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Abstract
In this paper, we introduce new non-polynomial basis functions for spectral approxima-
tion of time-fractional partial differential equations (PDEs). Different from many other 
approaches, the nonstandard singular basis functions are defined from some generalised 
Birkhoff interpolation problems through explicit inversion of some prototypical fractional 
initial value problem (FIVP) with a smooth source term. As such, the singularity of the 
new basis can be tailored to that of the singular solutions to a class of time-fractional 
PDEs, leading to spectrally accurate approximation. It also provides the acceptable solu-
tion to more general singular problems.
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1  Introduction

The usual spectral method using classical orthogonal polynomials as basis functions enjoys 
high accuracy for problems with smooth solutions (see, e.g., [3, 13, 41] and the refer-
ences therein). However, its fidelity and accuracy can be deleteriously degraded when the 
solutions exhibit locally singular behaviours. The singularities may occur in various sce-
narios such as PDEs in non-smooth computational domains with corners, with discontinu-
ous coefficients, or with nonlocal operators involving singular kernels/weights. For a long 
time, mathematical and numerical study of singular problems has been a longstanding sub-
ject attracting much research interest. In recent years, intensive research efforts have been 
devoted to numerical solution of fractional PDEs (see, e.g., [9, 10, 22, 28, 33, 34, 45, 47] for 
finite difference or finite element methods, [6, 25–27, 54] for spectral methods, and many 
references therein). It is noteworthy that the usual polynomial-based spectral methods (e.g., 
in the pioneer works [25, 26]) cannot really resolve the numerical challenges of the (i) sin-
gularity and (ii) non-locality induced by the fractional integral/derivative operators. We 
therefore feel compelled to highlight some recent attempts in dealing with these two numeri-
cal issues, but with emphasis on spectral algorithms using non-standard basis functions.

(a)	 Jacobi poly-fractonomials (JPFs) and generalised Jacobi functions (GJFs) As a remark-
able advancement, Zayernouri and Karniadakis [54] introduced the so-called JPFs 
defined as eigenfunctions of some fractional Sturm-Liouville operator. The JPFs are 
non-polynomial singular basis functions possessing attractive fractional calculus proper-
ties, which can lead to sparse linear systems and spectrally accurate solution of certain 
class of fractional PDEs. Notably, the JPFs (up to some constants) are identical to special 
families of GJFs first introduced in [14]. The recent work [6] significantly enriched the 
applications of GJFs to fractional PDEs, and more importantly provided a rigorous error 
analysis in the fractional context. It is also worthwhile to mention the interesting develop-
ments along this line [18, 19, 23, 30, 40, 52, 53, 58]. However, such approaches usually 
work well for some specific types of end point (or corner) singularities.

(b)	 Müntz polynomials In contrast to the algebraic polynomials, the Müntz polynomials 

are of the form: 
n
∑

k=0

a
k
x
�
k with real {ak} (note: they are dense in L2(0, 1), if and only if, 

�
0
+

∞
∑

k=1

�
−1
k

= ∞ for 0 ≤ 𝜆0 < 𝜆1 < ⋯ ). With a priori knowledge of the singularity 
of the underlying solution, such a tool can provide very accurate approximation to a 
large class of singular problems with suitable choices of {�k} (see, e.g., [2, 35, 36]). 
Recently, Shen and Wang [43] associated the Müntz polynomials with Jacobi polyno-
mials and developed efficient and accurate Müntz-Galerkin methods for some singular 
problems with typical singularities of the type: �k = �k with � ∈ (0, 1). Hou and Xu 
[17] further studied the so-called factional Jacobi polynomials: J�,�,�

n
(x) = J�,�

n
(2x� − 1) 

for x ∈ (0, 1), 𝛼, 𝛽 > −1 and 𝜆 > 0, with applications to the integral-differential and 
fractional differential equations.

(c)	 Enriched spectral methods A second approach to deal with singular problems is to add 
some special shape functions (to capture local singularities or treat certain solution 
structures) to the usual polynomial basis, as with the finite element methods (cf. [1]). 
A hybrid collocation method enriched with spectral singular functions to fit leading 
singularity was studied in [4]. The very recent work [16] proposed enriched spectral 
methods to resolve boundary or inner layers. Moreover, Chen and Shen [5] developed 
efficient enriched spectral methods for a more general class of singular problems. In 
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addition, the enriched technique turned out to be very essential for accurate solutions 
of the Maxwell equations with Cole-Cole media in [20].

In this paper, we intend to introduce new singular basis functions for time-fractional PDEs 
from a very different perspective. More precisely, we consider some prototypical fractional 
initial value problem with a smooth source term f(x) (which can be well approximated by pol-
ynomials). By taking f(x) to be the interpolating basis functions, we directly invert the frac-
tional IVP (together with the initial values) and then define the new singular basis from the 
inverse operator acting upon the interpolation basis. We propose fast recursive formulas for 
computing the so-defined basis functions and the associated fractional collocation matrices, 
which can actually be pre-computed. It is noteworthy that the main idea for such a construc-
tion is inspired from the design of well-conditioned collocation methods using the notion of 
the Birkhoff interpolation (cf. [7, 19, 32, 48, 56, 57]). Here, we also estimate the interpola-
tion error of this type of the generalised Birkhoff interpolation and demonstrate that the new 
approach can provide very accurate approximation to a class of time-fractional PDEs with 
smooth source terms.

2 � Preliminaries

In this section, we make necessary preparations for the exposition of the algorithm and analy-
sis. We first recap on a useful solution formula of a prototype fractional initial-valued equation 
with a Caputo fractional derivative (FIVP). We then collect some relevant properties of the 
involved Mittag-Leffler (ML) functions. Finally, we review some related properties of Jacobi 
polynomials and Jacobi-Gauss-Lobatto (JGL) interpolation.

Let ℕ and ℝ be the sets of positive integers and real numbers, respectively, and denote

The following definition of the Riemann-Liouville fractional integral and Caputo fractional 
derivative can be found from many resources (see, e.g., [8, 37]). For � ∈ ℝ

+, the left-sided 
and right-sided fractional integrals of order � are defined by

for t ∈ (a, b), respectively, where Γ(⋅) is the Gamma function. For  � ∈ (k − 1, k) with 
k ∈ ℕ, the left-sided Caputo fractional derivative of order � is defined by

where Dk =
dk

dtk
 is the ordinary derivative. Similarly, we can define the right-sided Caputo 

fractional derivative.
Note that C

a
Dk

t
= Dk, if � = k ∈ ℕ. Recall that (see, e.g., [8, P. 49]): for � ∈ (k − 1, k) with 

k ∈ ℕ,

(1)ℕ0 ∶= {0} ∪ ℕ, ℝ
+ ∶=

{

a ∈ ℝ ∶ a > 0
}

, ℝ
+
0
∶= {0} ∪ℝ

+.

(2)(aI
�

t u)(t) =
1

Γ(�) ∫
t

a

u(�)

(t − �)1−�
d�; (tI

�

b
u)(t) =

1

Γ(�) ∫
b

t

u(�)

(� − t)1−�
d�,

(3)
(

C
a
D

�

t u
)

(t) = aI
k−�
t

(

Dku
)

(t) =
1

Γ(k − �) ∫
t

a

Dku(�)

(t − �)�−k+1
d�,

(4)C
−1
D𝜈

t
(t + 1)𝛼 =

⎧

⎪

⎨

⎪

⎩

0, if 𝛼 ∈ {0, 1,… , k − 1},
Γ(𝛼 + 1)

Γ(𝛼 − 𝜈 + 1)
(t + 1)𝛼−𝜈 , if 𝛼 > k − 1, 𝛼 ∈ ℝ.
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However, there is no explicit and compact formula for −1 < 𝛼 < k − 1 and � ∉ ℕ.

2.1 � FIVPs and Mittag‑Leffler Functions

The following solution formulas of FIVPs (cf. [37]) play an important part in our algorithm 
development.

Lemma 2.1  Consider the FIVP: for � ∈ (k − 1, k) with k ∈ ℕ,

where the constant � ∈ ℝ
+
0
 and f is a given integrable function. Then its solution is given by

 which involves the Mittag-Leffler (ML) functions with two parameters defined by

Remark 2.1  The so-defined e
�,�(z;�) is called the generalised ML function, and its Laplace 

transform is given by the explicit formula (cf. [12]):

for 𝛼, 𝛽, 𝜆 > 0.

In what follows, we shall use the following property of a singular integral involving the 
ML function as the kernel function.

Lemma 2.2  For 𝜆 > 0 and � ∈ (k − 1, k) with k ∈ ℕ, we define

where f is a given integrable function. Then we have

where � ∈ (0,�].

(5)
ℒ

�,�[u](t) ∶=
C
a
D

�

t u(t) + � u(t) = f (t), t ∈ (a, b],

u(l)(a) = u0,l, l = 0,… , k − 1,

(6)

u(t) = ℒ
−1
�,�

[

f ;{u0,l}
k−1
l=0

]

(t)

=

k−1
∑

l=0

e
�,l+1(t − a;�) u0,l + ∫

t

a

e
�,�(t − �;�) f (�) d�,

(7)e
𝛼,𝛽(z;𝜆) ∶= z𝛽−1E

𝛼,𝛽(−𝜆z
𝛼), E

𝛼,𝛽(z) ∶=

∞
∑

k=0

zk

Γ(𝛼k + 𝛽)
, 𝛼, 𝛽 > 0.

(8)[e
�,�](s) = �

∞

0

e
�,�(t;�)e

−st dt =
s�−�

s� + �
,

(9)u(t) ∶= ∫
t

0

e
𝜇,𝜇(t − 𝜏;𝜆) f (𝜏) d𝜏, t > 0,

(10)C
0
D�

t
u(t) = ∫

t

0

e
�,�−�(t − �;�) f (�) d�,
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Proof  Let F(s) ∶= [f (t)]. Using the convolution property of the Laplace transform and 
(8) with � = � = � , we have

We find that for � ∈ (0,�] and � ∈ (m,m + 1] (see, e.g., [37, P. 106])

which yields

This completes the proof.

2.2 � Jacobi Polynomials

Let P(�,�)
n

(x) be the Jacobi polynomial of degree n with 𝛼, 𝛽 > −1 defined on Λ = (−1, 1) . 
The Jacobi polynomials are defined by the three-term recurrence (cf. [46]):

where 

 We have

For 𝛼, 𝛽 > −1, the Jacobi polynomials are orthogonal with respect to the Jacobi weight 
function: �(�,�)(x) = (1 − x)�(1 + x)� , namely,

(11)[u](s) = [e
�,� ∗ f ](s) =

F(s)

s� + �
.

[C
0
D�

t
u
]

(s) = s�[u(t)](s) −
m
∑

k=0

s�−k−1u(k)(0) =
s�

s� + �
F(s),

C
0
D�

t
u(t) = −1

[

s�

s� + �
F(s)

]

= �
t

0

e
�,�−�(t − �;�) f (�) d�.

(12)
P
(�,�)

n+1
(x) =

(

a(�,�)
n

x − b(�,�)
n

)

P(�,�)
n

(x) − c(�,�)
n

P
(�,�)

n−1
(x), n ≥ 1,

P
(�,�)

0
(x) = 1, P

(�,�)

1
(x) =

1

2
(� + � + 2)x +

1

2
(� − �),

(13a)a(�,�)
n

=
(2n + � + � + 1)(2n + � + � + 2)

2(n + 1)(n + � + � + 1)
,

(13b)b(�,�)
n

=
(�2 − �

2)(2n + � + � + 1)

2(n + 1)(n + � + � + 1)(2n + � + �)
,

(13c)c(�,�)
n

=
(n + �)(n + �)(2n + � + � + 2)

(n + 1)(n + � + � + 1)(2n + � + �)
.

(14)P(�,�)
n

(−1) = (−1)nP(�,�)
n

(1), P(�,�)
n

(1) =
Γ(n + � + 1)

n!Γ(� + 1)
.

(15)∫
1

−1

P(�,�)
n

(x)P(�,�)
m

(x)�(�,�)(x) dx = �
(�,�)
n

�mn,
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where �mn is the Kronecker symbol, and

In what follows, we shall use the Jacobi-Gauss-Radau (JGR) interpolation and quadra-
ture. Let x0 = −1 and {xj}Nj=1 be the zeros of P�,�+1

N
(x) , and let {�j}

N
j=0

 be the corresponding 
weights (cf. [41, Thm. 3.26]). Then, the JGR quadrature has the exactness

where N denotes the set of all polynomials of degree less than or equal to N.

3 � Generalised Birkhoff Interpolation and New Basis Functions

In this section, we aim at developing spectrally accurate numerical algorithms for FIVPs 
with smooth source terms. Following the spirit of [48, 49], we introduce a generalised 
Birkhoff interpolation that interpolates ℒ

�,�[u] in (5) at “interior” JGR points, which leads 
to new non-polynomial basis functions for the efficient spectral algorithms.

3.1 � New Basis Functions for FIVPs with � ∈ (0, 1)

To show the essential idea, we first consider ℒ
�,� with � ∈ (0, 1).

Given a function u on Λ̄ such that ℒ
𝜇,𝜆[u] ∈ C(Λ̄), consider the Birkhoff-type interpola-

tion problem: find q ∈ N (a finite-dimensional space to be specified later) such that

where {xi}Ni=0 (with x0 = −1 ) are the JGR points.
Different from Lagrange, Hermite and usual Birkhoff interpolations (cf. [29, 44]), the 

interplant q agrees with u in the operator sense at interior interpolating points in this con-
text. In fact, there are various ways to select the space N . Here, our choice is based upon 
the assumption that 

�,�[u] is smooth and can be well approximated by polynomials. More 
precisely, we choose N such that

Let {ℏj}
N
j=1

 be the Lagrange interpolating basis polynomials associated with the interior 
JGR points {xj}Nj=1 (exclusive of x0 = −1 ), i.e.,

In view of (18), we have

Solving the FIVP: (20), together with the initial condition: q(−1) = u(−1), we obtain from 
Lemma 2.1 that the interplant of u is given by

(16)�
(�,�)
n

=
2�+�+1Γ(n + � + 1)Γ(n + � + 1)

(2n + � + � + 1)n! Γ(n + � + � + 1)
.

�
1

−1

p(x)�(�,�)(x)dx =

N
∑

j=0

p(xj)�j, ∀p ∈ 2N ,

(17)ℒ
�,�[q](xi) = ℒ

�,�[u](xi), 1 ≤ i ≤ N; q(x0) = u(x0),

(18)ℒ
�,�[q] ∈ N−1, ∀ q ∈ N .

(19)ℏj ∈ N−1, ℏj(xi) = �ij, 1 ≤ i, j ≤ N.

(20)ℒ
�,�[q](x) =

N
∑

j=1

ℒ
�,�[u](xj)ℏj(x).
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Formally, we define the generalised interpolation:

where the generalised interpolating basis functions are

In fact, we can show readily that the so-defined {Q�

j
} with � ∈ (0, 1) satisfy 

ℒ
�,�[Q

�

j
] ∈ N−1, and the interpolating conditions

Indeed, we deduce from Lemma 2.1 and (23)–(24) that

This implies (25). It is evident that ℒ
�,�[Q

�

j
] ∈ N−1, and {Q�

j
} are linearly independent.

In view of the above, we call {Q�

j
}N
j=0

 the generalised Birkhoff interpolating basis of 
(17)–(18), and �,�

N
 is the corresponding generalised Birkhoff interpolating operator.

3.2 � Extension of the New Basis Functions to � ∈ (1, 2)

It is straightforward to extend the generalised Birkhoff interpolation in (17) with � ∈ (0, 1) 
to � ∈ (1, 2). Accordingly, we consider the generalised Birkhoff interpolation: given a 
function u ∈ C1[−1, 1) such that ℒ

�,�[u] ∈ C[−1, 1) with � ∈ (1, 2), find q ∈ N+1 (to be 
specified later) such that

where {xj}Nj=0 (with x0 = −1 ) are the JGR points with parameters 𝛼, 𝛽 > −1. As before, we 
choose N+1 such that

Like (20), we write

where {ℏj} are the same as in (19). Then, by Lemma 2.1, the interplant of u is given by

(21)
q(x) = u(−1)e

�,1(1 + x;�) +

N
∑

j=1

ℒ
�,�[u](xj)∫

x

−1

e
�,�(x − y;�)ℏj(y) dy.

(22)
(�,�

N
u
)

(x) ∶= u(−1)Q
�

0
(x) +

N
∑

j=1

ℒ
�,�[u](xj)Q

�

j
(x),

(23)Q
�

0
(x) ∶= Q

�

0
(x;�) = e

�,1(1 + x;�),

(24)Q
�

j
(x) ∶= Q

�

j
(x;�, �, �) = �

x

−1

e
�,�(x − y;�)ℏj(y) dy, 1 ≤ j ≤ N.

(25)
Q

�

0
(−1) = 1, ℒ

�,�[Q
�

0
](xi) = 0, 1 ≤ i ≤ N;

Q
�

j
(−1) = 0, 1 ≤ j ≤ N; ℒ

�,�[Q
�

j
](xi) = �ij, 1 ≤ i, j ≤ N.

(26)

ℒ
�,�[Q

�

0
](x) = 0, Q

�

0
(−1) = 1; ℒ

�,�[Q
�

j
](x) = ℏj(x), Q

�

j
(−1) = 0, 1 ≤ j ≤ N.

(27)ℒ
�,�[q](xi) = ℒ

�,�[u](xi), 1 ≤ i ≤ N; q(−1) = u(−1), q�(−1) = u�(−1),

(28)ℒ
�,�[q] ∈ N−1, ∀ q ∈ N+1.

(29)ℒ
�,�[q](x) =

N
∑

j=1

ℒ
�,�[u](xj)ℏj(x), q(k)(−1) = u(k)(−1), k = 0, 1,
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where

Then we define the generalised interpolation operator:

As before, we can verify readily that ℒ
�,�[Q

�

j
] ∈ N−1, and the interpolating basis satisfies 

the interpolation conditions:

3.3 � Computing the New Basis and the Related Fractional Differentiation Matrices

Our starting point is to show that {ℏj}
N
j=1

 in (19) has the following representation.

Lemma 3.1  Let {xj,�j}
N
j=0

 with x0 = −1 be the JGR points and quadrature weights. Then 
we have

where

Proof  By the exactness of JGR quadrature, we have

(30)q(x) = u(−1)Q
�

0
(x) + u�(−1)Q

�

−1
(x) +

N
∑

j=1

ℒ
�,�[u](xj)Q

�

j
(x),

(31)Q
�

−1
(x) ∶= Q

�

−1
(x;�) = e

�,2(1 + x;�), Q
�

0
(x) ∶= Q

�

−1
(x;�) = e

�,1(1 + x;�),

(32)Q
�

j
(x) ∶= Qj(x;�, �, �) = �

x

−1

e
�,�(x − y;�)ℏj(y) dy, 1 ≤ j ≤ N.

(33)
(�,�

N
u
)

(x) = u�(−1)Q
�

−1
(x) + u(−1)Q

�

0
(x) +

N
∑

j=1

ℒ
�,�[u](xj)Q

�

j
(x).

(34)

Q
�

−1
(−1) = 0,

d

dx
Q

�

−1
(−1) = 1, ℒ

�,�[Q
�

−1
](xi) = 0, 1 ≤ i ≤ N;

Q
�

0
(−1) = 1,

d

dx
Q

�

0
(−1) = 0, ℒ

�,�[Q
�

0
](xi) = 0, 1 ≤ i ≤ N;

Q
�

j
(−1) =

d

dx
Q

�

j
(−1) = 0, 1 ≤ j ≤ N, ℒ

�,�[Q
�

j
](xi) = �ij, 1 ≤ i, j ≤ N.

(35)ℏj(x) =

N−1
∑

n=0

�njP
(�,�)
n

(x), 1 ≤ j ≤ N,

(36)
�nj =

1

�
(�,�)
n

{

−
P
(�,�+1)

N
(−1)

(1 + xj)
d

dx
P
(�,�+1)

N
(xj)

P(�,�)
n

(−1)�0 + P(�,�)
n

(xj)�j

}

.

(37)
�nj =

1

�
(�,�)
n

�
1

−1

ℏj(x)P
(�,�)
n

(x)�(�,�)(x)dx =
1

�
(�,�)
n

N
∑

i=0

ℏj(xi)P
(�,�)
n

(xi)�i

=
1

�
(�,�)
n

{

ℏj(−1)P
(�,�)
n

(−1)�0 + P(�,�)
n

(xj)�j

}

, 1 ≤ j ≤ N.
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Now, we evaluate ℏj(−1). Since {ℏj} are associated with the interpolating points {xj}Nj=1, 
which are zeros of P(�,�+1)

N
(x), we have the representation:

This leads to the desired formula.

We now introduce efficient algorithms for computing the new basis, and the associated 
differentiation matrix { C

−1D
�

x
Q

�

j
}N
j=1

 for � ∈ [0,�] and � ∈ (0, 2). Thanks to (24) and (35), 
the computation of {Q�

j
}N
j=1

 boils down to evaluating

for 𝜇, 𝜆 > 0 and real 𝛼, 𝛽 > −1. Likewise, the computation of { C
−1D

�

x
Q

�

j
}N
j=1

 relies on the 
evaluation of { C

−1D
�

x
�
�

n
}n≥0.

The recursive algorithm builds upon the auxiliary function

Apparently, we have

In Fig. 1, we provide a schematic illustration of the following “downwind” recursive algo-
rithm for computing { C

−1D
�

x
�
�

n
= Φ

�,�

0,n
}N
n=0

 (see the leftmost column in Fig. 1). In particular, 

for � = 0, we have {��

n
= C

−1D
0
x
�
�

n
= Φ

�,0

0,n
}N
n=0

.

(38)ℏj(x) =
P
(�,�+1)

N
(x)

(x − xj)
d

dx
P
(�,�+1)

N
(xj)

, 1 ≤ j ≤ N.

(39)�
�

n
(x) ∶= �

�

n
(x;�, �, �) = ∫

x

−1

e
�,�(x − y;�)P(�,�)

n
(y) dy, x ∈ (−1, 1),

(40)Φ�,�
m,n

(x) ∶= Φ�,�
m,n

(x;�, �, �) = C
−1D

�

x ∫
x

−1

e
�,�(x − y;�)

(1 + y

2

)m

P(�,�)
n

(y)dy.

(41)�
�

n
(x) = Φ

�,0

0,n
(x), C

−1D
�

x
�
�

n
(x) = Φ

�,�

0,n
(x).

Fig. 1   Diagram for computing 
{ C
−1D

�

x
�
�

n
= Φ

�,�

0,n
}N
n=0

 (marked 
by “ □ ”) with N = 10 , where 
the stencils marked by “ ○ ” are 
marched by (44)
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Proposition 3.1  With a pre-computation of

and

we can compute { C
−1D

�

x
�
�

n
} in (41) with 1 ≤ n ≤ N − 1, by the “downwind” recurrence 

relation:

for 0 ≤ m ≤ N − m − 1, where 
{

a(�,�)
n

, b(�,�)
n

, c(�,�)
n

}

 are defined in (13).

Proof  Recall the following identity (cf. [11]): for � ∈ ℝ
+ and r > −1 , we obtain

Then, we have from (40) that

From (7), we find

Thus, we derive from (4) that

Therefore, we have

Using the explicit form of P(�,�)

1
, we obtain

(42)Φ
�,�

m,0
(x) = 2−mm! e

�,�−�+m+1(1 + x;�), 0 ≤ m ≤ N,

(43)Φ
�,�

m,1
(x) = (� + � + 2)Φ

�,�

m+1,0
(x) − (� + 1)Φ

�,�

m,0
(x), 0 ≤ m ≤ N − 1,

(44)Φ
�,�

m,n+1
(x) = 2a(�,�)

n
Φ

�,�

m+1,n
(x) −

(

a(�,�)
n

+ b(�,�)
n

)

Φ�,�
m,n

(x) − c(�,�)
n

Φ
�,�

m,n−1
(x),

(45)
1

Γ(r + 1) ∫
t

a

e
�,�(t − �;�)(� − a)rd� = e

�,�+r+1(t − a;�), t ∈ (a, b).

(46)Φ
�,�

m,0
(x) = 2−mm! C

−1D
�

x
e
�,�+m+1(1 + x;�).

e
�,�+m+1(1 + x;�) = (1 + x)�+m

∞
∑

k=0

(−�)k(1 + x)�k

Γ(�k + � + m + 1)

=

∞
∑

k=0

(−�)k(1 + x)�k+�+m

Γ(�k + � + m + 1)
.

C
−1D

�

x
e
�,�+m+1(1 + x;�) =

∞
∑

k=0

(−�)k C
−1D

�

x
(1 + x)�k+�+m

Γ(�k + � + m + 1)

=

∞
∑

k=0

(−�)k(1 + x)�k+�+m−�

Γ(�k + � + m + 1 − �)
= e

�,�−�+m+1(1 + x;�).

Φ
�,�

m,0
(x) = 2−mm! e

�,�−�+m+1(1 + x;�), 0 ≤ m ≤ N.
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By the three-term recurrence relation (12) and the definition (40), we have

This ends the proof.

For notational convenience, we introduce the matrices Q(�,�),� and �(�,�) with the 
entries

Then from (24), (36), and (40)–(41), we obtain

where the matrix Q(�) has the entries Q(�)

ij
= Q

�

j
(xi).

In Fig. 2, we plot several profiles of the new basis functions with � = 0.5, 1.5, associ-
ated with the Legendre and Chebyshev Gauss-Radau points. Indeed, the basis functions 
can fully capture the singularity of the solution to the special FIVP at x = −1.

4 � Error Estimates of the Interpolation

In this section, we estimate the interpolation error of the generalised Birkhoff interpola-
tion operator defined in (22) and (33).

Lemma 4.1  For 0 < 𝜇 < 2 and 𝜆 > 0 , we have

where

and C1,C2 are given in (53).

(47)

Φ
�,�

m,1
(x) = C

−1D
�

x ∫
x

−1

e
�,�(x − y;�)

(1 + y

2

)m(1

2
(� + � + 2)y +

1

2
(� − �)

)

dy

= (� + � + 2)Φ
�,�

m+1,0
(x) − (� + 1)Φ

�,�

m,0
(x).

(48)

Φ
�,�

m,n+1
(x)

= C
−1D

�

x ∫
x

−1

e
�,�(x − y;�)

(1 + y

2

)m{
(

a(�,�)
n

y − b(�,�)
n

)

P(�,�)
n

(y) − c(�,�)
n

P
(�,�)

n−1
(y)

}

dy

= 2a(�,�)
n

Φ
�,�

m+1,n
(x) −

(

a(�,�)
n

+ b(�,�)
n

)

Φ�,�
m,n

(x) − c(�,�)
n

Φ
�,�

m,n−1
(x).

(49)
(

Q
(�,�)

ij
= C

−1D
�

x
Q

�

j
(xi)

)

0≤i,j≤N ,
(

�nj = �nj

)0≤j≤N
0≤n≤N−1,

(

�
(�,�)

in
= Φ

�,�

0,n
(xi)

)0≤i≤N
0≤n≤N−1.

(50)Q(�,�) = �
(�,�)

�, Q(�) = �
(�,0)

�,

(51)�
2

0

|e
�,�(x;�)|dx ≤ C,

(52)C = max

{

1

�

(

1 +
C2

1 + �2�

)

,C1

(

(

1 + �2�
)1∕�

− 1
)

1

�
+

C2 ln(1 + �2�)

��

}

,
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Proof  In this proof, we shall use the following properties of the ML functions.

	 (i)	 For 𝛼 < 2 , � ∈ ℝ , and 𝜋𝛼∕2 < 𝜇 < min{𝜋,𝜋𝛼}, we have (see [37, Thm. 1.5]): 

where C1 and C2 are certain positive constants.
	 (ii)	 For 𝜆,𝜇 > 0 and positive integer m, we have (see [38, Lem. 3.2]): 

and 

	 (iii)	 For 0 < 𝜇 < 1 , we have (see [38, Lem. 3.3]): 

We first consider � ∈ (0, 1) . From the above properties, we obtain

(53)|E
�,�(z)| ≤ C1

(

1 + |z|
)(1−�)∕�

exp
(

ℜ(z1∕�)
)

+
C2

1 + |z|
, |arg(z)| ≤ �,

(54)dm

dtm
E
𝜇,1(−𝜆t

𝜇) = −𝜆t𝜇−mE
𝜇,𝜇−m+1(−𝜆t

𝜇), t > 0,

(55)
d

dt

(

tE
�,2(−�t

�)
)

= E
�,1(−�t

�), t ≥ 0.

(56)E
�,�(−t) ≥ 0, t ≥ 0.
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Fig. 2   Graphs of the new basis {Q�

j
} with � = 1 and N = 4
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This implies

We now consider � = 1 . As e1,1(x;�) = exp(−�x) , we have

Then we obtain

Finally, we consider � ∈ (1, 2) . Using (53), we obtain

where

Clearly, we have lim
�→+∞

C = 0 . This completes the proof.

Here, we consider the class of functions satisfying the condition (see [50]) AC): u is abso-
lutely continuous up to (m − 1) th derivative u(m−1) on [−1, 1] for some m ≥ 1, and has the 
representation:

(57)

�
�

0

|e
�,�(x;�)|dx = �

�

0

e
�,�(x;�)dx

= −
1

� �
�

0

d

dt
E
�,1(−�x

�)dx =
1

�
(1 − E

�,1(−��
�))

≤ 1

�

(

1 +
C2

1 + ���

)

.

(58)�
2

0

|e
�,�(x;�)|dx ≤ C, � ∈ (0, 1).

(59)∫
𝜂

0

|e1,1(x;𝜆)|dx = −
1

𝜆 ∫
𝜂

0

d

dx
exp(−𝜆x)dx =

1

𝜆
(1 − exp(−𝜆𝜂)) <

1

𝜆
.

(60)�
2

0

|e1,1(x;�)|dx ≤ C.

(61)

�
2

0

|e
�,�(x;�)|dx ≤�

2

0

(

x�−1C1

(

1 + �x�
)(1−�)∕�

exp
(

− �
1∕�x

)

+
C2x

�−1

1 + �x�

)

dx

≤�
2

0

x�−1C1

(

1 + �x�
)(1−�)∕�

dx +
C2 ln(1 + �2�)

��

=C1

(

(

1 + �2�
)1∕�

− 1
)

1

�
+

C2 ln(1 + �2�)

��
≤ C,

(62)C = max

{

1

�

(

1 +
C2

1 + �2�

)

, C1

(

(

1 + �2�
)1∕�

− 1
)

1

�
+

C2 ln(1 + �2�)

��

}

.
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where g is absolutely integrable and of bounded variation Var(g) < ∞ on [−1, 1]. Define 
the norm as Vm = inf

{

Var(g)
}

 with all possible g satisfying (63).
We first consider the Gauss interpolation at the interior JGR points, i.e.,

where u ∈ C(−1, 1), and {ℏj} are defined in (19).

Lemma 4.2  (see [50, Theorem 4.4]) Suppose that f (x) satisfies the condition AC). Then 
for N ≥ m + 1 and m ≥ 1,

where c is a positive constant independent of f, N and m.

With the above preparations, we are now ready to derive the main results on the general-
ised Birkhoff interpolation. By definition, we can rewrite them as

and for � ∈ (1, 2),

Theorem  4.1  Suppose that ℒ
�,�[u] satisfies the condition AC). Then for � ∈ (0, 2) , 

N ≥ m + 1 and m ≥ 1, we have

where � = max{�, � + 1}, and c is a positive constant independent of u, N and m.

Proof  For � ∈ (0, 1), it is evident that by the definition (66),

From Lemmas 4.2 and 4.1, we have

(63)u(m−1)(x) = u(m−1)(−1) + ∫
x

−1

g(y)dy,

(64)�
(�,�)

N
u(x) =

N
∑

j=1

u(xj)ℏj(x),

(65)‖�
(�,�)

N
f − f‖L∞(Λ) ≤ cN−m+max{0,�−1∕2}Vm,

(66)
(�,�

N
u
)

(x) = u(−1)Q
�

0
(x) + �

x

−1

e
�,�(x − y;�) �

(�,�)

N

{

ℒ
�,�[u](y)

}

dy, � ∈ (0, 1),

(67)

(�,�

N
u
)

(x) = u�(−1)Q
�

−1
(x) + u(−1)Q

�

0
(x) + �

x

−1

e
�,�(x − y;�) �

(�,�)

N

{

ℒ
�,�[u](y)

}

dy.

(68)|

|

(𝜇,𝜆

N
u − u

)

(x)|
|

≤ cN−m+max{0,𝛾−1∕2}Vm, x ∈ Λ̄,

(69)
(�,�

N
u − u

)

(x) = �
x

−1

e
�,�(x − y;�)

{

�
(�,�)

N

(

ℒ
�,�[u](y)

)

−ℒ
�,�[u](y)

}

dy.
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This completes the proof.

As a simple application of the above interpolation estimates, we consider the model 
FIVP (5) with � ∈ (0, 1). Let {tj} be the JGR points as before. The scheme is to find 
uN ∈ spn{Q

�

j
∶ 1 ≤ j ≤ N} such that

where a = −1. We infer from (6) that

and

Then we deduce from Theorem 4.1 and its proof that

if f satisfies the condition AC).

5 � Some Applications and Numerical Results

In this section, we discuss the applications of spectral approximations using the nonstand-
ard basis functions introduced in Section 3.

5.1 � Fractional Initial Value Problems

We first consider the FIVP:

with the coefficient a being continuous on [0, T],  and the initial conditions

For convenience, we transform the interval of interest to the reference interval (−1, 1) via

(70)

|

(�,�

N
u − u

)

(x)| ≤ {

�
x

−1

|e
�,�(x − y;�)|dy

}

‖

‖

�
(�,�)

N
(ℒ

�,�[u]) −ℒ
�,�[u]

‖

‖L∞(Λ)

=
{

�
x+1

0

|e
�,�(y;�)|dy

}

‖

‖

�
(�,�)

N
(ℒ

�,�[u]) −ℒ
�,�[u]

‖

‖L∞(Λ)

≤ C‖
‖

�
(�,�)

N
(ℒ

�,�[u]) −ℒ
�,�[u]

‖

‖L∞(Λ)
≤ cN−m+max{0,�−1∕2} Vm.

(71)
ℒ

�,�[uN](tj) ∶=
C
a
D

�

t uN(tj) + � uN(tj) = f (tj), 1 ≤ j ≤ N,

uN(a) = u0,

(72)uN(tj) = e
�,1(tj − a;�) u0 + ∫

tj

−1

e
�,�(tj − �;�) �

(�,�)

N
f (�) d�,

(73)uN(tj) − u(tj) = ∫
tj

−1

e
�,�(tj − �;�)

{

�
(�,�)

N
f (�) − f (�)

}

d�.

(74)max
0≤j≤N |uN(tj) − u(tj)| ≤ cN−m+max{0,�−1∕2} Vm,

(75)C
0D

�

t v(t) + a(t)v(t) = f (t), t ∈ (0,T],

(76)v(0) = g0 for � ∈ (0, 1) or v(0) = g0, v�(0) = g1 for � ∈ (1, 2).
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Then, we can convert (75) into

with the corresponding initial conditions:

For � ∈ (0, 1) , we employ the new basis {Q�

j
} for (77), and look for the approximation of 

u(x) as

satisfying

The linear system of (78) is

where IN is the identity matrix of order N,

and ṽ− is a vector of 
{(

(

2

T

)�

b(xj) − �
)

Q
�

0
(xj)

}N

j=1
.

For � ∈ (1, 2) , we look for

and similarly, we can obtain

and ṽ+ is a vector of 
{(

(T∕2)�b(xi) − �
)

Q
�

−1
(xi)

}N

i=1
.

Example 1  We take a(t) = 1 and T = 2 in (75). The initial conditions g0 , g1 and f(t) are 
given by

We use a bigger N (based on the criterion that even larger N does not lead to better accurate 
approximation) to produce to a reference “exact” solution, and measure the errors in L∞
-norm. Such a setting also applies to all examples below.

t =
1 + x

2
T , u(x) = v(t), b(x) = a(t), h(x) = f (t).

(77)
(

2

T

)�
C

−1D
�

x
u(x) + b(x)u(x) = h(x), x ∈ (−1, 1],

u(−1) = g0 for � ∈ (0, 1) or u(−1) = g0, u�(−1) = Tg1∕2 for � ∈ (1, 2).

uN(x) = g0 Q
𝜇

0
(x) +

N
∑

j=1

ṽj Q
𝜇

j
(x),

(78)
(

2

T

)�
C

−1D
�

x
uN(xj) + b(xj)uN(xj) = h(xj), j = 1,… ,N.

(79)
{

IN +
(

(

T

2

)𝜇

�b − 𝜆
)

Q
𝜇

in

}

ṽ =
(

T

2

)𝜇

h − g0ṽ−,

�b = diag(b(x1), b(x2),… , b(xN)), ṽ = (ṽ1, ṽ2,… , ṽN)
T, h = (h(x1), h(x2),… , h(xN))

T,

(80)uN(x) = g0 Q
𝜇

0
(x) +

T

2
g1 Q

𝜇

−1
(x) +

N
∑

j=1

ṽj Q
𝜇

j
(x),

(81)
(

IN +

(

(

2

T

)𝜇

�b − 𝜆

)

Q
𝜇

in

)

ṽ =
(

T

2

)𝜇

h − g0ṽ− −
T

2
g1ṽ+,

g0 = 1, g1 = 1, f (t) = sin(t − 1).



223Communications on Applied Mathematics and Computation (2019) 1:207–230	

1 3

To show the convergence behaviour and accuracy, we plot in Fig. 3 the errors (in log-
scale) for various N and different samples of �. It is evident that the proposed method 
enjoys a spectral accuracy, and the errors decay exponentially. Indeed, the rapid conver-
gence is observed for small N and all samples of �.

For comparison, we depict in Fig.  4 the convergence behaviour of the polynomial-
based collocation method in [27] in exactly the same setting. As expected, the polynomial 
approximation has a limited order of convergence for such a singular solution.

Example 2  We now consider (75) with a variable coefficient by taking 
a(t) = 1 + � cos(t − 1) and T = 2 . The initial conditions g0 , g1 and f(t) are given by

It is known that the solution has a singular behaviour different from the constant coefficient 
case. The error plots in Fig. 5 illustrate that (i) there is a rapid convergence with a transi-
tion to a very slower rate; and (ii) the convergence rate varies with the magnitude of the 
perturbation parameter � . However, the dependence is less for larger �.

g0 = 1, g1 = 1, f (t) = sin(t − 1).
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Fig. 3   log10(L∞-error) against N for Example 1 with � = 1 and several �
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5.2 � Time‑Fractional PDEs

Consider the time-fractional diffusion equation or wave equation

with initial condition(s)

or

where f, u0 and u1 are given smooth functions.
We discretise the problem (82) using the Legendre-Galerkin method in space with 

the Fourier-like basis functions (cf. [42]). More precisely, the spatial Legendre-Galerkin 
approximation of (82) is to find uM(t) ∈ VM ∶= {u ∈ M ∶ u(±1) = 0} such that

where (u, v) ∶= ∫ 1

−1
uvdx is the scalar product in L2(Λ).

(82)
C
0D

𝜇

t u(x, t) = a 𝜕2
x
u(x, t) + f (x, t), (x, t) ∈ (−1, 1) × (0, T],

u(±1, t) = 0, t > 0,

(83)u(x, 0) = u0(x), x ∈ Λ, for � ∈ (0, 1),

(84)u(x, 0) = u0(x), �tu(x, 0) = u1(x), x ∈ Λ, for � ∈ (1, 2),

(85)
(

C
0D

�

t uM , v
)

+ a(�xuM , �xv) = (f , v), ∀v ∈ VM ,

(a) (b)

(c) (d)

Fig. 4   Comparison with the polynomial-based collocation method in [27]: L∞-error against N in log-log 
scale for Example 1 in the same setting as Fig. 3
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Lemma 5.1  (see [39, Lem. 2.1]) Let us denote

where Pn(x) is the Legendre polynomial of degree n. Then we have

ck =
1

√

4k + 6
, �k(x) = ck(Pk(x) − Pk+2(x)),

sjk =∫
1

−1

�
�
k
(x)� �

j
(x)dx, mjk = ∫

1

−1

�k(x)�j(x)dx,

sjk =

�

1, k = j,

0, k ≠ j,
mjk = mkj =

⎧

⎪

⎨

⎪

⎩

ckcj
�

2

2j+1
+

2

2j+5

�

, k = j,

−ckcj
2

2k+1
, k = j + 2,

0, otherwise.

(a) (b)

(c) (d)

Fig. 5   log10(L∞-error) against N with � = 1 and various � for Example 2
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We expand uN(x, t) as

Substituting uM(x, t) into (85) and taking v = �j(x) for 0 ≤ j ≤ M − 2, we obtain

Denote

From Lemma 5.1, we find (87) is equivalent to the matrix equation:

Note that the mass matrix M is a symmetric positive definite matrix, so its eigenvalues are 
all real and positive. Then there exists an orthogonal matrix E such that ETME = D, where 
D = diag(�0,… , �M−2) with {𝜆i > 0}M−2

i=0
 being the eigenvalues of M . Define

as a new basis of VM satisfying

and

where IM−1 is the identity matrix of order M − 1.
Let us write

Taking v = �̂l(x) in (85) and using (90) and (91), we find

where f̂l(t) = (f (x, t), �̂l(x)) . For the initial data, we write

(86)uM(x, t) =

M−2
∑

i=0

ũi(t)�i(x).

(87)( C0D
�

t uM , �j(x)) + a(�xuM , �x�j(x)) = (f (x, t), �j(x)), j = 0, 1,… ,M − 2.

M = (mkj)(M−1)×(M−1), ũM(t) = [ũ0(t),… , ũM−2(t)]
T,

f̃ (t) =
[

(f (x, t), �0(x)),… , (f (x, t), �M−2(x))
]T
.

(88)M C
0D

�

t ũM + aũM = f̃ .

(89)[�̂0(x),… , �̂M−2(x)] ∶= [�0(x),… , �M−2(x)]E,

(90)
(�̂i(x), �̂j(x)) = ∫

1

−1

E(∶, i)T[�0(x),… , �M−2(x)]
T[�0(x),… , �M−2(x)]E(∶, j)dx

= E(∶, i)TME(∶, j) = E(∶, i)T
(

EDET)E(∶, j) = �i�ij,

(91)
(�̂ �

i
(x), �̂ �

j
(x)) = ∫

1

−1

E(∶, i)T[� �
0
(x),… , � �

M−2
(x)]T[� �

0
(x),… , � �

M−2
(x)]E(∶, j)dx

= E(∶, i)TIM−1E(∶, j) = �ij,

uM(x, t) =

M−2
∑

j=0

ûj(t)�̂j(x).

(92)C
0D

�

t ûl + a�−1
l
ûl = �

−1
l
f̂l(t), l = 0,… ,M − 2,
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where we determine the coefficients by

for 0 ≤ l ≤ M − 2. Then we can apply the collocation method described in Subsection 5.1 
to solve (92) with the initial condition(s) for each mode.

Example 3  We consider problem (82) with a = 1 and T = 2 . The initial conditions u0 , u1 , 
and f(x, t) are given by

In Fig. 6, we plot the errors of the space-time spectral method, which indicates an exponen-
tial decay of the error for smooth inputs.

uM(x, 0) =

M−2
∑

j=0

ûj(0)�̂j(x), u�
M
(x, 0) =

M−2
∑

j=0

û1
j
(0)�̂j(x),

(uM(⋅, 0) − u0, �̂l) = 0, (u�
M
(⋅, 0) − u1, �̂l) = 0,

u0 = sin(�x), u1 = cos(�x), f (x, t) = cos(x + t).

(a) (b)

(c) (d)

Fig. 6   log10(L∞-error) against N for Example 3
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5.3 � Concluding Remarks

In this paper, we introduced new non-polynomial basis functions for certain class of time-
fractional PDEs. The construction of the new basis was based upon some generalised Birk-
hoff interpolation problem. Such a basis and the associated fractional collocation matrices 
could be computed in a fast recursive manner. With the singular basis tailored to some pro-
totypical time-fractional PDEs, we could achieve very accurate approximation (with spec-
tral accuracy at times) to some more general problems of similar nature.
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