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1. Introduction

The PSWFs are a family of orthogonal bandlimited functions, originated from the investigation of time-
frequency concentration problem in the 1960s (cf. [26,27,39,38]). In the study of time-frequency concentration
problem, Slepian was the first to note that the PSWFs, denoted by {wn(x; c)}C>o
of an integral operator related to the finite Fourier transform:

o+ are the eigenfunctions

1
An(Q)Yn(x;0) = /eimtwn(t; codt, ¢>0, zel:=(-11), (1.1)

—1

where ¢ > 0 is the so-called bandwidth parameter determined by the concentration rate and concentra-
tion interval, and {\,(c)} are the corresponding eigenvalues. By a remarkable coincidence, Slepian et al.
[39] recognized that the PSWFs also form the eigen-system of the second-order singular Sturm-Liouville
differential equation,

895((1 — 2%) 0 (5 c)) + (Xn(C) — csz)wn(J:; c)=0, ¢>0, z€l, (1.2)

which appears in separation of variables for solving the Helmholtz equation in spheroidal coordinates. The
Sturm-Liouville equation links up the PSWFs with orthogonal polynomials, and this connection plays a key
role in the study of the PSWFs.

The properties inherent to these functions have subsequently attracted many attentions for decades.
Within the last few years, there has been a growing research interest in various aspects of the PSWFs
including analytic and asymptotic studies [48,12,33,9], approximation with PSWFs [34,8,49,47,31], numerical
evaluations [10,13,42,18,21,3,28], development of numerical methods using this bandlimited basis [14,24,45,
20]. In particular, we refer to the monographs [19,32] and the recent review paper [43] for many references
therein.

The extensions of the time-frequency concentration problems on a finite interval to other geometries have
been considered in e.g., [38,7,37,22,23,36,50]. In [38], D. Slepian extended the finite Fourier transform (1.1)
to a bounded multidimensional domain Q C R?,

() = / Y(r)e =T dr x e, (1.3)
Q

and then investigated the time-frequency concentration on the unit disk B2.

Their effort stimulated researchers’ interest to the discussion of generalized prolate spheroidal wave func-
tions in two dimensions. Beylkin et al. [7] explored some interesting properties of band-limited functions
on a disk. In [36,25], the authors studied the integration and approximation of the PSWFs on a disk. As
usual, these generalized PSWF's on the disc satisfy the Sturm—Liouville differential equation and the integral
equation at the same time. We also note that Taylor [41] generalized the PSWFs to the triangle by defining
a special type of Sturm—Liouville equation.

In contrast, time-frequency concentration problem over a bounded domain in higher dimension has re-
ceived very limited attention. The works [30,37,6] studied the time-frequency concentration problem on a
sphere. Khalid et al. [23] formulated and solved the analog of Slepian spatial-spectral concentration prob-
lem on the three-dimensional ball, and Michel et al. [29] extended it to vectorial case. We note that the
time-frequency /spatial-spectral concentration in both cases is applicable for “bandlimited functions” with a
finite (spherical harmonic or Bessel-spherical harmonic) expansion instead of those whose Fourier transform
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have a bounded support. More importantly, many properties, in particular those relating to orthogonal
polynomials, are still unknown without a Sturm-Liouville differential equation.

In this paper, we propose a generalization of PSWFs of real order o« > —1 on the unit ball B¢ :=
{z € R?: ||| < 1} of an arbitrary dimension d. The ball PSWFs in the current paper inherit the merit
of PSWFs in one dimension such that they are eigenfunctions of an integral operator and a differential
operator simultaneously.

In the first place, we introduce a Sturm—Liouville differential equation and then define the ball PSWFs
as eigenfunctions of the eigen-problem:

[~ @ Jl*)"*V - X -2z (1~ |«]*)*V + [lz|*]¢(z;c) = xv(zic), z€B?, a>-1.  (14)

Hereafter, composite differential operators are understood in the convention of right associativity, for in-
stance,

Vo (I—azt)(1 - |z]*)*V = V- [T - za')(1 - ||lz|*)*V].

In distinction to [38] and other related works, the Sturm-Liouville differential equation (1.4) here is de-
fined in primitive variables instead of the radial variable. It extends the one-dimensional Sturm-Liouville
differential equation (1.2) intuitively while preserves the key features: symmetry, self-adjointness and form
of the bandwidth term c?||z||?. More importantly, (1.4) extends the orthogonal ball polynomials [16] (the
case with ¢ = 0) to ball PSWFs with a tuning parameter ¢ > 0. The implication is twofold. This not only
provides a tool to derive analytic and asymptotic formulae for the PSWFs on an arbitrary unit ball and
the associated eigenvalues, but also offers an optimal Bouwkamp spectral-algorithm for the computation
of PSWFs just as in one dimension [11]: expand them in the basis of the orthogonal ball polynomials, and
reduce the problem to an generalized algebraic eigenvalue problem with a tri-diagonal matrix.

The second purpose of this paper is to make an investigation of the integral transforms behind the
ball PSWFs, and explore their connections with existing works. More specifically, we can show that the
commutativity of the Sturm—Liouville differential operator in (1.4) with the integral operator of the finite
Fourier transform. As a result, the ball PSWFs are also eigenfunctions of the finite Fourier transform:

Ap(x;e) = /e‘ic(w’ﬂw(T;c)(l — |z|?)¥dT = [Z YY) (x;¢), x B >0, a>—1. (1.5)
Bd

Moreover, it has been demonstrated that the (d—1)-dimensional spherical harmonics (Y;*, 1 < ¢ < al, n>0;
see §2.2 and refer to [16]) are eigenfunctions of the Fourier transform on the unit sphere S¢~1 [5, Lemma
9.10.2]. Thus, by writing

1-d
P(a;c) = |zl = o([ll; )Y/ (x/||2]),
the finite Fourier transform (1.5) is reduced to the equivalent (symmetric) finite Hankel transform in radial

direction (also refer to [38, Eq. (i)] for the case d = 2 and a = 0),

1
(QW)*%C%)J” o(p;c) = /Jn_i_%(cpr)gb(r; c)y/epr(l—r?)%dr, 0<p<1. (1.6)
0

The eigenfunctions ¢(r;¢) of (1.6), which are also referred to as generalized prolate spheroidal wave func-
tions in [38], are further shown to be the bounded solutions of the following Sturm-Liouville differential
equation:
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Mm+d—1)(2n+d—3)
472

[ —(1- r2)—aar(1 - T2)°‘+13r + ( + 32r? o(r;c)

[X"‘ (d— 1)(4Z+d+1)}¢(r;c).

(1.7)

One can also refer to [38, Eq. (ii)] for the case a = 0 and d = 2, and refer to (1.2) for the case a = 0 and
d =1 in which n € {0,1}. In such a way, (1.4), (1.5), (1.6) and (1.7) reveal the intrinsic connections among
the finite Fourier transform, finite Hankel transform and the Sturm-Liouville differential operator behind
the ball PSWFs.

The rest of the paper is organized as follows. In Section 2, we introduce some of the special functions and
orthogonal polynomials, and collect their relevant properties to be used throughout the paper. In Section 3,
we propose the Sturm-Liouville differential equation on an arbitrary unit ball in primitive variables, define
the ball PSWFs and study their analytic properties. In Section 4, we study the ball PSWFs as eigenfunc-
tions of the integral operators, make investigations of their (finite) Fourier transform and (finite) Hankel
transform, and present other important features of ball PSWFs. An efficient method for computing the ball
PSWFs using the differential operator (1.4) together with the connection with existing works is described
in Section 5. Numerical results are provided to justify our theory and to demonstrate the efficiency of our
algorithm.

2. Special functions: spherical harmonics and ball polynomials

In this section, we review some relevant special functions which especially include the spherical harmonics
and ball polynomials. More importantly, we derive some new formulations and properties to facilitate the
discussions in the forthcoming sections.

2.1. Some related orthogonal polynomials and special functions

We briefly review the relevant properties of some orthogonal polynomials and related special functions
to be used throughout this paper, which can be found in various resources, see e.g., [1,16,17,35].

For real o, 8 > —1, the normalized Jacobi polynomials, denoted by {P,(IO‘”B )(n)}nzo, satisfy the three-term
recurrence relation:

NP (1) = o@D P () + 6B P () 4 oD PP (),

n

a 1 a 1 2.1

R0 = e 0 = a8+ 2+ 5) 21
where n € I := (—1,1), and

L(B) = dn+1)n+a+)(n++1)(n+a+p+1)

"oV @nta+B+)2nt+a+B+2)202n+a+ B+ 3)]

plesB) — p? —a?

" Cn+a+B8)2n+a+B+2)

ples) Fn+a+1)I(n+8+1)

"o \V22nt+a+ B+ D+ DI (n+a+B+1)

Let w®?(n) = (1 —n)*(1 + n)? be the Jacobi weight function. The normalized Jacobi polynomials are
orthonormal in the sense that
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1
/ PP () PP ()wa, g (n)dn = 207125, (22)
—1

The leading coefficient of ple? )( ) is

(@B) _ 1 2n+a+p ' (2.3)
! 21 n

The Jacobi polynomials are the eigenfunctions of the Sturm-Liouville problem

1

L) plasB)(py . —
K waﬁ(n)

O (wa+1,ﬁ+1(77)5npq§a’5) (77)) = )\gza’ﬁ)Pr(La’ﬁ)(W)v nel, (2.4)

with the corresponding eigenvalues /\2“’/” =nn+a+B+1).
In this paper, we shall also use the Bessel function of the first kind of order v > —1/2, denoted by J,(z).
It satisfies the Bessel’s equation:

220%J,(2) + 20, J,(2) + (2 —v*)J,(2) =0, 2>0,

and has the Poisson integral representation:

1
Ju(z) = 2”\/_1" i1 /em - ”*idt z2>0,v> f%. (2.5)
Z1
Moreover, we have
> —_1)m 2m+v
Jy(2) = mz::o m (g) . >0, (2.6)
and (cf. [46]):
az<‘]”<z)> _den@ oy, L (2.7)
zY zY 2

2.2. Spherical harmonics
We first introduce some notation. Let R? be the d-dimensional Euclidean space. For & € R?, we write
x = (r1, -+ ,2q)" as a column vector, where (-)' denotes matrix or vector transpose. The inner product
of £,y € R? is denoted by x -y or (z,y) := z'y = Zle 2;yi, and the norm of @ is denoted by ||z :=
/(x,x) = vVxtz. The unit sphere S~! and the unit ball B of R? are respectively defined by
si-t .= {ﬁc eRY: 2| = 1}, B .= {ac eRe:p= ||mH§1}

For each € RY, we introduce its polar-spherical coordinates (r, ) such that 7 = ||z| and x = r&, & € S 1.
Define the inner product of L?(S%~1) as

(. 9)s01 = / f(@)g(@)do (), (2.8)
gd—1
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where do is the surface measure. Define the differential operator

Dij =20y, — 05, = Op,;, 1<i#j<d, (2.9)

ij)

where 6,; is the angle of polar coordinates in the (z;, x;)-plane by (x;,x;) = ri;(cos8;;,sin6;;) with r;; >0
and 0 < 6;; < 27m. Then the Laplace-Beltrami operator Ay (i.e., the spherical part of A) is defined by [16]

No= Y D (2.10)

1<j<i<d
Let P be the space of homogeneous polynomials of degree n in d variables, i.e.,
P2 = span{z* =afighe gk k| =k A ka4 A ke = n}.
Define the space of all harmonic polynomials of degree n as
He = {pe Pl Ap=0]}.

It is seen that a harmonic polynomial of degree n is a homogeneous polynomial degree n that satisfies the
Laplace equation.

Spherical harmonics are the restriction of harmonic polynomials on the unit sphere. Note that for any
Y € HZ, we have

Y(z) =r"Y(&), z=r&, r=|z|, &cS¥, (2.11)

in the spherical polar coordinates. It is evident that Y () is uniquely determined by its restriction Y (Z) on
the sphere. With a little abuse of notation, we still use H¢ to denote the set of all spherical harmonics of
degree n on the unit sphere S¢~!. Here, we understand that the variable is &, i.e.,

HE={Y(2):2 ST, Y e PL, AY =0}.
In spherical polar coordinates, the Laplace operator can be written as

d2 d—14d 1
A= —4+ ——+ —A 2.12
dr? + r dr + 2= ( )

so for any Y € P,
AY (z) = Ar"Y (&) = n(n+d — 2)r" 72V (&) + 7" 2A0Y (2).
Thus, the spherical harmonics are eigenfunctions of the Laplace—Beltrami operator,
AgY (&) = —n(n+d—-2)Y (&), YeHl zesit (2.13)
As a result, the spherical harmonics of different degree n are orthogonal with respect to the inner product

(-, )ga-1.
It is known that (cf. [16])

dim P¢ — <”+d_1), ol = dim He = (”*d”) - (”+d_3>. (2.14)

n n n—2
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In what follows, for fixed n € Ny, we always denote by {Y;* : 1 < ¢ < al} the (real) orthonormal basis of
He. In view of (2.13), we have the orthogonality:

(Y, Y™ )sa-1 = Opmbe, LETL, 1€, (2.15)

L

where for notational convenience, we introduce the index set
Ti={l:1<1<al}, dneN. (2.16)
Remark 2.1.
e For d = 1, there exist only two orthonormal harmonic polynomials: Y = % and Y = %
o For d = 2, the space H2 has dimension a2 = 2 — 8,9 and the orthogonal basis of H2 can be given by

the real and imaginary parts of (7 + ire)™. Thus, in polar coordinates = (rcosf,rsin )t € R?, we
simply take

1 n n
Y (x) = r—cosnﬂ, Yy (x) = T—sinn@, n > 1.

v v

e For d = 3, the dimensionality of the harmonic polynomial space of degree n is a3 = 2n + 1. In spherical
coordinates & = (rsin 6 cos ¢, rsin #sin ¢, 7 cos §)* € R?, the orthonormal basis can be taken as

1
Yi'(@) = —=P\""(cos8), Ysj()

N (sin G)kP(k_’,]z)(cos O)coskep, 1<k<n,

n

,r"'L
N
" (k,k)
Yop1(x) = W(sin 0)-P\" (cos0) sinkp, 1<k <n.
T

The spherical harmonics satisfy the following explicit integral relation.

Lemma 2.1 (/5, Lemma 9.10.2]). For any &,€ € S and w > 0, we have

e 5 s )7 (). (2.17)

2

For any function f € L?(R?), we expand it in spherical harmonic series:

n=0¢=1

f(w)ZZif?(rm"(ﬁ), fi(r) = / fore)Y (@)do(2). (2.18)
Sdfl

Then its Fourier transform

ﬁm@w=/ﬂm€“@m,
Rd

can be represented in spherical harmonic series with the coefficients being the Hankel transform of its
original spherical harmonic coefficients.
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Theorem 2.1. For any function f(x) € L?(R%), we have

d
2
d

Fie =3 G

= ZYe A2, w2 121(0). (2.19)
n=0

where £ = pé, é € S1, p >0, and the Hankel transform is defined by

o0

A f](p) = /Ju(pr)f(r)r%dr, p=>0,v> f%, r > 0. (2.20)
0

Proof. Denote by (r, &) and (p, é) the polar-spherical coordinates of « and &, respectively. Then applying
the Fourier transform to the series (2.18), we obtain

:/f( & w>dx—ZZ/f,;L rf=tdr / Y (#)e € do(#).
Rd

n=0 ¢=1

Further, using Lemma 2.1 leads to

o0 a,d 0 d
- " _ 2m)2 (—i)™ A
#e = [ ar PGl ey
== (or)
%) d ad o0
271) % ()" = g
=S ( ); ) SYRE) /f;(r)1n+d;2 (pr)rédr
n=0 p 2 (=1 0
=, (2m) (i) &
)2 (—i N
=Y ) Y@ (1)
n=0 P ? =1
This ends the proof. 0O
2.8. Ball polynomials: orthogonal polynomials on B?
For any o > —1, we define the ball polynomials as
Pee) = POV @) - )Y (@), @ eBY LT, ke N (2.21)

Note that the total degree of P,i ) () is n+2k for any £ € T¢. The ball polynomials are mutually orthogonal
with respect to the weight function w, () := (1 — ||z||*)* (cf. [16, Proposition 11.1.13]):

(Pe P . = Gnm0kjle, L€ Y etk j,m,n e N, (2.22)

where the inner product (-, "), is defined by

- / f(@)g(w)ma(z) dz.
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Lemma 2.2 (/16, Theorem 11.1.5]). The ball orthogonal polynomials are the eigenfunctions of the differential
operator:

LEPIN®) = (~A+ V- z(20+ 2 - V) - 2ad) P (@) = 700 PEY (), (2.23)
where %(,‘Lx) =m(m+2a+d).

The Sturm-Liouville operator fm(a) takes different forms, which find more appropriate for the forthcoming
derivations.

Theorem 2.2. For a > —1, it holds that

2 = — (1 - |z|?)"V - (I - za®)(1 — ||z]|?)*V (2.24)
== (1= [z)7V - (1= [J=*)* TV - A (2.25)
=—(1-7r%)0%r — d718r+(2a—|—d+1)r37’— T%Aoy (2.26)

where Ag is the spherical part of A and involves only derivatives in &.

Proof. Using the Leibniz rule for gradient and divergence, one derives
—(1= )7V - (T = zat)(1 — [lz]*)*V
=~ — )7 [~ =l*)*V - (I - 22)V - 2a(1 — [=[*)* " 2" 1~ za)V]
(2.27)
=-V-I-z2"\V+2ax -V=-V-(I-zz")V+2a(V- -x—d)
=-A+V-z2a+x-V)-—2ad,

which exactly gives (2.24).
Next, a component by component reduction yields

==z *) 7V - (L= za®)(1 — [|l]*)*V

===l Y o[- = 20— Y w1 - |2])°0,,

1<i<d 1<j#i<d
===l Y =)™ 0+ Y Y won (- 2D,
1<i<d 1<i<d 1<j#i<d
=== 2l 3D (1 2?0+ YD Dy = el Dy]
1<i<d 1<j<i<d

= —(1=[lz[*) 7V - (1 = [J]*)**'V = Ao,

where the commutativity of D;; and 7 is used in the last step. This verifies (2.25).
Finally, applying the Leibniz rule once again, one gets

25 == (1= ) |(1 ~ [|l2l)* 'V - V = 2(a+ 1)1~ |z]*)*z - V| — Ao

= — (1 ||z[]P)A +2(a+ Dz - V — Ag
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-1 1
=—(1-7? 03+dTﬁr+T—2Ao +2(a+ 1)rd, — Ag

:—(1—7’2)327’—6171

1
or+ 2a+d+1)ror — EAO’
where we used the (2.12) and identity -V =r& -V =7r9,. O
Thanks to (2.13), we use the form (2.26) of the operator Zm(a), and derive that in r-direction,
oM a_ (e} n a,mn 4_
Z (P o 1(27‘2 -1)) = 77(1+)2k (r P, o 1(27"2 - 1), (2.28)

where we denote

d—1 d—2
L = — (1= )2 = 20, + 20+ d+ 1)1, + ”(“72) (2.29)
r r
With a change of variable 7 = 2r? — 1 and denoting 3,, = n + d/2 — 1, we can rewrite (2.28) as
pla,8) plosfn) () — 1 (o06n)
n w0 (n) = — O (Wars1,8,+1(m) 0y P, ()
Wa, 6, (1)
) (2.30)
_ _(,W(i)% - ’V,(La))P]?’B" (77) _ Aff’ﬁ")Péa’ﬁ")(n)» n € (_1’ 1)7

4
which is exactly (2.4). This indicates a close relation between the r-component of a ball polynomial and
Jacobi polynomials in z € (—1,1) with parameter varying with n.

3. Ball PSWFs as eigenfunctions of a Sturm—Liouville operator

The PSWFs to be introduced can be defined as eigenfunctions of a differential operator or an integral
operator. In this section, we focus on the former approach, and present some important properties from this
perspective.

3.1. Definition of ball PSWFs on B?

For o > —1, we define the second-order differential operator:
289 =L + Ellz|® = (1 - ||2*) 7V - T - 22" (1 - |2]*)*V + ||z, (3.1)

for € B?, and real ¢ > 0, where the operator jfw(a) is defined in Lemma 2.2 with various equivalent forms
stated in Theorem 2.2. It is clear that %SOQ is a strictly positive self-adjoint operator in the sense that for
any u, v in the domain of .@C(,am), we have

(28w, v) = (0, 28Dv) _ (3.2)

and for all u # 0,

(Ziuw), = IVulz,, + Y IDyuls, +Eullz, ) > 0. (3-3)

Wa+1 Wa+1
1<i<j<d

Hence, by the Sturm-Liouville theory (cf. [2,15]), the operator @éi? admits a countable and infinite set of
bounded, analytical eigenfunctions {¢(x)} which forms a complete orthogonal system of L2, (B?). In other
words, we have
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20 W)(x) = xP(x), =B, (3.4)

where {x := x(c)} are the corresponding eigenvalues.
In view of (2.26), we can rewrite the operator @éffn) in the spherical-polar coordinates as

%g:$@+8ﬂ:—u—ﬁwﬂiéia+@a+muy@—%Amm%%
We infer from (2.21) and Lemma 2.2 that the eigenfunction in (3.4) takes the form:
Y(x) = "o (2r? — 1,0V (&), (€Y, kneN, (3.5)
In analogy to (2.28)—(2.29), the eigen-value problem (3.4) in r-direction takes the equivalent form:
(.,Sfr(a) + ) (re " (2r° — 1;¢)) = Xgla,)c(c) (rop " (2r* — 1;¢)). (3.6)

Similar to (2.30), we make a change of variable n = 2r? — 1, and find from the above that

(2 (e) = A g™ (s ), (3.7)

] =

286" (n30) =
where .90(%) is the second-order differential operator:

2
+1) 1
@mp:gwm>‘ﬂn _ 9 (e o
e n Ty Wa, 8, (1) o (Wat1,8,41(M)3y - ) +

An+1)
8 b)

(3.8)

with @ > —=1,8, = n+d/2 —1, n € I. Note that @c(%) is a symmetric and strictly positive operator.
According to the general theory of Sturm-Liouville problems (cf. [2,15]), {¢7%" (n; c)};io forms a complete
orthogonal system of L2, o (). In view of (3.5) and (3.7), we can define the PSWFs of interest as follows.

Definition 3.1. (Ball PSWFs on B?). For real a > —1 and real ¢ > 0, the prolate spheroidal wave functions
on a d-dimensional unit ball B¢, denoted by {wz"; (x;c) }Zde, are eigenfunctions of the differential operator

defined in @5?2 defined in (3.1), that is,
TG (@:0) = R Q) U (w50, w e B, (3.9)

k,neN

where { Xgla,z (¢) sexa are the corresponding eigen-values, and c is the bandwidth parameter.

We summarize two points in order. In the spherical-polar coordinates, 1, ;' (x; ¢) has a separated form
given by (3.5), i.e.,

z’;(a:; ¢) = "oy (2r? — 1;0) Y (&), LeTL kneN, (3.10)

where ¢} (; ¢) satisfies (3.6)—(3.7). On the other hand, if ¢ = 0, we find readily from the previous discussions
that

U (a;0) = PET), 6" (m:0) = PP (), x(000) = A%y, (3.11)

Thus, the ball PSWF 1, (@; ) on B? can be viewed as a generalization of the ball polynomial Py;"(z)
(cf. Subsection 2.3) with a tuning parameter c.
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3.2. Important properties

We present below some basic properties of ¢ (x; ¢) that follows from the Sturm-Liouville theory (cf.
[2,15]).

Theorem 3.1. For any ¢ > 0 and a > —1,

{wg‘,’é"(w; c) jgde are all real, smooth, and form a complete orthonormal system of L?z,a (BY), namely,

/wz‘;(w Y (x5 ¢)wa () dx = Ok, j0r,.0m,m - (3.12)
Bd
(ii) {X }k nen are all real, positive, and ordered for fixzed n as follows
0 (a) (@) (a) 3.13
< Xn0(€) < Xa(e) <o <o) <-o- (3.13)

k,neN . . .
(iii) {1/12’;(:3; c) vera With even n are even functions of x, and those with odd n are odd, namely,

by (—msc) = (1) "¢y (w;0), V@ eB (3.14)
We have the following bounds for the eigen-values { X, }k neN
Theorem 3.2. For any o > —1 and ¢ > 0,
(n+ 2k)(n + 2k + 20 + d) < X\*)(c) < (n+2k)(n + 2k + 20+ d) + ¢, n>0. (3.15)

Proof. Differentiating the equation (3.9) with respect to ¢ yields
(28] = XM Q)] (007 (@:.0)) = (Bux; 0 () — 2el@ ) oy (s o).
Taking the inner product with ;" with respect to w,, and using (3.3) and (3.9), we derive

Dex () —2¢ / s (3 o) |2l Pwa(x)de = ([289) — X0 (@) devi s eir) .

Bd
= (@7 (289 = X)) . =0.

As a result,

0 < dex(c) = /[df;?f(fv; oz *wa(z)de < 20/[1/)3,’;(33; o) wa(z)dz = 2,

Bd Bd

which implies

0 <X (e) = x{200) = x\%0(e) — (n+ 2K)(n + 2k + 20+ d) < ¢

This ends the proof. O
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For 0 < ¢ < 1, the PSWF ¢ (; ¢) is a small perturbation of the ball polynomial Py}"(x).

Theorem 3.3. For 0 < ¢ < 1, we have
Uy (@) = Pl (@) + 0(cR), xMe) =ik + O(P), kneN.

Proof. Following the perturbation scheme in [38], we expand the eigen-pair { Xia,z (c), 03" (n;¢)} in series of

CQZ

¢ (me) = P () + Z QYT m); X he) = s + Z Ay, (3.16)

where 'yénl_k X(a)( 0) (cf. (3.11)), and
Qi (m) Z B ()P (), (3.17)
h=—j
with the convectional choice Bg‘ 7 = 0. Hence, substituting the expanswn (3.16) into the eigen-equation

(3.7), and equating to zero the coefficients of distinct powers of ¢2, we find the equation corresponding to
the coefficient of ¢? is

(8LPn) — 2y 1 24 N QET () + (n+ 1 — 2d 1) PP () = 0.

Hence, using the expansion (3.17), the eigen equation (2.4), and the three-term recurrence (2.1), we find

a,Bn a,fBn a,n a,fBn a,fBn a,Bn a,Bn a,n a,fBn a,Bn
[ ()‘Eﬁ-l ) Al(c ))Bl,k ( )]Plg+1 )+ [8()‘1(@—1 )_)‘( ))B k+al(c 1 )}Plg—l )

+(b](€a)5”) + 1 _ 2dz:'1n«)PI£a;5n) — 0,

which implies

da’n _ blgouﬁn) + 1 Ba7n _ al(:hﬂn) Ba’n _ al(:%fn) _ _Ba7n
ot 2 7 bk 82k +a+pB,+2)" TV 82k +a+By) Lo

Thus we obtain

X (e) = 7S + it + 0,

and

¢ (m¢) = PP () + A (BT P () + BEw BT () + O(ch),
Ui (@se) = PR (@) + (B Py (@) + BUT PR () + O(c?).

This ends the proof. 0O
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4. Ball PSWFs as eigenfunctions of finite Fourier transform
In this section, we show that the ball PSWFs are eigenfunctions of a compact (finite) Fourier integral
operator.

Define the (weighted) finite Fourier integral operator Fl) L2 (B — L% (BY) by

ﬁ\c(a)[gé](a:) = /e*idm’ﬂqﬁ(‘l')wa(r)dr, zeBY ¢>0, a>—1,

(4.1)
]Bd

where @, (z) = (1 — ||z||*)* as before. Note that for a = 0, 7L |

¢~ is reduced to the finite Fourier transform
on the ball. From Theorem 2.1, we have that for = r& with & € S~!

FO ) = 3 E2 ) /’) Zn (@), s [07](r)
n=0

where spherical coefficient ¢} (r) and the finite Hankel transform A are

= [ sorr o) /J pr)f(r)rdar,

forpZO,u>—%andr>0.

We introduce an associated integral operator an) : L2wa (B4) — L?Da (B?), defined by

Q™ = (M) o .z

. Y, e>0, a> -1 (4.2)
Theorem 4.1. Let ¢ > 0,a > —1 and ¢ € LZ_(B?). Then we have
QLM [¢] () = / K (@, 7)p(T) o (T)dT, @ € B, (4.3)
d

where

% iz [Waa(ellT — )

cle) z,t):= o) -
S eI

_ 1 (4.4)
__@mE / sH(1 = %) Tupa (es| — al))ds

Proof. By (4.1), we have
(FLN 0 2L [6](x) = / K (2, 7)p(7T)wq (7)dT,

(4.5)
]Bd

where

K (@, ) = /ei“‘(m_"’s>wa(s)ds.

Bd
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Using the spherical-polar coordinates s = 53, § € S9=1 s > 0, we derive from (2.17) that

1
/eic<w77—’s>wa(8)d3=/$d71(1—82)ad8 / eics(mf'r,-%)do-(g)
0

Bd §d—1

1
d
o (mE /s%u — ) as (es|r — )ds.

(c|r —=|)="
This ends the proof. O
The following theorem indicates that the ball PSWFs are eigenfunctions of both .%, c(a) and an).
Theorem 4.2. For a > —1 and ¢ > 0, the ball PSWFs are the eigenfunctions of 5‘}(@):
FEOWEws o) = ()N U] (@i 0), @ e BY, (4.6)
and the eigenvalues {/\S,Z(c)}k’neN are all real and can be arranged for fired n as

M) > AN (@) > > A () > - > 0. (4.7)

77/7

k,neN . .
Moreover, {1/),‘:["(:8, c)}zgfd are also the eigenfunctions of an):

Qi )(@s o) = uilh(e) ¥y (i), (438)
and the eigenvalues have the relation:
(@) = N (4.9)

Proof. We first prove (4.6). Let @5@‘2 be the Sturm-Liouville operator defined in (3.1). One verifies readily
that

@C(f_fc)e_“(“”t) (224 [~V -I-2z")V+2azx-V+ C2H:c||2]e_ic<‘"’”’t>
(4.10)
= [It]* — 2a+d+1)icz -t — *(z - t)* + 02||:c||2]e_ic<”°’t> = @(,?e_w(w’“.

(/7

Thus, we obtain from (3.2), (3.9) and (4.10) that

Wk ez L [ e 0 o u e o
Bd Bd

= / (B (85 ¢) 2 e o@D g LY / o ()G (b ) D@0 dt
Bd Bd

= Qéo‘m) /e‘ic(w’t>¢z’;(t;c)wa(t)dt,
Bd

or equivalently,
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745 (ZEW0) = Xk PO

This implies .Z [ty '] is an eigenfunctions of 78%) corresponding to the eigenvalue X;a,l

On the other hand, by resorting to the spherical-polar coordinates * = r& and 7 = 7% with r,7 > 0 and
&,% € S 1, we further deduce that

FEWE @) = [ e @D (ri(r)dr

Bd
1
/1_7_ oz ner 1¢an(27_ 1. C)dT / efurrr(m‘r Y'é( )dO’( ) (411)
0 §d—1
P 9% (_iyn
vp@) [a-rereignier - u0 B G e,
J (ctr) = 2

which shows that .7 [ 4'](x) has the spherical component Y} (). Hence, we conclude that FL] e (@)

is a multiple of ;" (z) itself. Thus, for certain A;,k,@

FOWEr (@) = ()" (1A i (). (4.12)

Furthermore, a combination of (4.11) and (4.12) yields

1
J a2 (cTr)
(27‘()%6” /(1—72)a7—2”+d_1¢2‘7"(272—1;0)4%_ 2 dr
n—+-=5-
] (err)™t s (4.13)
= (“1FALL 0" (207 = L) = (1)FAL e (20 - 150,

where the second equality sign reveals that )\;O‘,i ¢ = )\£L ,z )\gla,i(c) is independent of ¢. Thus (4.6) follows

and )\( ,1 is real.
We now verify (4.8). By (4.6), one readily checks that

C

(FEOV URT s 0) = NIRRT (w3 0),
Then (4.8) is a direct consequence of (4.6) and the above equation.

We next verify that )\(a) +(c) > 0. Applying the differential operator (4-9,)" on both sides of (4.13),
followed by the recurrence relation (2.7) of Bessel functions for differentiation leads to

1
2 n+21
1) T)2c / Jarntdi=lgan 9.2 g ) a2z 97
/ (err)nt 7z (4.14)

1 l
—DEAD (Zglemm(2r2 — 1;¢)) .
n,k 4,,,, rk

Taking limits as  — 0 and letting [ = k, yields



J. Zhang et al. / Appl. Comput. Harmon. Anal. 48 (2020) 539-569 555

"

T2 Cn+2k

2743610 (n + ¢ + k)
0

yor2ntdt2k=lgan (902 _ 1;c)dr = Afﬁ&,’jﬁ”(—l; c),

where we used the series representation (2.6) of the Bessel function.
Furthermore, changing variables = 272 — 1 in the above equation shows that

e | 1+ n)F62" (n; dn = A )k g2 (—1; 4.15
P e (n 1 4 4 F) (L+m)" 0" (0 O)wa,p, (n) dn = A5 (€)9, 0y " (=15 ). (4.15)

Thanks to (3.11), we find from (2.2) that as ¢ approaches to zero,
LG (—15¢) = OFPLP (1) = kP,

and

1
90+n+2

1
/ (L +m) " (m; O)wa,s, (n)dn — / (L+0)* P ()wa s, (n)dn = —-
K
-1 k

Z1
Hence, a direct calculation by using (2.3) and the above two facts leads to

iy ik _ (W)%F(ﬂnﬂ)h(“’ﬂ”)
c—0 cnt+2k 24k+2ntd+al (k4 B, + 1)['(n + & d 4 L)k (c,8n)

(4.16)

Then, the equation (4.16) implies that for sufficient small ¢, )\(0‘)( ) > 0 for all n,k > 0 and o > —1. In
fact, this property holds for all ¢ > 0, since if there exists ¢ > 0 such that )\(a)( ¢) < 0, we are able to find

¢1 > 0 such that )\S‘g (c1) = 0, which is not possible.
We are now in a position to justify (4.7). Let ¢;" and ¢} be the successive eigenfunctions of (4.13).
Then an immediate consequence of (4.14) with | = 1 gives

1
(27)2 2 an Jpya(cTr) Q) amy/
[ ent g T e < X6 o ),
0
1
(277)gcn+2 2\a, 2n+d+1 4a, 2 Jn+ 4(crr) (@)
1 (1 —r)rntatigns (2r° — 1?C)W = Mo (0011) (2% = Li0).
0
Multiplying the first equation by ¢, +1( —1; ¢)wa (r?)r2n 4+l and integrating the resultant equation over

(0,1), we derive from the second equation above that

1
)\7(1&]1/ [(¢Z’n)/(2r2 = Lo)gpyy (2r7 — 15 0)wa (r?)r? Tt dr
0

Jn+ a(crr)

(crr)E Wa (T2 wa (r?)drdr

,J; MI:.L

Cn+2 [ 2n+d+1 2 2
//(’7'7") ntd+ ¢y (277 — l;c)d)k_’H(Qr —1;¢)
0 0

1

=Xk / [(60)'(2r = L) " (207 = Li ) (r?)r?" A dr,
0
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which gives
1
/ (8™ (m: )l (s )w™ P () dnp
n,k 1 . (417)
/(¢>Z"+"1)/(77;C)cbZ’"(n;C)wa’ﬁ"“(n)dn

-1

Now as ¢ — 0, ¢7."" () — P,ga’ﬁ")(n) and (¢,") (n) — 87]P,£O"ﬁ")(n). The numerator in (4.17) approaches

1
/ P () (14 m) P (a5, = 0.

To estimate the denominator, we resort the following identity,

a,Pn ,Bn k+a+5n+2 a+1,6,+1 a+1,6,+1
BT P () (14 ) = S P D B gy (1)

k+a+ B, +2

= m [(k + B + 1) (or+1 ﬁn)P(Oz-‘rl Bn )(n) + (k +1 )h(a+1 B )P(a+1 Bn)(nﬂ

k+1 k+1

k
k4+a+ B, +2 n—l—u—l—l v(a+ Bn+2v+
——B[k—kﬂn—i—lE (B k—v(a+f )hl(,a’ﬁ")PlEa’B")(n)
v=0

2%k +a+pB,+3 (@+Bn+v+1Dir1—y
R Bo+ v+ Diprvla+ B+ 20 +1)
k 1 n +1—v n
Tkt >Z (+Bn+v+1)kso_y

h(@Bn) p(asfn) (n)]

v=0

_ % Brn+v+1Dir1—v(a+ B +20+1)

(Ot + /Bn +v+ 1)k+1—l/

hl(jaan)PIEOHBn) (77) ,
v=0

where the second equality sign is derived from [40, p. 71, (4.5.4)] and the third equality sign is derived from
[5, Theorem 7.1.3]. As a result, the denominator approaches

/ 0, B )1+ )P (), ()

1

/ (Bo +k+ 1) (0 + B + 2k + 1™
(@ + By + k + RS

P () PP ()wa s, () iy
—1

etz [(E+ D+ By + D@k +a+ By + D2k +at B, +3)
o (k+a+1)(k+a+B,+1)

By making c¢ sufficiently small, the fraction on the right of the (4.17) is of absolute values less than unity
and

A=A =AM a o) >

Since for ¢ # 0 and )\7(10‘,1 for fixed n are all district and positive, the ordering in (4.7) must hold. O
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Remark 4.1. Following the notion of time-frequency concentration in Slepian [38], we can study the concen-
tration property of the ball PSWFs. A square-integrable of d variables, f(x), is said to have a bandwidth ¢,
if it can be represented as a finite Fourier integral:

fe) = [ ee=er()ae (4.18)

B

The related issue is to what extent that the energy of such fs can be maximally concentrated on B¢, that

wex{ [17@)Pde / [ 176@)Paz). (4.19)

By (4.18) together with the Plancherel’s theorem (i.e., Parseval’s theorem), the above problem is equivalent

mpc{ [ [ KO € mr@ Fimagan / [ 1r@)Pac). (1.20)
2

B¢ B4

is,

to

The maximum is the largest eigenvalue of the following integral equation:

QW [¥](8) = /’CEO)(ﬁ,n)w(n)dn = n1(g), (4.21)

Bd

which is exactly the same as (4.8) (i.e., the case with a = 0). From this perspective, the ball PSWFs are
the bandlimited functions most concentrated on the unit ball.

5. Evaluation of ball PSWFs and connections with some existing PSWFs

In this section, we present an efficient algorithm to evaluate the PSWFs and their associated eigenvalues.
We also illustrate some connections with e.g., circular PSWFs introduced in literature.

5.1. Spectrally accurate Bouwkamp algorithm
As with the Slepian basis, an efficient approach to evaluate the PSWFs is the Bouwkamp-type algorithm
(cf. [11,49,13]). We start with the differential equation (3.9) of the PSWFs {¢;"%'}, which can be regarded

as a perturbation of (2.26) for the ball polynomials {P;;"} here. In view of (2.21) and (3.10), we can simply
expand ¢, (x) = ¢"" (2] z||* — 1)Y/* () in an infinite series in {P}}"}52,,

¢kg x;c) Zﬂn kpan . (5.1)

Thanks to the definition (2.21) of the ball polynomials and the three-term recurrence relation (2.1) of the
normalized Jacobi polynomials, we derive that for any £ € X% and n,j € N,

a,mn a.ga’ﬂyl) LM 1 + b§a’B7l) a,n a;i’fn) o,
(£ P (x) = 5 P () + fpj,f (z) + 5 P (). (5.2)
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Substituting the expansion (5.1) into (3.9) and using the three-term recurrence (5.2) together with the
Sturm-Liouville equation (2.23), we obtain

b2 4 2 o) 2 o) 2

n,k 1 n,k n,k a n,k a,n
S| (e + A B + S - xas e <o
7=0

As a result, the expansion coefficients {ﬂ?’k 52o in (5.1) are determined by the following three-term recur-
rence relation:

(aaBTL) 2 (avﬂn) 2 (avﬂn) 2
«a (b + 1)C n,k ;1 n,k a; ¢ n,k .
[’YT(L—‘,-)Q_]' + % - X( i (c )}5 + JTﬂjil + jTBJ.H 0, 7=0. (5.3)
Remark 5.1. The matrix eigen-problem (5.3) can be equivalently deduced from evaluating the radial compo-
nent ¢, of ¥ (x) = ¢ " (2||z||* —1)Y,"(x) in terms of Jacobi polynomials with the unknown coefficients

(87"}

o (s Zﬂ” FPI (). (5.4)
Indeed, from (3.7), we have
{— ———— 0y (Wat1,8,+1(1)9) + clnt+1) +A ]qﬁk (m:¢) = X\C0e) 8" (s ). (5.5)
wavﬁn (n) 2

Substituting this expansion into (5.5) and using the three-term recurrence (2.1) together with the Sturm-
Liouville equation (2.4), we derive

b( ”Bn)CQ +C ok a(‘lvlﬂn) 2 (a 5")0 X o
L et S gt S | P )

I

<
Il
=)

|:(4>\(O‘ ﬁn)_"_,y(a)_’_

oo
L)Y grEPP @), e (-1,1).

Then we can obtain (5.3) from the above.

Thanks to (5.3), we now use the Bouwkamp-type algorithm to evaluate {’t/)k , vXn k} Wlth 2k +n < N.
Following the truncation rule in [13,44], we set M = 2N + 2a + 30 and suppose {z/Jk Y ,xn k} to be the
approximation of {wk p ’Xn k} with

[

'M~

Ui (@e) = B P (), 2k+n < N.

j=0

Denote K = [ 1. Then the Bouwkamp-type algorithm gives the following finite algebraic eigen-system
for {,6’" k}K 0 and )Z(a)

(A-x00- Dt = (5.6)
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where GmF = (GoF, Bk .. Br*) and A is the (K + 1) x (K 4 1) symmetric tridiagonal matrix whose

)

nonzero entries are given by

2 2

C C .
Ajg =Ty + (07 +1) 55 Ajgr = Ajrg = af™ ) - 0<j<K (5.7)
We next introduce a formula to compute the eigenvalues {)\ } associated with the integral operator

(4.1) in very stable manner.
Theorem 5.1. For any o > —1 and ¢ > 0, we have

TEcn F(a+1) g’k
”"\/r (n+ OT(a+n+d2+1) % (-1ic)

)\(04)(

where BIF is given in (5.4).

Proof. We find from (3.7) that

1 (e « a,n
=2(Bn + 10y67" (1) = 106l — )61 (1),

If ¢, (—1) vanishes, then so does 9,¢; " (—1). Differentiating (3.7) shows that if ¢7""(—1) and 9,¢;" (—1)
Vamlsh7 so does 92¢;""(—1). Repeated differentiation implies that if ¢;"""(—1) = 0, then ¢;""(n) = 0. This
results in the contradiction, so we have ¢7""(—1;¢) # 0 for any k > 0 and n > 0.

Next, we obtain from (4.15) with k& = 0 that

1

a,ng _ (@) jam o,
22n+a+%r(n+%)/l¢k (nac)wa,ﬁn(n)dn_An,k k ( l,C).

d
m2c"

This yields

1

da
A (¢ et / M (e ) d
O = e B ()

4y L
B 22"+“+%P(ntc%)¢2’"(—1;c)/1 (jX_:oB?kPj(a’Bn)(n))w“’B” (m)dn
Wgcnﬁn kh(a’ﬁ")
~on- M(n+ % )gbZ‘"(f c)
- TEcn P(a+1) . g*k
- 2"—%\/F(n+ D(a+n+d/2+1) ¢ (=1ie)

The proof is now completed. 0O
5.2. Connection with existing works

Below, we particularly look at the ball PSWFs with d = 1,2 and special parameter «, and demonstrate
their connections with existing PSWFs.
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For d = 1, one has T! = {1} (cf. (2.16)) for n = 0,1 and Y¢ = ) for n > 2. Recall the formula in [40,
Theorem 4.1] with a different normalization for Jacobi polynomials,

P(n) = 208 BT (@i — 1), P () = 20 EgP P (207 — 1), k> 0.

Then by Remark 2.1,

Pe(a) = P72 (227 — 1)YP (@) = 270 P (@), k>0,

Pel(a) = PP (20 — )V (@) = 27 P (), k>0

The expansion (5.1) is then reduced to

vy (wi0) =277 12&”“13“” =i (w0), k>0,

Yol ie) = 2701 Y AP @) 1= 6y (i), k20
7=0

It implies that the Bouwkamp algorithm for d = 1 here is exactly reduced to the even/odd decoupled one
in one dimension, see [13,39] for & = 0 and [44] for general & > —1 for details. In particular, Boyd [13]
suggested a cut-off M = 2N + 30 for evaluating the Slepian basis {wé )} _o- In [44], we expand {wn (z;0)}
in terms of the normalized Gegenbauer polynomials,

1

=Y "B G\P(x) with B = / P (25¢) G\ (2)wa () de, (5.9)
k=0

-1

where G(a (z) = 2_0‘_1P(°"a)( ), k> 0. Here, we use the truncation M = 2N +2a+30 for the computations
of {wna)} _o- We also notice that 8;' = 0 if n+ k is odd, which allows us to obtain a symmetric tridiagonal
system, and efficient eigen-solvers can be applied.

To explore the connection in two dimensions, we denote

wﬁs‘g(r; c) = r"+%¢2’”(2r2 —1;¢),

and then transform (3.6) and (4.13) into

[_(1_7,2)704871(1_7,2)044&87“_’_ (2n+d—1)(2n+d—3) 2 2]w(a)( )

4 (5.10)
=[x + Uz DBadE N 0,
and
1 N
/ (1— 12 (7' ) J, a2 (cTr)errdr = %)\Eﬁz(c)wﬁz(r; c), (5.11)
2 T 3 ) )
0

respectively. In particular, for d = 2 and a = 0, we have
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n’ -3 (©) ©) (4 31,0
[— O (1 —12)0, + 44 62712} Y (ri0) = |:Xn w(0) + ﬂ Y(ric), (5.12)
and
1
1k
/1&53;6(7'; ¢)Jp(err)Verrdr = % )xf%(c) 7,/1532(7“; c). (5.13)

0

Indeed, (5.12) defines the genemlzzed prolate spheroidal wave functions 1/1n k(r ¢) in two dimensions in [38,

(25)]. Slepian [38] expanded ’l/Jn k(r; ¢) in a series of hypergeometric functions:
=Y Ay TR P (=gt L+ 1),
=0

then used the Bouwkamp algorithm for solving (5.12). Actually, by simply setting

. —1
: +n 2 k
ak = (1) (7 __c gm
; ()(j 2j+n+1ﬁj,

one can also obtain the infinite eigen-system (5.3) for d = 2 and « = 0.

Remark 5.2. More precisely, we can find the relation between {1y, (7;¢), xnk(c)} (cf. [38]) and {wfff,g(r; c),
Xn k( )} from (5.10) and (4.13) with d = 2 and o = 0,

Un(ri0) = VIOLh(r ), xnk(©) = XOME + 20 A = e(VAAL(0) /27 (5.14)

It is seen that the eigen-functions therein are singular at r» = 0.

While for d = 3 and a = 0, Slepian considered the eigenvalue problem (4.12) of the finite Fourier
transform, and then reduced it to

)\/_\/_)‘nk()
27 Vor

/1/) ©) L z(crr)\/;dr _ & ¢(O)( c). (5.15)
0

After a comparison between (5.15) with (5.13), Slepian finally evaluated the generalized PSWFs 77/17(1036(7', c)
for d = 3 in the absence of its Sturm-Liouville differential equation by solving (5.12) with J,, and A L

NO)
replaced by J, a2 and f\/ﬂ respectively.

5.8. Numerical results

Since we do not have exact values of the eigenvalues {X(a) (¢), )\; o } we generate reference “exact”

eigenvalues, denoted by { )25?,)6( ), 5\51 o } using the Bouwkamp-type algorithm with a larger cut-off number
K in (5.6)—(5.7) than the empmcal cut-off: 2N 4 2« + 30. In Table 5.1, we tabulate the available results
in [38, Table I], and the numerical values of the eigenvalues obtained by the previously described algorithm
with the empirical cut-off number and large enough K = 300 (as reference “exact” values) for various choices
of ¢,n, k. It is seen that the results in the last two columns for the eigenvalues of the differential operator
are the same, while we observe the difference of the last two or three digits for the eigenvalues of the integral
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Table 5.1

J. Zhang et al. / Appl. Comput. Harmon. Anal. 48 (2020) 539-569

The eigenvalues XSSF)C (¢) and )\Elofl)c(c) with d =2 and a = 0.

c n k Xn,x(c) [38, Table I] X' (c) +3/4 20 () +3/4

0.1 0 0 7.5499895e—01 7.549989583334328e—01 7.549989583334328e—01
0.5 0 0 8.7434899e—01 8.743489971815857e¢—01 8.743489971815857e¢—01
1 0 0 1.2395933e+00 1.239593258779101e+400 1.239593258779101e+4-00
4 0 0 6.5208586e4-00 6.520858597472127e+400 6.520858597472126e400
10 0 0 1.8690110e+01 1.869010993969090e+-01 1.869010993969091e+01
40 0 10 - 1.410118146898852¢+-03 1.410118146898852¢+-03
100 0 20 - 1.206263177466762¢+04 1.206263177466762¢+04
2 1 0 6.3394615¢+00 6.339461594016627e+00 6.339461594016626e+00
2 1 1 1.7912353e+01 1.791235348206654¢+01 1.791235348206654¢+-01
2 1 2 3.7820310e+01 3.782031001324489¢e+01 3.782031001324489¢+01
2 1 3 6.5789319e+01 6.578931995056144e+01 6.578931995056144e+01
2 2 0 1.1710916e+01 1.171091633298800e+01 1.171091633298800e+01
c n k An,k(c) [38, Table I] c(\/EAELO)k (c)/27r)2 c(\/ES\LO)k (c)/27r)2

0.1 0 0 2.4968775¢—03 2.496877494303882¢—03 2.496877494303882¢—03
0.5 0 0 6.0585348e—02 6.058534466942055¢—02 6.058534466942051e—02
1 0 0 2.2111487e—01 2.211148636497345e—01 2.211148636497344e—01
4 0 0 9.7495117e—01 9.749510755184038e—01 9.749510755184030e—01
10 0 0 9.9999957e—01 9.999995234517773e—01 9.999995234517785e¢—01
40 0 10 - 9.994694841073011e—01 9.994694841072983e—01
100 0 20 - 1.000000000000052¢+-00 1.000000000000033e+-00
2 1 0 1.6123183e—01 1.612318294915764e—01 1.612318294915765e—01
2 1 1 1.8549511e—04 1.854950923417457e—04 1.854950923417457e¢—04
2 1 2 1.9082396e—08 1.908239530607290e—08 1.908239530607288¢—08
2 1 3 4.9988893e—13 4.998888383640053e—13 4.998888383640061e—13
2 2 0 1.9088335e—02 1.908833481911065e—02 1.908833481911065e—02

Table 5.2

Samples of wila,i (ric) & ™ (2r? — 1i¢) withn =k =0, a =0 and d

= 2.

r e Vi (rie) P50 (rie) ([38, Table 1)) Ty o(r;c) ([4])
0.1 1 4.746377794187660e—01 4.74638e—01 4.7463759e—01
0.2 1 6.687764918417400e—01 6.68776e—01 6.6877647e—01
0.3 1 8.140701934306384e—01 8.14070e—01 8.1407035e—01
0.5 1 1.030440043954435e+00 1.03044e+00 1.0304405e+00
0.8 1 1.241572788028936¢e+00 1.24157e¢+00 1.2415737e+00
1 1 1.326266154743105e+00 1.32627e¢+4-00 1.3262673e+00
r ¢ VTS 8% (r; ¢) [38, Table II] Ty 5(r;c) ([4])
0.4 1 1.222417855043133e+00 1.22242e+4-00 1.2224159e+00
0.5 1 5.021247272944478e—01 5.02125e—01 5.0212393e—01
0.6 1 —7.286501244358855e¢—01 —17.28650e—01 —7.2864896e—01
0.8 2 —9.788937888170204e—02 —9.78895e—02 —9.7889226e—02
0.9 2 1.731187946953650e+00 1.73119e+4-00 1.7311852e+00

1 2 —4.239904747895277e+00 —4.23990e+-00 —4.2398981e+00

operator. Indeed, we are able to provide many more significant digits, and it shows our formulation and
algorithm are more stable.

In Table 5.2, we list the values of @[ij‘,z(r;c) (o = 0) corresponding to the eigenvalues in Table 5.1.
For various ¢,n and k, they match the available results with 6 digits in [38, Table II]. On the other hand,
compared with our results with those obtained in [4], we observe that to achieve same accuracy, the approach
in [4] needed about 10000 points, while only about 2(n + 2k) + 30 points are required for the method herein.

In Fig. 5.1 (a)—(f), we plot loglo(xg%(c)) and logm()\g&(c)) versus k with d = 2. It indicates that, for

fixed n and ¢ > 0, XS)L(C) becomes larger as k increases, while )\5?36 (c) decays exponentially with respect

to k.
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a) Graph of log X(O) c)) with ¢ =10 and d = 2. b) Graph of log A9 (¢)) with ¢ = 10 and d = 2.
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¢) Graph of log X(O) c)) with ¢ =40 and d = 2. d) Graph of log A9 (¢)) with ¢ = 40 and d = 2.
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(e) Graph of 10810(X££)k

(¢)) with ¢ =100 and d =2. (f) Graph of loglo(kio’zg(c)) with ¢ = 100 and d = 2.

Fig. 5.1. Graphs of log;,(x{ ), (¢)) and log;o(A\), (¢)) with d = 2.
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—a—c=10 —4—c=10

—o—c=40 ——c=40
¢c=100 c=100
—*—c=150 —*—c=150
—¢c=200 —>-c=200
—&—c=250 —&—c=2501]
—e—c=300 ——¢=300
120 140
Fig. 5.2. Graphs of logw(/\;a,)c(c)) with n = 0 and a = 1. Left: d = 2; Right: d = 3.
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(b) Graph of 1'[’1(103«(7“; c) with ¢ =10 and d = 2.

15 ‘
—=—n=0, k=0
——n=0, ke1

10} —5—n=0, k=2||
—a— 10, k=3

5
0
k
5
3t
—8—n=2, k=0
Al =2 k=1 L -10] \
7| —#—n=2, k=2 A
—b—n=2, k=3
_5 : i i i _15 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
r r
(c) Graph of 1/)1(1% (r;c) with c=2 and d = 3. (d) Graph of 1/151136(7"; ¢) with ¢ =10 and d = 3.

Fig. 5.3. Graphs of w;a,)c (r;¢) with d = 2 and d = 3.

To demonstrate the behavior of the eigenvalues {)\Elo‘,)c(c)}, we plot logy, ()\(a,)c(c)) with various k € (0, 120]

77/7

and ¢ € [10,300] in Fig. 5.2 for fixed n and «. We see that eigenvalues begin to decay exponentially, when
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3 0 1 3 0 1
1A wg:i forc =2 1A wg:; forc=2
(a) (e,n,k,1) =(0,1,0,1). (b) (a,n, k,1) =(0,1,0,2).

A P o N &
A P O N A

. 1
L wg;g forc =2

) B
A - wg:f forc=2
(C) (a7 n, k? l) - (0, 2,05 1)' (d) (a’ n’ k’ l) = (05 2’ 07 2)'

Fig. 5.4. Eigenfunctions w,‘:y’l" with ¢ = 2 and d = 2. (For interpretation of the colors in the figure(s), the reader is referred to the
web version of this article.)

6 5
0.5
4
0
> 0

=&

0

0

-1 1 -1 1
A 1/)81? for ¢ = 10 A 1/)%? for ¢ = 10
(a) (a,n, k,1) = (0,0,0,1). (b) (a,n,k,1) = (0,0,1,1).
4 4
> 2
0
B -2
2 -4
1 1
0 1
2 0 2
-1 1 -1 1
A 7/)21? for ¢ = 10 A 7/)31? for ¢ = 10
(c) (a,m, k,1) = (0,0,2,1). (d) (e, n, k,1) = (0,0,3,1).

Fig. 5.5. Bigenfunctions ¢}* with ¢ = 10 and d = 2.

k > k.(c) = [55] roughly. Here, the vertical dotted lines indicate the position of the smallest integer greater
than k.(c).
As shown in Section 3, in the spherical-polar coordinates, 1,7, (x; ¢) has a separated form:

Yy (x5¢) = o (2rt — 10V (&), L€YY, kneN, (5.16)
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(a) Graph of loglo(xgl)k(c)) with ¢ =10 and d = 3. (b) Graph of logm(/\;l)k(c) with ¢ =10 and d = 3.

Nt

Fig. 5.6. Graphs of logw(xii)k (¢)) and logw()\illy)k(c)) with d = 3.

Table 5.3

The case d = 3: Xsbl)k(c) and )\S)k(c)
e nm kx5 A (©)
0.1 0 0 4.285325573224633e—03 1.675003294483135e+00
0.5 0 0 1.069001304053325e—01 1.662771473208847e+00
1 0 0 4.246991437751348e—01 1.625460618463697e+00
4 0 0 5.948719383823520e+00 1.102600593723482e+-00
10 0 0 2.333891804161449e+01 4.186593008319554e—01
2 1 0 8.182057327887621e+00 4.238871423701353e—01
2 1 1 2.609221756616164e+01 8.233874011948259¢—03
2 1 2 5.205150235186056e+-01 6.516928432939569¢—05
2 1 3 8.603255633419086e+-01 2.809367682507114e—07
2 1 4 1.280223716202459e4-02 7.613268689084687e—10

Table 5.4

The case d = 3: wffl)c("'v c) & r"¢a’n(2r2 — 1;¢) with @« = 0,1, 2.
r c n k wflok(r c) w:z k(T3 ¢) d’SL k(rie)
0.1 1 0 0 5.805625733654062¢—01 2.820561183868252e+00 3.687764193662462¢+00
0.2 1 0 0 8.186066482900428e¢—01 2.814575764166440e+00 3.681662607508843e+00
0.5 1 0 0 1.267632861585855¢+-00 2.772954660597707e+400 3.639182765466543e+00
1 1 0 0 1.662390750491349¢+-00 2.628204021066972e+00 3.490731274213273e+00
1.3 1 0 0 1.765639810965165e¢+-00 2.500277467362624e+00 3.358563656867405e+00
2 2 0 0 3.553627999772212¢—01 8.545596995365403e¢—01 1.510596282792738e+00
0.1 1 2 3 —1.893124346916359¢—01 —7.943270542522487e—01 —1.008278981214814e+00
0.2 1 2 3 —8.958937078881810e—01 —2.580441975019594¢+00 —3.177610574908396¢e+00
0.5 1 2 3 —1.239366584847178e+00 —8.701135484764851e—01 3.812964021006710e—01
1 2 2 3 4.355438266567036e+00 2.314178264971302e¢+01 7.372606028015183e+-01
1.3 2 2 3 5.467434735434442e¢+02 1.160117778266639e+03 2.449778131304879e¢+03
2 2 2 3 4.569351866698169¢+04 6.922735069954877e+04 1.335271987655634e+05

A

where ¢;"(-;¢) satisfies (3.6)—(3.7). In Fig. 5.3 (a)-(b), we depict the radial component 1/)7(%(7";0) £
r"(bz’n(Zrz — 1;¢) versus r € [0,1] for n = 0,2,k = 0,1,2,3 and ¢ = 2,10. Figs. 5.4-5.5
and contours of ¢;'7" (z; ¢) with different ¢, k,n and I with d = 2 and a = 0.

In Fig. 5.6, we depict that sz (c) and )\ ( ) for various k in the 3-dimensional case. It is clear that
Xglac(c) (resp. )\n’k( ¢)) become larger (resp. smaller) as k increases. Some values of ng w(c) and A ) (c) for a

5.3 (¢)—(d) some samples of the wn’,z(r; ¢)

show surfaces

large set of parameter values are given in Table 5.3. We plot in Fig.
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(a) (o, n,k,1) =(0,0,0,1). () (eym, k,1) =(0,0,1,1). (¢) (eym,k,1) =(0,0,2,1).

d) (e, n, k,1) =(0,2,0,1). (e) (a,n,k,1)=(0,2,1,1). ) (a,m, k, 1) =(0,2,2,1).

Fig. 5.7. Eigenfunctions ¢/”" with ¢ = 2 in 3-dimension.

(a) (a,n,k,1) =(1,0,0,1). () (eym, k,1) =(1,0,1,1). (¢) (a,m,k,1) =(1,0,2,1).

Q e )L%\v

d) (a,m, k,1) = (1,1,0,2). (o, m,k, 1) = (1,1,1,2). () (e, n,k, 1) = (1,1,2,2).

Gl Lroanw g

an

Fig. 5.8. Eigenfunctions 1[1 with ¢ = 10 in 3-dimension.

with d = 3. We tabulate some values of z/)n k(r ¢) with d = 3 in Table 5.4 computed by the aforementioned
method. Figs. 5.7-5.8 visualize of 7,bk’l (z; ¢) with different k,1,n, o and ¢ with d = 3.
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