh t − 1
2

) 1
2
. (A.4)

Then we derive

(cosh t)
1
3 <

sinh t
t

< cosh t, ∀ t > 0, (A.5)

and
1
2

(
cosh(t/2)

) 2
3 <

cosh t − 1
t2 =

1
2

( sinh(t/2)
t/2

)2
<

1
2

cosh2(t/2). (A.6)

Thus we obtain (A.1) from (A.3) and (A.5)–(A.6) immediately.
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Direct calculation from (3.1) yields

∂t g(θ, t) =
cos θ (t sinh t − cosh t + 1) + i sin θ (t cosh t − sinh t)

t2 , (A.7)

and

|∂t g(θ, t)|2 =
cos2 θ (t sinh t − cosh t + 1)2

+ sin2 θ (t cosh t − sinh t)2

t4 . (A.8)

We next show that for t > 0,

t cosh t − sinh t
t3 <

1
3

cosh t, (A.9)

and
t sinh t − cosh t + 1

t2 <
1
2

cosh t. (A.10)

To prove (A.9), we denote h(t) := t3 cosh t − 3t cosh t + 3 sinh t . Then for t > 0,

h′(t) = t3 sinh t + 3t(t cosh t − sinh t) > t3 sinh t > 0, (A.11)

where we used the property: t cosh t > sinh t (cf. (A.4)). Therefore, h(t) is strictly ascending,
so for all t > 0,

h(t) = t3 cosh t − 3t cosh t + 3 sinh t > h(0) = 0,

which implies (A.9). As

(t sinh t − cosh t + 1)′ = t cosh t > 0, t > 0,

we have t sinh t−cosh t+1 > 0 for all t > 0. Denoting ĥ(t) := t2 cosh t−2t sinh t+2 cosh t−2,
we find for t > 0,

ĥ′(t) = t2 sinh t > 0, so ĥ(t) > ĥ(0) = 0, (A.12)

which yields (A.10).
From (A.8)–(A.10), we obtain

|∂t g(θ, t)|2 ≤
1
9

t2 sin2 θ cosh2 t +
1
4

cos2 θ cosh2 t, (A.13)

which leads to (A.2).
Now, we are ready to derive (3.2)–(3.3). Using the mean-value theorem for the real part and

imaginary part of f (λ)(θ, t), respectively, we obtain

f (λ)(θ, t) =
gλ−1(θ, t) − gλ−1(θ, 0)

t
= ℜ

{
∂t gλ−1(θ, ξ1)

}
+ i ℑ

{
∂t gλ−1(θ, ξ2)

}
, (A.14)

for ξi = ξi (t) ∈ (0, t), i = 1, 2, and θ ∈ (0, π). Hence, we have

| f (λ)(θ, t)| ≤ 2 sup
0<ξ<t

|∂t gλ−1(θ, ξ )| = 2|λ − 1| sup
0<ξ<t

{
|g(θ, ξ )|λ−2

|∂t g(θ, ξ )|
}
. (A.15)

We now estimate its upper bound. From (A.2), we obtain that for ξ ∈ (0, t) and θ ∈ (0, π),

|∂t g(θ, ξ )| ≤

(ξ

3
sin θ +

1
2
| cos θ |

)
cosh ξ ≤

( t
3

sin θ +
1
2
| cos θ |

)
et . (A.16)
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It remains to estimate the upper bound of |g(θ, ξ )|λ−2. We proceed with two cases.

(i) For 0 < λ ≤ 2, we obtain from the lower bound g in (A.1) that for 0 < ξ < t ,

|g(θ, ξ )|λ−2
≤

(1
4

cos2 θ cosh4/3(ξ/2)ξ 2
+ sin2 θ cosh2/3 ξ

)λ/2−1
≤ sinλ−2 θ, (A.17)

where we used the fact the function in ξ is strictly decreasing, since λ/2 − 1 < 0. Thus, we
obtain (3.2) from (A.15)–(A.17).

(ii) For λ > 2, we obtain from the upper bound of g in (A.1) that

|g(θ, ξ )|λ−2
≤

(1
4

cos2 θ cosh4(ξ/2)ξ 2
+ sin2 θ cosh2 ξ

)λ/2−1

≤

(1
4

cos2 θ cosh4(t/2)t2
+ sin2 θ cosh2 t

)λ/2−1

≤

(
max

{1
2

cos2 θ cosh4(t/2)t2, 2 sin2 θ cosh2 t
})λ/2−1

≤

(
max

{1
2

t2 cos2 θ cosh4 t, 2 sin2 θ cosh2 t
})λ/2−1

≤ 21−λ/2(cos θ )λ−2(cosh t)2λ−4tλ−2
+ 2λ/2−1(sin θ )λ−2(cosh t)λ−2

≤ 21−λ/2(cos θ )λ−2e2(λ−2)t tλ−2
+ 2λ/2−1(sin θ )λ−2e(λ−2)t

= 2λ/2−1(sin θ )λ−2e(λ−2)t
(

1 +
| cot θ |

λ−2

2λ−2 tλ−2e(λ−2)t
)
.

(A.18)

Therefore, we obtain (3.3) from (A.15)–(A.16) and (A.18).

Appendix B. Proof of Lemma 3.3

We first show that for 0 < λ < 1 and real ν ≥ 0, we have

max
|x |≤1

{
(1 − x2)λ/2

⏐⏐rG(λ)
ν (x)

⏐⏐} ≤
Γ (λ + 1/2)

√
π

Γ ((ν + 1)/2)
Γ ((ν + 1)/2 + λ)

. (B.1)

In view of (4.16)–(4.17), it suffices to prove

ϱ(λ)
ν ≤

Γ (λ + 1/2)
√

π

Γ ((ν + 1)/2)
Γ ((ν + 1)/2 + λ)

. (B.2)

Indeed, the inequality (B.2) holds, if we can show

4
ν2 + 2λν + λ

Γ 2(ν/2 + 1)
Γ 2(ν/2 + λ)

≤
Γ 2((ν + 1)/2)

Γ 2((ν + 1)/2 + λ)
, (B.3)

thanks to the expression of ϱ(λ)
ν in (4.17).

Next we prove (B.3). For notational convenience, we denote

Υλ(ν) =
4

ν2 + 2λν + λ

Γ 2(ν/2 + 1)
Γ 2(ν/2 + λ)

Γ 2((ν + 1)/2 + λ)
Γ 2((ν + 1)/2)

, (B.4)

and

Φλ(ν) =
Υλ(ν)

Υλ(ν + 2)
=

(ν + 2)2
+ 2λ(ν + 2) + λ

ν2 + 2λν + λ

(ν/2 + λ)2

(ν/2 + 1)2

(ν + 1)2/4
((ν + 1)/2 + λ)2 , (B.5)
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where we used the property: Γ (z + 1) = zΓ (z). Then direct calculation leads to
Φ′

λ(ν)
Φλ(ν)

= (lnΦλ(ν))′ =
2(ν + 2) + 2λ

(ν + 2)2 + 2λ(ν + 2) + λ
−

2ν + 2λ

ν2 + 2λν + λ

+
2

ν + 2λ
−

2
ν + 2

+
2

ν + 1
−

2
ν + 1 + 2λ

= −4
(ν + λ + 1)2

− 1 − λ + λ2

((ν + λ)2 + λ − λ2)((ν + λ + 2)2 + λ − λ2)
+

2
(ν + 2λ)(ν + 2λ + 1)

+
2

(ν + 1)(ν + 2)

=
4λ(1 − λ)

(
5ν2

+ 10(1 + λ)ν + 6λ2
+ 9λ + 4

)
(ν + 1)(ν + 2)(ν + 2λ)(ν + 2λ + 1)((ν + λ)2 + λ − λ2)((ν + λ + 2)2 + λ − λ2)

≥ 0.

Thus, Φλ(ν) is an increasing function in ν, which, together with (B.5), yields
Υλ(ν)

Υλ(ν + 2)
= Φλ(ν) ≤ lim

ν→∞
Φλ(ν) = 1. (B.6)

This implies

Υλ(ν) ≤ Υλ(ν + 2) ≤ Υλ(ν + 4) ≤ · · · ≤ Υλ(ν + 2n), (B.7)

for any positive integer n. Consequently, we have

4
ν2 + 2λν + λ

Γ 2(ν/2 + 1)
Γ 2(ν/2 + λ)

Γ 2((ν + 1)/2 + λ)
Γ 2((ν + 1)/2)

= Υλ(ν) ≤ lim
n→∞

Υλ(ν + 2n) = 1, (B.8)

where we used the property (2.23) for finding the limit value. From (B.8), we obtain (B.3),
which implies (B.1)–(B.2).

The second step is to show that for 0 < λ < 1 and ν ≥ 0,
Γ ((ν + 1)/2)

Γ ((ν + 1)/2 + λ)
≤

(
(ν + λ)/2

)−λ
, (B.9)

as it ensures
Γ (λ + 1/2)

√
π

Γ ((ν + 1)/2)
Γ ((ν + 1)/2 + λ)

≤
2λΓ (λ + 1/2)
√

π (ν + λ)λ
.

As such, if (B.9) holds, then (3.32) is a direct consequence of (B.1). To derive (B.9), we denote

Υ̂λ(ν) =
(ν/2 + λ/2)λΓ ((ν + 1)/2)

Γ ((ν + 1)/2 + λ)
,

and

Φ̂λ(ν) =
Υ̂λ(ν)

Υ̂λ(ν + 2)
=

(ν/2 + λ/2)λ

(ν/2 + 1 + λ/2)λ
(ν + 1)/2 + λ

(ν + 1)/2
.

One verifies readily that

Φ̂ ′

λ(ν)
Φ̂λ(ν)

= (ln Φ̂λ(ν))′ =
λ

ν + λ
−

λ

ν + 2 + λ
+

1
ν + 1 + 2λ

−
1

ν + 1

=
2λ(1 − λ2)

(ν + λ)(ν + 1)(ν + 1 + 2λ)(ν + 2 + λ)
≥ 0.

so Φ̂λ(ν) is an increasing function in ν. Following the same lines as in the derivations in
(B.6)–(B.8), we can derive (B.9). This competes the proof.
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