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a b s t r a c t

In this paper, we provide an explicit, stable and fast means to compute the approximate
inverse of Hermite/Laguerre collocation differentiation matrices, and also the approxi-
mate inverse of the Hermite/Laguerre collocation matrices of a second-order differen-
tial operator. The latter offers optimal preconditioners for developing well-conditioned
Hermite/Laguerre collocation schemes. We apply the new approaches to various partial
differential equations in unbounded domains and demonstrate the advantages over the
usual collocation methods.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The spectralmethods are capable of providing very accurate simulation resultswith a relatively smaller number of degree
of freedoms when compared with lower-order methods, so they are playing an ever increasingly important role in various
computations related to a wide range of applications (see, e.g., [1–6] and the references therein). Among several versions of
spectral algorithms, the spectral collocation method is implemented straightforwardly in the physical space, and performs
differentiation on a set of preassigned collocation points, where the equation under consideration is required to be satisfied,
so it has remarkable advantages in dealing with variable coefficient and/or nonlinear problems. However, the practitioners
are oftentimes plagued with ill-conditioning of the resulted linear systems.

It is known that the construction of suitable preconditioners is an effective means to circumvent this barrier. To date,
considerable progress has been made in preconditioning spectral methods on finite domains. The successful attempts
particularly include preconditioning usual collocation schemes by low-order finite difference or finite elements (see, e.g.,
[7–13]); and preconditioning differentiation by integration (see, e.g., [14–23]). We highlight that Costabile and Longo [24]
proposed the Birkhoff–Lagrange collocation methods using some interpolating basis polynomials associated with a suitable
Birkhoff interpolation problem (cf. [25]) for boundary value problems (BVPs). Remarkably, Wang et al. [22] showed that
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such an approach led to well-conditioned collocation schemes and offered optimal preconditioners for usual collocation
schemes. We refer to e.g., [26–31] for recent followups and extensions of the Birkhoff collocation notion. It is important
to remark that the method in [22,24] can be thought of as the collocation analogue of the spectral-Galerkin method based
on compact combinations of orthogonal polynomials [32,33] in the sense that in both cases, the matrix corresponding to
the highest derivative is diagonal. This turns out to be the key to the success of producing well-conditioned linear systems.
We also mention the recent interest in constructing Fourier-like basis that can inherit the merit of Fourier basis, leading
to diagonal mass and stiffness matrices for any linear differential operator with constant coefficients (cf. [34–36]), and the
recent advances in developing efficient spectral algorithms [37–39].

The main purpose of this paper is to develop well-conditioned Laguerre and Hermite Birkhoff-collocation methods in
unbounded domains having the same advantages as their counterparts in bounded domains [22,24]. However, a significant
difficulty is that in latter case, the magnitude of the smallest eigenvalues of the spectral collocation-differentiation matrices
behave like a constant (cf. [40,41]), but in the Laguerre and Hermite cases, it decays with respect to N (cf. [42] and also
see Fig. 2.1–2.2). As a result, the preconditioning differentiation by integration via Birkhoff interpolation in [22,24] fails
to produce well-conditioned systems (see (2.27), (2.28) and (2.35)). In light of [28], we take the approach of inverting
the elliptic operator: Lν[u] = u′′

− ν2u in a finite dimensional approximation space explicitly. This leads to a new basis
that generates the approximate inverse of the collocation matrix corresponding to this operator, so as to be able to nearly
optimally precondition the collocation system. In particular, for some special value ν = 1/2, it leads to exact inverse (see
(3.37) andwithmuch simpler explicit formula for calculating the basis). As a by-product, we further the study of eigenvalues
of Laguerre and Hermite differentiationmatrices in [42] through the notion of Birkhoff interpolation in unbounded domains.
It is expected that the collocation methods and preconditioning techniques can provide viable tools for practical models in
unbounded domains (see, e.g., [43–45]).

The rest of the paper is organized as follows. In Section 2, we provide an explicit means to calculate the approximate
inverse of the Hermite and Laguerre differentiation matrices which motivates the studies in the forthcoming sections. In
Section 3, we construct the new basis for both Laguerre and Hermite cases and introduce efficient algorithms for the related
calculations. In Section 4, we consider the applications of the new approach to various problems in unbounded domains and
supply with ample numerical comparison and results to show the high accuracy and efficiency of the proposed approaches.

2. Collocation differentiation matrices and their approximate inverse

In this section, we further the study of eigenvalues and conditioning of the collocation differentiationmatrices associated
with Hermite and Laguerre functions in [42]. We construct their approximate inverse through integrating the interpolating
basis functions to motivate the studies in the subsequent sections. We also review some relevant properties of Hermite and
Laguerre functions to be used throughout the paper.

2.1. Hermite functions and Hermite collocation differentiation matrices

Let Hk(x), x ∈ R := (−∞, ∞) be the Hermite polynomial of degree k, satisfying∫
R
Hk(x)Hl(x)e−x2dx =

√
π2ll! δkl, (2.1)

where δkl is the Kronecker function. It is odd (resp. even) for k odd (resp. even), i.e.,

Hk(−x) = (−1)kHk(x). (2.2)

Define the corresponding Hermite functions as

Ĥk(x) =
1

π1/4
√
2kk!

e−x2/2Hk(x), k ≥ 0, (2.3)

which are orthonormal in L2(R). By [6, (7.75)], we have

Ĥ ′

k(x) =

√
k
2
Ĥk−1(x) −

√
k + 1
2

Ĥk+1(x), k ≥ 1. (2.4)

Let PN (R) be the set of all polynomials of degree at most N on R, and denote

P̂N (R) = span
{
Ĥ0(x), Ĥ1(x), . . . , ĤN (x)

}
=

{
u = e−x2/2v : v ∈ PN (R)

}
. (2.5)

Recall the Hermite–Gauss quadrature rule with the nodes {xj}Nj=0 being all zeros of HN+1(x), and the corresponding weights
given by

ωj =
1

(N + 1)Ĥ2
N (xj)

, 0 ≤ j ≤ N.



C. Zhang et al. / Journal of Computational and Applied Mathematics 344 (2018) 553–571 555

Fig. 2.1. The modulus of the largest, smallest eigenvalues and condition numbers in log–log scale. Left: D(1); Right: D(2) .

Then we have the exactness of quadrature (cf. [6, Ch. 7]):∫
R
p(x)q(x)dx =

N∑
j=0

p(xj)q(xj)ωj, (2.6)

where p ∈ P̂L(R) and q ∈ P̂M (R) with L + M ≤ 2N + 1.
Let {lj} be the Lagrange interpolating basis polynomials associated with the Hermite–Gauss points {xj}Nj=0, and {hj} be the

corresponding interpolating basis associated with the Hermite functions, that is,

hj(x) = e(x
2
j −x2)/2 lj(x), lj ∈ PN (R), lj(xi) = δij, 0 ≤ j ≤ N. (2.7)

Moreover, we find from (2.6) and (2.7) that

hj(x) =

N∑
k=0

ωjĤk(xj) Ĥk(x) ∈ P̂N (R), 0 ≤ j ≤ N. (2.8)

Indeed, as hj ∈ P̂N (R), we can expand it as

hj(x) =

N∑
k=0

α
j
k Ĥk(x), 0 ≤ j ≤ N,

so by (2.1), (2.3), (2.6) and (2.7),

α
j
k =

∫
R
hj(x)Ĥk(x) dx = Ĥk(xj)ωj, 0 ≤ k, j ≤ N.

Define the mth-order differentiation matrix: D(m)
=

(
d(m)
ij := h(m)

j (xi)
)
0≤i,j≤N (see, e.g., [6] for their evaluation).

Weideman [42, Thm 3] showed that the eigenvalues of D(1) are all distinct, purely imaginary, and given by λj = ixj, where
xj are the roots of HN+1(x). It was also proven in [42, Thm 4] that the eigenvalues of D(2) are real, negative and distinct, and
given by λj = −ν2

j , where the νj are [(N + 1)/2] positive roots of HN+1(x), together with the interlacing [(N + 2)/2] positive
roots of H ′

N+1(x) − xHN+1(x). As a result, we have that for D(1),

min
j

|λj| = O
(
1/

√
N

)
, max

j
|λj| = O(

√
N), Cond(D(1)) = O(N), (2.9)

and for D(2),

min
j

|λj| = O
(
N−1), max

j
|λj| = O(N), Cond(D(2)) = O(N2). (2.10)

The plots in Fig. 2.1 indeed agree with these predictions.
It should be pointed out the behaviours (2.9) and (2.10) are very different from those of the Legendre and Chebyshev cases,

where the magnitude of the smallest eigenvalues behaves likes a constant, while that of the largest eigenvalues grows like
O(N2) and O(N4) for the first-order and second-order differentiation matrices, respectively. As shown in [22], the property
minj|λj| = O(1) is the key to the success of the design of well-conditioned Legendre and Chebyshev collocation schemes by
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using integration preconditioning through explicitly and stably evaluating the inverse of the highest order differentiation
matrix using the Birkhoff interpolation. However, this explicit approach cannot be directly applied to this setting largely due
to that for u ∈ P̂N (R), u′

̸∈ P̂N (R). Consequently, we resort to the method in [26] to find an ‘‘approximate’’ inverse. For this
purpose, we introduce

p(1)j (x) =

∫ x

−∞

hj(t) dt, p(2)j (x) =
1
2

∫ x

−∞

(x − t)hj(t) dt +
1
2

∫
∞

x
(t − x)hj(t) dt, (2.11)

which can be computed stably by using (2.8) and the three-term recurrence formula of Hermite functions (cf. [6, (7.73)]).

Proposition 2.1. Let {p(1)j , p(2)j } be defined as in (2.11), and define the matrices P (1), P (2) with the ijth entries: p(1)j (xi), p
(2)
j (xi),

respectively. Then we have

P (1)D(1)
≈ IN+1, P (2)D(2)

≈ IN+1, (2.12)

where IN+1 is an identity matrix.

Proof. Consider the approximation of h′

j(x) (note: h
′

j ̸∈ P̂N (R)) by its Hermite–Gauss interpolation:

h′

j(x) ≈

N∑
k=0

h′

j(xk)hk(x), so hj(x) ≈

N∑
k=0

h′

j(xk)
∫ x

−∞

hk(t)dt. (2.13)

Taking x = xi, we obtain

δij ≈

N∑
k=0

p(1)k (xi) d
(1)
kj , so IN+1 ≈ P (1)D(1). (2.14)

We can justify P (2)D(2)
≈ IN+1 in a very similar fashion. □

Remark 2.1. To have a better understanding of the above approximate inverse, we derive a formula for the error remainder.
More precisely, let IHN : C(R) → PN (R) be the Lagrange interpolation at the Hermite–Gauss points {xj}Nj=0. Accordingly,
we can define the interpolation associated with the Hermite functions: ÎHN u = e−x2/2IHN (u ex

2/2) ∈ P̂N (R). Thus, we can
understand (2.13) as the approximation of h′

j by its interpolant ÎHN h
′

j. Moreover, we can derive a computable error formula.
Indeed, we obtain from (2.7) that

h′

j(x)−
N∑

k=0

h′

j(xk)hk(x) = h′

j(x) − ÎHN h
′

j(x)

= e(x
2
j −x2)/2(l′j(x) − xlj(x)) − e(x

2
j −x2)/2IHN (l

′

j(x) − xlj(x))

= e(x
2
j −x2)/2(IHN (xlj(x)) − xlj(x)

)
= (xj − x)hj(x),

where in the last step, we used the property IHN φ = φ for any φ ∈ PN (R), and IHN (xlj(x)) =
∑N

i=0xilj(xi)li(x) = xjlj(x). Thus, by
(2.13) and (2.14), we have

EH
j (xi) =: δij −

N∑
k=0

p(1)k (xi) d
(1)
kj =

∫ xi

−∞

(xj − t)hj(t) dt, 0 ≤ i, j ≤ N. (2.15)

That is, IN+1 −P (1)D(1)
= EH with the entries EH

ij = EH
j (xi) for 0 ≤ i, j ≤ N.However, it seems nontrivial to derive the explicit

order of convergence. The numerical illustration in Fig. 2.3 (left) indicates the convergence rate is ∥EH
∥∞ = maxi,j|EH

ij | =

O(N−1) roughly.
A similar analysis can be conducted for the second-order differentiation matrix.

Consider the Hermite collocation method for −u′′(x) + u(x) = f (x) whose solution decays to zero at infinity. Then we
know from (2.10) that the conditioning of the corresponding coefficient matrix: −D(2)

+ IN+1 behaves like O(N). Using the
approximate inverse as a preconditioner, we have the coefficient matrix of the linear system:

R := P (2)(
−D(2)

+ IN+1
)

≈ −IN+1 + P (2). (2.16)

In view of (2.12), the eigenvalues of R behave like

λj(R) ≈ −1 + λ−1
j (D(2)), 0 ≤ j ≤ N. (2.17)
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Then by (2.10),

min
j

|λj(R)| = O(1), max
j

|λj(R)| = O(N), Cond(R) = O(N). (2.18)

Observe that the preconditioning by the ‘‘approximate’’ inverse does not really relax the conditioning of the system, due to
that the smallest eigenvalues decay to zero at a rate as in (2.9) and (2.10), as opposite to the Legendre and Chebyshev cases
in [22].

2.2. Laguerre functions and Laguerre collocation differentiation matrices

Let Lk(x), x ∈ R+
:= (0, ∞) be the Laguerre polynomial of degree k satisfying∫

R+

Lk(x)Ll(x)e−xdx = δkl. (2.19)

They are also the eigenfunctions of the Sturm–Liouville equation:

xL′′

k (x) + (1 − x)L′

k(x) + kLk(x) = 0, (2.20)

and note that Lk(0) = 1, and

Lk(x) = L′

k(x) − L′

k+1(x), k ≥ 0. (2.21)

Define the corresponding Laguerre function as

L̂k(x) = e−x/2Lk(x), k ≥ 0. (2.22)

Then by (2.21), we have
1
2
L̂k+1(x) +

1
2
L̂k(x) = L̂′

k(x) − L̂′

k+1(x). (2.23)

Let PN (R+) be the set of all polynomials of degree at most N on R+, and

P̂N (R+) = span
{̂
L0(x), L̂1(x), . . . , L̂N (x)

}
=

{
u : u = e−x/2v, v ∈ PN (R+)

}
. (2.24)

Recall that the Laguerre–Gauss–Radau (LGR) nodes: {xj}Nj=0 (arranged in ascending order) are zeros of xL′

N+1(x) and by
[6, (7.36)],∫

R+

p(x)q(x)dx =

N∑
j=0

p(xj)q(xj)ω̂j, ω̂j =
1

(N + 1)̂L2N (xj)
, (2.25)

where p ∈ P̂L(R+) and q ∈ P̂M (R+) with L + M ≤ 2N. Let {l̂j}Nj=0 be the usual Lagrange interpolating basis polynomials at
LGR points {xj}Nj=0, and define the corresponding basis associated with Laguerre functions as

ĥj(x) = e(xj−x)/2 l̂j(x) ∈ P̂N (R+), ĥj(xi) = δij, 0 ≤ i, j ≤ N. (2.26)

Introduce the collocation differentiation matrices:

D̂(m)
=

(
d̂(m)
ij := ĥ(m)

j (xi)
)
0≤i,j≤N , D̂(m)

in =
(
d̂(m)
ij

)
1≤i,j≤N .

Like (2.9) and (2.10), we have the following behaviours (cf. [42]):

min
j

|λj| = O
(
N−1), max

j
|λj| = O(N), Cond(̂D(1)

in ) = O(N2), (2.27)

and

min
j

|λj| = O
(
N−2), max

j
|λj| = O(N2), Cond(̂D(2)

in ) = O(N4). (2.28)

The numerical illustrations in Fig. 2.2 agree with the above estimates.
As with the Hermite case, we can find the approximate inverse of the Laguerre collocation differentiation matrices

through integration. To do this, we introduce the Lagrange interpolating basis at the ‘‘interior’’ LGR points {xj}Nj=1:

l̃j(x) =
xj
x
l̂j(x), h̃j(x) = e(xj−x)/2 l̃j(x) ∈ P̂N−1(R+), 1 ≤ i, j ≤ N. (2.29)

Like (2.11), we introduce

g (1)
j (x) =

∫ x

0
h̃j(t) dt, 1 ≤ j ≤ N, (2.30)
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Fig. 2.2. The modulus of the largest, smallest eigenvalues and condition numbers in log–log scale. Left: D̂(1)
in ; Right: D̂(2)

in .

and

g (2)
j (x) =

1
2

∫ x

0
(x − t)h̃j(t) dt +

1
2

∫
∞

x
(t − x)h̃j(t) dt −

1
2

∫
∞

0
(x + t)h̃j(t) dt, (2.31)

for 1 ≤ j ≤ N. They can be computed efficiently by using Lemma 3.1 and the three-term recurrence formula of the Laguerre
functions.

We have the following approximate inverse. Here, we omit the proof as it is very similar to that of Proposition 2.1.

Proposition 2.2. Let {g (1)
j , g (2)

j } be defined as in (2.30) and (2.31), and define the matrices G(1),G(2) with the ijth entries:
g (1)
j (xi), g

(2)
j (xi), respectively. Then we have

G(1)D̂(1)
in ≈ IN , G(2)D̂(2)

in ≈ IN . (2.32)

Remark 2.2. Like Remark 2.1, we can understand the above approximate inverse from the perspectives of interpolation
approximation and the error formula. It is clear that by (2.26) and (2.29),

ĥ′

j(x) = e(xj−x)/2
(
l̂′j(x) −

1
2
l̂j(x)

)
, ĥ′

j(xk) = e(xj−xk)/2
(
l̂′j(xk) −

1
2
δkj

)
.

Thus, we can write and derive that

ĥ′

j(x) −

N∑
k=1

ĥ′

j(xk)h̃k(x) = ĥ′

j(x) −
e(xj−x)/2

x

N∑
k=1

xk l̂′j(xk)l̂k(x) +
1
2
h̃j(x)

= ĥ′

j(x) −
e(xj−x)/2

x
xl̂′j(x) +

1
2
h̃j(x) =

1
2

(
h̃j(x) − ĥj(x)

)
,

where we used the fact x0 = 0, and the Laguerre–Gauss–Radau interpolation is exact for any polynomial in P̂N (R+). This
implies IN − G(1)D̂(1)

in = EL with the entries given by

EL
ij :=

1
2

∫ xi

0

(
h̃j(t) − ĥj(t)

)
dt =

1
2

∫ xi

0

(xj
t

− 1
)
ĥj(t) dt, 1 ≤ i, j ≤ N.

Like the Hermite case, we observe from Fig. 2.3 (right) that ∥EL
∥∞ = maxi,j|EL

ij| = O(N−1) approximately.
Similarly, we can analyse the second approximate inverse in (2.32).

Consider −u′′(x) + u(x) = f (x) with u(0) = 0 and u(x) → 0 as x → ∞. From (2.28), we know the condition numbers of
the coefficient matrix: H = −D̂(2)

in + IN of the usual collocation method growing like O(N2). We can precondition the matrix
by using the approximate inverse:

E := G(2)(
−D̂(2)

in + IN
)

≈ −IN + G(2). (2.33)

According to (2.32), the eigenvalues are

λj(E) ≈ −1 + λ−1
j (̂D(2)

in ), 1 ≤ j ≤ N, (2.34)
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Fig. 2.3. The convergence rate of ∥EH
∥∞ in Remark 2.1 and ∥EL

∥∞ in Remark 2.2 in log–log scale. Left: Hermite case. Right: Laguerre case.

so we have

min
j

|λj(E)| = O(1), max
j

|λj(E)| = O(N2), Cond(E) = O(N2). (2.35)

Similar to the Hermite case, the smallest eigenvalues in (2.27) and (2.28) decay with respect to N, so the above precondi-
tioning does not relax the conditioning of the original collocation system, which should be in contrast with the Chebyshev
and Legendre cases in the finite domain (cf. [22]).

3. New basis functions and their properties

Motivated by previous studies, we find it is necessary to use the inverse of −D(2)
+ νIN+1 in (2.16) and −D̂(2)

in + λIN
in (2.33) as preconditioners, which can lead to well-conditioned collocation schemes for general second-order equations.
In what follows, we explicitly compute their approximate inverse in an efficient and stable manner, and demonstrate the
advantages of this new approach.

3.1. New basis functions on the whole line

Denote the following second-order differential operator by

Lν[u](x) = u′′(x) − ν2u(x), x ∈ R, ν > 0. (3.1)

Our goal is to explicitly construct a basis {Qj}
N
j=0 such that

Lν[Qj](x) = hj(x), 0 ≤ j ≤ N; Qj(x) → 0 as |x| → ∞, (3.2)

which implies

Lν[Qj](xi) = δij, 0 ≤ i, j ≤ N. (3.3)

Define the matrices

Q (k)
=

(
q(k)ij

)
0≤i,j≤N , where q(k)ij = Q (k)

j (xi). (3.4)

Then there holds

Q (2)
− ν2Q = IN+1, Q = Q (0). (3.5)

In other words, the collocation matrix associated with Lν[u](x) becomes identity matrix.
Below, we present the explicit formulas for computing the new basis {Qj}

N
j=0.

Theorem 3.1. Let {xj, ωj}
N
j=0 be the Hermite–Gauss quadrature nodes and weights. Then

Qj(x) = −
1
2ν

N∑
k=0

ωjĤk(xj)
{
I−

ν [Ĥk](x) + I+

ν [Ĥk](x)
}
, 0 ≤ j ≤ N, (3.6)
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where

I−

ν [Ĥk](x) =

∫ x

−∞

e−ν(x−y)Ĥk(y) dy, I+

ν [Ĥk](x) =

∫
∞

x
e−ν(y−x)Ĥk(y) dy, (3.7)

satisfying

I+

ν [Ĥk](x) = (−1)kI−

ν [Ĥk](−x). (3.8)

Moreover, we have the following recurrence relation:√
k + 1
2

I−

ν [Ĥk+1](x) = νI−

ν [Ĥk](x) +

√
k
2
I−

ν [Ĥk−1](x) − Ĥk(x), k ≥ 1,

I−

ν [Ĥ0](x) =
π

1
4

√
2
e

1
2 ν2−νx

(
1 + erf

(x − ν
√
2

))
,

I−

ν [Ĥ1](x) = −
√
2π−

1
4 e−

x2
2 + π

1
4 νe

1
2 ν2−νx

(
1 + erf

(x − ν
√
2

))
.

(3.9)

Proof. Let {hj} be the interpolating basis defined in (2.7). Solving (3.2) leads to

Qj(x) = C1e−νx
+ C2eνx

−
e−νx

2ν

∫ x

−∞

eνyhj(y)dy +
eνx

2ν

∫ x

−∞

e−νyhj(y)dy

= e−νx
(
C1 −

1
2ν

∫ x

−∞

eνyhj(y) dy
)

+ eνx
(
C2 +

1
2ν

∫ x

−∞

e−νyhj(y) dy
)
.

(3.10)

As Qj(x) → 0 at infinity, we infer that

C1 = 0, C2 = −
1
2ν

∫
∞

−∞

e−νyhj(y)dy.

Substituting C1 and C2 into (3.10), we find

Qj(x) = −
1
2ν

(
I−

ν [hj](x) + I+

ν [hj](x)
)
, 0 ≤ j ≤ N, (3.11)

which, together with (2.8), leads to (3.6).
By (2.2), we have

I−

ν [Ĥk](−x) =

∫
−x

−∞

e−ν(−x−y)Ĥk(y)dy =

∫
∞

x
e−ν(y−x)(−1)kĤk(y)dy

= (−1)k
∫

∞

x
e−ν(y−x)Ĥk(y)dy = (−1)k I+

ν [Ĥk](x),
(3.12)

which yields (3.8).
Finally, we show (3.9). Using (2.4), (3.7) and integration by parts, we obtain√

k
2
I−

ν [Ĥk−1](x) −

√
k + 1
2

I−

ν [Ĥk+1](x) =

∫ x

−∞

e−ν(x−y)Ĥ ′

k(y)dy = Ĥk(x) − νI−

ν [Ĥk](x).

Next, by the definition (3.7) and a direct calculation, we obtain

I−

ν [Ĥ0](x) =

∫ x

−∞

e−ν(x−y)Ĥ0(y)dy = π−
1
4

∫ x

−∞

e−ν(x−y)e−
y2
2 dy

= π−
1
4 e

1
2 ν2−νx

∫ x

−∞

e−
1
2 (y−ν)2dy = π−

1
4 e

1
2 ν2−νx

∫ x−ν

−∞

e−
1
2 y

2
dy

= π−
1
4 e

1
2 ν2−νx

(√
2π
2

+

∫ x−ν

0
e−

1
2 y

2
dy

)
= π−

1
4 e

1
2 ν2−νx

(√
2π
2

+
√
2
∫ x−ν√

2

0
e−y2dy

)
=

π
1
4

√
2
e

1
2 ν2−νx

(
1 + erf

(x − ν
√
2

))
,
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and

I−

ν [Ĥ1](x) =

∫ x

−∞

e−ν(x−y)Ĥ1(y)dy =
√
2π−

1
4

∫ x

−∞

e−ν(x−y)ye−
y2
2 dy

= −
√
2π−

1
4 e−ν(x−y)e−

y2
2

⏐⏐⏐x
−∞

+
√
2π−

1
4 ν

∫ x

−∞

e−ν(x−y)e−
y2
2 dy

= −
√
2π−

1
4 e−

x2
2 +

√
2νI−

ν [Ĥ0](x)

= −
√
2π−

1
4 e−

x2
2 + π

1
4 νe

1
2 ν2−νx

(
1 + erf

(x − ν
√
2

))
.

This ends the proof. □

3.2. New basis functions on the half line

Consider the second-order linear differential operator on R+:

Fλ[u](x) = u′′(x) − λ2u(x), x ∈ R+, (3.13)

where the constant λ > 0. The main objective is to construct a new basis {Sj}Nj=0 such that

• for 1 ≤ j ≤ N,

Fλ[Sj](x) = h̃j(x), x ∈ R+
; Sj(0) = 0; (3.14)

• for j = 0,

Fλ[S0](x) = 0, x ∈ R+
; S0(0) = 1, (3.15)

where {h̃j} are the interpolating basis defined in (2.29). With this, taking x = xi in (3.14) and (3.15) yields that{
Fλ[Sj](xi) = δij, 1 ≤ i, j ≤ N; Sj(0) = 0, 1 ≤ j ≤ N;

Fλ[S0](xi) = 0, 1 ≤ i ≤ N, S0(0) = 1. (3.16)

Define

S (k)
=

(
s(k)ij = S(k)j (xi)

)
1≤i,j≤N , S = S (0). (3.17)

Then there holds

S (2)
− λ2S = IN . (3.18)

We next propose an efficient algorithm for computing the new basis, and first derive the following important formula.

Lemma 3.1. Let {xj, ω̂j}
N
j=0 be the LGR points and quadrature weights as in (2.25). Then {h̃j}

N
j=1 has the representation:

h̃j(x) =

N−1∑
k=0

ν
j
k L̂k(x), 1 ≤ j ≤ N; ν

j
k = −

ω̂0

L̂N+1(xj)
+ ω̂ĵLk(xj). (3.19)

Proof. By the orthogonality (2.19) and (2.22),

ν
j
k =

∫
R+

h̃j(x)̂Lk(x) dx = h̃j(0)̂Lk(0)ω̂0 + L̂k(xj)ω̂j, (3.20)

where we used the property: h̃j(xi) = δij for 1 ≤ i, j ≤ N . Thus, it remains to calculate h̃j(0). As the interior LGR points {xj}Nj=1
are zeros of L′

N+1(x), we have

l̃j(0) =
L′

N+1(x)
(x − xj) L′′

N+1(xj)

⏐⏐⏐⏐
x=0

. (3.21)

By (2.20),

L′

N+1(0) = −(N + 1), xjL′′

N+1(xj) = −(N + 1)LN+1(xj), 1 ≤ j ≤ N. (3.22)

Then h̃j(0) = −(̂LN+1(xj))−1. Thus, the desired formula (3.19) follows from the above. □
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Like Theorem 3.1, we have the following algorithm for computing the basis efficiently.

Theorem 3.2. We have S0(x) = e−λx, and

Sj(x) = −
1
2λ

N−1∑
k=0

ν
j
k

{
I−λ [̂Lk](x) + I+λ [̂Lk](x) − I∞λ [̂Lk](x)

}
, 1 ≤ j ≤ N, (3.23)

where {ν
j
k} are given in Lemma 3.1, and

I−λ [̂Lk](x) =

∫ x

0
e−λ(x−y)̂Lk(y) dy, I+λ [̂Lk](x) =

∫
∞

x
e−λ(y−x)̂Lk(y) dy,

I∞λ [̂Lk](x) =

∫
∞

0
e−λ(x+y)̂Lk(y) dy.

(3.24)

We have the recurrence formulas:

I−λ [̂Lk](x) =
2λ − 1
2λ + 1

I−λ [̂Lk+1](x) +
2

2λ + 1
(̂Lk(x) − L̂k+1(x)), (3.25)

I+λ [̂Lk+1](x) =
2λ − 1
2λ + 1

I+λ [̂Lk](x) +
2

2λ + 1
(̂Lk+1(x) − L̂k(x)), (3.26)

with I+λ [̂L0](x) = 2e−x/2/(2λ + 1). Moreover, we have the exact formula:

I∞λ [̂Lk](x) =
2(2λ − 1)k

(2λ + 1)k+1 e
−λx. (3.27)

Proof. It is evident that S0(x) = e−λx is the unique solution to (3.15). Solving (3.14) directly, we find that

Sj(x) =
1
2λ

I∞λ [h̃j](x) −
1
2λ

I−λ [h̃j](x) −
1
2λ

I+λ [h̃j](x), 1 ≤ j ≤ N. (3.28)

Substituting the formula of h̃j in Lemma 3.1 into the above leads to (3.23).
By (2.23) and (3.24), we derive from a direct calculation that

1
2

{
I+λ [̂Lk](x) + I+λ [̂Lk+1](x)

}
=

∫
∞

x
e−λ(y−x){̂L′

k(y) − L̂′

k+1(y)
}
dy

= e−λ(y−x){̂Lk(y) − L̂k+1(y)
}⏐⏐⏐∞

x
+ λI+λ [̂Lk](x) − λI+λ [̂Lk+1](x)

= λ I+λ [̂Lk](x) − λ I+λ [̂Lk+1](x) + L̂k+1(x) − L̂k(x),

(3.29)

which implies (3.26). It is clear that

I+λ [̂L0](x) =

∫
∞

x
e−λ(y−x)e−y/2dy =

2
2λ + 1

e−x/2.

The formula (3.25) can be derived in a very similar fashion.
Following the same lines in (3.29), we can show that

I∞λ [̂Lk+1](x) =
2λ − 1
2λ + 1

I∞λ [̂Lk](x) = · · · =

(2λ − 1
2λ + 1

)k+1
I∞λ [̂L0](x) =

2(2λ − 1)k+1

(2λ + 1)k+2 e−λx. (3.30)

This ends the proof. □

Interestingly, when λ = 1/2, the new basis takes a much simpler form, which follows from Theorem 3.2 immediately.

Corollary 3.1. For λ = 1/2, we have

Sj(x) =

N−1∑
k=0

ν
j
k

{̂
Lk+1(x) − 2̂Lk(x) + L̂k−1(x)

}
, 1 ≤ j ≤ N, (3.31)

where L̂−1(x) = 0.

Remark 3.1. Observe from (3.25) that it is necessary to implement the recurrence formula backwards for slightly large λ.
That is

I−λ [̂Lk](x) =
2λ − 1
2λ + 1

I−λ [̂Lk+1](x) +
2

2λ + 1
(̂Lk(x) − L̂k+1(x)), k = N − 1, . . . , 0, (3.32)
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with the input I−λ [̂LN ](x). In fact, the initial values at the LGR points {xi}Ni=1 can be calculated efficiently by the rapid de-
convolution formula (see, e.g., [46]):

I−λ [̂LN ](xi) = e−λ∆xi I−λ [̂LN ](xi−1) +

∫ xi

xi−1

e−λ(xi−y)̂LN (y) dy, (3.33)

and I−λ [̂LN ](x0) = 0,where∆xi = xi −xi−1 for 1 ≤ i ≤ N. As a result, we can use the Legendre–Gauss quadrature to compute
the integral on [xi−1, xi] accurately.

3.3. Important properties

ThematrixQ in (3.4) generated from the new basis in Theorem 3.1 is an approximate inverse of thematrix of the Hermite
collocation method Lν[u](x) = f (x), x ∈ R with u(x) → 0 as |x| → ∞. The Hermite–Gauss collocation scheme is to find
uN ∈ P̂N (R) such that

Lν[uN ](xj) = f (xj), 0 ≤ j ≤ N. (3.34)

Under the Lagrange interpolating basis functions {hj} in (2.7), the matrix form of (3.34) is

L u =
(
D(2)

− ν2IN+1
)
u = f , (3.35)

where

u =
(
uN (x0), uN (x1), . . . , uN (xN )

)t
, f =

(
f (x0), f (x1), . . . , f (xN )

)t
. (3.36)

Proposition 3.1. Let L = D(2)
− ν2IN+1 and Q be the matrix defined in (3.4). Then we have QL ≈ IN+1 ≈ LQ .

Proof. Note that Qj(x) can be well approximated by the interpolation:

Qj(x) ≈

N∑
k=0

Qj(xk)hk(x), so Lν[Qj](x) ≈

N∑
k=0

Qj(xk)Lν[hk](x).

Then by (3.3),

δij = Lν[Qj](xk) ≈

N∑
k=0

Qj(xk)Lν[hk](xi), so IN+1 ≈
(
D(2)

− ν2IN+1
)
Q .

Thus, LQ ≈ IN+1. Similarly, consider the approximation:

Lν[hj](x) ≈

N∑
k=0

Lν[hj](xk)hk(x), so hj(x) ≈

N∑
k=0

Lν[hj](xk)L−1
ν [hk](x).

Hence, by (3.2) and taking x = xi, we claim that QL ≈ IN+1. □

The above important property is also valid for the Laguerre case. Similarly, we consider the Laguerre collocation method
for Fλ[u](x) = f (x), x ∈ R+ with u(0) = 0 and u(x) → 0 as x → ∞. Then the collocation matrix is F = D̂(2)

in − λ2IN as in
(2.33).

Proposition 3.2. Let F = D̂(2)
in − λ2IN and S be the matrix defined in (3.17). Then we have SF ≈ IN ≈ FS.

Let {λj}
N
j=0 be the eigenvalues of QL. We plot in Fig. 3.1 the errors: maxj|λj − 1| and minj|λj − 1| against N in log-scale for

both Hermite and Laguerre cases. We observe that all their eigenvalues are concentrated around one for slightly large N .
As a very important special case, when λ = 1/2, the new basis in Corollary 3.1 offers the exact inverse.

Proposition 3.3. For λ = 1/2, let F∗ = D̂(2)
in −

1
4 IN , and we have

SF∗ = F∗S = IN . (3.37)

Proof. From Corollary 3.1, we know from (2.24) that Sj ∈ P̂N (R+). Thus, we have

Sj(x) =

N∑
k=0

Sj(xk)ĥk(x) =

N∑
k=1

Sj(xk)ĥk(x), 1 ≤ j ≤ N,



564 C. Zhang et al. / Journal of Computational and Applied Mathematics 344 (2018) 553–571

Fig. 3.1. The errors of maxj|λj − 1| and minj|λj − 1| against N (note: {λj}
N
j=0 are the eigenvalues). Left: QL for Hermite case. Right: SF for Laguerre case.

where we used the fact: Sj(x0) = 0. Thus, by (3.16),

δij = F 1
2
[Sj](xi) =

N∑
k=1

Sj(xk)F 1
2
[ĥk](xi), 1 ≤ j ≤ N.

This ends the proof. □

Remark 3.2. It is seen from Corollary 3.1 that the new basis {Sj}with λ = 1/2 takes the simplest form and belong to P̂N (R+).
In fact, we can use it to precondition the matrix F = D̂(2)

in − λ2IN with λ ̸= 1/2. More precisely, we find from (3.37) that

SF = S
{
F∗ + (1/4 − λ2)IN

}
= IN + (1/4 − λ2)S, (3.38)

and the eigenvalues:

λj(S) = λj(F−1
∗

) =
(
λj (̂D

(2)
in ) − 1/4

)−1
.

Thus, we infer from (2.28) that

min
j

|λj(S)| = O(N−2), max
j

|λj(S)| = O(1).

We find from (3.38) readily that λj(SF ) = O(1) for all 1 ≤ j ≤ N, so Cond(SF ) = O(1).

4. Applications and numerical results

In this section, we propose new collocation methods using the new basis for various PDEs in unbounded domains, and
demonstrate the high accuracy and efficiency of the proposed approaches. More precisely, we consider BVPs in one and two
dimensions, and time-dependent equations. Moreover, we develop a Legendre–Laguerre multi-domain collocation schemes
using the integral basis in [22] and new basis herein to enhance the accuracy and resolution of the solver on the half line.

4.1. Illustrative examples

To demonstrate the idea, we consider the Hermite collocation schemes for the model problem on the whole line:

− u′′(x) + r(x)u′(x) + s(x)u(x) = f (x), x ∈ R; lim
|x|→∞

u(x) = 0, (4.1)

where the given functions r, s, f ∈ C(R). Let {xi}Ni=0 be the Hermite–Gauss points as before. Then the collocation scheme for
(4.1) is to find uN ∈ P̂N (R) such that

− u′′

N (xi) + r(xi)u′

N (xi) + s(xi)uN (xi) = f (xi), 0 ≤ i ≤ N. (4.2)

Let {hj}
N
j=0 be the Lagrange basis functions defined in (2.7). We expand the numerical solution of (4.1) as

uN (x) =

N∑
j=0

uN (xj)hj(x), (4.3)
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Table 4.1
Condition numbers of two schemes with β = 2 and ν =

1
2 .

N = 20 N = 60 N = 100 N = 140 N = 180

LCOL (4.4) 1.50E+02 4.61E+02 7.75E+02 1.09E+03 1.41E+03
BCOL (4.5) 6.1 21.9 40.6 60.8 82.1

and substitute it into (4.2), leading to

−

N∑
j=0

uN (xj)h′′

j (xi) + r(xi)
N∑
j=0

uN (xj)h′

j(xi) + s(xi)
N∑
j=0

uN (xj)hj(xi) = f (xi), 0 ≤ i ≤ N.

Thus, the above equations can be written in the form of matrix as follows:(
−D(2)

+ ΣrD(1)
+ Σs

)
u = f , (4.4)

where
Σr = diag(r(x0), r(x1), . . . , r(xN )), Σs = diag(s(x0), s(x1), . . . , s(xN )),

u = (uN (x0), uN (x1), . . . , uN (xN ))t , f = (f (x0), f (x1), . . . , f (xN ))t .

Using the new basis in (3.6), we write

uN (x) =

N∑
j=0

vjQj(x), vj := u′′

N (xj) − ν2uN (xj).

Substituting it into (4.2), we obtain

−

N∑
j=0

vjQ ′′

j (xi) + r(xi)
N∑
j=0

vjQ ′

j (xi) + s(xi)
N∑
j=0

vjQj(xi) = f (xi), 0 ≤ i ≤ N.

Then the matrix form of (4.2) reads(
−IN+1 + ΣrQ (1)

+ (Σs − ν2IN+1)Q
)
v = f . (4.5)

Remark 4.1. It is known that the resolution and accuracy of the spectral methods in unbounded domains can be enhanced
by using a proper scaling parameter. For example, in actual computation, instead of solving (4.1), we solve the following
scaled equation with the new variable y = βx:

− β2v′′(y) + βa(y)v′(y) + b(y)v(y) = g(y), y ∈ (−∞, +∞); lim
|y|→∞

v(y) = 0, (4.6)

where v(y) = u(βx), a(y) = r(βx), b(y) = s(βx) and g(y) = f (βx). The matrix system of the scaled problem (4.6)
approximated by the new basis functions is(

−β2IN+1 + βΣrQ (1)
+ (Σs − β2ν2IN+1)Q

)
v = f . (4.7)

This also applies to the scheme in (4.4).

In the following test, we set r(x) = 0, s(x) = x2 in (4.1), and choose the exact solution to be u(x) = (1 + x2)−5/2. In
Table 4.1, we list the condition numbers of the schemes (4.4) and (4.5) with the scaling factor β = 2 and with ν = 1/2 in
(4.5). The results show that the condition numbers of the usual collocation scheme increase quickly as N increases, but these
of the new collocation scheme are much smaller.

In Fig. 4.1, we plot the maximum point-wise errors of two schemes (4.4) and (4.5) with ν = 1/2. And we observe that
the new approach outperforms the usual method.

Similarly, we consider the model BVP on the half line:

− u′′(x) + r(x)u′(x) + s(x)u(x) = f (x), x ∈ (0, ∞); u(0) = u0, lim
x→∞

u(x) = 0, (4.8)

where the given functions r, s, f ∈ C(R+).
Let {xi}Ni=0 be the LGR points as before. Then the collocation scheme for (4.8) is to find uN ∈ P̂N (R+) such that{

−u′′

N (xi) + r(xi)u′

N (xi) + s(xi)uN (xi) = f (xi), 1 ≤ i ≤ N,

uN (0) = u0.
(4.9)
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Fig. 4.1. Error plots: (4.4) (LCOL) versus (4.5) (BCOL).

(i) Usual collocation scheme using Lagrange interpolating basis (LCOL). Let {ĥj}
N
j=0 be the Lagrange interpolation functions

defined in (2.26). We expand the numerical solution of (4.8) as

uN (x) = u0ĥ0(x) +

N∑
j=1

uN (xj)ĥj(x),

and substitute it into (4.9), leading to

−

N∑
j=1

uN (xj)ĥ′′

j (xi) + r(xi)
N∑
j=1

uN (xj)ĥ′

j(xi) + s(xi)
N∑
j=1

uN (xj)ĥj(xi)

= f (xi) + u0
(
ĥ′′

0(xi) − r(xi)ĥ′

0(xi) − s(xi)ĥ0(xi)
)
, 1 ≤ i ≤ N.

Thus, the above equations can be written in the form of matrix as follows:(
−D̂(2)

in + Σr D̂
(1)
in + Σs

)
u = f + uB, (4.10)

where
Σr = diag(r(x1), r(x2), . . . , r(xN )), Σs = diag(s(x1), s(x2), . . . , s(xN )),

u = (uN (x1), uN (x2), . . . , uN (xN ))t , f = (f (x1), f (x2), . . . , f (xN ))t ,

uB is the vector of
{
u0(d̂

(2)
i0 − r(xi)d̂

(1)
i0 )

}N
i=1.

(ii) New collocation scheme using the new basis (BCOL). Let {Sj} be the new basis defined in (3.23) and write

uN (x) = u0S0(x) +

N∑
j=1

vjSj(x), vj = u′′

N (xj) − λ2uN (xj).

Substituting it into (4.9), we obtain

−

N∑
j=1

vjS ′′

j (xi) + r(xi)
N∑
j=1

vjS ′

j (xi) + s(xi)
N∑
j=1

vjSj(xi)

= f (xi) + u0S ′′

0 (xi) − r(xi)u0S ′

0(xi) − s(xi)u0S0(xi), 1 ≤ i ≤ N.

Then the matrix form of (4.9) reads(
−IN + ΣrS (1)

+ (Σs − λ2IN )S
)
v = f − u0v−, (4.11)

where v− is vector with entries
{
r(xi)S ′

0(xi) + (s(xi) − λ2)S0(xi)
}N
i=1.

Remark 4.2. Based on the new basis, a second collocation scheme is to precondition the collocation system (4.10) by using
the matrix S in (3.17), that is,(

−S (̂D(2)
in − λ2IN ) + SΣr D̂

(1)
in + S(Σs − λ2IN )

)
u = S(f + uB). (4.12)
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Table 4.2
Condition numbers of two schemes with β = 2 and λ =

1
2 ..

N = 100 N = 140 N = 180 N = 220 N = 260

LCOL (4.10) 1.66E+03 3.24E+03 5.34E+03 7.96E+03 1.11E+04
BCOL (4.11) 8.82 10.4 11.8 13.2 14.6

Fig. 4.2. Error behaviour of two schemes (4.10) and (4.11) with β = 2, λ = 1/2 and exact solutions: u(x) = (1+ x)−11/2 (left) and u(x) = (cos x)(1+ x)−11/2

(right).

Note from Proposition 3.2 that S (̂D(2)
in − λ2IN ) is approximately an identity matrix. In particular, if λ = 1/2, we find from

Proposition 3.3 that(
−IN + SΣr D̂

(1)
in + S(Σs − IN/4)

)
u = S(f + uB). (4.13)

In fact, the preconditioned approach has a performance very similar to that of (4.11), so hereafter, we just focus on the
scheme (4.11).

Remark 4.3. As with Remark 4.1, we can introduce a scaling factor to enhance the resolution in a finite interval centred at
the origin.

We next provide some numerical results to show the performance of the above schemes. Here, we take r(x) = x and
s(x) = x2 in (4.8), and measure the maximum point-wise error: max0≤i≤N |u(xi) − uN (xi)|. In Table 4.2, we compare the
condition numbers of two schemes: (4.10) and (4.11) with the scaling factor β = 2 and with λ = 1/2 in (4.11). As expected,
the condition numbers of the usual collocation schemeusing polynomial basis increase quickly asN increases, which induces
large round-off errors and numerical instability. In contrast, the new collocation scheme can overcome such a deficiency.

To show the accuracy and well conditioning of the linear system, we test the solutions: u(x) = (1 + x)−11/2 and
u(x) = (cos x)(1 + x)−11/2. In Fig. 4.2, we depict the numerical errors of two schemes, show that the new scheme does
not suffer from the round-off errors, occurring in the usual collocation scheme for large N.

4.2. Two-dimensional case

Consider two-dimensional elliptic problem:

∆u − 2ν2u = f , (x, y) ∈ R2, u(x, y) → 0 as |x|, |y| → ∞, (4.14)

where the function f is given. Let {(xi, yi)}Ni,j=0 be the tensorial Hermite–Gauss points. Then the collocation scheme for (4.14)
is to find uN ∈ P̂N (R2) such that

∆uN (xi, yj) − 2ν2uN (xi, yj) = f (xi, yj), 0 ≤ i, j ≤ N. (4.15)

Using the new basis {Qj} with parameter ν > 0, we can write

uN (x, y) =

N∑
m,n=0

ūmnQm(x)Qn(y).
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Fig. 4.3. The new scheme versus the usual collocation method for two-dimensional example (4.14).

Note that by (3.2),

∆uN − 2ν2uN =

N∑
m,n=0

ūmnhm(x)Qn(y) +

N∑
m,n=0

ūmnQm(x)hn(y).

Thus, (4.15) becomes the following linear system:

UQ t
+ QU = F , (4.16)

where U = (ūmn)m,n=0,...,N and F = (f (xi, yj))i,j=0,...,N .
Similarly, we can formulate the two-dimensional tensorial version of the usual collocation scheme (LCOL) (cf. [6]).
We take the test solution u(x, y) = e−(x2+y2) sin x sin y. In Fig. 4.3, we plot the maximum pointwise errors with ν = 1

of the new scheme (BCOL) and LCOL for various N . Once again, we observe that the BCOL has smaller round-off errors than
LCOL for large N .

4.3. Applications to time-dependent problems

As an example,we consider the application of the newcollocation scheme in spatial discretization of the Burger’s equation
on the half line:⎧⎨⎩

∂tu + u∂xu = ν∂2
x u + f , x ∈ R+, t ∈ (0, T ],

u(0, t) = v−(t), lim
x→∞

u(x, t) = 0, t ∈ (0, T ],

u(x, 0) = u0(x), x ∈ R+,

(4.17)

where ν is a positive constant, and v−, u0 are given.
Let τ be the mesh size in time t and tn = nτ for n = 0, 1, . . . . We employ the second-order Crank–Nicolson scheme with

spatial discretization by the new basis {Sj} (with λ = 1/
√

ντ ) for (4.17), that is, to find the approximation of u(x, tn) as

un
N (x) = v−(tn)S0(x) +

N∑
j=1

vn
j Sj(x), n ≥ 0, (4.18)

such that
un+1
N (xi) − un−1

N (xi)
2τ

+ un
N (xi)∂xu

n
N (xi) = ν∂2

x

(un+1
N + un−1

N

2

)
(xi) + f (tn, xi), (4.19)

for 1 ≤ i ≤ N and n ≥ 1.
Inserting the above expansion (4.18) into (4.19), we have from (3.18) (with λ = 1/

√
ντ ) that

vn+1
= −(2λ2S + IN )vn−1

− 2λ2v−(tn−1)S0(xi) +
2
ν
F n, n ≥ 1, (4.20)

where

vn
= (vn

1, v
n
2, . . . , v

n
N )

t , F n
= (f n1 , f n2 , . . . , f nN )

t , f ni = un
N (xi)∂xu

n
N (xi) − f (tn, xi).

Similarly, we can formula the usual collocation scheme using Lagrange basis functions (LCOL). Here, we omit the details.
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Table 4.3
Comparison of CPU time, errors and order in time.

τ
LCOL BCOL

CPU (s) Error Order CPU (s) Error Order

0.0100 20.78 1.39E−05 – 6.68 1.39E−05 –
0.0050 41.00 3.47E−06 2.0021 11.39 3.47E−06 2.0021
0.0010 201.81 1.39E−07 1.9991 47.75 1.39E−07 1.9991
0.0005 397.65 3.47E−08 2.0021 93.60 3.44E−08 2.0146

We consider (4.17) with T = 30, ν = 0.01, and take the test solution: u(x, t) = e−x sin x sin t. In Table 4.3, we compared
the CPU times and maximum point-wise errors at the final time T using LCOL scheme and the new scheme (BCOL) with
N = 350. The results show that both schemes have the second order convergence accuracy. Although the maximum point-
wise errors of the two schemes are almost the same, the new scheme is much faster for small time-stepping size than the
LCOL scheme.

4.4. A composite Legendre–Laguerre collocation scheme

To further demonstrate the advantage of the new approach, we glue it with the Legendre–Birkhoff collocation method
introduced in [22] for problems in unbounded domains. This domain decomposition method can significantly enhance the
accuracy as the Legendre approximation has amuch better resolution over a finite interval. Indeed, the composite Legendre–
Laguerre Galerkin method outperformed the pure Laguerre–Galerkin approach [47]. However, there appears no discussion
on the composite collocation method posed on the strong form of a differential equation.

To fix the idea, we consider the boundary value problem:{
−u′′(x) + r(x)u′(x) + s(x)u(x) = f (x), x ∈ Ω := (−2, ∞),
u(−2) = u−, lim

x→∞
u(x) = 0, (4.21)

where the given functions r, s, f ∈ C(Ω), and u− is a given number.
We decompose the domain into Ω = Ī ∪ R+ with I := (−2, 0). Let {ξj}

L
j=0 ⊆ [−1, 1] with ξ0 = −1 and ξL = 1 be

the Legendre–Gauss–Lobatto (LGL) points, and {xj}Nj=0 be Laguerre–Gauss–Radau points as before. Define the approximation
space

X L
N =

{
v ∈ C1(Ω) : v|I ∈ PL and v|R+ ∈ P̂N (R+)

}
,

where PL is the set of all polynomials of degree not more than L, and P̂N (R+) is defined in (2.24). Note that dim(X L
N ) = L+N.

The approximate solution U∗ ∈ X L
N consists of two pieces:

U∗(x) =

{
Ul,∗ ∈ PL, x ∈ I,
Ur,∗ ∈ P̂N (R+), x ∈ R+,

such that [[U∗]](0) = [[U ′

∗
]](0) = 0, (4.22)

where [[·]](0) stands for the jump at x = 0. It is determined by the composite collocation scheme:⎧⎨⎩
−U ′′

l,∗(yj) + r(yj)U ′

l,∗(yj) + s(yj)Ul,∗(yj) = f (yj), 1 ≤ j ≤ L − 1,
−U ′′

r,∗(xj) + r(xj)U ′

r,∗(xj) + s(xj)Ur,∗(xj) = f (xj), 1 ≤ j ≤ N,

Ul,∗(y0) = u−; [[U∗]](0) = [[U ′

∗
]](0) = 0,

(4.23)

where yj = ξj − 1.
We now introduce the basis functions of X L

N .On the finite interval, we shall use the Legendre–Birkhoff interpolating basis
polynomials introduced in [22] through Birkhoff interpolation. More precisely, the basis {Bj}

L
j=0 ⊆ PL with ξ ∈ (−1, 1)

satisfies

B0(−1) = 1, B0(1) = 0, B′′

0(ξi) = 0, 1 ≤ i ≤ L − 1; (4.24)
Bj(−1) = 0, Bj(1) = 0, B′′

j (ξi) = δij, 1 ≤ i, j ≤ L − 1; (4.25)
BL(−1) = 0, BL(1) = 1, B′′

L (ξi) = 0, 1 ≤ i ≤ L − 1. (4.26)

We refer to [22] for the expressions and calculation of {Bj}.

For the Laguerre approximation, we use the new basis {Sj}Nj=0 with λ = 1/2, so S0(x) = e−x/2 and {Sj}Nj=1 are defined in
(3.31). Define

Φj(x) =

{
Bj(ξ ), x ∈ I,
0, x ∈ R+,

Φk(x) =

{
Sk−L(x), x ∈ R+,

0, x ∈ I, ΦL(x) =

{
BL(ξ ), x ∈ I,
S0(x), x ∈ R+,

(4.27)

for 0 ≤ j ≤ L − 1, L + 1 ≤ k ≤ L + N, and ξ = x + 1. Write

U∗(x) = u−Φ0(x) +

L+N∑
k=1

ûkΦk(x), (4.28)
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Fig. 4.4. Errors with λ = 1/2 and N = 2L.

which implies U∗ ∈ C(Ω), so [[U∗]](0) = 0. We impose [[U ′
∗
]](0) = 0 directly, leading to

−
u−

2
+

L−1∑
k=1

ûkB′

k(1) +
ûL

2
= −

ûL

2
+

L+N∑
k=L+1

ûkS ′

k−L(0). (4.29)

Then substituting (4.28) into the scheme (4.23), we can obtain the linear system straightforwardly. Again, we are able to
take the advantage of using this set of basis functions, that is, in the two sub-matrices on the main diagonal block, the
contributions from the second-order derivatives are diagonal. In other words, the two sub-matrices are well-conditioned,
so the system can be solved efficiently and stably even for large L,N.

We solve the problem (4.21) with r(x) = x, s(x) = x2, and take the test function u(x) = (cos kx)(3+ x)−11/2, which decays
algebraically as x goes to infinity. In Fig. 4.4, we plot themaximumpoint-wise errorswith λ = 1/2 andN = 2L v.s. themodes
L. The numerical results demonstrate the convergence of the method with L. The numerical errors show the high accuracy
of the proposed algorithm. The results also indicate that the smoother the exact solution, the better the numerical results.

4.5. Concluding remarks

In this paper, we constructed two sets of non-standard basis functions for Hermite/Laguerre collocation methods. Fast
and stable algorithms for the basis functions were provided. In addition, we demonstrated that the new basis functions have
the good approximability to the Laguerre/Hermite orthogonal functions. Using the new basis functions, we proposed new
collocation schemes for general second-order boundary value problems with (i) the matrix corresponding to the operators
being identity; (ii) the linear systems beingwell-conditioned. Numerical results for various problems indicated the efficiency
and high accuracy of the proposed new approaches.
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