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a b s t r a c t

The main purpose of this work is to provide new fractional pseudospectral methods for solving fractional
optimal control problems (FOCPs). We develop differential and integral fractional pseudospectral
methods and prove the equivalence between them from the distinctive perspective of Caputo fractional
Birkhoff interpolation. As a result, the present work establishes a new unified framework for solving
fractional optimal control problems using fractional pseudospectral methods, which can be viewed as
an extension of existing frameworks. Furthermore, we provide exact, efficient, and stable approaches to
compute the associated fractional pseudospectral differentiation/integration matrices even at millions of
Jacobi-type points. Numerical results on two benchmark FOCPs including a fractional bang–bang problem
demonstrate the performance of the proposed methods.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Fractional optimal control problems (FOCPs) can be regarded
as a generalization of classical integer optimal control problems
(IOCPs) in the sense that the dynamics are described by fractional
differential equations (Agrawal, 2004). There are various defini-
tions of fractional derivatives and the two most important types
are the Riemann–Liouville derivatives and the Caputo derivatives.
It is noteworthy here that in distinct contrast with the integer
derivatives (which are locally defined in the epsilon neighborhood
of a chosen point), the fractional derivatives are nonlocal in na-
ture as they are globally defined by a definite fractional integral
over a domain. Moreover, the fractional derivatives involve sin-
gular kernel/weight functions, and the solutions of fractional dif-
ferential equations are usually singular near the boundaries of the
domain (Chen, Shen, & Wang, 2016). More background informa-
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tion on the fractional calculus can be found in Oldham and Spanier
(2006) and Sabatier, Agrawal, and Tenreiro Machado (2007).

Because of the complexity of most applications, FOCPs/IOCPs
are often solved numerically. In recent years, a class of numerical
methods called pseudospectral methods (Elnagar, Kazemi, &
Razzaghi, 1995; Fahroo & Ross, 2001; Benson, Huntington,
Thorvaldsen, & Rao, 2006; Huntington, 2007; Garg et al., 2010,
2011; Francolin, Benson, Hager, & Rao, 2015) has become
increasingly popular in the numerical solution of IOCPs. The
basic principle of pseudospectral methods is to approximate the
state using a set of basis functions and discretize the dynamic
constraints using collocation at a specified set of points. As a result,
a continuous optimal control problem is transcribed to a finite-
dimensional nonlinear programming problem (NLP) which is then
solved using well-known optimization software such as SNOPT
(Gill, Murray, & Saunders, 2005) and IPOPT (Biegler & Zavala,
2009). The basis functions are typically Lagrange interpolating
polynomials and the collocation points are usually chosen based
onGaussian-type quadrature rules. Basically there are two primary
implementation forms for pseudospectral methods: differential
and integral. Although differential and integral pseudospectral
methods are quite different, recentwork (Tang, Liu, &Hu, 2016) has
shown that they are equivalent for collocation at the Jacobi–Gauss
(JG) and flipped Jacobi–Gauss–Radau (FJGR) points. Inspired by the
aforementioned global property of the fractional derivatives and
the fact of IOCPs being special cases of FOCPs, the first author
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has recently proposed the notion of fractional pseudospectral
integration matrices (FPIMs) and developed integral fractional
pseudospectral methods for solving FOCPs (Tang, Liu, & Wang,
2015). However, to the best of our knowledge, differential
fractional pseudospectral methods for solving FOCPs have not yet
received attention.Moreover, a relevant question that comes along
is: does the equivalence between classical pseudospectralmethods
(Tang et al., 2016) still hold for fractional pseudospectral methods?

The aim of this paper is to develop new fractional pseudospec-
tral methods and to prove the equivalence between them via a
suitable Birkhoff interpolation. The present work is strikingly dif-
ferent from our previous work (Tang et al., 2015, 2016) in the
sense of pseudospectral scheme and Birkhoff interpolation, and
establishes a new unified framework for solving fractional optimal
control problems using fractional pseudospectral methods. Specif-
ically, the main contributions of this work are as follows:

(1) Wepropose thenotion of fractional pseudospectral differentia-
tionmatrices (FPDMs) and develop differential fractional pseu-
dospectral methods for solving FOCPs. Moreover, we propose
the notion of ε-FPIMs by employing the basis of weighted La-
grange interpolating functions (Weideman & Reddy, 2000).

(2) We take a distinctive route to prove the equivalence between
the proposed fractional pseudospectral methods from the
perspective of Caputo fractional Birkhoff interpolation.

(3) We provide exact, efficient, and stable approaches to compute
FPDMs/ε-FPIMs even at millions of Jacobi-type points.

(4) We extend the framework of Garg et al. (2010) to fractional
pseudospectral methods with collocation at the Jacobi-type
points, and that of Tang et al. (2015) to containing differential
fractional pseudospectral methods.

The rest of this paper is organized as follows. In Section 2,
some preliminaries are presented for subsequent developments. In
Section 3, the definitions and computation of FPDMs are presented.
This is followed by the definitions and computation of ε-FPIMs in
Section 4. The detailed implementation of differential fractional
pseudospectral methods is provided in Section 5. In Section 6,
the equivalence mentioned above is proved by using the Caputo
fractional Birkhoff interpolation. In Section 7, some comments on
fractional pseudospectral methods are made. Numerical results on
two benchmark FOCPs are shown in Section 8. Finally, Section 9 is
for some concluding remarks.

2. Some preliminaries

In this section, we present the definitions of the Riemann–
Liouville fractional integrals and the Caputo fractional derivatives.

Definition 1 (Kilbas, Srivastava, & Trujillo, 2006). The left and right
Riemann–Liouville fractional integrals of real order γ ≥ 0 of a
function h(t), t ∈ [t0, tf ] are defined, respectively, as

t0 Iγ
t h(t) ,


1

Γ (γ )

 t

t0
(t − s)γ−1h(s) ds, γ > 0

h(t), γ = 0,
(1a)

t Iγ
tf h(t) ,


1

Γ (γ )

 tf

t
(s − t)γ−1h(s) ds, γ > 0

h(t), γ = 0,
(1b)

where Γ (·) is the Gamma function. It is noteworthy here that for
γ ∈ N, the fractional integrals coincide with the usual iterated
integrals due to the well-known Cauchy’s integral formula.
Definition 2 (Kilbas et al., 2006). The left and right Caputo
fractional derivatives of real order γ ∈ (n − 1, n], n = ⌈γ ⌉ ∈ N of
a function h(t) ∈ ACn

[t0, tf ] are defined, respectively, as

C
t0 Dγ

t h(t) , t0 In−γ
t


dn

dtn
h(t)


, (2a)

C
t Dγ

tf h(t) , (−1)nt In−γ
tf


dn

dtn
h(t)


, (2b)

where ⌈γ ⌉ denotes the smallest integer greater than or equal to γ .
In particular, we have C

t0 D0
t h(t) =

C
t D0

tf h(t) = h(t).

3. Definitions and computation of FPDMs

In this section, the definitions and computation of FPDMs are
presented.

3.1. Definitions of FPDMs

Definition 3. The left and right FPDMs of real order γ ∈ (0, 1] for
the JG points of {τi ∈ (−1, +1)}Ni=1 with −1 = τ0 < τ1 < · · · <
τN+1 = +1 are defined, respectively, as

τ
−1D

γ

ki , C
−1Dγ

τk
L⋆

i (τ )

= −1I1−γ
τk

L̇⋆
i (τ ),

(k = 1, 2, . . . ,N, i = 0, 1, . . . ,N), (3a)
1
τD

γ

ki , C
τk

Dγ

1 LĎ
i (τ )

= −


τk I1−γ

1 L̇Ď
i (τ )


,

(k = 1, 2, . . . ,N, i = 1, 2, . . . ,N + 1), (3b)

where {L⋆
i (τ ) ∈ PN}

N
i=0 and {LĎ

i (τ ) ∈ PN}
N+1
i=1 are the Nth-

order Lagrange interpolating polynomials associated with the
interpolating points {τi}

N
i=0 and {τi}

N+1
i=1 , respectively, defined as

L⋆
i (τ ) ,

N
j=0,j≠i

τ − τj

τi − τj
, i = 0, 1, . . . ,N, (4a)

LĎ
i (τ ) ,

N+1
j=1,j≠i

τ − τj

τi − τj
, i = 1, 2, . . . ,N + 1, (4b)

where PN denotes the set of all polynomials of degree ≤ N .
Moreover, let {Li(τ ) ∈ PN−1}

N
i=1 be the (N − 1)th-order Lagrange

interpolating polynomials associated with the interpolating points
{τi}

N
i=1, defined as

Li(τ ) ,

N
j=1,j≠i

τ − τj

τi − τj
, i = 1, 2, . . . ,N. (5)

Then from Eqs. (4) and (5), we have

L⋆
i (τ ) =

τ − τ0

τi − τ0
· Li(τ ), i = 1, 2, . . . ,N, (6a)

LĎ
i (τ ) =

τN+1 − τ

τN+1 − τi
· Li(τ ), i = 1, 2, . . . ,N. (6b)

Note that Eq. (6a) has already been given in Tang et al. (2016,
Eq. (11)).

Definition 4. The left FPDM of real order γ ∈ (0, 1] for the FJGR
points of {τ̂i ∈ (−1, +1]}Ni=1 with −1 = τ̂0 < τ̂1 < · · · <
τ̂N = +1, and the right FPDM of real order γ ∈ (0, 1] for the
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Jacobi–Gauss–Radau (JGR) points of {τ̌i ∈ [−1, +1)}Ni=1 with−1 =

τ̌1 < τ̌2 < · · · < τ̌N+1 = +1 are defined, respectively, as

τ
−1D̂

γ

ki , C
−1Dγ

τ̂k
L̂⋆

i (τ )

= −1I1−γ

τ̂k
˙̂L
⋆

i (τ ),

(k = 1, 2, . . . ,N, i = 0, 1, . . . ,N), (7a)
1
τ Ď

γ

ki , C
τ̌k

Dγ

1 ĽĎ
i (τ )

= −


τ̌k I1−γ

1
˙̌L
Ď

i (τ )

,

(k = 1, 2, . . . ,N, i = 1, 2, . . . ,N + 1), (7b)

where {L̂⋆
i (τ ) ∈ PN}

N
i=0 and {ĽĎ

i (τ ) ∈ PN}
N+1
i=1 are defined,

respectively, in Eqs. (4a) and (4b) with the corresponding
interpolating points being {τ̂i}

N
i=0 and {τ̌i}

N+1
i=1 .

3.2. Computation of FPDMs

It can be seen from the definitions of FPDMs and FPIMs (Tang
et al., 2015) that there is no essential difference between them.
Therefore, we can take a similar approach to compute FPDMs.

We present the main results in the following two theorems,
which give the general formulas to compute the left and right
FPDMs for the Jacobi-type points.

Theorem 5. Let {σ̃m, ω̃m}
⌈N/2⌉
m=1 be the set of JG points and quadrature

weights with respect to the Jacobi weight function ω(−γ ,0)(τ ) =

(1 − τ)−γ . Then, the left FPDM of Eq. (3a) for γ ∈ (0, 1) can be
computed exactly as

τ
−1D

γ

ki =



−

N
j=1

τ
−1D

γ

kj, i = 0

1
Γ (1 − γ )


τk + 1

2

1−γ ⌈N/2⌉
m=1

ω̃m

·

 N
r=1

τ
−1D

1
ri · Lr(σ̃m; −1, τk)


, i ≠ 0,

(8)

where the computation of τ
−1D

1
ri (which corresponds to τ

−1D
γ

ri with
γ = 1) follows straightforwardly from Tang et al. (2016, Theorem
4) as

τ
−1D

1
ri = L̇⋆

i (τr) = D⋆
ri (9a)

=


−

N
j=1

τ
−1D

1
rj, i = 0

δri + (τr − τ0)Dri

τi − τ0
, i ≠ 0,

(9b)

where δri is the Kronecker delta and Dri can be computed efficiently
and stably as (Berrut & Trefethen, 2004)

Dri , L̇i(τr), r, i = 1, 2, . . . ,N (10a)

=


ξi/ξr

τr − τi
, r ≠ i

−

N
j=1,j≠r

Drj, r = i,
(10b)

where {ξi}
N
i=1 are the barycentric weights for the JG points and their

efficient and stable calculation is given in Wang, Huybrechs, and
Vandewalle (2014) and Tang et al. (2015). The same result also holds
for the FJGR points.
Proof. It follows from Eq. (3a) and Tang et al. (2015, Theorem 9)
that

τ
−1D

γ

ki =
1

Γ (1 − γ )


τk + 1

2

1−γ ⌈N/2⌉
m=1

ω̃mL̇⋆
i (σ̃m; −1, τk). (11)

Recalling that L̇⋆
i (τ ) ∈ PN−1, and thus, it can be represented using

the Lagrange interpolation as

L̇⋆
i (τ ) =

N
r=1

L̇⋆
i (τr) · Lr(τ )

=

N
r=1

τ
−1D

1
ri · Lr(τ ). (12)

Combining Eqs. (11) and (12) leads to the second identity of Eq. (8).
The first identity of Eq. (8) results from the fact that 0 =

C
−1Dγ

τk1 =N
i=0

τ
−1D

γ

ki, k = 1, 2, . . . ,N . �

Theorem 6. Let {σ̆m, ω̆m}
⌈N/2⌉
m=1 be the set of JG points and quadrature

weights with respect to the Jacobi weight function ω(0,−γ )(τ ) =

(1 + τ)−γ . Then, the right FPDM of Eq. (3b) for γ ∈ (0, 1) can be
computed exactly as

1
τD

γ

ki =



1
Γ (1 − γ )


1 − τk

2

1−γ ⌈N/2⌉
m=1

ω̆m

·

 N
r=1

1
τD

1
ri · Lr(σ̆m; τk, 1)


, i ≠ N + 1

−

N
j=1

1
τD

γ

kj, i = N + 1,

(13)

where 1
τD

1
ri (which corresponds to 1

τD
γ

ri with γ = 1) can be easily
obtained as (see Appendix)
1
τD

1
ri = −L̇Ď

i (τr) (14a)

=


δri − (τN+1 − τr)Dri

τN+1 − τi
, i ≠ N + 1

−

N
j=1

1
τD

1
rj, i = N + 1.

(14b)

The same result also holds for the JGR points.

Proof. The proof is similar to that of Theorem 5, and thus, is
omitted here for avoiding repetition. �

4. Definitions and computation of ε-FPIMs

In this section, the definitions and computation of ε-FPIMs are
presented.

4.1. Definitions of ε-FPIMs

Definition 7. The left and right ε-FPIMs of real order γ ∈ (0, 1] for
the JG points of {τi ∈ (−1, +1)}Ni=1 with −1 = τ0 < τ1 < · · · <
τN+1 = +1 are defined, respectively, as

τ
−1I

γὲ
ki , −1Iγ

τk
Lὲ

i (τ ),

(k = 1, 2, . . . ,N + 1, i = 1, 2, . . . ,N), (15a)
1
τ I

γέ
ki , τk Iγ

1 Lέ
i (τ ),

(k = 0, 1, . . . ,N, i = 1, 2, . . . ,N), (15b)

where Lὲ
i (τ ) and Lέ

i (τ ) are the weighted Lagrange interpolating
functions (Weideman & Reddy, 2000) associated with the weight
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functions ὲ(τ ) = (τ + 1)1−γ and έ(τ ) = (1− τ)1−γ , respectively,
defined as

Lὲ
i (τ ) ,

ὲ(τ )

ὲ(τi)
Li(τ )

=
(τ + 1)1−γ Li(τ )

(τi + 1)1−γ
, i = 1, 2, . . . ,N, (16a)

Lέ
i (τ ) ,

έ(τ )

έ(τi)
Li(τ )

=
(1 − τ)1−γ Li(τ )

(1 − τi)1−γ
, i = 1, 2, . . . ,N, (16b)

where {Li(τ )}Ni=1 are defined in Eq. (5).

Definition 8. The left ε-FPIM of real order γ ∈ (0, 1] for the FJGR
points of {τ̂i ∈ (−1, +1]}Ni=1 with −1 = τ̂0 < τ̂1 < · · · < τ̂N =

+1, and the right ε-FPIM of real order γ ∈ (0, 1] for the JGR points
of {τ̌i ∈ [−1, +1)}Ni=1 with −1 = τ̌1 < τ̌2 < · · · < τ̌N+1 = +1 are
defined, respectively, as

τ
−1 Î

γὲ
ki , −1Iγ

τ̂k
L̂ὲ

i (τ ), k, i = 1, 2, . . . ,N, (17a)

1
τ Ǐ

γέ
ki , τ̌k Iγ

1 Ľέ
i (τ ), k, i = 1, 2, . . . ,N, (17b)

where {L̂ὲ
i (τ )}Ni=1 and {Ľέ

i (τ )}Ni=1 are defined, respectively, in Eqs.
(16a) and (16b) with the corresponding interpolating points being
{τ̂i}

N
i=1 and {τ̌i}

N
i=1.

Remark 9. It is easy to see that ε-FPIMs are fundamentally
different from FPIMs (Tang et al., 2015) in the interpolating basis
functions. More precisely, the weighted Lagrange interpolating
functions (Weideman&Reddy, 2000) are adopted in ε-FPIMswhile
the Lagrange interpolating polynomials were used in FPIMs (Tang
et al., 2015).

Remark 10. The new basis functions of Eq. (16) can be regarded
as the nodal counterpart of the modal basis functions: Jacobi
polyfractonomials (Zayernouri & Karniadakis, 2013) and general-
ized Jacobi functions (Chen et al., 2016), which led to efficient
Petrov–Galerkin spectral methods for fractional differential equa-
tions with appealing capability in fitting singularity of the under-
lying solutions (Zayernouri & Karniadakis, 2014; Chen et al., 2016).

4.2. Computation of ε-FPIMs

We present the general formulas for computing ε-FPIMs in the
following two theorems, and omit the corresponding proofs since
they are similar to that of FPIMs (Tang et al., 2015).

Theorem 11. Let {σ ὲ
m, ωὲ

m}
⌈N/2⌉
m=1 be the set of JG points and

quadrature weights with respect to the Jacobi weight function
ω(γ−1,1−γ )(τ ) = (1 − τ)γ−1(1 + τ)1−γ . Then, the left ε-FPIMs of
Eqs. (15a) and (17a) can be computed exactly as

τ
−1I

γὲ
ki =

τk + 1
2Γ (γ )(τi + 1)1−γ

⌈N/2⌉
m=1

ωὲ
mLi(σ

ὲ
m; −1, τk),

(k = 1, 2, . . . ,N + 1, i = 1, 2, . . . ,N), (18a)

τ
−1 Î

γὲ
ki =

τ̂k + 1
2Γ (γ )(τ̂i + 1)1−γ

⌈N/2⌉
m=1

ωὲ
mL̂i(σ

ὲ
m; −1, τ̂k),

(k, i = 1, 2, . . . ,N). (18b)

Theorem 12. Let {σ έ
m, ωέ

m}
⌈N/2⌉
m=1 be the set of JG points and

quadrature weights with respect to the Jacobi weight function
ω(1−γ ,γ−1)(τ ) = (1 − τ)1−γ (1 + τ)γ−1. Then, the right ε-FPIMs
of Eqs. (15b) and (17b) can be computed exactly as

1
τ I

γέ
ki =

1 − τk

2Γ (γ )(1 − τi)1−γ

⌈N/2⌉
m=1

ωέ
mLi(σ

έ
m; τk, 1),

(k = 0, 1, . . . ,N, i = 1, 2, . . . ,N), (19a)

1
τ Ǐ

γέ
ki =

1 − τ̌k

2Γ (γ )(1 − τ̌i)1−γ

⌈N/2⌉
m=1

ωέ
mĽi(σ

έ
m; τ̌k, 1),

(k, i = 1, 2, . . . ,N). (19b)

Remark 13. Like FPIMs (see Tang et al., 2015, Remark 13), the last
row of the left ε-FPIMs or the first row of the right ε-FPIMs with
γ = 1 also gives the quadrature weights to approximate the
definite integral of a function on the interval [−1, +1]. Therefore,
we will use them to approximate the cost functional of FOCPs as
shown below.

5. Differential/integral fractional pseudospectral methods

In this section, the differential/integral scaled FOCP of Tang
et al. (2015, Eqs. (8)–(11)/Eqs. (12)–(15)) is discretized using
differential/integral fractional pseudospectral methods via
FPDMs/ε-FPIMs.Weomit the implementation of integral fractional
pseudospectral methods since they can be derived directly from
Tang et al. (2015, Section 5) by replacing FPIMs with ε-FPIMs.

5.1. Collocation at the JG points

First, the differential dynamic constraints of Tang et al. (2015,
Eq. (9)) are discretized using collocation at the JG points {τk ∈

(−1, +1)}Nk=1 via the left FPDM as
N
i=0

τ
−1D

γ

kixi =


tf − t0

2

γ

f (xk, uk, τk; t0, tf ),

(k = 1, 2, . . . ,N), (20)

where x0 ≈ x(−1), {xk ≈ x(τk)}Nk=1, {uk ≈ u(τk)}
N
k=1, and

τ
−1D

γ is
the left FPDM for the JG points. Moreover, using the ε-FPIM version
of Tang et al. (2015, Eq. (32)) with k = N + 1 and taking Eq. (20)
into account, we obtain xN+1 ≈ x(+1) as

xN+1 = x0 +


tf − t0

2

γ

·

 N
i=1

τ
−1I

γὲ
N+1,i f (xi, ui, τi; t0, tf )



= x0 +

N
k=1

τ
−1I

γὲ
N+1,k ·


tf − t0

2

γ

f (xk, uk, τk; t0, tf )


= x0 +

N
k=1

τ
−1I

γὲ
N+1,k ·

 N
i=0

τ
−1D

γ

kixi



=


1 +

N
k=1


τ

−1I
γὲ
N+1,k ·

τ
−1D

γ

k0


x0

+

N
i=1

 N
k=1


τ

−1I
γὲ
N+1,k ·

τ
−1D

γ

ki


xi. (21)

Next, the cost functional of Tang et al. (2015, Eq. (8)) is
approximated using the quadrature as

JN = φ(x0, t0, xN+1, tf ) +
tf − t0

2

·

 N
k=1

ω1
kg(xk, uk, τk; t0, tf )


, (22)



X. Tang et al. / Automatica 78 (2017) 333–340 337
where the quadrature weights {ω1
k}

N
k=1 are given by

ω1
k =

τ
−1I

1ὲ
N+1,k. (23)

Furthermore, the path constraints of Tang et al. (2015, Eq. (10)) are
evaluated at the JG points as

c(xk, uk, τk; t0, tf ) ≤ 0, k = 1, 2, . . . ,N. (24)

Finally, the boundary conditions of Tang et al. (2015, Eq. (11)) are
approximated at the boundary points as

b(x0, t0, xN+1, tf ) = 0. (25)

The cost function of Eq. (22) along with the algebraic constraints
of Eqs. (20), (21), (24), and (25) defines an NLP which is the JG
discretization of the differential scaled FOCP.

5.1.1. Collocation at the FJGR points
The differential dynamic constraints of Tang et al. (2015,

Eq. (9)) are discretized using collocation at the FJGR points {τ̂k ∈

(−1, +1]}Nk=1 via the left FPDM as

N
i=0

τ
−1D̂

γ

kix̂i =


tf − t0

2

γ

f (x̂k, ûk, τ̂k; t0, tf ),

(k = 1, 2, . . . ,N), (26)

where x̂0 ≈ x(−1), {x̂k ≈ x(τ̂k)}Nk=1, {ûk ≈ u(τ̂k)}
N
k=1, and

τ
−1D̂

γ is
the left FPDM for the FJGR points. Next, the cost functional of Tang
et al. (2015, Eq. (8)) is approximated using the quadrature as

ĴN = φ(x̂0, t0, x̂N , tf ) +
tf − t0

2

·

 N
k=1

ω̂1
kg(x̂k, ûk, τ̂k; t0, tf )


, (27)

where the quadrature weights {ω̂1
k}

N
k=1 are given by

ω̂1
k =

τ
−1 Î

1ὲ
N,k. (28)

Furthermore, the path constraints of Tang et al. (2015, Eq. (10)) are
evaluated at the FJGR points as

c(x̂k, ûk, τ̂k; t0, tf ) ≤ 0, k = 1, 2, . . . ,N. (29)

Finally, the boundary conditions of Tang et al. (2015, Eq. (11)) are
approximated at the boundary points as

b(x̂0, t0, x̂N , tf ) = 0. (30)

Thus, the cost function of Eq. (27) along with the algebraic
constraints of Eqs. (26), (29), and (30) defines an NLP which is the
FJGR discretization of the differential scaled FOCP.

6. Equivalence between fractional pseudospectral methods

In this section, we prove the equivalence between the above
fractional pseudospectral methods from the perspective of Caputo
fractional Birkhoff interpolation by following Jiao, Wang, and
Huang (2016, Section 4.1) where the Jacobi–Gauss–Lobatto (JGL)
points are considered.

6.1. Caputo fractional Birkhoff interpolation

The Caputo fractional Birkhoff interpolation for the JG points of
{τi ∈ (−1, +1)}Ni=1 with −1 = τ0 < τ1 < · · · < τN+1 = +1 is
stated as follows (γ ∈ (0, 1]):

Find h(τ ) ∈ PN such that h(τ0) = q(τ0),
C

−1Dγ
τi
h(τ ) =

C
−1Dγ

τi
q(τ ), i = 1, 2, . . . ,N,

(31)

where q(τ ) ∈ AC[−1, +1] is the given interpolated function. It can
be readily verified that the above fractional Birkhoff interpolation
is unique and the interpolant h(τ ) can be expressed as

h(τ ) = q(τ0) · B⋆
0(τ ) +

N
i=1

C
−1Dγ

τi
q(τ ) · B⋆

i (τ ), (32)

where {B⋆
i (τ ) ∈ PN}

N
i=0 are the Birkhoff interpolating polynomials

associated with the interpolating points {τi}
N
i=0, which are the

counterpart of the Lagrange interpolating polynomials {L⋆
i (τ )}Ni=0.

It follows from Eqs. (31) and (32) that

B⋆
0(τ0) = 1, B⋆

i (τ0) = 0, i = 1, 2, . . . ,N, (33a)
C

−1Dγ
τk

B⋆
0(τ ) = 0, C

−1Dγ
τk

B⋆
i (τ ) = δki = Lὲ

i (τk),

(k, i = 1, 2, . . . ,N), (33b)

where the last equality of Eq. (33b) results from the Kronecker
property of the weighted Lagrange interpolating function of
Eq. (16a). It follows from Jiao et al. (2016, Lemma 3.1) that

C
−1Dγ

τ B⋆
i (τ ) ∈ Q̀1−γ

N−1, i = 1, 2, . . . ,N, (34)

where Q̀ν
N , {(τ + 1)νp(τ ) : ∀ ν ∈ [0, 1), p(τ ) ∈ PN}. Using Eqs.

(34) and (33b) alongwith the fact that {Lὲ
i (τ ) ∈ Q̀1−γ

N−1}
N
i=1, we have

C
−1Dγ

τ B⋆
i (τ ) = Lὲ

i (τ ), i = 1, 2, . . . ,N. (35)

Applying the operator −1Iγ
τ (·) to Eq. (35) and taking account of

Eq. (33a) yield (γ ∈ (0, 1])

B⋆
i (τ ) = B⋆

i (−1) + −1Iγ
τ Lὲ

i (τ )

= −1Iγ
τ Lὲ

i (τ ), i = 1, 2, . . . ,N. (36)

Similarly, recalling that B⋆
0(τ0) = 1, { C

−1Dγ
τk B⋆

0(τ ) = 0}Nk=1, and
C

−1Dγ
τ B⋆

0(τ ) ∈ Q̀1−γ

N−1 yields

B⋆
0(τk) = 1, k = 0, 1, . . . ,N. (37)

Remark 14. Although we focus on the Caputo fractional Birkhoff
interpolation for the JG points, the same idea can be extended to
the FJGR points straightforwardly. Moreover, the classical Birkhoff
interpolation (Tang et al., 2016) can be viewed as a special case of
the Caputo fractional Birkhoff interpolation with γ = 1.

6.2. Equivalence proof using Caputo fractional Birkhoff interpolation

Now, the equivalence is summarized in the following theorem.

Theorem 15. Let τ
−1D

γ

:,1:N be the matrix obtained by deleting the first
column of τ

−1D
γ , and τ

−1I
γὲ
1:N,: be the matrix obtained by deleting the

last row of τ
−1I

γὲ , then τ
−1D

γ

:,1:N ×
τ

−1I
γὲ
1:N,: = EN where EN denotes the

N × N identity matrix. Similarly, let τ
−1D̂

γ

:,1:N be the matrix obtained
by deleting the first column of τ

−1D̂
γ , then τ

−1D̂
γ

:,1:N ×
τ

−1 Î
γὲ = EN .

Proof. For any p(τ ) ∈ PN , we have

p(τ ) =

N
i=0

L⋆
i (τ ) · p(τi). (38)
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Substituting {p(τ ) = B⋆
j (τ ) ∈ PN}

N
j=1 into Eq. (38) and taking

Eq. (33a) into account yield

B⋆
j (τ ) =

N
i=0

L⋆
i (τ ) · B⋆

j (τi)

=

N
i=1

L⋆
i (τ ) · B⋆

j (τi), j = 1, 2, . . . ,N. (39)

Moreover, it follows from Eqs. (36) and (15a) that

B⋆
j (τi) =

τ
−1I

γὲ
ij , i, j = 1, 2, . . . ,N. (40)

Substituting Eq. (40) into Eq. (39) yields

B⋆
j (τ ) =

N
i=1

L⋆
i (τ ) ·

τ
−1I

γὲ
ij , j = 1, 2, . . . ,N. (41)

Applying the operator C
−1Dγ

τ (·) to Eq. (41) and evaluating the
resulting identity at {τ = τk}

N
k=1 lead to

C
−1Dγ

τk
B⋆
j (τ ) =

N
i=1

C
−1Dγ

τk
L⋆

i (τ ) ·
τ

−1I
γὲ
ij ,

(k, j = 1, 2, . . . ,N). (42)

Substituting Eqs. (33b) and (3a) into Eq. (42) yields

δkj =

N
i=1

τ
−1D

γ

ki ·
τ

−1I
γὲ
ij , k, j = 1, 2, . . . ,N. (43)

This implies that

EN =
τ

−1D
γ

:,1:N ×
τ

−1I
γὲ
1:N,:. (44)

In the same way, τ
−1D̂

γ

:,1:N ×
τ

−1 Î
γὲ = EN can be obtained. �

Remark 16. For the right FPDMs and ε-FPIMs, we have 1
τD

γ

:,1:N ×

1
τ I

γέ
1:N,: = EN and 1

τ Ď
γ

:,1:N ×
1
τ Ǐ

γέ = EN , where 1
τD

γ

:,1:N (resp. 1τ Ď
γ

:,1:N )
denotes the matrix obtained by deleting the last column of 1

τD
γ

(resp. 1τ Ď
γ ) and 1

τ I
γέ
1:N,: denotes the matrix obtained by deleting the

first row of 1
τ I

γέ .

7. Some comments on fractional pseudospectral methods

In this section, we make some comments regarding the scopes
and features of fractional pseudospectral methods.

Remark 17. Similar to FPIMs (see Tang et al., 2015, Remark 14), it
is clear from Theorems 5, 6, 11, and 12 that both of FPDMs and
ε-FPIMs can be computed efficiently and stably for millions of
Jacobi-type points in an O(N2) complexity.

Remark 18. It is easy to see that classical pseudospectral methods
(Benson et al., 2006; Garg et al., 2010; Francolin et al., 2015) are
special cases of the proposed fractional pseudospectral methods
with collocation at the Legendre-type points and γ = 1.

Remark 19. The present work establishes a new unified frame-
work for solving optimal control problems using pseudospectral
methods, which can be viewed as the extension of existing frame-
works (Garg et al., 2010; Tang et al., 2015).

Remark 20. Although differential and integral fractional pseu-
dospectral methods are equivalent, the former has higher compu-
tational efficiency than the latter as the corresponding constraint
Jacobians resulting from collocation are more easy to compute.
8. Examples

In this section, the proposed methods are applied to two
benchmark FOCPs taken from the open literature. All computations
were performed on a 3.6 GHz Intel Core i7 desktop with 16 GB of
1600 MHz DDR3 RAM running Windows Version 10 and MATLAB
Version R2015b.

8.1. Example 1: linear time-varying problem

Consider the following linear time-varying FOCP (Lotfi, De-
hghan, & Yousefi, 2011). Determine the state, x(t) ∈ R, and the
control, u(t) ∈ R, on the time interval t ∈ [0, 1] that minimize the
cost functional

J =
1
2

 1

0


x2(t) + u2(t)


dt, (45)

subject to the dynamic constraint (γ ∈ (0, 1])

C
0 Dγ

t x(t) = tx(t) + u(t), (46)

and the boundary condition

x(0) = 1. (47)

The example was solved using the differential fractional
pseudospectral scheme with collocation at the flipped Legen-
dre–Gauss–Radau (FLGR) points and the NLP solver SNOPT (Gill
et al., 2005) with optimality and feasibility tolerances of 10−10 and
2×10−10, respectively. A linear initial guess was used for the state
while a zero initial guess was used for the control. The solutions
of state and control for N = 30 and γ = 0.1, 0.3, 0.5, 0.7, 1.0
are shown in Fig. 1 along with the solutions obtained using the di-
rect scheme (Agrawal & Baleanu, 2007) with h = 0.001 (i.e., the
number of equidistant nodes is 1001). It is seen that both the state
and control solutions change more rapidly near the boundaries as
γ is decreased. With regard to accuracy, it is clear from Table 1
that the pseudospectral scheme achieves smaller cost than the di-
rect scheme (Agrawal & Baleanu, 2007) for various γ using only
30 FLGR points. Finally, the average execution times of 100 inde-
pendent runs for the pseudospectral scheme and the direct scheme
(Agrawal & Baleanu, 2007) are 0.42 s and 1.73 s, respectively.

Fig. 1. Solution to Example 1 using direct scheme (Agrawal & Baleanu, 2007) and
pseudospectral scheme.
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8.2. Example 2: fractional bang–bang problem

Consider the following fractional bang–bang problem (Tricaud
& Chen, 2010). Determine the state, x(t) , [x1(t), x2(t)]T ∈ R2,
and the control, u(t) ∈ [−2, 1], on the time interval t ∈ [0, tf ] that
minimize the cost functional

J = tf , (48)

Fig. 2. State solution to Example 2 for N = 50 and γ = 0.6, 0.7, 0.8, 0.9, 1.0.

Fig. 3. Control solution to Example 2 for N = 50 and γ = 0.6, 0.7, 0.8, 0.9, 1.0.

Table 1
Optimal cost of Example 1 for direct scheme (Agrawal & Baleanu, 2007) and
pseudospectral scheme.

γ 0.1 0.2 0.3 0.4 0.5

Direct 0.4173 0.4290 0.4354 0.4412 0.4488
Pseudospectral 0.4155 0.4270 0.4325 0.4369 0.4425

γ 0.6 0.7 0.8 0.9 1.0

Direct 0.4582 0.4682 0.4766 0.4814 0.4854
Pseudospectral 0.4497 0.4581 0.4671 0.4759 0.4843
Table 2
Optimal cost of Example 2.

γ 0.1 0.2 0.3 0.4 0.5

tf 186.2077 125.7254 91.7457 71.9079 58.5884

γ 0.6 0.7 0.8 0.9 1.0

tf 49.2539 42.4375 37.2741 33.2272 30.0098

subject to the dynamic constraints (γ ∈ (0, 1])

ẋ1(t) = x2(t), (49a)
C
0 Dγ

t x2(t) = u(t), (49b)

and the boundary conditions

x(0) = 0, x(tf ) = [300, 0]T . (50)

For this problem we have the exact solution in the only case of
γ = 1 as

t∗f = 30, (51a)

x∗

1(t) =


t2/2, t ∈ [0, 20)
−t2 + 60t − 600, t ∈ [20, 30],

(51b)

x∗

2(t) =


t, t ∈ [0, 20)
−2t + 60, t ∈ [20, 30], (51c)

u∗(t) =


1, t ∈ [0, 20)
−2, t ∈ [20, 30]. (51d)

The example was solved using the differential fractional
pseudospectral scheme with collocation at the JG points of
(α, β) = (−0.25, −0.75) and the NLP solver SNOPT (Gill et al.,
2005) with default optimality and feasibility tolerances of 10−6

and 2 × 10−6, respectively. The initial guess used for the state and
control was a linear interpolation over the exact initial and final
values. The state and control solutions are shown, respectively, in
Figs. 2 and 3 for N = 50 and γ = 0.6, 0.7, 0.8, 0.9, 1.0. As can be
seen, the numerical solution for γ = 1 is in excellent agreement
with the exact solution of Eq. (51), and tf decreases asγ is increased
which is consistent with Table 2. Moreover, the bang–bang control
is observed and this agrees well with our expectation.

9. Conclusions

This paper provided differential and integral fractional pseu-
dospectral methods with equivalence for solving FOCPs, and
proved the equivalence from the distinctive perspective of
Caputo fractional Birkhoff interpolation. Moreover, this paper pro-
vided exact, efficient, and stable approaches for computing the
associated fractional pseudospectral differentiation/integration
matrices. The performance of the proposed methods was demon-
strated on two benchmark FOCPs including a fractional bang–bang
problem. Costate mapping principle for fractional pseudospectral
methods and general optimality conditions for FOCPs should be in-
vestigated for future work.
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Appendix. Proof of Eq. (14b)

Proof. Differentiating both sides of Eq. (6b) with respect to τ and
evaluating the resulting identity at {τ = τr}

N
r=1 yield

L̇Ď
i (τr) = −

Li(τr) − (τN+1 − τr)L̇i(τr)

τN+1 − τi
,

(r, i = 1, 2, . . . ,N). (A.1)

Combining Eqs. (14a), (A.1) and (10a), and taking account of
Li(τr) = δri lead to

1
τD

1
ri =

δri − (τN+1 − τr)Dri

τN+1 − τi
, r, i = 1, 2, . . . ,N, (A.2)

which is the first identity of Eq. (14b). In a manner similar to the
first identity of Eq. (9b), the second identity of Eq. (14b) can be
obtained. �
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