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POINTWISE ERROR ESTIMATES AND LOCAL

SUPERCONVERGENCE OF JACOBI EXPANSIONS

SHUHUANG XIANG, DESONG KONG, GUIDONG LIU, AND LI-LIAN WANG

Abstract. As one myth of polynomial interpolation and quadrature, Tre-
fethen [Math. Today (Southend-on-Sea) 47 (2011), pp. 184–188] revealed that
the Chebyshev interpolation of |x − a| (with |a| < 1) at the Clenshaw-Curtis
points exhibited a much smaller error than the best polynomial approximation
(in the maximum norm) in about 95% range of [−1, 1] except for a small neigh-
bourhood near the singular point x = a. In this paper, we rigorously show that
the Jacobi expansion for a more general class of Φ-functions also enjoys such
a local convergence behaviour. Our assertion draws on the pointwise error
estimate using the reproducing kernel of Jacobi polynomials and the Hilb-type
formula on the asymptotic of the Bessel transforms. We also study the local
superconvergence and show the gain in order and the subregions it occurs. As
a by-product of this new argument, the undesired logn-factor in the point-

wise error estimate for the Legendre expansion recently stated in Babus̆ka and
Hakula [Comput. Methods Appl. Mech Engrg. 345 (2019), pp. 748–773] can
be removed. Finally, all these estimates are extended to the functions with
boundary singularities. We provide ample numerical evidences to demonstrate
the optimality and sharpness of the estimates.

1. Introduction

Approximation by polynomials plays a fundamental role in algorithm develop-
ment and numerical analysis of many computational methods. It is known that for
a given continuous function f(x) defined on [−1, 1], the best polynomial approxi-
mation of f(x) in the maximum norm is a unique polynomial p∗n ∈ Pn (denotes the
set of polynomials of degree at most n) that minimizes

‖f − p∗n‖∞ = min
p∈Pn

‖f − p‖∞.

The best polynomial approximation p∗n(x) is optimal, but its computation is non-
trivial for a general nonlinear function f(x) [30]. In fact, Trefethen [29] pointed
out that for f(x) = |x − 1

4 |, the pointwise error |f(x) − pn(x)| by the polynomial
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interpolation pn at the Clenshaw-Curtis points {xj = cos( jπn )}nj=0 is much smaller
than that of the best polynomial: |f(x)− p∗n(x)| for most values of x, except for a
small subinterval centred around the singular point x = 1

4 (see Figure 1.1 (left) for
an illustration of n = 100).

Figure 1.1. Pointwise error curves of the best polynomial approxi-
mation f(x) − p∗n(x), Chebyshev interpolation f(x) − pn(x) (left), and

Chebyshev truncation f(x)− S
(− 1

2
,− 1

2
)

n [f ](x) (right), where n = 100

Needless to say, the pointwise error is a very useful indication of the approxima-
bility and approximation quality of a numerical tool in solving partial differential
equations [4, 8–11, 16]. In the past several decades, the error estimates of spectral
approximation in Sobolev norms have been intensively studied and well-documented
in e.g., [2,3,18,24,30,31]. However, whenever possible, one would wish to estimate
the pointwise error of the approximation [5, 17, 19, 31, 33, 34, 37–39], though it is
usually more challenging.

Compared with the aforementioned Chebyshev interpolation pn(x), the pointwise

error of Chebyshev spectral projection S
(−1/2,−1/2)
n [f ] of f(x) = |x− 1

4 | is also much
smaller than the best polynomial approximation except for the subinterval near the
singular point x = 1

4 , and it is more localized than f(x)−pn(x) near the singularity
(see Figure 1.1). This implies some underlying local superconvergence at the points
slightly away from the singularity.

Interestingly, such a superconvergence phenomenon also occurs in the Legendre
and more general Jacobi expansions (except for an additional small neighbourhood
of the endpoints x = ±1, see Figure 1.2). In fact, we are not the first to unfold this
convergence behaviour. In a recent work, Babus̆ka and Hakula [5] provided deep
insights into this phenomenon for the Legendre expansion of the class of Φ-functions
defined by

(1.1) f(x) = (x− a)λ+ =

{
0, −1 ≤ x < a,

(x− a)λ, a < x ≤ 1,
λ > −1, a ∈ (−1, 1),
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Figure 1.2. Pointwise error curves of the best polynomial approxi-

mation f(x)− p∗n(x) and the Jacobi truncation f(x)−S
(α,β)
n [f ](x) with

α = β = 0 (left) and α = β = 1
2
(right), where n = 100

which appears frequently in various applications [5]. More precisely, define the
truncated Legendre series and the pointwise error as

(1.2) S(0,0)
n [f ](x) =

n∑
k=0

akPk(x), ef (n, x) =
∣∣f(x)− S(0,0)

n [f ](x)
∣∣,

where Pk(x) is the Legendre polynomial of degree k as in [27] and ak are the
Legendre expansion coefficients. Taking into account the convergence rates on the
piecewise analytic functions in Saff and Totik [23], Babus̆ka and Hakula [5] derived
the following estimates.

Theorem 1.1 (See [5]). Let f(x) be a Φ-function defined by (1.1) with λ = 0, i.e.,
a step function.

(i) For x ∈ (−1, a) ∪ (a, 1), we have ef (n, x) ≤ C(x)n−1, where C(x) is inde-
pendent of n and has the behaviours near x = a,±1 as follows

(1.3) C(−1 + ξ) ≤ D(−1) ξ−
1
4 , C(1− ξ) ≤ D(1) ξ−

1
4 , C(a± ξ) ≤ D(a) ξ−1,

for 0 < ξ ≤ δ, where D(±1), D(a) > 0 and δ > 0 are independent of n.
(ii) At x = ±1, a, we have

(1.4) ef (n,±1) ≤ Cn− 1
2 , ef (n, a) ≤ Cn−1.

In (1.4) and what follows, we denote by C a generic positive constant independent
of n which may have a different value in a different context.

Following Wahlbin [32] and Bary [6], Babus̆ka and Hakula [5] further obtained
the following estimates for λ �= 0.

Theorem 1.2 (See [5]). Let f(x) be a Φ-function defined by (1.1) with λ > −1 but
λ �= 0.

(i) For x ∈ (−1, a) ∪ (a, 1), we have

(1.5) ef (n, x) ≤ C(x)n−λ−1 log n,

where C(x) > 0 is independent of n, and has the same behaviour as C(x)
in (1.3).
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(ii) At x = ±1, a, we have

ef (n,±1) ≤ Cn−λ− 1
2 log n,

ef (n, a) ≤
{
Cn−λ−1 log n, λ even,

Cn−λ log n, λ > 0 and non-even.

(1.6)

Some remarks are in order.

• From ample delicate numerical experiments, Babus̆ka and Hakula [5] con-
jectured that the multiplicative factor log n in Theorem 1.2 seems to be a
defect of the analysis technique employed in the proof, and Theorem 1.2
should hold without the log n factor. This was stated as a hypothesis and
claimed “in spite of many attempts, the hypothesis underlines the need for
new theory” in [5].

• It is worthy of mentioning that Kruglov extended the numerical study in [5]
for the Legendre expansions to the more general Jacobi polynomial cases
in the master thesis [15], but the log-term remained as a conjecture in the
results therein.

• It is seen from Theorem 1.2 that if λ is not an even integer, we have the
superconvergence

(1.7) ef (n, x) ≤ C(x)n−1 log n ‖f − S(0,0)
n [f ]‖∞

with a gain of convergence rate O(n−1 log n) on any closed subinterval that
excludes x = a,±1.

The main purposes of this paper are twofold. Firstly, using a new technique,
we shall show that the log-factor can be removed. Secondly, we shall conduct
the optimal pointwise convergence and superconvergence analysis for the Jacobi
expansions of the following generalised Φ-functions

(1.8) f(x) = z(x) ·
{
0, −1 ≤ x < a,

(x− a)λ, a < x ≤ 1,
a ∈ (−1, 1), λ > −1,

and

(1.9) f(x) = |x− a|λz(x) (λ > −1 is not an even integer),

where we set in (1.8) f(a) = 0 for λ > 0 and f(a) = z(a)
2 for λ = 0, and the given

function z(x) involved is assumed to be smooth with z(a) �= 0. Denote the Jacobi
expansion of f(x) in (1.8) or (1.9) and the pointwise error respectively by

(1.10) S(α,β)
n [f ](x) =

n∑
k=0

a
(α,β)
k P

(α,β)
k (x), e

(α,β)
f (n, x) = |f(x)− S(α,β)

n [f ](x)|,

where P
(α,β)
k (x) is the Jacobi polynomial of degree k and

a
(α,β)
k =

1

σ
(α,β)
k

∫ 1

−1

f(x)P
(α,β)
k (x)ω(α,β)(x)dx,

ω(α,β)(x) = (1− x)α(1 + x)β,

σ
(α,β)
k =

2α+β+1 Γ(k + α+ 1)Γ(k + β + 1)

k!(2k + α+ β + 1)Γ(k + α+ β + 1)
.

(1.11)
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Using the reproducing kernel of Jacobi polynomials, together with the Hilb-
type formula and van der Corput-type Lemma on the asymptotic of the Bessel
transforms, we are able to derive the following main results.

Theorem 1.3. Let f(x) be a generalised Φ-function defined in (1.8) or (1.9). Then
for α, β > −1 and λ > −1, we have the following pointwise error estimates.

(i) For x ∈ (−1, a) ∪ (a, 1), we have

(1.12) e
(α,β)
f (n, x) ≤ C(x)n−λ−1,

where C(x) is independent of n and has the behaviours near x = a,±1 as
follows

C(−1 + ξ) ≤ D(−1) ξ−max{ β
2 +

1
4 ,0},

C(1− ξ) ≤ D(1) ξ−max{α
2 + 1

4 ,0},

C(a± ξ) ≤ D(a) ξ−1, 0 < ξ ≤ δ.

(1.13)

Here D(±1), D(a) > 0 and δ > 0 are independent of n.
(ii) At x = ±1, we have

(1.14) e
(α,β)
f (n, 1) ≤ Cn−λ+α− 1

2 , e
(α,β)
f (n,−1) ≤ Cn−λ+β− 1

2 .

(iii) At x = a and for λ > 0, we have

e
(α,β)
f (n, a) ≤

{
Cn−λ−1, λ even,

Cn−λ, otherwise,
for f(x) defined by (1.8);

e
(α,β)
f (n, a) ≤ Cn−λ for f(x) defined by (1.9) and non-even λ.

(1.15)

We emphasize that all the above estimates are optimal in the sense that the
convergence order cannot be improved, which will be illustrated numerically in
Section 3. As a special case, the multiplicative factor log n in Theorem 1.2 for the
Legendre expansion is removed. The asymptotic behaviour of the pointwise error
around the endpoints is described clearly. Indeed, we infer from (1.13) and (1.14)

that e
(α,β)
f (n, x) achieves the best convergence rate around x = ±1 when α, β ≤ − 1

2 .

As an example, we consider f(x) = |x− a|. It is known that the pointwise error of
the best polynomial approximation equally oscillates N ≥ n+2 times and converges
linearly as n → ∞, i.e., there exist at least N ≥ n+2 distinct points x1, x2, · · · , xN

on [−1, 1] such that

f(xi)− p∗n(xi) = ε(−1)i‖f − p∗n‖∞, ‖f − p∗n‖∞ ∼ σ
√
1− a2 n−1,

where ε = ±1 and σ ≈ 1/2
√
π is the Bernstein constant (see [7, 30]). As a com-

parison, e
(α,β)
f (n, x) shares the same order of convergence O(n−1) at x = a, but

somehow worse in magnitude than that of the best polynomial approximation. Nev-
ertheless, superconvergence appears when x ∈ (−1, a)∪ (a, 1), where it follows from

Theorem 1.3 that e
(α,β)
f (n, x) = O(n−2) (also see Figure 1.2).

Incidentally, from the viewpoint of the maximum norm (i.e., the worst-case be-

haviour of e
(α,β)
f (n, x)), the Jacobi truncation S

(α,β)
n [f ](x) (α, β ≤ 1

2 ) performs as
excellent as the best polynomial approximation in the sense of asymptotic rate
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Figure 1.3. Comparison of Jacobi expansion and the optimal poly-

nomial approximation to f(x) = (x − 1/4)
1/2
+ by the convergence rates

of ‖ê(α,β)
f ‖∞ (red) versus ‖f − p∗n‖∞ (blue)

when n → ∞ for functions defined in (1.8) and (1.9) where λ > 0, that is,

(1.16) ‖f − S(α,β)
n [f ]‖∞ =

{
O
(
nmax{α− 1

2 ,β−
1
2 }−λ

)
, if max{α, β} > 1

2 ,

O
(
n−λ

)
, if max{α, β} ≤ 1

2 .

Taking the local behaviour of e
(α,β)
f (n, x) around the boundaries x = ±1 and

singularity x = a into consideration, we consider a new weighted pointwise error
function

(1.17) ê
(α,β)
f (n, x) = (1− x)max{α

2 + 1
4 ,0}(1 + x)max{ β

2 +
1
4 ,0}(x− a) e

(α,β)
f (n, x).

Then we deduce from Theorem 1.3 the uniform convergence order

(1.18) ‖ê(α,β)f ‖∞ = O(n−λ−1),

which also testifies to the optimality of the estimates on C(x) in (1.13). As a result,

a global superconvergence is attained by ê
(α,β)
f (x), which gains one order higher in

convergence rate than the best polynomial approximation (see Figure 1.3).
The rest of this paper is largely devoted to the proof of the results stated in

Theorem 1.3. In Section 2, we present the pointwise error formula and some as-
ymptotic results on the Jacobi polynomials. Applying the Hilb-type formula and
van der Corput-type Lemma for Bessel transforms, in Section 3, we prove the opti-
mal pointwise error estimates on Jacobi truncation of functions defined in (1.8) and
(1.9). Errors in maximum norm and weighted maximum norm (superconvergence
analysis) are considered in Section 4. Finally we extend the analysis to functions
with boundary singularities and conclude the paper with some remarks in Section
5.

2. The reproducing kernel and pointwise error formula

Let dω(x) be a given distribution in the Stieltjes sense. Assume that {pk}∞k=0

with deg(pk) = k is the set of orthonormal polynomials associated with dω(x)∫ 1

−1

pj(x) pk(x) dω(x) = δjk, j, k = 0, 1, 2, · · · ,
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where δjk is the Kronecker Delta symbol. In view of the Christoffel-Darboux for-
mula, the reproducing kernel Kn(x, y) is defined by (see [27, Theorem 3.22] and
Lubinsky [20])

(2.1) Kn(x, y) =
n∑

k=0

pk(x)pk(y) =
κn

κn+1

pn+1(x)pn(y)− pn(x)pn+1(y)

x− y
,

where κn is the leading coefficient of pn(x) and limn→∞
κn

κn+1
= 1

2 . It is easy to

verify from the orthogonality that

(2.2)

∫ 1

−1

Kn(x, y)q(y) dω(y) = q(x), ∀ q ∈ Pn.

We intend to estimate the pointwise error of the Jacobi orthogonal projection

e
(α,β)
f (n, x) defined in (1.10). According to Szegö [27, (4.5.2)] and Hesthaven, Got-

tlieb and Gottlieb [14, Theorem 4.4], the reproducing kernel of the Jacobi polyno-
mials can be represented as follows

Kn(x, y) =

n∑
k=0

1

σ
(α,β)
k

P
(α,β)
k (x)P

(α,β)
k (y)

= ρ(α,β)n

P
(α,β)
n+1 (x)P

(α,β)
n (y)− P

(α,β)
n (x)P

(α,β)
n+1 (y)

x− y
,

(2.3)

where

(2.4) ρ(α,β)n :=
2−α−β

2n+ α+ β + 2
· Γ(n+ 2)Γ(n+ α+ β + 2)

Γ(n+ α+ 1)Γ(n+ β + 1)
.

From (2.2) with q(x) ≡ 1 and (2.3), we can derive the following pointwise error
formula, which plays a fundamental role in the error analysis.

Theorem 2.1. Let f(x) be a suitably smooth function on [−1, 1]. For every x ∈
[−1, 1], we denote the Jacobi expansion coefficients of the following quotient in y by

a(α,β)n (x; g) =
1

σ
(α,β)
k

∫ 1

−1

g(x, y)P (α,β)
n (y)ω(α,β)(y)dy,

g(x, y) :=
f(x)− f(y)

x− y
.

(2.5)

Then the pointwise error of the Jacobi expansion has the compact representation

f(x)− S(α,β)
n [f ](x) = A(α,β)

n a(α,β)n (x; g)P
(α,β)
n+1 (x)−B(α,β)

n a
(α,β)
n+1 (x; g)P (α,β)

n (x),

(2.6)

where

(2.7)

A(α,β)
n =

2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 2)(2n+ α+ β + 1)
,

B(α,β)
n =

2(n+ α+ 1)(n+ β + 1)

(2n+ α+ β + 2)(2n+ α+ β + 3)
.
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Proof. From (1.11) and (2.1)–(2.2), we find readily that

S(α,β)
n [f ](x) =

n∑
k=0

P
(α,β)
k (x)

σ
(α,β)
k

∫ 1

−1

f(y)P
(α,β)
k (y)ω(α,β)(y)dy

=

∫ 1

−1

Kn(x, y)f(y)ω
(α,β)(y)dy,

and

f(x) =

∫ 1

−1

Kn(x, y)f(x)ω
(α,β)(y)dy.

Thus, we obtain from (1.11) and (2.3) that

f(x)− S(α,β)
n [f ](x)

=

∫ 1

−1

Kn(x, y)[f(x)− f(y)]ω(α,β)(y)dy

= ρ(α,β)n

∫ 1

−1

f(x)− f(y)

x− y

[
P

(α,β)
n+1 (x)P (α,β)

n (y)− P (α,β)
n (x)P

(α,β)
n+1 (y)

]
ω(α,β)(y)dy

= ρ(α,β)n

[
σ(α,β)
n a(α,β)n (x; g)P

(α,β)
n+1 (x)− σ

(α,β)
n+1 a

(α,β)
n+1 (x; g)P (α,β)

n (x)
]
.

Then, the identity (2.6) follows from directly working out the constants A
(α,β)
n =

ρ
(α,β)
n σ

(α,β)
n and B

(α,β)
n = ρ

(α,β)
n σ

(α,β)
n+1 by using (1.11) and (2.4). �

Now, we take f(x) in the above to be the generalised Φ-function (1.8), and obtain
from (2.5) that

(2.8) a(α,β)n (x; g) =
1

σ
(α,β)
n

·

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∫ 1

a
g1(x, y)P

(α,β)
n (y)ω(α,β)(y)dy, x < a,∫ 1

a
g2(y)P

(α,β)
n (y)ω(α,β)(y)dy, x = a,∫ 1

−1
g3(x, y)P

(α,β)
n (y)ω(α,β)(y)dy, x > a,

where g = gi, i = 1, 2, 3, are given by

g1(x, y) =
z(y)(y − a)λ

y − x
;

g2(y) = g1(a, y) = z(y)(y − a)λ−1, λ > 0;

g3(x, y) =

⎧⎪⎨⎪⎩
z(x)(x−a)λ

x−y , y ≤ a,

z(x)(x−a)λ−z(y)(y−a)λ

x−y , y > a.

(2.9)

It is important to point out that in (2.6), the convergence rate of e
(α,β)
f (n, x)

depends on both a
(α,β)
n (x; g) and P

(α,β)
n (x). Moreover, the two terms in the right

hand side of (2.6) do not cancel each other for almost all x, except for the function

(1.8) with λ being even. Accordingly, we can estimate a
(α,β)
n (x; g) and P

(α,β)
n (x)

separately. The roadmap for the pointwise error analysis is as follows.

(i) We shall bound |P (α,β)
n (x)| pointwisely using Theorem 2.3 and Corollary

2.1.
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(ii) We shall estimate |a(α,β)n (x; g)| by using the Hilb-type formula in Theorem
2.2 and the van der Corput-type Lemma to be presented in Section 3,
together with the regularity analysis of the underlying function g(x, y) in y
given in (2.9).

We first recall that Darboux [12] and Szegö [27, Theorem 8.21.12] introduced the

following Hilb-type formula on the asymptotics of P
(α,β)
n (x) in terms of a highly

oscillatory Bessel function.

Theorem 2.2 (See [12, 27]). For α, β > −1 and n � 1, we have

θ−
1
2 sinα+

1
2

(θ
2

)
cosβ+

1
2

(θ
2

)
P (α,β)
n (cos θ)

=
Γ(n+ α+ 1)√

2n!Ñα
Jα(Ñθ) +

⎧⎨⎩θ
1
2O
(
Ñ− 3

2

)
, cn−1 ≤ θ ≤ π − ε,

θα+2O
(
Ñα
)
, 0 < θ ≤ cn−1,

(2.10)

where Ñ = n+ (α+ β + 1)/2, c and ε are fixed positive numbers, and Jα(z) is the
first kind of Bessel function of order α. The constants in the O-terms depend on
α, β, c, and ε, but do not depend on n.

Using [27, Theorem 7.32.2] and P
(α,β)
n (−x) = (−1)nP

(β,α)
n (x), Muckenhoupt [21]

derived the following pointwise bound.

Theorem 2.3 (See [21, (2.6)-(2.7)]). Let α, β > −1 and d be a fixed integer. Then
for n ≥ max{0,−d}, we have

(2.11)
∣∣P (α,β)

n+d (x)
∣∣ ≤ CE(α,β)

n (x),

where C is a positive constant independent of n and x, and

(2.12) E(α,β)
n (x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(n+ 1)α, 1− (n+ 1)−2 ≤ x ≤ 1,

(n+ 1)−
1
2 (1− x)−

α
2 − 1

4 , 0 ≤ x ≤ 1− (n+ 1)−2,

(n+ 1)−
1
2 (1 + x)−

β
2 −

1
4 , −1 + (n+ 1)−2 ≤ x ≤ 0,

(n+ 1)β , −1 ≤ x ≤ −1 + (n+ 1)−2.

As a direct consequence of Theorem 2.3, we have the following useful pointwise
upper bound.

Corollary 2.1. For α, β > −1 and x ∈ [−1, 1], we have

(2.13)
∣∣P (α,β)

n (x)
∣∣ ≤ C0(n+ 1)−

1
2 (1− x)−max{α

2 + 1
4 ,0}(1 + x)−max{ β

2 +
1
4 ,0},

where C0 = 2max{α
2 + 1

4 ,
β
2 +

1
4 ,0}C and C is the same as in (2.11) with d = 0.

Proof. It is evident that if −1 < α ≤ −1/2, then max{α
2 +

1
4 , 0} = 0, and by (2.12),{

(n+ 1)α ≤ (n+ 1)−
1
2 (1− x)−max{α

2 + 1
4 ,0}, 1− (n+ 1)−2 ≤ x ≤ 1,

(n+ 1)−
1
2 (1− x)−

α
2 − 1

4 ≤ (n+ 1)−
1
2 (1− x)−max{α

2 + 1
4 ,0}, 0 ≤ x ≤ 1− (n+ 1)−2.

If α > −1/2, then we have max{α
2 + 1

4 , 0} = α
2 + 1

4 > 0, so apparently (2.12) is
valid. Therefore, for x ∈ [0, 1], and α, β > −1, we have

E(α,β)
n (x) ≤ (n+ 1)−

1
2 (1− x)−max{α

2 + 1
4 ,0}

≤ 2max{ β
2 +

1
4 ,0}(n+ 1)−

1
2 (1− x)−max{α

2 + 1
4 ,0}(1 + x)−max{ β

2 +
1
4 ,0}.
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Following the same lines as above, we can show that for x ∈ [−1, 0] and α, β > −1,

E(α,β)
n (x) ≤ (n+ 1)−

1
2 (1 + x)−max{ β

2 +
1
4 ,0}

≤ 2max{α
2 + 1

4 ,0}(n+ 1)−
1
2 (1− x)−max{α

2 + 1
4 ,0}(1 + x)−max{ β

2 +
1
4 ,0}.

This completes the proof. �

Remark 2.1. In some special cases, the constant C in (2.13) is explicitly known.
Indeed, we find from [22, (18.14.3)] that for − 1

2 ≤ α, β ≤ 1
2 , we have(1− x

2

)α
2 + 1

4
(1 + x

2

) β
2 +

1
4 ∣∣P (α,β)

n (x)
∣∣ ≤ Γ(max(α, β) + n+ 1)

π
1
2n!
(
n+ α+β+1

2

)max(α,β)+ 1
2

, x ∈ [−1, 1].

Moreover, Förster [13] stated the bound for the Gegenbauer polynomials with α ≥ 1,
that is,

(1− x2)
α
2

∣∣C(α)
n (x)

∣∣ ≤ (2α− 1)Γ
(
n
2 + α

)
Γ(α)Γ

(
n
2 + 1

) , x ∈ [−1, 1],

where

C(α)
n (x) =

Γ(α+ 1
2 )Γ(n+ 2α)

Γ(2α)Γ(n+ α+ 1
2 )

P
(α− 1

2 ,α−
1
2 )

n (x).

Remark 2.2. The above bound of P
(α,β)
n (x) can precisely characterise its behaviour

near the endpoints, which allows us to describe C(1−ξ) and C(−1+ξ) for ξ ∈ (0, δ)
in (1.13).

3. Pointwise error estimate for the Jacobi expansion of the

generalised Φ-function

This section is devoted to the asymptotic analysis of the Jacobi expansion coeffi-

cient a
(α,β)
n (x; g) of g(x, y) in (2.8)–(2.9). With this and the preparations in Section

2, we shall be able to prove the main results stated in Theorem 1.3.

3.1. Useful lemmas. A critical tool for the analysis is the following asymptotic
formulas involving a highly oscillatory Bessel functions related to the Jacobi poly-
nomials in (2.10), which extend the classical van der Corput Lemma on the Fourier
transform [25, pp. 332–334] to the Bessel transform. They are therefore dubbed as
the generalised van der Corput-type Lemmas.

Let Ω = (a, b) ⊂ R be a finite open interval. Denote by AC(Ω̄) the space of
absolutely continuous functions on Ω̄. We further introduce the space

WAC(Ω) =
{
ψ : ψ ∈ AC(Ω̄), ψ′ ∈ L1(Ω)

}
,

equipped with the norm

‖ψ‖WAC(Ω) = ‖ψ‖L∞(Ω) + ‖ψ′‖L1(Ω).

Indeed, according to Stein and Shakarchi [26, pp. 130] and Tao [28, pp. 143–145],
we have the integral representation for any ψ ∈ WAC(Ω) :

ψ(x) = ψ(a) +

∫ x

a

ψ′(t)dt,

and any continuous function of bounded variation on Ω which maps each set of
measure zero into a set of measure zero is also absolutely continuous.
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It is also noteworthy that the AC-type space with different regularity on the high-
est derivative, e.g., BV (functions of bounded variation) has been used in Trefethen
[30] in the context of Chebyshev polynomial approximation of singular functions.

Lemma 3.1. Given α + ν > −1 and β > −1, the following asymptotic estimates
hold for ω � 1.

(i) For ψ(x) ∈ WAC(0, b), we have

(3.1)

∫ b

0

xα(b− x)βJν(ωx)ψ(x) dx = ‖ψ‖WAC(0,b) · O
(
ω−min{α+1,β+ 3

2 ,
3
2 }
)
.

(ii) For b > c > 0 and ψ(x) ∈ WAC(c, b), we have

(3.2)

∫ b

c

(b− x)βJν(ωx)ψ(x) dx = ‖ψ‖WAC(c,b) · O
(
ω−min{β+ 3

2 ,
3
2}
)
.

Here, the constant in the Big O is independent of ω and ψ.

Proof. The estimate (3.1) is a special case of [35, Lemma 2.5]. Now we show the
improved estimate (3.2) on the closed subinterval [c, b] ⊂ [0, b]. From the asymptotic
property of the Bessel function [1, pp. 362]:

Jν(z) =

√
2

πz
cos(z − νπ/2− π/4) +O

(
z−

3
2

)
, z → ∞,

we have by using cos(ωx− νπ/2− π/4) = cos(−ωx+ νπ/2 + π/4) that

(3.3)

∫ b

c

(b− x)βψ(x)Jν(ωx) dx

=

√
2

πω

∫ b

c

(b− x)β cos(ωx− νπ/2− π/4)x− 1
2ψ(x) dx+O(ω− 3

2 )

=

√
2

πω
�
{
ei(νπ/2+π/4)

∫ b

c

(b− x)βe−iωxx− 1
2ψ(x) dx

}
+O(ω− 3

2 )

=

√
2

πω
�
{
ei(νπ/2+π/4−bω)

∫ b−c

0

uβeiωu(b− u)−
1
2ψ(b− u) du

}
+O(ω− 3

2 ),

where �{z} denotes the real part of z. Setting F (x) =
∫ x

0
uβeiωu du and applying

the integration by parts, we obtain

(3.4)

∣∣∣ ∫ b−c

0

uβeiωu(b− u)−
1
2ψ(b− u) du

∣∣∣
=
∣∣∣ ∫ b−c

0

(b− u)−
1
2ψ(b− u)dF (u)

∣∣∣
=
∣∣∣[(b− u)−

1
2ψ(b− u)F (u)

]b−c

0
−
∫ b−c

0

F (u)
(
(b− u)−

1
2ψ(b− u)

)′
du
∣∣∣

≤
( |ψ(c)|√

c
+

∫ b

c

∣∣(x− 1
2ψ(x)

)′∣∣ dx) max
u∈[0,b−c]

|F (u)|

≤ C‖ψ‖WAC(c,b) max
x∈[0,b−c]

|F (x)|,
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where C is a constant independent of ω. Finally, we use an asymptotic behaviour
of F (x) in terms of the hypergeometric function 1F1(·) in [1, (13.5.1)] to claim that

|F (x)| = xβ+1

β + 1

∣∣
1F1(β + 1;β + 2; iωx)

∣∣ = O
(
ω−1 + ω−β−1

)
,

which, together with (3.3) and (3.4), leads to (3.2). �

With Lemma 3.1 at our disposal, we now associate the Bessel function in (3.1)
and (3.2) with the Jacobi polynomial through the Hilb-type formula (2.10) and
derive the asymptotic estimates in Lemma 3.2 and Lemma 3.3. These allow us to

deal with the integrals involved the Jacobi polynomials in a
(α,β)
n (x; g).

Lemma 3.2. Let α, β, γ, δ > −1. If ψ(x) ∈ WAC(a, 1) with a ∈ (−1, 1), then for
n � 1, we have

(3.5)

∫ 1

a

(x−a)γ(1−x)δP (α,β)
n (x)ψ(x) dx = ‖ψ‖WAC(a,1)·O

(
n−min{2δ−α+2,γ+ 3

2 ,
3
2 }
)
.

If ψ(x) ∈ WAC(a, b) with −1 < a < b < 1, then for n � 1, we have

(3.6)

∫ b

a

(x− a)γP (α,β)
n (x)ψ(x) dx = ‖ψ‖WAC(a,b) · O

(
n−min{γ+ 3

2 ,
3
2 }
)
.

Proof. We make a change of variable x = cos θ and denote θ0 = arccos a. Then it
follows from the Hilb-type formula (2.10) that

(3.7)

∫ 1

a

(x− a)γ(1− x)δP (α,β)
n (x)ψ(x) dx

=

∫ θ0

0

2δ+1 sin2δ+1
(θ
2

)
cos
(θ
2

)
(cos θ − cos θ0)

γP (α,β)
n (cos θ)ψ(cos θ) dθ

=
Γ(n+ α+ 1)

n!Ñα

∫ θ0

0

θ2δ+1−α(θ0 − θ)γJα(Ñθ)Ψ(θ) dθ +O(n−3/2),

where Ψ(θ) = h(θ)ψ(cos θ) and

h(θ) = 2α−δ
( sin(θ/2)

θ/2

)2δ−α+1/2

cos1/2−β
(θ
2

)(cos θ − cos θ0
θ0 − θ

)γ
.

One verifies readily that Ψ(θ) is absolutely continuous on [0, θ0] and Ψ′(θ) ∈
L1(0, θ0). Then using (3.1) in Lemma 3.1 and the asymptotic property of the
Gamma function (see [1])

lim
n→∞

Γ(n+ α+ 1)

n!Ñα
= 1,

we obtain from (3.7) that
(3.8)∫ 1

a

(x− a)γ(1− x)δP (α,β)
n (x)ψ(x) dx = ‖Ψ‖WAC(0,θ0) · O

(
n−min{2δ−α+2,γ+ 3

2 ,
3
2 }
)
.

Since for any θ ∈ [0, θ0], we have

|Ψ(θ)| ≤ C0|ψ(cos θ)|, |Ψ′(θ)| ≤ C1(|ψ(cos θ)|+ |ψ′(cos θ)| sin θ),
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where C0, C1 are some constants independent of θ. Then it follows from direct
calculation that
(3.9)

‖Ψ‖WAC(0,θ0) ≤ C
(
‖ψ(cos θ)‖L∞(0,θ0) +

∫ θ0

0

|ψ(cos θ)|dθ +
∫ θ0

0

|ψ′(cos θ)| sin θdθ
)

= C
(
‖ψ‖L∞(a,1) +

∫ 1

a

|ψ(x)| dx√
1− x2

+

∫ 1

a

|ψ′(x)|dx
)

≤ C
(
(π + 1)‖ψ‖L∞(a,1) +

∫ 1

a

|ψ′(x)|dx
)

≤ C(π + 1)‖ψ‖WAC(a,1).

Thus we claim (3.5) from (3.8) and (3.9).
Next for fixed b < 1, we set θ1 = arccos b. Using (3.2) in Lemma 3.1 on [θ1, θ0],

we derive (3.6) directly from the second identity in (3.7) with δ = 0 and b = cos θ1,
since∫ b

a

(x−a)γP (α,β)
n (x)ψ(x) dx =

Γ(n+ α+ 1)

n!Ñα

∫ θ0

θ1

(θ0−θ)γJα(Ñθ)Ψ̄(θ) dθ+O(n−3/2),

where

Ψ̄(θ) =
√
2θ sin

1
2−α

(θ
2

)
cos

1
2−β

(θ
2

)(cos θ − cos θ0
θ0 − θ

)γ
ψ(cos θ) ∈ WAC(θ1, θ0).

Thus, following the same lines as the above for (3.9), we can obtain (3.6). �
If ψ(x) has more regularity, we denote Wm

AC(Ω) for some positive integer m as

Wm
AC(Ω) =

{
ψ : ψ(k) ∈ WAC(Ω), k = 0, · · · ,m

}
,

equipped with the norm

‖ψ‖Wm
AC(Ω) =

m∑
k=0

‖ψ(k)‖WAC(Ω).

In particular, for m = 0, we have WAC(Ω) = W 0
AC(Ω). Then we can further derive

the following estimate using Lemma 3.2.

Lemma 3.3. Let α, β, γ > −1, a ∈ (−1, 1) and n � 1. Denote by m = �γ� the
greatest integer that is less than γ. If ψ ∈ Wm+1

AC (a, 1+a
2 )∩Wm+2

AC ( 1+a
2 , 1), then we

have ∫ 1

a

(x− a)γψ(x)P (α,β)
n (x)ω(α,β)(x) dx

=
(
‖ψ‖Wm+1

AC (a, 1+a
2 ) + ‖ψ‖Wm+2

AC ( 1+a
2 ,1)

)
· O(n−γ− 3

2 ).

(3.10a)

If ψ ∈ Wm+1
AC (−1+a

2 , a) ∩Wm+2
AC (−1, −1+a

2 ), then∫ a

−1

(a− x)γψ(x)P (α,β)
n (x)ω(α,β)(x) dx

=
(
‖ψ‖Wm+1

AC (−1+a
2 ,a) + ‖ψ‖Wm+2

AC (−1,−1+a
2 )

)
· O(n−γ− 3

2 ).

(3.10b)

Proof. Recall the Rodrigues’ formula of Jacobi polynomials (see [27, pp. 94]):

(3.11) ω(α,β)(y)P (α,β)
n (y) =

(−1)k

2k(n)k

dk

dyk
(
ω(α+k,β+k)(y)P

(α+k,β+k)
n−k (y)

)
, k ∈ N,
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where (n)k = n(n− 1) · · · (n− k+1) denotes the falling factorial. Using (3.11) and

integration by parts, we find from Lemma 3.2 and the fact P
(α,β)
n ( 1+a

2 ) = O(n− 1
2 )

(see Theorem 2.3) that

∫ 1

a

(x− a)γψ(x)P (α,β)
n (x)ω(α,β)(x) dx

=
1

2m+1(n)m+1

∫ 1

a

[(x− a)γψ(x)](m+1) P
(α+m+1,β+m+1)
n−m−1 (x)ω(α+m+1,β+m+1)(x) dx

=
1

2m+1(n)m+1

∫ 1+a
2

a

[(x− a)γψ(x)](m+1) P
(α+m+1,β+m+1)
n−m−1 (x)ω(α+m+1,β+m+1)(x) dx

− 1

2m+2(n)m+2
[(x− a)γψ(x)](m+1) P

(α+m+2,β+m+2)
n−m−2 (x)ω(α+m+2,β+m+2)(x)

∣∣1
1+a
2

+
1

2m+2(n)m+2

∫ 1

1+a
2

[(x− a)γψ(x)](m+2) P
(α+m+2,β+m+2)
n−m−2 (x)ω(α+m+2,β+m+2)(x) dx

= ‖ψ‖
Wm+1

AC (a, 1+a
2

)
· O(n−γ− 3

2 ) + [(x− a)γψ(x)](m+1)
∣∣
x= 1+a

2
· O(n−m− 5

2 )

+ ‖ψ‖
Wm+2

AC ( 1+a
2

,1)
· O(n−m− 7

2 ).

(3.12)

This leads to (3.10a) by the fact that γ + 3
2 ≤ m+ 5

2 .

We can obtain (3.10b) directly using P
(α,β)
n (−x) = (−1)nP

(β,α)
n (x). �

3.2. Analysis of a
(α,β)
n (x; g). We now turn to the optimal asymptotic estimates

of a
(α,β)
n (x; g) in (2.8)–(2.9), which is of paramount importance in Theorem 1.3.

Theorem 3.1. For α, β > −1 and a
(α,β)
n (x; g) defined in (2.8), we have

(3.13) a(α,β)n (x; g) =

⎧⎨⎩|x− a|−1O(n−λ− 1
2 ), x ∈ [−1, a) ∪ (a, 1], λ > −1,

O(n−λ+ 1
2 ), x = a, λ > 0,

and

(3.14) a(α,β)n (x; g) = O(n−λ+ 1
2 ) for λ > 0 and ∀x ∈ [−1, 1],

where the constants in O-terms are independent of x.

Proof. For clarity, we carry out the proof in three cases: (i) x < a; (ii) x = a and
(iii) x > a. Below we just provide the detailed proof for the cases (i) and (ii), but
sketch that of the third case in Appendix A to avoid unnecessary repetition.

(i) x < a: For each fixed x < a, one verifies readily from (3.10) and σ
(α,β)
n =

O(n−1) that

a(α,β)n (x; g) =
1

σ
(α,β)
n

∫ 1

a

(y − a)λ
z(y)

y − x
P (α,β)
n (y)ω(α,β)(y) dy

=
∥∥∥ z(y)

y − x

∥∥∥
Wm+2

AC (a,1)
· O
(
n−λ− 1

2

)
,

where m = �λ� is defined as that in Lemma 3.3. Although the asymptotic order

n−λ− 1
2 in above is optimal, but the constant before it is not well controlled when x

is closed to a. To obtain (3.13) and (3.14), for simplicity, we redefine m as m = λ−1
if λ is an integer, otherwise m = �λ�.
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Applying the Rodrigues’ formula (3.11), we obtain

(3.15)
a(α,β)n (x; g) =

1

2m+1(n)m+1σ
(α,β)
n

∫ 1

a

(y − a)λ−m−1φm+1(x, y)

y − x

× P
(α+m+1,β+m+1)
n−m−1 (y)ω(α+m+1,β+m+1)(y) dy,

where Leibniz’s rule is used that

∂m+1
y g1(x, y) = (y − a)λ−m−1φm+1(x, y)

y − x
,(3.16)

φm+1(x, y) =
m+1∑
k=0

k∑
j=0

(−1)k−j(m+ 1)!(λ)j
j!(m+ 1− k)!

z(m+1−k)(y)(y − a)m+1−k
(y − a

y − x

)k−j

.

It is not difficult to verify that there exist two constants C1 and C2 independent of
x such that

(3.17) max
y∈[a, 1+a

2 ]
|φm+1(x, y)| ≤ C1, max

y∈[a, 1+a
2 ]

|∂yφm+1(x, y)| ≤
C2

y − x
.

As a result, we can derive the estimate (3.13) from Lemma 3.3 since∥∥∥φm+1

y − x

∥∥∥
WAC(a, 1+a

2 )
≤ C|x− a|−1

for some constant C independent of x, and φm+1(x,y)
y−x is smooth for x < a and a+1

2 ≤
y ≤ 1 (i.e. ‖φm+1

y−x ‖W 1
AC( 1+a

2 ,1) is uniformly bounded by a constant independent of

x).

In order to obtain the uniformly estimate (3.14) for a
(α,β)
n (x; g) for any x ∈

[−1, a), we conduct integration by parts till m instead of m+ 1 in (3.15) and find

∂m
y g1(x, y) = (y − a)λ−m−1

(y − a

y − x
φm(x, y)

)
.

Note that these two functions in x

y − a

y − x
φm(x, y) and

∫ 1

a

∣∣∣∂y(y − a

y − x
φm(x, y)

)∣∣∣ dy
are uniformly bounded on (x, y) ∈ [−1, a) × (a, 1), and ‖φm+1

y−x ‖W 1
AC( 1+a

2 ,1) is uni-

formly bounded independent of x too. Thus we obtain the uniform bound (3.14).
(ii) x = a: It follows from (3.10) directly that

a(α,β)n (a; g) =
1

σ
(α,β)
n

∫ 1

a

(y − a)λ−1z(y)P (α,β)
n (y)ω(α,β)(y) dy = O(n−λ+ 1

2 ).

(iii) x > a: See Appendix A for a sketch. �

3.3. Proof of Theorem 1.3 for (1.8). From (2.6) and (3.13), it follows that for
x ∈ [−1, a) ∪ (a, 1],

e
(α,β)
f (n, x) =

2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 2)(2n+ α+ β + 1)
a(α,β)n (x; g)P

(α,β)
n+1 (x)

− 2(n+ α+ 1)(n+ β + 1)

(2n+ α+ β + 2)(2n+ α+ β + 3)
agn+1(x, α, β)P

(α,β)
n (x)

= |x− a|−1O(n−λ− 1
2 )
(
|P (α,β)

n (x)|+ |P (α,β)
n+1 (x)|

)
,

(3.18)
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while for x = a,

(3.19) e
(α,β)
f (n, a) =

(
|P (α,β)

n (a)|+ |P (α,β)
n+1 (a)|

)
O(n−λ+ 1

2 ),

which, together with Theorem 2.3 on P
(α,β)
k (x) = O(n− 1

2 ) (k = n, n+ 1) for fixed
x ∈ (−1, 1), yields

e
(α,β)
f (n, x) ≤ C(x)n−λ−1 (x �= a), e

(α,β)
f (n, a) ≤ Cn−λ.

Here, C and C(x) are independent of n. Furthermore, from Corollary 2.1 on

P
(α,β)
n (1± ξ), we deduce that C(x) behaves like (1.13) near x = a,±1. For x = ±1,

using the properties [27, (7.32.2)]:

P (α,β)
n (1) = O

(
nα
)
, P (α,β)

n (−1) = O
(
nβ
)
,

and (3.18), we obtain (1.14), i.e.,

e
(α,β)
f (n, 1) ≤ Cnα− 1

2−λ, e
(α,β)
f (n,−1) ≤ Cnβ− 1

2−λ,

where C is a positive constant independent of n.
At this point, we have completed the proof of Theorem 1.3 for (1.8) except for

the case where x = a and λ > 0 is an even integer.
Indeed, if λ is an even integer, we apply the Rodrigues formula (3.11) λ times,

and use Lemma 3.3, leading to

a(α,β)n (a; g) = −
g
(λ−1)
2 (y)P

(α+λ,β+λ)
n−λ (y)ω(α+λ,β+λ)(y)

2λ(n)λσ
(α,β)
n

∣∣∣∣1
a

+
1

2λ(n)λσ
(α,β)
n

∫ 1

a

g
(λ)
2 (y)P

(α+λ,β+λ)
n−λ (y)ω(α+λ,β+λ)(y) dy

=
(λ− 1)!(1− a)α+λ(1 + a)β+λP

(α+λ,β+λ)
n−λ (a)z(a)

2λ(n)λσ
(α,β)
n

+
1

2λ(n)λσ
(α,β)
n

∫ 1

a

g
(λ)
2 (y)P

(α+λ,β+λ)
n−λ (y)ω(α+λ,β+λ)(y) dy

=
(λ− 1)!(1− a)α+λ(1 + a)β+λP

(α+λ,β+λ)
n−λ (a)z(a)

2λ(n)λσ
(α,β)
n

+O(n−λ− 1
2 ),

(3.20)

where we used g2 is smooth for y ∈ [a, 1] and

g
(λ−1)
2 (a) =

[
(y − a)λ−1z(y)

](λ−1)

=
λ−1∑
k=0

(
λ− 1

k

)
(λ− 1)k(y − a)λ−1−kz(λ−1−k)(y)

∣∣∣
y=a

= (λ− 1)! z(a).
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Then from (3.20) and (3.18) we have that for x = a,

(3.21)

e
(α,β)
f (n, a)

= A(α,β)
n

(λ− 1)!(1− a)α+λ(1 + a)β+λz(a)

2λ
P

(α+λ,β+λ)
n−λ (a)P

(α,β)
n+1 (a)

(n)λ σ
(α,β)
n

−B(α,β)
n

(λ− 1)!(1− a)α+λ(1 + a)β+λz(a)

2λ
P

(α+λ,β+λ)
n+1−λ (a)P

(α,β)
n (a)

(n+ 1)λ σ
(α,β)
n+1

+O(n−λ−1)

= A(α,β)
n

(λ− 1)!(1− a)α+λ(1 + a)β+λz(a)

2λ(n)λ σ
(α,β)
n

[
P

(α+λ,β+λ)
n−λ (a)P

(α,β)
n+1 (a)

− P
(α+λ,β+λ)
n+1−λ (a)P (α,β)

n (a)
]
+O(n−λ−1),

where we used the factor P
(α+λ,β+λ)
n+1−λ (a)P

(α,β)
n (a) = O(n−1) and

B(α,β)
n = A(α,β)

n (1 +O(n−2)),
1

(n+ 1)λ σ
(α,β)
n+1

=
1

(n)λ σ
(α,β)
n

(
1 +O(n−1)

)
.

Moreover, we shall show that for even integer λ > 0,

(3.22) P
(α+λ,β+λ)
n−λ (a)P

(α,β)
n+1 (a)− P

(α+λ,β+λ)
n+1−λ (a)P (α,β)

n (a) = O(n−2),

which implies a cancellation happens and gains one order higher in convergence
rate. To this end, we use the asymptotic property in [27, Theorem 8.21.8]: For any
α, β ∈ R and θ ∈ (0, π), it holds that

(3.23) P (α,β)
n (cos θ) = (nπ)−

1
2 sin−α− 1

2

(θ
2

)
cos−β− 1

2

(θ
2

)
cos(Ñθ + γ) +O

(
n− 3

2

)
,

where Ñ = n + (α + β + 1)/2, γ = − 2α+1
4 π. The bound for the error term holds

uniformly in the interval [ε, π − ε] for fixed positive number ε. Thus by (3.23), we
have

P
(α+λ,β+λ)
n−λ (a)P

(α,β)
n+1 (a)− P

(α+λ,β+λ)
n+1−λ (a)P

(α,β)
n (a)

(2π)−1 sin−2α−λ−1
(
θ0
2

)
cos−2β−λ−1

(
θ0
2

)
=

cos(θ0 + λπ/2)√
(n− λ)(n+ 1)

− cos(θ0 + λπ/2)√
(n+ 1− λ)n

+
cos(θ1)√

(n− λ)(n+ 1)
− cos(θ1)√

(n+ 1− λ)n
+O

(
n−2)

(3.24)

with

θ1 = (2n+ 2 + α+ β)θ0 −
(2α+ λ+ 1)π

2
.

Note that if λ is an even integer, the first four O(n−1) terms in (3.24) can be
cancelled. This yields (3.22). Then we derive from (3.21) and (3.24) that for even
integer λ,

(3.25) e
(α,β)
f (n, a) = O(n−λ−1).
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3.4. Extension to (1.9). Let

(3.26) f∗(x) = z(x) ·
{
(a− x)λ, −1 ≤ x < a,

0, a < x ≤ 1,
a ∈ (−1, 1),

where λ > −1, z ∈ C∞[−1, 1] and f∗(a) = 0 for λ > 0 and f∗(a) = z(a)
2 for λ = 0.

Using an analogous argument as for (1.8), we can show that Theorem 1.3 is also
valid for f∗(x).

Corollary 3.1. Given f∗(x) in (3.26) and α, β > −1, we have the following point-
wise error estimates.

(i) For x ∈ (−1, a) ∪ (a, 1), we have e
(α,β)
f∗ (n, x) ≤ C(x)n−λ−1, where C(x) is

independent of n and has the behaviours near x = a,±1 as follows

(3.27)

C(−1 + ξ) ≤ D(−1)ξ−max{ β
2 +

1
4 ,0},

C(1− ξ) ≤ D(1)ξ−max{α
2 + 1

4 ,0},

C(a± ξ) ≤ D(a)ξ−1,

for 0 < ξ ≤ δ, where D(±1), D(a) > 0 and δ > 0 are independent of n.
(ii) At x = ±1, we have

(3.28) e
(α,β)
f∗ (n, 1) ≤ Cn−λ+α− 1

2 ; e
(α,β)
f∗ (n,−1) ≤ Cn−λ+β− 1

2 .

(iii) At x = a and λ > 0, we have

(3.29) e
(α,β)
f∗ (n, a) ≤

{
Cn−λ−1, λ is even,

Cn−λ, otherwise.

Notice that z(x)|x − a|λ = f(x) + f∗(x), which implies Theorem 1.3 also holds
for functions defined by (1.9).

To check the error bounds (1.12)–(1.15) numerically, we illustrate the conver-

gence orders of the pointwise errors e
(α,β)
f (n, x) for functions f(x) = (x− 1

4 )
λ
+ and

f(x) = |x − 1
4 |λ with different values of λ and α, β. From Figures 3.1 and 3.2, we

observe that these convergence orders are attainable and in accordance with the
estimates stated in Theorem 1.3, even for the divergent cases (see the last column
of the first row in Figure 3.2 and Figure 4.1).

Note that the function C(x) near x = ±1 and x = a is described in (1.13). We
further demonstrate that the estimate agrees well with the pointwise errors through
a test on f(x) = (x− a)λ+. Pointwise errors around x = ±1 and x = a are plotted
in Figure 3.3, which implies the optimality on the estimates (1.13) in the sense that
the orders on ξ cannot be improved.
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Figure 3.1. Pointwise errors e
(α,β)
f (n, x) for f(x) = (x− 1

4 )
λ
+ with

λ = − 1
3 at x = − 1

2 (first row) and x = 1
2 (second row), respectively,

for n = 1 : 5000. In the dashed dotted lines, the constants in O
may have different values for different cases, and likewise for the
figures hereinafter.
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Figure 3.2. Pointwise errors e
(α,β)
f (n, x) for f(x) = (x − 1

4 )
λ
+

with λ = 1
3 at endpoint x = 1 (first row) and singular point x = 1

4
(second row), respectively, for n = 100 : 100 : 5000
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Figure 3.3. Pointwise error plots of e
(α,β)
f (n, x) around x = −1

(left), x = a (middle) and x = 1 (right), where f(x) =
(
x− 1

10

)1/2
+

,

α = 1
2 , β = 2

5 and n = 2000

4. Convergence rates in the maximum norm

From the proof of Theorem 3.1 and Theorem 1.3, for function (1.8) or (1.9) with
λ > 0, we have the following asymptotic convergence rates.

Corollary 4.1. Suppose that λ > 0 and f(x) is a function defined in (1.8) (or
(1.9) where λ is not an even number), then for α, β > −1, (1.16) holds, that is,

‖f − S(α,β)
n [f ]‖∞ =

{
O
(
nmax{α− 1

2 ,β−
1
2}−λ

)
, if max{α, β} > 1

2 ,

O
(
n−λ

)
, if max{α, β} ≤ 1

2 .

Proof. We assume here that f(x) is defined in (1.8), while for functions in (1.9) a
similar proof can be done by the fact z(x)|x− a|λ = f(x) + f∗(x).

If x belongs to a closed subset of [−1, a)∪(a, 1], that is, x ∈ [−1, a−δ0]∪[a+δ0, 1]

for any fixed δ0 > 0 such that a− δ0 > −1 and a+ δ0 < 1, then a
(α,β)
n (x; g) will be

uniformly bounded by a
(α,β)
n (x; g) = O(n−λ−1/2). This further leads to

(4.1)
e
(α,β)
f (n, x) = O(n−λ− 1

2 )max
{
‖P (α,β)

n ‖∞, ‖P (α,β)
n+1 ‖∞

}
= O(nmax{α− 1

2 ,β−
1
2 ,−1}−λ).

While if x ∈ [a− δ0, a+ δ0], from the uniform estimate (3.14) that a
(α,β)
n (x; g) =

O(n−λ+1/2) and P
(α,β)
n (x) = O(n−1/2) (see from Theorem 2.3), we obtain

(4.2) e
(α,β)
f (n, x) = O(n−λ+ 1

2 )
(
|P (α,β)

n (x)|+ |P (α,β)
n+1 (x)|

)
= O(n−λ),

which together with (4.1) leads to (1.16). �
In Figure 4.1, we demonstrate the convergence rates of the maximum error of

S
(α,β)
n [f ] and p∗n for f(x) = |x − 1

4 |λ. Obviously, all these numerical results are
consistent with the theoretical estimate (1.16).

Accordingly, it is interesting to examine the weighted pointwise error defined in
(1.17), which is one order higher than the optimal polynomial approximation as
stated below.

Corollary 4.2. Suppose that λ > 0 and f(x) is a function defined in (1.8) (or
(1.9) where λ is not an even number), then for α, β > −1, (1.18) holds, i.e.,

‖ê(α,β)f ‖∞ = O(n−λ−1).
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Figure 4.1. Maximum error ‖f − S
(α,β)
n [f ]‖∞ (red circle) and

‖f − p∗n‖∞ (blue square) for f(x) = |x − 1
4 |λ with λ = 1/2 (first

row) and λ = 1 (second row), respectively

Proof. From (2.13), we have

(4.3) (1− x)max{α
2 + 1

4 ,0}(1 + x)max{ β
2 +

1
4 ,0}P (α,β)

n (x) = O(n− 1
2 ),

which, together with (3.13), leads to

ê
(α,β)
f (n, x) = (1− x)max{α

2 + 1
4 ,0}(1 + x)max{ β

2 +
1
4 ,0}(x− a)e

(α,β)
f (n, x) = O(n−λ−1),

when x �= a, where the constant in O-term is independent of x. While when x = a,

it is obvious that ê
(α,β)
f (n, a) = 0. This completes the proof. �

Corollary 4.2 indicates that the weighted pointwise error of S
(α,β)
n [f ] in the uni-

form norm is one order higher in convergence rate than the optimal polynomial
approximation. However, if we consider the weighted pointwise error by removing
the factor (x− a):

ẽ
(α,β)
f (n, x) = (1− x)max{α

2 + 1
4 ,0}(1 + x)max{ β

2 +
1
4 ,0}e

(α,β)
f (n, x),

then we can obtain similarly the following asymptotic estimate.

Corollary 4.3. Suppose that λ > 0 and f(x) is defined by (1.8) (or (1.9) where λ
is not an even number), then for α, β > −1, we have the following estimate

(4.4) ‖ẽ(α,β)f ‖∞ = O(n−λ).

Proof. This is obtained by the uniform estimate a
(α,β)
n (x; g) = O(n−λ+1/2) and

(4.3). �

Numerical results in Figure 4.2 illustrate the optimal estimates on these two
kinds of weighted pointwise errors.
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Figure 4.2. Plots of ‖ê(α,β)f ‖∞ (black pentagram), ‖ẽ(α,β)f ‖∞ (red

circle) and the best approximation ‖f − p∗‖∞ (blue square) for
f(x) = (x−1/4)λ+ with λ = 1/2 (first row) and λ = 2 (second row)

5. Extensions to functions with endpoint singularities

In this section, we intend to study the pointwise error estimates and local super-
convergence of Jacobi expansions to functions with endpoint singularities, which
are stated in the following theorems.

In fact, the estimates in Lemma 3.2 can be generalised to the case with a = −1.

Lemma 5.1. Let α, β, γ, δ > −1 and ψ(x) ∈ WAC(−1, 1), then for n � 1 we have∫ 1

−1

(1 + x)γ(1− x)δP (α,β)
n (x)ψ(x) dx

= ‖ψ‖WAC(−1,1) · O
(
n−min{2δ−α+2,2γ−β+2,3/2}).(5.1)

Proof. In order to obtain the estimate, we split the integral in (5.1) into two parts
as follows∫ 0

−1

(1 + x)γP (α,β)
n (x)(1− x)δψ(x) dx+

∫ 1

0

(1− x)δP (α,β)
n (x)(1 + x)γψ(x) dx.

Using Lemma 3.2, we can derive the estimate∫ 1

0

(1− x)δP (α,β)
n (x)(1 + x)γψ(x) dx

= ‖(1 + x)γψ(x)‖WAC(0,1) · O
(
n−min{2δ−α+2,3/2})

= ‖ψ‖WAC(0,1) · O
(
n−min{2δ−α+2,3/2}).

Similarly, we can show that∫ 0

−1

(1 + x)γP (α,β)
n (x)(1− x)δψ(x) dx = ‖ψ‖WAC(−1,0) · O

(
n−min{2γ−β+2,3/2}).

Then the estimate (5.1) follows immediately from the above. �
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We have the following results on the pointwise estimates for the endpoint singu-
larities.

Theorem 5.1. Define f1(x) = (1 − x)λz(x) (λ + α > −1) and f2(x) = (1 +
x)λz(x) (λ + β > −1) where the given function z(x) is smooth with z(±1) �= 0.
Then for λ > −1 not an integer, we have the following pointwise error estimates.

(i) For x ∈ (−1, 1), we have

(5.2) e
(α,β)
f1

(n, x) ≤ C1(x)n
−2λ−α− 3

2 , e
(α,β)
f2

(n, x) ≤ C2(x)n
−2λ−β− 3

2 ,

where Ci(x) is independent of n and has the behaviours near x = ±1 as
follows for some δ > 0 and 0 < ξ ≤ δ

C1(1− ξ) ≤ D(1) ξ−max{α
2 + 1

4 ,0}−1, C1(−1 + ξ) ≤ D(−1) ξ−max{ β
2 +

1
4 ,0},

C2(1− ξ) ≤ D(1) ξ−max{α
2 + 1

4 ,0}, C2(−1 + ξ) ≤ D(−1) ξ−max{ β
2 +

1
4 ,0}−1,

(5.3)

with D(±1) independent of ξ and n.
(ii) At x = ±1, we have

e
(α,β)
f1

(n, 1) ≤ Cn−2λ, e
(α,β)
f2

(n,−1) ≤ Cn−2λ.(5.4)

(iii) For the weighted pointwise error

(5.5)
(1− x)max{α

2 + 1
4 ,0}(1 + x)max{ β

2 +
1
4 ,0}(1− x)e

(α,β)
f1

(n, x) = O(n−2λ−α− 3
2 ),

(1− x)max{α
2 + 1

4 ,0}(1 + x)max{ β
2 +

1
4 ,0}(1 + x)e

(α,β)
f2

(n, x) = O(n−2λ−β− 3
2 ),

where the O-terms involved are independent of x.

Proof. For simplicity, we only consider the estimates for f1. By P
(α,β)
n (−x) =

(−1)nP
(β,α)
n (x) it leads to the desired results for f2.

Notice that

(5.6)

a(α,β)n (x; g) =
1

σ
(α,β)
n

[∫ 1

−1

z(x)− z(y)

x− y
(1− y)λP (α,β)

n (y)ω(α,β)(y) dy

+

∫ 1

−1

(1− x)λ − (1− y)λ

x− y
z(x)P (α,β)

n (y)ω(α,β)(y) dy

]
.

Obviously, z(x)−z(y)
x−y is smooth in [−1, 1] and satisfies for some ξ between x and y

that

(5.7) ∂k
y

(
z(x)− z(y)

x− y

)
= k!

z(x)−
∑k

j=0
z(j)(y)

j! (x− y)j

(x− y)k+1
=

1

k + 1
z(k+1)(ξ),

which is uniformly bounded independent of x and y for any fixed positive integer
k. Then it follows from the proof of [35, Theorem 3.1] with μ = 0 that

(5.8)
1

σ
(α,β)
n

∫ 1

−1

z(x)− z(y)

x− y
(1− y)λP (α,β)

n (y)ω(α,β)(y) dy = O(n−2λ−α−1),

where the constant in O-term is independent of x and n.
Now we turn to the second term in (5.6). Firstly, take m to be a positive integer

such that α + 2λ + 2 −m ≤ 3
2 ≤ β +m + 2 and m > λ, then it follows from [35]
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that

z(x)

σ
(α,β)
n

∫ 1

−1

(1− x)λ − (1− y)λ

x− y
P (α,β)
n (y)ω(α,β)(y) dy

=
z(x)

2m(n)mσ
(α,β)
n

∫ 1

−1

(1− y)λ−mP
(α+m,β+m)
n−m (y)ψ3(x, y)ω

(α+m,β+m)(y) dy,

(5.9)

where

ψ3(x, y) = (1− y)m−λ∂m
y

( (1− x)λ − (1− y)λ

x− y

)
.

Analogously, ψ3(x, y) is continuous and for any integer k > λ, there exists ξ1
between x and y such that

(−1)�λ�+1∂k
y

( (1− x)λ − (1− y)λ

x− y

)
=

(−1)�λ�+1

k + 1
(λ)k+1(1− ξ1)

λ−k−1(−1)k+1 > 0.

(5.10)

In addition, by an argument similar to the proof of the monotonicity of ψ2 in
Appendix A but with 1−y in place of y−a and m in place of m+1, we can readily
prove that

(−1)�λ�+1∂yψ3(x, y) > 0.

This together with (5.10) indicates that ψ3 is positive and increasing w.r.t. y ∈
[−1, 1] if �λ� is odd, otherwise ψ3 will be negative and decreasing. As a result, it
leads to

max
y∈[−1,1]

|ψ3(x, y)| = |ψ3(x, 1)| ≤ C(1− x)−1,∫ 1

−1

|∂yψ3(x, y)|dy = |ψ3(x, 1)− ψ3(x,−1)| ≤ C(1− x)−1,

so ψ3(x, ·) ∈ WAC(−1, 1). Then by Lemma 5.1, it establishes from (5.6) and (5.9)
that

(5.11) a(α,β)n (x; g) = (1− x)−1 · O(n−2λ−α−1),

which together with (2.6) and Corollary 2.1 leads to the desired results (5.2) and
(5.3).

When x = 1, it is difficult to establish (5.4) from (2.6), but it can be derived
from the estimate (see [35, Theorem 3.1])

a(α,β)n (x; f1) = O(n−2λ−α−1)

and Theorem 2.3, that is,

e
(α,β)
f1

(n, 1) =
∣∣∣ ∞∑
j=n+1

a(α,β)n (x; f1)P
(α,β)
n (1)

∣∣∣ ≤ C
∞∑

j=n+1

j−2λ−α−1jα ≤ Cn−2λ.

Finally, we obtain the weighted pointwise error estimate (5.5) by analogous ar-
guments as the proof of Theorem 1.3 and Corollary 2.1. �

Based on (5.11) and Theorem 2.1, we may give some improved and optimal

bounds for ‖fi − S
(α,β)
n [fi]‖∞ than those in [36].
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Theorem 5.2. Let f1(x) = (1−x)λz(x) (λ+α > −1) and f2(x) = (1+x)λz(x) (λ+
β > −1) with λ > 0 not an integer and z(x) defined as above. Then for min{α, β} ≥
− 1

2 , it holds

‖f1 − S(α,β)
n [f1]‖∞ = O(n−2λ+max{0,β−α−1});

‖f2 − S(α,β)
n [f2]‖∞ = O(n−2λ+max{0,α−β−1}).

Proof. Note by ‖P (α,β)
n ‖[0,1] := max0≤x≤1 |P (α,β)

n | = O(nα) (see Theorem 2.3) that
for f1 and x ∈ [0, 1] it yields

e
(α,β)
f1

(n, x) =
∣∣∣ ∞∑
j=n+1

a
(α,β)
j (x; f1)P

(α,β)
j (x)

∣∣∣
≤ C

∞∑
j=n+1

j−2λ−α−1‖P (α,β)
j ‖[0,1]

≤ C1n
−2λ

for some constants C and C1 independent of x ∈ [0, 1] and n. While for x ∈ [−1, 0],

by (2.6), (5.11) and ‖P (α,β)
n ‖[−1,0] := max−1≤x≤0 |P (α,β)

n | = O(nβ) (see Theorem
2.3), it implies

e
(α,β)
f1

(n, x) =
∣∣∣A(α,β)

n a(α,β)n (x; g)P
(α,β)
n+1 (x)−B(α,β)

n a
(α,β)
n+1 (x; g)P (α,β)

n (x)
∣∣∣

≤ Cn−2λ−α−1‖P (α,β)
n ‖[−1,0]

≤ C2n
−2λ−α+β−1

for some constants C2 independent of x ∈ [0, 1] and n. These together lead to the
desired results for f1. Analogously, the bound for f2 is also satisfied. �

In Figure 5.1, we show the maximum error of S
(α,β)
n [f ] and p∗n[f ] as a function of

n for two functions f1(x) = (1− x)1/2 and f2(x) = (1 + x)2/3. In order to consider
the boundary behaviours around x = ±1, we also show a weighted maximum
error defined by (5.5). Clearly, numerical results are in good agreement with our
theoretical estimates in Theorem 5.1 and Theorem 5.2, which implies as well the
optimality of our estimates in the sense that the orders derived can no more be
improved.

Remark 5.1.

(i) The local behaviours of Legendre series have been extensively studied in
Wahlbin [32, Theorem 3.3], and were illustrated by numerical examples 6.2.b, 6.3.a-
b and 6.4.a-b in [32] for some specific x0

(5.12) f(x) =

{
0, −1 ≤ x ≤ 0,

1, 0 < x ≤ 1
with ef (n,

√
2

2
) ≤ C

lnn

n
, ef (n, 1) ≤ C

lnn√
n
,

or for x0 a “unit” distance away from 0

f(x) = |x| 12 with ef (n, x0) ≤ Cσn(x0)n
− 3

2 (lnn)
3
2 ,(5.13a)

f(x) =
√
1− x with ef (n, x0) ≤ Cσn(x0)n

− 5
2 (lnn)

5
2 ,(5.13b)
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Figure 5.1. Plots of ‖e(α,β)f ‖∞ (red circle), ‖f − p∗n‖∞ (blue

square) and the weighted maximum error ‖ê(α,β)f ‖∞ (black pen-

tagram) for f1(x) = (1 − x)1/2 (first row) and f2(x) = (1 + x)2/3

(second row)

f(x) = |x|− 1
2 with ef (n, x0) ≤ Cσn(x0)n

− 1
2 (lnn)

1
2 ,(5.14a)

f(x) =
1√

1− x2
with ef (n, x0) ≤ Cσn(x0)n

− 1
2 (lnn)

1
2 ,(5.14b)

where C is a constant independent of n, and σn(x0) = min{(1 − x2
0)

− 1
4 , n

1
2 } (see

[32] for more details).
(ii) For f(x) = (x− a)λ+, in more recently work by Babus̆ka and Hakula [5], the

above log-term in (5.12) is omitted without the assumption δ ≥ C4
lnn
n in Theorem

3.3 [32] if λ = 0, and the log-term (lnn)
3
2 in (5.13a) and (lnn)

1
2 in (5.14a) is

replaced by lnn respectively if λ �= 0.
(iii) Following Wahlbin [32, Theorem 3.3], from Theorem 2.3 and Corollary 2.1,

we may define C̃(n;x) = |x − a|−1σ
(α,β)
n (x) related to n and x instead of C(x)

in (1.12) of Theorem 1.3, while for boundary singularities, we define C̃1(n;x) =

(1 − x)−1σ
(α,β)
n (x) and C̃2(n;x) = (1 + x)−1σ

(α,β)
n (x) instead of C1(x) and C2(x)

in (5.3) in Theorem 5.1 respectively, where

σ(α,β)
n (x) =

⎧⎪⎨⎪⎩
min

{
(1− x)−max{α

2 + 1
4 ,0}, (n+ 1)

1
2

}
, α < −1

2
,

min
{
(1− x)−max{α

2 + 1
4 ,0}, (n+ 1)α+

1
2

}
, α ≥ −1

2
,

x ∈ [0, 1];

σ(α,β)
n (x) =

⎧⎪⎨⎪⎩
min

{
(1 + x)−max{ β

2 +
1
4 ,0}, (n+ 1)

1
2

}
, β < −1

2
,

min
{
(1 + x)−max{ β

2 +
1
4 ,0}, (n+ 1)β+

1
2

}
, β ≥ −1

2
,

x ∈ [−1, 0]
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satisfied that σ
(0,0)
n (x) ∼ σn(x), i.e., with the same order on x and n for Legendre

series. Then from Theorems 1.3 and 5.1, all the logarithimic factors in (5.12),
(5.13a), (5.13b), (5.14a) and (5.14b) can be removed, improvement of [32] in Le-
gendre series. As mentioned in Wahlbin [32], these bounds without the logarithimic
factors are sharp.

Remark 5.2. From Theorem 5.2, we see that if β−α−1 ≤ 0 (resp. α−β−1 ≤ 0) for

f1(x) (resp. f2(x)), ‖fi−S
(α,β)
n [fi]‖∞ = O(n−2λ) has the same order as ‖fi−p∗n‖∞,

(i = 1, 2).

Appendix A. Proof of case (iii) in Theorem 3.1

In Section 3, we presented detailed proofs of (3.13) for x < a and x = a,
respectively. In the following, we sketch the proof for Case (iii).

Case (iii) x > a: A routine computation from (2.8) gives rise to

a(α,β)n (x; g) =
1

σ
(α,β)
n

[∫ a

−1

z(x)(a− y)λ

x− y
P (α,β)
n (y)ω(α,β)(y) dy

+

∫ 1

a

ω(α,β)(y)
z(x)− z(y)

x− y
(y − a)λP (α,β)

n (y) dy

+

∫ 1

−1

(x− a)λ − |y − a|λ
x− y

z(x)P (α,β)
n (y)ω(α,β)(y) dy

]
.

(A.1)

Similar to the proof in case (i), it is not difficult to verify that the first term in
the right hand side of (A.1) satisfies (3.13) and (3.14). Since z(x) is smooth on

[−1, 1], and for any integer k, ∂k
y

(
z(x)−z(y)

x−y

)
is uniformly bounded by a constant

independent of x. As a result, the second term in (A.1) satisfies (3.13)–(3.14) as well
by Lemma 3.3. While for the third term, recalling the definition of m (m = λ − 1
if λ is an integer, otherwise m = �λ�), and applying the Rodrigues’ formula (3.11),
we have∫ 1

−1

(x− a)λ − |y − a|λ
x− y

z(x)P (α,β)
n (y)ω(α,β)(y) dy

=
z(x)

2m+1(n)m+1σ
(α,β)
n

×
{∫ a

−1

(a− y)λ−m−1P
(α+m+1,β+m+1)
n−m−1 (y)ψ1(x, y)ω

(α+m+1,β+m+1)(y) dy

+

∫ 1

a

(y − a)λ−m−1P
(α+m+1,β+m+1)
n−m−1 (y)ψ2(x, y)ω

(α+m+1,β+m+1)(y) dy

}
,

(A.2)

where

ψ1(x, y) = (a− y)m+1−λ∂m+1
y

( (x− a)λ − (a− y)λ

x− y

)
, y ∈ [−1, a],

ψ2(x, y) = (y − a)m+1−λ∂m+1
y

( (x− a)λ − (y − a)λ

x− y

)
, y ∈ [a, 1].
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It is evident that ψ1(x, y) and ψ2(x, y) are smooth on (a, 1)×[−1, −1+a
2 ] and (a, 1)×

[ 1+a
2 , 1], respectively. Similar to (3.16), ψ1(x, y) can be written as

ψ1(x, y) =
(m+ 1)!

x− y

[
(x− a)λ − (a− y)λ

(x− y)λ

(a− y

x− y

)m+1−λ

+

m+1∑
k=1

(−1)m+1(λ)k
k!

(a− y

x− y

)m+1−k
]

and satisfies

|ψ1(x, y)| ≤
C1

x− y
, |∂yψ1(x, y)| ≤

C2

(x− y)2
, ∀ y ∈ [(−1 + a)/2, a],

for some constants C1 and C2 independent of x. Thus, we can immediately derive
that ψ1(x, ·) ∈ WAC(

−1+a
2 , a) and ‖ψ1(x, ·)‖W 1

AC(−1,−1+a
2 ) is uniformly bounded for

all x, which, together with Lemma 3.3, leads to the desired result.
Now we turn to ψ2(x, y), after a calculation by the Leibniz’s formula, it leads to

(A.3) ψ2(x, y) = (m+ 1)! (y − a)m+1−λ h(x, y)

(x− y)m+2
,

where

h(x, y) = (x− a)λ −
m+1∑
k=0

(λ)k
k!

(y − a)λ−k(x− y)k.

Similar to (5.7), we have for some ξ between x and y that

(A.4)

h(x, y)

(x− y)m+2
=

(x− a)λ − (y − a)λ −
∑m+1

k=1
((y−a)λ)(k)

k! (x− y)k

(x− y)m+2

=
(λ)m+2(ξ − a)λ−m−2

(m+ 2)!
< 0.

Moreover, we find that ψ2(x, y) is monotonically increasing w.r.t. y (see the proof
at the end of this section and numerical illustration in Figure A.1). Therefore, we
get from (A.3) and (A.4) by letting y → a that

max
y∈[a, 1+a

2 ]
|ψ2(x, y)| = |ψ2(x, a)| = (λ)m+1(x− a)−1,

and ∫ 1+a
2

a

|∂yψ2(x, y)|dy =

∣∣∣∣ψ2

(
x,

1 + a

2

)
− ψ2(x, a)

∣∣∣∣ ≤ 2(λ)m+1(x− a)−1.

So the second integral in the right hand side of (A.2) also satisfies (3.13) as ψ2(x, ·) ∈
WAC(a,

1+a
2 ) and ‖ψ2(x, ·)‖W 1

AC( 1+a
2 ,1) is uniformly bounded for all x. To sum up

all the results above, we complete the proof of (3.13).
In order to obtain the uniformly estimate (3.14), we conduct integration by parts

till m instead of m + 1. The proof is analogous to that in Case (i) and omitted
here.

We end this section after providing a rigorous proof of the monotonicity of
ψ2(x, y) with respect to y. For any fixed x ∈ (a, 1), we have

∂yψ2(x, y) = (m+ 1)!
u(y)

(x− y)m+3
,
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where

u(y) = (x− y)∂y
(
(y − a)m+1−λh(x, y)

)
+ (m+ 2)(y − a)m+1−λh(x, y).

Interestingly, we can show that u(k)(x) = 0 for any k ∈ {0, 1, · · · ,m+ 1}, that is,

u(k)(x) = (m+ 2− k)∂k
y

(
(y − a)m+1−λh(x, y)

) ∣∣∣
y=x

= (m+ 2− k)∂k
y

[
(x− a)λ(y − a)m+1−λ

−
m+1∑
j=0

(λ)j
j!

(y − a)m+1−j(x− y)j
]
y=x

= (m+ 2− k)
[
(x− a)λ(m+ 1− λ)k(y − a)m+1−λ−k

−
k∑

j=0

(λ)j
j!

(
k

j

)
((y − a)m+1−j)(k−j)((x− y)j)(j)

]
y=x

= (m+ 2− k)(x− a)m+1−k
[
(m+ 1− λ)k

−
k∑

j=0

(
k

j

)
(−1)j(λ)j(m+ 1− j)k−j

]
= 0,

and further

u(m+2)(y) = (x− y)∂m+3
y

(
(y − a)m+1−λh(x, y)

)
= (x− y)∂m+3

y

(
(x− a)λ(y − a)m+1−λ −

m+1∑
j=0

(λ)j
j!

(y − a)m+1−j(x− y)j
)

= (m+ 1− λ)m+3(x− y)(x− a)λ(y − a)−λ−2.

Obviously, it follows from 0 ≤ m+ 1− λ < 1 that

sgn
(
(−1)m+2u(m+2)(y)

)
= sgn(x− y).

As a consequence, it deduces from Taylor’s theorem that

(A.5)

∂yψ2(x, y) =
(m+ 1)!

(x− y)m+3

(m+1∑
k=0

u(k)(x)

k!
(y − x)k +

u(m+2)(ξ)

(m+ 2)!
(y − x)m+2

)
=

(−1)m+2u(m+2)(ξ)

(m+ 2)(x− y)
≥ 0,

where ξ = x+ η(y − x) and 0 < η < 1. While if y = x, we have

∂yψ2(x, x) = lim
y→x

∂yψ2(x, y) = lim
y→x

{
(m+ 1)!

u(y)

(x− y)m+3

}
=

(−1)m(m+ 1− λ)m+3

(m+ 3)(m+ 2)
(x− a)−2 ≥ 0,

which together with (A.5) completes the proof.
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Figure A.1. The monotonicity of ψ2(x, y) with respect to the
argument y on [a, 1], where a = 0 and x = 1/2.
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[4] I. Babuška and B. Guo, Direct and inverse approximation theorems for the p-version of
the finite element method in the framework of weighted Besov spaces. II. Optimal rate of
convergence of the p-version finite element solutions, Math. Models Methods Appl. Sci. 12

(2002), no. 5, 689–719, DOI 10.1142/S0218202502001854. MR1909423
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