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Abstract. The coordinate transformation offers a remarkable way to design cloaks that
can steer electromagnetic fields so as to prevent waves from penetrating into the cloaked
region (denoted by Ω0, where the objects inside are invisible to observers outside).
The ideal circular and elliptic cylindrical cloaked regions are blown up from a point
and a line segment, respectively, so the transformed material parameters and the cor-
responding coefficients of the resulted equations are highly singular at the cloaking
boundary ∂Ω0. The electric field or magnetic field is not continuous across ∂Ω0. The
imposition of appropriate cloaking boundary conditions (CBCs) to achieve perfect con-
cealment is a crucial but challenging issue.

Based upon the principle that a well-behaved electromagnetic field in the original
space must be well-behaved in the transformed space as well, we obtain CBCs that
intrinsically relate to the essential “pole” conditions of a singular transformation. We
also find that for the elliptic cylindrical cloak, the CBCs should be imposed differently
for the cosine-elliptic and sine-elliptic components of the decomposed fields. With
these at our disposal, we can rigorously show that the governing equation in Ω0 can
be decoupled from the exterior region Ωc

0, and the total fields in the cloaked region
vanish under mild conditions. We emphasize that our proposal of CBCs is different
from any existing ones.

Using the exact circular (resp., elliptic) Dirichlet-to-Neumann (DtN) non-reflecting
boundary conditions to reduce the unbounded domain Ωc

0 to a bounded domain, we
introduce an accurate and efficient Fourier-Legendre spectral-element method (FLSEM)
(resp., Mathieu-Legendre spectral-element method (MLSEM)) to simulate the circular
cylindrical cloak (resp., elliptic cylindrical cloak). We provide ample numerical results
to demonstrate that the perfect concealment of waves can be achieved for the ideal
circular/elliptic cylindrical cloaks under our proposed CBCs and accurate numerical
solvers.
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1 Introduction

Since the groundbreaking works of Pendry, Schurig and Smith [50], and Leonhardt [33],
transformation optics (or transformation electromagnetics) has emerged as an unprece-
dentedly powerful tool for metamaterial design (see [10, 15, 61] and many original ref-
erences therein). The use of coordinate transformations has also been explored earlier
by Greenleaf et al. [23] in the context of electrical impedance tomography. Perhaps,
one of the most appealing applications of metamaterials is the invisibility cloak [34].
The mechanism of a cloak is typically based on a singular coordinate transformation
of the Maxwell equations that can steer the electromagnetic waves without penetrat-
ing into the cloaked region, and thereby render the interior effectively “invisible” to the
outside [50]. The first experimental demonstration of a two-dimensional cloak with a
simplified model was realized by Schurig et al. [52], along with full-wave finite-element
simulations [16, 67]. These impactive works have inspired a surge of developments and
innovations (see [20, 29, 65] for an up-to-date review).

In this paper, we are largely concerned with mathematical and numerical study of the
ideal circular cylindrical cloak using the transformation in Pendry et al. [50] and its im-
portant variant, i.e., the elliptic cylindrical cloak [13, 43]. The coordinate transformation
in [50] suppresses a disk into an annulus so that the interior “empty” space constitutes
the cloaked region (see Fig. 1). Such a “point-to-circle” blowup leads to new electric per-
mittivity and magnetic permeability parameters, which are singular at the inner boundary
(denoted by r=R1) of the cloak. Accordingly, the coefficients of the governing equation
are highly singular. The presence of singularities poses significant challenges for simu-
lation, realization and analysis as well. A critical issue resides in how to impose suitable
conditions at the inner boundary, i.e., CBCs, to achieve perfect concealment of waves. We high-
light below some relevant studies and attempts, which are by no means comprehensive,
given a large volume of existing literature.

• Ruan et al. [51] first analytically studied the sensitivity of the ideal cloak [50] to a
small δ-perturbation of the inner boundary (i.e., from R1 to R1+δ, while the material
parameters remained unchanged) under the transverse-electric (TE) polarization.
Their findings are (i) the ideal cloak in [50] is sensitive to a tiny perturbation of
the boundary; (ii) the electric field is discontinuous across the inner boundary; and
(iii) the perturbed cloak is nearly ideal in the sense that the magnitude of the fields
penetrated into the cloaked region is small.

• Zhang et al. [66] provided deep insights into the physical effects, and found that
the singular transformation gave rise to electromagnetic surface currents along the
inner interface of the ideal cloak (also see [65]).

• To shield the incoming waves, the perfect magnetic conductor (PMC) condition (i.e.,
the tangential component of the magnetic field vanishes) was imposed at r=R1 in
finite-element simulations (see, e.g., [16, 35, 43]). Indeed, such a condition can be
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naturally implemented by using Nédélec edge-elements [47] in the Cartesian coor-
dinates (see, e.g., [36,46]). However, in the polar coordinates, the PMC condition is
automatically satisfied, so it does not lead to an independent condition (see Remark
2.2).

• Weder [60] proposed CBCs for general point transformed cloaks from the perspec-
tive of energy conservation. Its implication to the three-dimensional ideal spherical
cloak by Pendry et al. [50] is that the tangential components of the electric and
magnetic fields have to vanish at the spherical surface ∂Ω+

0 , and that the normal
components of the curl of both fields have to vanish at the inner spherical surface
∂Ω−

0 . Under this set of CBCs, the interior fields (i.e., in Ω0) are decoupled from the
exterior fields. However, CBCs in [60] are not applicable to the ideal circular cloak,
as the tangent component of the electric field does not vanish at r=R+

1 (cf. [51,66]).

• Lassas and Zhou [31, 32] proposed some non-local pseudo-differential CBCs from
a limiting process of non-singular approximate two-dimensional Helmholtz cloak-
ing. Their findings also indicate that CBCs for two dimensions and three dimen-
sions take different forms, and their physical effects on the cloak interface are very
different as well.

In this paper, we propose CBCs based on the principle that a smooth electromagnetic
field in the original coordinates must be regular near the cloaking boundary in transformed do-
main. This situation is reminiscent to the imposition of “pole” conditions associated with
the polar transformation (see, e.g., [9, 21, 53]). The polar transformation is singular at
the origin, so additional conditions should be imposed so as to have desired regularity
when the solution is transformed back to the Cartesian coordinates. The essential “pole”
conditions are the sufficient and necessary conditions for spectrally accurate simulations,
in other words, ignoring these will lead to inaccurate results (cf. [53,54]). This notion has
been extended to study other singular transformations, e.g., the spherical transformation
and Duffy transformation (cf. [57]). With this principle at our disposal, we obtain the
desired CBCs from the essential “pole” conditions of the singular transformation [50] at
r=R+

1 , and the continuity of tangential component of the magnetic field. We find that for
the circular cylindrical cloak, the cloaked region is decoupled from the exterior, and the
total field therein is zero (under certain mild condition, see Proposition 2.1). This also ad-
mits the “finite energy” solution in some weighted Sobolev space in the new coordinates.

Compared with the circular case, the elliptic cloak is much less studied. The singular
transformation [13, 43], blows up a line segment to an ellipse with foci being the end-
points of the line segment. It is noteworthy that the “line-to-ellipse” transformation is
only singular at two points, as opposite to the circular case. Using the aforementioned
principle for CBCs, we need to decompose the full wave into the “cosine-elliptic” and
“sine-elliptic” waves, and the essential “pole” conditions must be imposed differently
for two components.
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This paper also aims at providing accurate numerical solvers for simulating the cir-
cular and elliptic cylindrical cloaks. In full-wave finite-element simulations, the perfect
matched layer (PML) technique, originated from [8], is mostly used to reduce the un-
bounded domain to a bounded one. For accurate simulations (in particular, when the
frequency of the incident wave is high), we find it’s beneficial, perhaps necessary, to em-
ploy the exact circular/elliptic DtN non-reflecting boundary conditions (cf. [24]). Indeed,
the exact DtN boundary has been efficiently integrated with the spectral-Galerkin meth-
ods for wave scattering simulations (see, e.g., [18,19,55,58]). Benefited from the separable
geometry of the cloaks, we are able to employ Fourier/Mathieu expansions in angular
direction and then use the Legendre spectral-element method to numerically solve the
one-dimensional problems in radial direction. We demonstrate that the proposed direct
solver is fast, accurate and robust for high-frequency waves, and the results show the
perfectness of the cloaking effects.

Note that Zhai et al. [64] investigated three-dimensional axisymmetrical invisibility
cloaks by using edge-based vector basis functions for transverse components, and nodal
finite-element basis functions for the angular component, together with PML technique
for reducing the unbounded computational domain. One may refer to [4–7, 22, 28, 39–
41] for various interesting approximate cloaks which particularly include the cloaking
enhancement techniques. It is also noteworthy that the time-domain simulations have
been attracting much recent attention (see, e.g., [25, 36–38]).

The rest of this paper is organized as follows. In Section 2, we study the ideal circular
cylindrical cloak. We start with formulating the governing equation including CBCs and
DtN non-reflecting boundary conditions, and then show that the field in the cloaked
region vanishes. Finally, we describe the FLSEM for numerical simulations. In Section
3, we focus on the mathematical and numerical study of the elliptic cylindrical cloak. In
Section 4, we provide numerous simulation results to demonstrate the perfectness of the
ideal cloaks based on our proposed CBCs and numerical solvers. We conclude the paper
with some remarks.

2 Circular cylindrical cloaks

In this section, we formulate the problem that models the ideal circular cylindrical cloak
and describe the FLSEM for its numerical simulation. We put the emphasis on the impo-
sition of CBCs.

2.1 Coordinate transformation

The cylindrical cloak is based on the coordinate transformation in Pendry et al. [50],
which compresses the cylindrical region ρ < R2 into the cylindrical annular region 0<
R1< r<R2, and takes the form

r=
R2−R1

R2
ρ+R1, θ= θ, z= z, (2.1)
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where (ρ,θ,z) is the cylindrical coordinates in the original space, and (r,θ,z) is the cylin-
drical coordinates in the virtual space (i.e., transformed space).

The origin is mapped to the circle r = R1 that produces an “empty” space: 0 ≤ r <
R1, forming the “cloaked region” to conceal any object inside. The annulus R1 < r <
R2 constitutes the “cloak”, where the material parameters are obtained by applying the
transformation (2.1) to the Maxwell equations. The exact DtN boundary condition is
imposed at r = R3 to reduce the unbounded computational domain, and the material
parameters in the outmost annulus are positive constants (see Fig. 1).

R
1

R
2

cloaked region

R
3

DtN

cloak

incident

0
, !

0
0

,  !
0
!

Figure 1: Schematic illustration of the circular cloak.

Consider the free space time-harmonic Maxwell equations with angular frequency ω
in the original (ρ,θ,z)-coordinates:

∇×E−iωµ0H=0, ∇×H+iωε0E=0 in R
3, (2.2)

where a e−iωt (note: i is the complex unit) time dependence is assumed, and the per-
meability µ0 and permittivity ε0 are positive constants. It is known that the Maxwell
equations are form invariant under coordinate transformations. Following the approach
in [50], we apply the mapping (2.1), together with an identity transformation for ρ>R2,
to (2.2), leading to the Maxwell equations in the new (r,θ,z)-coordinates:

∇′×E−iωµ0µH=0, ∇′×H+iωε0εE=0, r>R1, (2.3)

with anisotropic, singular material parameters given by

ε=µ=diag(εr,εθ ,εz), if R1< r<R2, (2.4)

ε=µ= I3, if r>R2, (2.5)

where I3 is the 3×3 identity matrix, and

εr =µr =
r−R1

r
, εθ =µθ =

r

r−R1
, εz =µz =

( R2

R2−R1

)2 r−R1

r
. (2.6)
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We refer to [11, 12] for a general framework for transformation optics.
It is free to set any values for the permeability and permittivity in the cloaked region:

r<R1. Without loss of generality (cf. [50]), we set ε=µ= I3 for r<R1.
In what follows, we consider the transverse-electric (TE) polarised electromagnetic

field, that is, the electrical field only exists in the z direction: E=(0,0,u)t. Then by the first
equation of (2.3), we have

H=(H1,H2,0)t =
1

iωµ0















( 1

r−R1

∂u

∂θ
,− r−R1

r

∂u

∂r
,0
)t

, if R1< r<R2,

(1

r

∂u

∂θ
,−∂u

∂r
,0
)t

, if r<R1 or r>R2.

(2.7)

Eliminating H from the Maxwell equations (2.3), we obtain the two-dimensional Helmholtz
equations in polar coordinates:

L0[u] :=
1

r

∂

∂r

(

r
∂u

∂r

)

+
1

r2

∂2u

∂θ2
+k2u=0, if r<R1 or r>R2; (2.8)

L1[u] :=
1

r−R1

∂

∂r

(

(r−R1)
∂u

∂r

)

+
1

(r−R1)2

∂2u

∂θ2
+k2b2u=0, if R1< r<R2, (2.9)

for all θ∈ [0,2π), where
k=ω

√
ε0µ0, b=R2/(R2−R1). (2.10)

Conventionally, we impose the Sommerfeld radiation boundary condition for the scat-
tering wave: usc=u−uin (where uin is the incident wave, i.e., Ein=(0,0,uin)t, see Fig. 1):

∂rusc−ikusc =O(r−1/2). (2.11)

2.2 Exact DtN boundary condition, transmission conditions and CBCs

We now consider the boundary and transmission conditions to achieve perfect conceal-
ment of waves.

Starting with the outmost, we adopt the domain truncation by imposing an artificial
boundary condition at r=R3>R2 using the exact Dirichlet-to-Neumann (DtN) technique
(see, e.g., [24, 48]):

∂rusc−TR3
usc=0 at r=R3, (2.12)

where the DtN map TR3
is defined as

TR3
ψ=

∞

∑
|m|=0

kH
(1)
m

′
(kR3)

H
(1)
m (kR3)

ψ̂meimθ , ψ̂m=
1

2π

∫ 2π

0
ψ(R3,θ)e−imθdθ, (2.13)

and H
(1)
m is the Hankel function of the first kind. This yields the exact artificial boundary

conditions of the total field:

∂ru−TR3
u=∂ruin−TR3

uin := g at r=R3. (2.14)
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Remark 2.1. The exact DtN boundary condition is global in the physical space (due to
the involvement of a Fourier series), but it is local in the expansion coefficient space.
Given the geometry of the cloak, we can fully take this advantage in both simulation and
analysis.

For clarity of exposition, let us denote

R0=0; Ii=(Ri,Ri+1), Ωi= Ii×[0,2π), i=0,1,2; Ω=
2
⋃

i=0

Ωi. (2.15)

Correspondingly, we define

H
i =H|Ωi

, E
i =E|Ωi

, ui=u|Ii
, i=0,1,2. (2.16)

The conditions at the material interface r = R2 are the standard transmission condi-
tions, that is, the tangential components of E and H are continuous across the interface
(see, e.g., [49, Sec. 1.5] and [46]):

n×(E1−E
2)=0, n×(H

1−H
2)=0 at r=R2, (2.17)

where n is the outer unit normal. A direct calculation from (2.7), leads to

u1−u2=0, b−1∂ru1−∂ru2=0 at r=R2. (2.18)

As mentioned in the introductory section, how to impose suitable conditions so that
there is no wave propagating into the cloaked region, appears unsettled. The analysis in
Ruan et al. [51] implies that

E
1 6=0, n×(E0−E

1) 6=0 at r=R1, (2.19)

while the tangential component is continuous across the inner boundary, namely,

n×(H
0−H

1)=0 at r=R1. (2.20)

Zhang et al. [66] demonstrates that the exotic physical effect (2.19) is attributed to the
surface current induced by the singular transformation.

We find from (2.7) and (2.20) that

lim
r→R1

(

∂ru0− r−R1

r
∂ru1

)

=0, (2.21)

which implies

∂ru0(R1,θ)=0, ∂ru1(R1,θ) is finite. (2.22)
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Remark 2.2. To shield the wave from propagating into the cloaked region, the PMC con-
dition (i.e., n×H

1 = 0), is imposed in many simulations in Cartesian coordinates (see,
e.g., [16, 35, 66]). Unfortunately, we infer from (2.22) that in the polar coordinates, the
PMC condition (equivalent to ∂ru1(R1,θ) being finite) does not lead to an independent
condition.

At this point, one condition is lacking at the inner boundary. Our viewpoint is that the
electromagnetic fields in the original coordinates must still be finite after the coordinate
transformation. Therefore, letting r→R+

1 in (2.7) yields

∂u1

∂θ
(R1,θ)=0, θ∈ [0,2π). (2.23)

Alternatively, it can be derived from the transformed gradient:

∇u=
1

b

(∂u1

∂r
,

1

r−R1

∂u1

∂θ

)t
, R1< r<R2. (2.24)

We reiterate that (2.23) is intimately related to the essential “pole condition”, associated
with the polar transformation (singular at the origin). It is imposed based on the prin-
ciple that the solution in the polar coordinates should have desired regularity, when it
is transformed back to Cartesian coordinates (see, e.g., [9, 21]). As shown in [53, 54], the
condition: ∂θu(0,θ) = 0 is essential for spectrally accurate computations. Indeed, such a
notion can be extended to other singular transformations (see e.g., [57]). In this context,
the transformation (2.1) spans the origin to the circle r=R1, so the essential “pole” con-
dition is transplanted to r=R+

1 .
The problem of interest is summarised as follows:

L0[u
0]=0 in Ω0; ∂θu0(0,θ)=∂ru0(R1,θ)=0; (2.25)

L1[u
1]=0 in Ω1; ∂θu1(R1,θ)=0; (2.26)

u1=u2, b−1∂ru1=∂ru2 at r=R2, (2.27)

L0[u
2]=0 in Ω2; ∂ru2−TR3

u2= g at r=R3; (2.28)

for all θ ∈ [0,2π). Note that (i) the operators L0 and L1 are defined in (2.8)-(2.9); (ii) the
EPC: ∂θu0(0,θ)=0 is imposed at the origin due to the singular polar transformation; and
(iii) the source of the system is the incident wave in the data g (cf. (2.14)).

Remarkably, under the condition (2.21), the subproblem (2.25) is decoupled from
(2.26)-(2.28). Moreover, we can show that u0≡0 is the unique solution, if the wave num-
ber k is not an eigenvalue of the Bessel operator with the boundary conditions in (2.29).
Indeed, we write u0(r,θ)=∑

∞
|m|=0 û0

m(r)e
imθ . Then (2.25) reduces to

1

r

d

dr

(

r
dû0

m

dr

)

−m2

r2
û0

m+k2û0
m=0, 0< r<R1;

û0
m(0)=0, if m 6=0;

d

dr
û0

m(R1)=0, m=0,±1,··· . (2.29)
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We claim from the Sturm-Liouville theory of the Bessel operator (see, e.g., [3, 14]) the
following conclusion.

Proposition 2.1. If k is not an eigenvalue of the Bessel problem (2.29), or equivalently, J′m(kR1) 6=
0 for any model m, then we have û0

m≡0 for every m, so the solution of (2.25) u0≡0.

We see that with a reasonable assumption on the frequency of the incident wave, the
cloak can perfectly shield the waves from penetrating into the cloaked region.

2.3 Fourier-Legendre-spectral-element method

We next present an accurate and efficient numerical method for solving (2.26)-(2.28).
Observe from (2.14) that the DtN boundary condition in (2.28) is global in the physi-
cal space, but it is local in the frequency space of Fourier expansion. It is therefore ad-
vantageous to use Fourier spectral approximation in θ-direction, and Legendre spectral-
element method in r-direction.

We expand the solution and given data in Fourier series:

{

uj(r,θ),g(θ)}=
∞

∑
|m|=0

{

û
j
m(r), ĝm

}

eimθ, j=1,2. (2.30)

Then (2.26)-(2.28) reduce to a sequence of one-dimensional equations:

1

r−R1

d

dr

(

(r−R1)
dû1

m

dr

)

− m2

(r−R1)2
û1

m+k2b2û1
m=0, R1< r<R2; (2.31)

û1
m(R1)=0, if m 6=0; û1

m(R2)= û2
m(R2), b−1 d

dr
û1

m(R2)=
d

dr
û2

m(R2); (2.32)

1

r

d

dr

(

r
dû2

m

dr

)

−m2

r2
û2

m+k2û2
m=0, R2< r<R3; (2.33)

( d

dr
−Tm,k

)

û2
m(R3)= ĝm, where Tm,k :=

kH
(1)
m

′
(kR3)

H
(1)
m (kR3)

. (2.34)

Note that the global DtN boundary condition is decoupled for each mode m, and by the
property of the Hankel function, we have T−m,k=Tm,k (see [56, (2.32)]).

Hereafter, let Λ = (a,b) and ̟(x)> 0 be a generic weight function on Λ, which is
absolutely integrable. Let Hs

̟(Λ) be the weighted Sobolev space as defined in Admas [2].
In particular, L2

̟(Λ)=H0
̟(Λ) with the inner product (·,·)̟ and norm ‖·‖̟ . We drop the

weight function, whenever ̟=1.
Let I1 = (R1,R2) and I2 = (R2,R3) as before, and let I = (R1,R3). Define the weight

function ω and the piecewise constant function ρ:

ω(r)=

{

r−R1, if r∈ I1,

r, if r∈ I2,
ρ=

{

b2, if r∈ I1,

1, if r∈ I2.
(2.35)
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Recall that b=R2/(R2−R1) as defined in (2.10). Introduce the space

Ym(I) :=
{

u∈H1
ω(I)∩L2

ω−1(I) : u(R1)=0
}

, if m 6=0; Y0(I)=H1
ω(I). (2.36)

Note that the functions in Ym(I) are continuous, while the weight function ω is not con-
tinuous, across the material interface r = R2. The weak form of (2.31)-(2.34) is to find
ûm∈Ym(I) for each mode m, such that

Bm(ûm,v) :=(û′
m,v′)ω+m2(ûm,v)ω−1−k2(ρûm,v)ω

−R3Tm,k ûm(R3)v̄(R3)=R3ĝmv̄(R3), ∀v∈Ym(I), (2.37)

where v̄ is the complex conjugate of v. We show in Appendix A the following proposition
on the well-posedness of (2.37).

Proposition 2.2. For each mode m, the problem (2.37) has a unique solution ûm∈Ym(I).

We now discuss the numerical solution of (2.37). Let PN be the complex-valued poly-
nomials of degree at most N, and let N=(N1,N2). We introduce the approximation space:

YN

m (I)=
{

u∈Ym(I) : u|Ii
∈PNi

, i=1,2
}

, (2.38)

where the functions are continuous across r = R2 (cf. (2.32)). Given a cut-off number
M>0, the FLSEM approximation to the solution of (2.26)-(2.28) is

uN

M(r,θ)=
M

∑
|m|=0

ûN

m (r)eimθ , (2.39)

where {ûN
m} are computed from the Legendre-spectral-element approximation to (2.37),

that is, find ûN
m ∈YN

m (I) such that

Bm(û
N

m ,v)=R3 ĝmv̄(R3), ∀v∈YN

m (I), 0≤|m|≤M. (2.40)

Remark 2.3. We can apply the same argument as for Proposition 2.2 to show that (2.40)
admits a unique solution in YN

m (I).

For each mode m, the two-domain spectral-element scheme (2.40) can be implemented
efficiently by using the modal Legendre polynomial basis and the Schur complement
technique (cf. [26]). Here, we omit the details. We provide in Section 4 ample numerical
results to demonstrate that our proposed CBCs and FLSEM, leads to accurate simulations
of the ideal circular cylindrical cloak.

3 Elliptic cylindrical cloaks

The elliptic cylindrical cloaks have been much less studied (see, e.g., [13, 27, 30]), com-
pared with intensive investigations of the circular cylindrical cloaks. Though it is straight-
forward to extend the coordinate transformation in [50] to the elliptic case, the coordinate
transformation possesses quite different nature of singularity. Thus, much care is needed
to impose CBCs, as to be shown shortly.
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3.1 Elliptic coordinates and Mathieu functions

To formulate the problem and algorithm, we briefly review the elliptic coordinates and
the related angular and radial Mathieu functions. The elliptic coordinates (ξ,η) are re-
lated to the Cartesian coordinates x=(x,y) by

x= acoshξcosη, y= asinhξsinη, a>0, (3.1)

where ξ ∈ [0,∞) and η ∈ [0,2π). The coordinate lines are confocal ellipses (of constant ξ)
and hyperbolae (of constant η) with foci fixed at −a and a on the x-axis. The scale factors
and the Jacobian of the elliptic coordinate system are

h=hξ =hη = a

√

cosh2 ξ−cos2 η, J=hξ hη =h2. (3.2)

The (angular) Mathieu equation reads (cf. [1]):

d2Φ

dη2
+(λ−2qcos2η)Φ=0 with q=

a2k2

4
, (3.3)

where λ is the separation constant. The angular Mathieu equation (3.3) supplemented
with periodic boundary conditions admits a countable set of eigen-pairs :

{

λc
m(q), cem(η;q)

}∞

m=0
,

{

λs
m(q), sem(η;q)

}∞

m=1
. (3.4)

Note that the symbols “ce” and “se”, abbreviation of “cosine-elliptic” and “sine-elliptic”,
were first introduced in [62]. To facilitate the analysis afterwards, let us denote

λ̃c
m(q) :=λc

m(q)+2q, λ̃s
m(q) :=λs

m(q)+2q. (3.5)

Then for any fixed q>0, from the standard Sturm-Liouville theory (cf. [14]), the eigenval-
ues are in order of

0< λ̃c
0(q)< λ̃s

1(q)< λ̃c
1(q)< ···< λ̃s

m(q)< λ̃c
m(q)< ··· . (3.6)

When q=0, the Mathieu functions reduce to the trigonometric functions:

ce0(η;0)=
1√
2

; cem(η;0)=cos(mη), sem(η;0)=sin(mη), m≥1, (3.7)

and correspondingly, λc
m(0)=λs

m(0)=m2. Indeed, the angular Mathieu functions share
many properties with their counterparts: cosines and sines. For example, cem(η;q) is an
even function in η, and sem(η;q) is odd. They are π-periodic when m is even, and 2π-
periodic when m is odd. Moreover, the set of Mathieu functions {cem,sem+1}∞

m=0 forms a
complete orthogonal system in L2(0,2π) (cf. [1, 44]):

∫ 2π

0
cem cen dη=

∫ 2π

0
semsen dη=πδmn;

∫ 2π

0
cemsen dη=0. (3.8)
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The radial (or modified) Mathieu equation (cf. [1]):

d2Ψ

dξ2
−(λ−2qcosh2ξ)Ψ=0, (3.9)

plays an analogous role as the Bessel equation in the polar coordinates. Like the Bessel
functions, there are several types of radial Mathieu functions, but each type has even and
odd versions, quite different notation is used to denote such functions in literature [1,

44]. In this paper, we adopt the notation and conventions in [1], where {Mc
(i)
m ;Ms

(i)
m },i=

1,2,3,4, correspond to the Bessel functions: Jm,Ym,H
(1)
m ,H

(2)
m in [59], respectively. In what

follows, we just use the radial Mathieu functions of the first kind {Mc
(1)
m (ξ;q);Ms

(1)
m (ξ;q)},

and the Mathieu-Hankel functions: {Mc
(3)
m (ξ;q);Ms

(3)
m (ξ;q)}. Both types satisfy (3.9) with

λ=λc
m and λ=λs

m for Mcm and Msm, respectively.

3.2 Maxwell equations for ideal elliptic cylindrical cloak

Following the idea of Pendry et al. [50], a coordinate transformation, which compresses
the elliptic region 0≤ ζ < ξ2 into the elliptic annular region 0< ξ1 < ξ < ξ2, was extended
to devise an elliptic cylindrical cloak (see e.g., [13, 43]):

ξ=
ζ

d
+ξ1, η=η, z= z with d=

ξ2

ξ2−ξ1
, (3.10)

where (ζ,η,z) is the elliptic-cylindrical coordinates in the original space, and (ξ,η,z) is
the coordinates of the transformed space. This leads to the study of the time-harmonic
Maxwell equations in the transformed space with new material parameters:

∇×E−iωµ0µH =0, ∇×H+iωε0εE=0, ξ> ξ1, (3.11)

where we have

ε=µ=diag(εξ ,εη ,εz), if ξ1< ξ< ξ2; ε=µ= I3, if ξ> ξ2, (3.12)

with the components in the cloaking layer (cf. [43]), given by

εξ =µξ =
1

d
, εη =µη =d, εz =µz =d

cosh2(d(ξ−ξ1))−cos2 η

cosh2 ξ−cos2 η
. (3.13)

Like before, we assume that the material parameters in the cloaked region are constants.
As with the circular case, we consider the transverse-electric (TE) polarised electro-

magnetic field with E=(0,0,v)t. We solve H from the first equation of (3.11), and elimi-
nate H . Then we obtain the following Helmholtz equations, together with the exact DtN
boundary at the outer ellipse ξ= ξ3(> ξ2), in elliptic coordinates:

(

d−2∂2
ξ+∂2

η

)

v+k2a2
(

cosh2(d(ξ−ξ1))−cos2 η
)

v=0 in Λ1; (3.14a)
(

∂2
ξ+∂2

η

)

v+k2a2
(

cosh2ξ−cos2η
)

v=0 in Λ0∪Λ2; (3.14b)

(∂ξ−Tξ3
)v=φ at ξ= ξ3, (3.14c)
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where

k=ω
√

ε0µ0; Λi :=(ξi,ξi+1)×[0,2π), i=0,1,2 with ξ0 :=0,

and Tξ3
is the DtN map (cf. [19, 24]), given by

Tξ3
v=

∞

∑
m=0

∂ξMc
(3)
m (ξ3;q)

Mc
(3)
m (ξ3;q)

v̂c
m(ξ3)cem(η;q)+

∞

∑
m=1

∂ξMs
(3)
m (ξ3;q)

Ms
(3)
m (ξ3;q)

v̂s
m(ξ3)sem(η;q), (3.15)

with

v̂c
m(ξ3)=

1

π

∫ 2π

0
v(ξ3,η)cem(η;q)dη, v̂s

m(ξ3)=
1

π

∫ 2π

0
v(ξ3,η)sem(η;q)dη. (3.16)

Note that in (3.14c), φ is induced by the incident wave, i.e., φ=(∂ξ−Tξ3
)vin.

Naturally, we impose continuity of the tangential components of E and H across the
elliptic interface ξ= ξ2, leading to the transmission conditions as with (2.18):

v1=v2, d−1∂ξv1=∂ξv2, at ξ= ξ2, (3.17)

where for clarity, we denote vi =v|Λi
for i=0,1,2.

The critical issue is the imposition of CBCs at the inner boundary ξ=ξ1. To tackle this,
we decompose the solution and data into ce- and se-components as follows:

{

v;φ}=
∞

∑
m=0

{

v̂c
m(ξ); φ̂

c
m

}

cem(η;q)+
∞

∑
m=1

{

v̂s
m(ξ); φ̂

s
m

}

sem(η;q)

:=
{

vce;φce}+
{

vse;φse}. (3.18)

Correspondingly, the polarized E and H fields are split into two components: E=Ece+Ese

and H = Hce+Hse. Following the analytic study in [13] and the δ-perturbation analysis
in [51], it is necessary to require the tangential component of Hce and Ese continuous
across the inner boundary ξ= ξ1, leading to

v0
se =v1

se, d−1∂ξv0
ce =∂ξv1

ce at ξ= ξ1. (3.19)

Nevertheless, we are short of one condition for each component. Similar to (2.24), we
have

∇v=
1

a
√

cosh2(d(ξ−ξ1))−cos2 η

(1

d

∂v1

∂ξ
,
∂v1

∂η

)t
, ξ1 < ξ< ξ2. (3.20)

We see that the singularity of the transformation (3.10) only occurs at two points (ξ1,0)
and (ξ1,π). Thus, taking the limit ξ → ξ+1 , leads to the analogue of the essential “pole”
conditions in elliptic coordinates:

∂ξv1(ξ1,0)=∂ξv1(ξ1,π)=0, ∂ηv1(ξ1,0)=∂ηv1(ξ1,π)=0. (3.21)
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Using the property (cf. [1]):

ce′m(0;q)=ce′m(π;q)=0, sem(0;q)=sem(π;q)=0, (3.22)

we find from (3.18) that (3.21) is equivalent to

∂ξv1
ce(ξ1,0)=0, v1

se(ξ1,0)=0. (3.23)

We summarize the problem that models the ideal elliptic cylindrical cloak: given φ=
φce+φse, find

v=vce+vse with vi =vi
ce+vi

se =(vce+vse)|Λi
, i=0,1,2, (3.24)

satisfying the following systems.

(i) For the ce-component in the cloaked region Λ0:

(

∂2
ξ+∂2

η

)

v0
ce+k2a2

(

cosh2 ξ−cos2η
)

v0
ce =0, 0< ξ< ξ1; (3.25)

∂ξv0
ce(0,0)=∂ξ v0

ce(ξ1,0)=0. (3.26)

Note that the essential pole condition at the origin is necessary, while ∂ξv0
ce(ξ1,0)=0

is derived from the second condition in (3.19) and (3.23).

(ii) For the ce-component in Λ1∪Λ2:

(

d−2∂2
ξ+∂2

η

)

v1
ce+k2a2

(

cosh2(d(ξ−ξ1))−cos2η
)

v1
ce =0 in Λ1; (3.27a)

∂ξv1
ce(ξ1,0)=0; v1

ce =v2
ce, d−1∂ξ v1

ce =∂ξv2
ce at ξ= ξ2; (3.27b)

(

∂2
ξ+∂2

η

)

v2
ce+k2a2

(

cosh2ξ−cos2η
)

v2
ce =0 in Λ2, (3.27c)

(∂ξ−Tξ3
)v2

ce =φce at ξ= ξ3. (3.27d)

(iii) The se-component vse satisfies the same equations in (i)-(ii) with vi
se and φse in place

of vi
ce and φce, respectively, while (3.26) and the first condition in (3.27b) are respec-

tively replaced by

v0
se(0,0)=v0

se(ξ1,0)=0; v1
se(ξ1,0)=0. (3.28)

We see that v0
ce and v0

se are decoupled from vi
ce and vi

se, i=1,2. Indeed, using (3.3) and
the expansion (3.18), the problem (3.25)-(3.26) reduces to

(v̂c
m)

′′(ξ)−
(

λc
m−2qcosh(2ξ)

)

v̂c
m(ξ)=0, 0< ξ< ξ1, (3.29)

(v̂c
m)

′(0)=(v̂c
m)

′(ξ1)=0, (3.30)
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and similarly, we have

(v̂s
m)

′′(ξ)−
(

λs
m−2qcosh(2ξ)

)

v̂s
m(ξ)=0, 0< ξ< ξ1, (3.31)

v̂s
m(0)= v̂s

m(ξ1)=0. (3.32)

Similar to Proposition 2.1, one deduces from the standard theory of ordinary differen-
tial equations (cf. [3, 14]) and also from the properties of Mathieu functions (cf. [1]) the
following conclusions.

Proposition 3.1. If k and ξ1 are chosen such that Mc
(1)
m

′
(kξ1) 6= 0 and Ms

(1)
m (kξ1) 6= 0 for any

mode m, then we have v̂c
m = v̂s

m ≡ 0 for every m, so the problem (3.25)-(3.26) and the problem of
se-component in Λ0 with (3.28), both have only trivial solutions in the cloaked region.

3.3 Mathieu-Legendre-spectral-element method

In what follows, we present an accurate and efficient numerical algorithm to simulate the
ideal elliptic cylindrical cloak.

Using the Mathieu expansion in η-direction (see (3.18)), we obtain the system of the
ce-component in Λ1∪Λ2:

−d−2(v̂c
m)

′′(ξ)+
(

λ̃c
m−4qcosh2(d(ξ−ξ1))

)

v̂c
m =0, ξ1< ξ< ξ2; (3.33a)

(v̂c
m)

′(ξ1)=0; v̂c
m(ξ

−
2 )= v̂c

m(ξ
+
2 ), d−1(v̂c

m)
′(ξ−2 )=(v̂c

m)
′(ξ+2 ); (3.33b)

−(v̂c
m)

′′(ξ)+
(

λ̃c
m−4qcosh2(ξ)

)

v̂c
m(ξ)=0, ξ2 < ξ< ξ3; (3.33c)

( d

dξ
−Dc

m

)

v̂c
m(ξ3)= φ̂c

m, where Dc
m :=

Mc
(3)
m

′
(ξ3;q)

Mc
(3)
m (ξ3;q)

. (3.33d)

Recall that λ̃c
m :=λc

m+2q>0 (see (3.5)). The se-component satisfies the same system with
v̂s

m, φ̂s
m and λ̃s

m in place of v̂c
m, φ̂c

m and λ̃c
m in (3.33), respectively, while the first condition

in (3.33b) and Dc
m in (3.33d), are respectively replaced by

v̂s
m(ξ1)=0, Ds

m :=
Ms

(3)
m

′
(ξ3;q)

Ms
(3)
m (ξ3;q)

, m≥1. (3.34)

With a little abuse of notation, we still denote I1=(ξ1,ξ2), I2=(ξ2,ξ3), and I=(ξ1,ξ3).
To formulate the problem into a compact form (see (3.36) below), we introduce the piece-
wise functions:

̟=

{

d−1, if ξ∈ I1,

1, if ξ∈ I2,
χ=

{

cosh2(d(ξ−ξ1)), if ξ∈ I1,

cosh2ξ, if ξ∈ I2.
(3.35)

Recall that d = ξ2/(ξ2−ξ1) defined in (3.10). Apparently, these two functions are uni-
formly bounded.
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The weak form of (3.33) is to find v̂c
m ∈H1(I) for each mode m, such that

Bc
m(v̂

c
m,ψ) :=(̟(v̂c

m)
′,ψ′)+λ̃c

m(̟
−1v̂c

m,ψ)−4q(̟−1χv̂c
m,ψ)

−Dc
mv̂c

m(ξ3)ψ̄(ξ3)= φ̂c
mψ̄(ξ3), ∀ψ∈H1(I), m=0,1,··· . (3.36)

Similarly, the weak form of the se-component is to find v̂s
m∈0H1(I):={v∈H1(I):v(ξ1)=0}

for each mode m, such that

Bs
m(v̂

s
m,ψ)= φ̂s

mψ̄(ξ3), ∀ψ∈ 0H1(I), m=1,2,··· , (3.37)

where the bilinear form Bs
m(·,·) is defined by replacing λ̃c

m and Dc
m in Bc

m(·,·) by λ̃s
m and

Ds
m, respectively.

Like Proposition 2.2, we next show the unique solvability of (3.36) and (3.37). We
postpone its proof in Appendix B.

Proposition 3.2. For each mode m, the problem (3.36) (resp. (3.37)) has a unique solution v̂c
m ∈

H1(I) (resp. v̂s
m ∈ 0H1(I)).

We now introduce the numerical schemes. Define the approximation spaces:

Zc,N
m (I)=

{

v∈H1(I) : v|Ii
∈PNi

, i=1,2
}

; Zs,N
m (I)=Zc,N

m (I)∩H1
0(I), (3.38)

where N = (N1,N2). Given a cut-off number M > 0, the MLSEM approximation to the
solution of (3.14) in Λ1∪Λ2 is

vN

M(ξ,η)=
M

∑
m=0

v̂c,N
m (ξ)cem(η;q)+

M

∑
m=1

v̂s,N
m (ξ)sem(η;q), (3.39)

and {v̂c,N
m ,v̂s,N

m } are computed from the Legendre-spectral-element schemes: find v̂c,N
m ∈

Zc,N
m (I) such that

Bc
m(v̂

c,N
m ,ψ)= φ̂c

mψ̄(ξ3), ∀ψ∈Zc,N
m (I), 0≤m≤M, (3.40)

and find v̂s,N
m ∈Zs,N

m (I) such that

Bs
m(v̂

s,N
m ,ψ)= φ̂s

mψ̄(ξ3), ∀ψ∈Zs,N
m (I), 1≤m≤M. (3.41)

Remark 3.1. The unique solvability of (3.40)-(3.41) can be shown as the continuous prob-
lems in Proposition 3.2.

As with the circular case, the two-domain spectral-element scheme for each mode can
be implemented by using the modal Legendre polynomial basis and the Schur comple-
ment technique (cf. [26]), but it is noteworthy that the resulted linear systems are full and
dense due to the involvement of the non-polynomial weight function χ in (3.35).
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4 Numerical results

In this section, we provide ample numerical results to demonstrate that our proposed
approach produces accurate simulation of the ideal circular and elliptic cylindrical cloaks.

4.1 Circular cylindrical cloaks

Assuming that the incident wave is a plane wave with an incident angle θ0:

uin(r,θ)= eikrcos(θ−θ0)=
∞

∑
|m|=0

im Jm(kr)eim(θ−θ0), (4.1)

we can derive from the full-wave analysis in Ruan et al. [51] that the ideal cloaking prob-
lem admits the exact solution:

u(r,θ)=

{

uin(b(r−R1),θ), if R1< r<R2,

uin(r,θ), if r>R2,
(4.2)

which vanishes in the cloaked region: r<R1.
We first examine the numerical error: EN = max|m|≤M‖ûm−ûN

m‖N ,∞, where ‖·‖N ,∞

denotes the maximum pointwise errors at the Legendre-Gauss-Lobatto points (with a
linear transformation) used in each subinterval. In the computation, we take M=70 (so
that the truncation error in θ direction is negligible), and choose θ0 =0 and (R1,R2,R3)=
(0.2,0.6,1.0). In Fig. 2 (left), we plot log10(EN) against N=(N,N) for k=30,50,70. Observe
that the error decays exponentially, when N>N0(k). The expected transition value N0(k)
can be estimated by using the notion of “number-of-points-per-wavelength” (cf. [21]).
Indeed, for large k, the Bessel function behaves like (cf. [1]):

Jm(z)∼
√

2

πz
cos

(

z−mπ

2
−π

4

)

.

We infer from the approxibility of Legendre polynomial expansions to trigonometric
functions (cf. [21]) that as soon as

N>
ek

4
max{R2,R3−R2}−

1

2
,

the error begins to decay. Approximately, we take N0(k) to be ceiling round-off of this
low bound. For k=30,50,70, we find that N0 =12,20,29, respectively, which agrees with
the numerical results in Fig. 2 (left). In Fig. 2 (right), we plot the zeroth mode in the
expansion (4.1) (see the solid line) versus the numerical approximation of ûN

0 (r) with
k=70 and N=(50,50) (with marker “+”). We see that this mode is not continuous across
the inner boundary r=R1, which is the major reason for the surface currents (cf. [66]) and
the violation of PEC condition (cf. (2.19)).
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Figure 2: Left: errors against various N for some samples of k. Right: the zeroth mode (in solid line) versus its
numerical approximation ûN

0 (marked by “+”, with k=70 and N=(50,50)).
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Figure 3: Row 1: real (left) and imaginary (right) parts of the electric-field distributions. Row 2-3: profiles of
the real and imaginary parts of the electric-field along x-axis.

We next illustrate the electric wave propagations and profiles under different inci-
dent angles and frequencies. In Fig. 3, we depict the electric-field distributions (real and
imaginary parts in the top row) simulated by the proposed FLSEM with θ0 = 0, k= 20,
(R1,R2,R3)=(0.2,0.6,1.0), M=25 and N =(20,20). We see that when a TE plane wave is
incident on the circular cloak, it is completely guided and bent around the cloaked region
without inducing any scattering waves. Moreover, the propagating wavefronts perfectly
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Figure 4: Row 1: real (left) and imaginary (right) parts of the electric-field distributions. Row 2-3: profiles of
the real and imaginary parts of the electric-field along θ=π/3.

emerge from the other side of the cloaked region without any distortion, which are best
testified to by profiles of Re{uN

M} and Im{uN

M} along x-axis (cf. (2.39)) in Fig. 3. Once
again, we observe that the real part is discontinuous across the inner boundary, attributed
to the surface currents induced by the singular coordinate transformation (cf. [66]).

To further demonstrate the performance of the proposed approach, we set the inci-
dent angle θ0 =π/3, increase the incident frequency to k= 100 and enlarge the cloaked
region by taking (R1,R2,R3)=(0.3,0.9,1.0). We depict in Fig. 4 the same type of numerical
results (obtained by the FLSEM with M= 120 and N =(100,20)) as in Fig. 3. Again, the
highly oscillatory oblique incident wave is perfectly steered by the cloaking layer, and
completely shielded from the cloaked region. It is also worthwhile to point out that the
exact boundary condition can be placed as close as possible to the cloak that can signifi-
cantly reduce the number of grid points in the outermost artificial shell, especially when
the incident frequency is high.

4.2 Wave generated by an external source

We now use an external source, compactly supported in the annulus R2 < r<R3, as the
wavemaker, and turn off the incident wave. More precisely, we modify (2.28) as

L0[u
2]= f in Ω2; (∂r−TR3

)u2=0 at r=R3. (4.3)
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Figure 5: Electric-field distributions with an external source compactly supported in the outmost shell. Left:
real part; right: imaginary part.

In this situation, there is no closed-form exact solution. In practice, we use the Gaussian
function in Cartesian coordinates:

f (x,y)=αexp
(

− (x−β)2+(y−κ)2

2γ2

)

, (4.4)

where α,β,κ,γ are tuneable constants. To this end, we take (R1,R2,R3) = (0.2,0.6,1.0),
α=100, β=−0.8, κ=0 and γ=0.02. The source at r=R3 is nearly zero. The plots of the
electric-field distributions in Fig. 5 are computed from the FLSEM with k = 40, M = 40
and N =(40,150). The non-plane waves generated by the source are smoothly bent and
the cloak does not produce any scattering. We also observe from Fig. 5 that the waves
seamlessly pass through the outer artificial boundary without any reflecting.

4.3 Elliptic cylindrical cloaks

We first consider an incident plane wave in (4.1), which, in the elliptic coordinates (cf.
(3.1)), can be expanded in terms of Mathieu functions (cf. [45, P. 218]):

vin(ξ,η)=exp(ika(coshξcosηcosθ0+sinhξsinηsinθ0))

=

√

8

π

∞

∑
m=0

imMc
(1)
m (ξ;q)cem(θ0;q)cem(η;q)

+

√

8

π

∞

∑
m=1

imMs
(1)
m (ξ;q)sem(θ0;q)sem(η;q). (4.5)

Note that when q=0, it reduces to (4.1). Following [13], we obtain the exact solution for
the ideal elliptic cloak similar to the circular case in (4.2):

v(ξ,η)=

{

vin(d(ξ−ξ1),η), if ξ1< ξ< ξ2,

vin(ξ,η), if ξ> ξ2,
(4.6)
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which vanishes if 0< ξ< ξ1.
To illustrate the spectral accuracy of MLSEM, we tabulate in Table 1 the numerical

errors EN (defined as in the circular case) for different N=(N,N) and for several k. In the
simulation, we take a=0.6,θ=0,(ξ1,ξ2,ξ3)=(0.7,1.3,1.5) and M=70.

Table 1: Convergence of MLSEM.

k=30 k=50 k=70

N error error error

30 8.63E-07 2.75E-02 1.32

40 4.66E-12 8.42E-06 8.50E-02

50 9.03E-15 4.87E-10 3.52E-05

60 1.57E-14 2.27E-14 5.89E-09

70 1.66E-14 2.08E-14 2.73E-13

We next illustrate electric-field distributions. The circular cloak is perfectly symmet-
ric, so the way of bending the waves is independent of the incident angle. However,
as pointed out in, e.g., [43], the incident wave along the major axis (i.e., θ0 = 0) leads to
significantly better cloaking effect with much less scattering and bears the greatest re-
semblance to the circular cloak, compared with other directions. Note that in [43], PEC
condition was imposed at the inner boundary ξ=ξ3 in the finite-element simulation, and
the electric-field distributions exhibited observable scattering waves when the incident
angle θ0 6=0. However, using our proposed CBCs and numerical solver, the perfect cloak-
ing effect can be achieved equally and no any scattering is induced for any incident an-
gles. Apart from plotting the electric-field distributions, we also depict the time-averaged
Poynting vector (cf. [49]):

S=Re{E×H
∗}/2, (4.7)

which indicates the directional energy flux density. In Figs. 6-8 (where θ0 = 0,π/4,π,
respectively, and in all cases, a = 0.6, (ξ1,ξ2,ξ3) = (0.7,1.3,1.5),k = 20, M = 30 and N =
(20,20)), we plot the real part of the electric-field distributions (note: the imaginary part
behaves very similarly), and the corresponding Poynting vector fields. We find that the
waves are again steered smoothly around the elliptic cloaked region without reflecting
and scattering. We particularly look at the Poynting vectors in Fig. 9, where the energy
flux attempts to flow across r= ξ1, but it is directed by the cloak. Once again, the surface
current is induced on the cloaking interface as with the circular cloak. It is noteworthy
that the incident wave perpendicular to the major axis (see Fig. 9) is of particular interest,
as the shape is like a slap and the waves are difficult to steer (cf. [27]). However, using
our approach, the perfect concealment of waves can be achieved as with other incident
angles.

Finally, we conduct a test by adding an external source (cf. Subsection 4.2), and turn-
ing off the incident wave. Accordingly, we modify (3.14b) and (3.14c) as

(

∂2
ξ+∂2

η

)

v+k2a2
(

cosh2ξ−cos2η
)

v= f in Λ2; (∂ξ−Tξ3
)v=0 at ξ= ξ3, (4.8)



Z. Yang and L. Wang / Commun. Comput. Phys., 17 (2015), pp. 822-849 843

Figure 6: Real part of the electric-field distribution (left) and the related Poynting vector (right), where the
incident angle θ0 =0.

Figure 7: Real part of the electric-field distribution (left) and the related Poynting vector (right), where the
incident angle θ0 =π/4.

Figure 8: Real part of the electric-field distribution (left) and the related Poynting vector (right), where the
incident angle θ0 =π.

where f is compactly supported in the elliptic layer ξ2 < ξ< ξ3. Like before, we take f to
be (4.4) with α= 1000, β= 0, κ = 1.148, γ= 0.01. Fig. 9 is computed from MLSEM with
k= 20, M= 30 and N =(50,100) and illustrates the real (left) and imaginary (right) part
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Figure 9: The real (left) and imaginary (right) part of electric-field distribution with different sources.

of the electric-field distributions induced by external source. Once again, we see that the
waves are smoothly bent without penetrating into the elliptic cloaked region. Moreover,
the cloak does not induce any scattering, and indeed, we see the fields near the source
totally unaffected.

5 Concluding remarks

From a new perspective, we proposed CBCs for the ideal circular and elliptic cylindrical
cloaks, which, together with an accurate spectral-element solver, demonstrated that the
cloaks can achieve perfect concealment of incoming incident waves with very mild con-
ditions on the incident frequency. We also illustrated the perfect cloaking effect, when
the incoming wave is generated by a source exterior to the cloaking device.

The idea and approach in this paper can shed light on the study of, e.g., polygonal
cloaks [17,42,63], and can lead to appropriate CBCs for time-domain simulations [25,36].
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A Proof of Proposition 2.2

It is clear that by (2.37),

Re
{

Bm(ûm,ûm)
}

=‖û′
m‖2

ω+m2‖ûm‖2
ω−1−k2‖ρûm‖2

ω−R3Re(Tm,k)|ûm(R3)|2, (A.1)
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and
Im

{

Bm(ûm,ûm)
}

=−R3Im(Tm,k)|ûm(R3)|2. (A.2)

Recall that (see, e.g., [48, 56]):

Re(Tm,k)<0, Im(Tm,k)>0. (A.3)

Thus, we have

Re
{

Bm(ûm,ûm)
}

≥‖û′
m‖2

ω+m2‖ûm‖2
ω−1−k2‖ρûm‖2

ω , (A.4)

and ûm(R3)=0, if ĝm =0. Using the Fredholm alternative (cf. [48, Thm. 5.4.5]), we reach
the conclusion.

B Proof of Proposition 3.2

For simplicity, denote

M
(i)
m =Mc

(i)
m or Ms

(i)
m , i=1,2,3; Dm =Dc

m or Ds
m.

Recall that (see e.g., [1])

M
(3)
m :=M

(1)
m +iM

(2)
m ; M

(1)
m M

(2)
m

′
−M

(2)
m M

(1)
m

′
=

2

π
. (B.1)

Then a direct calculation from (3.34) and (B.1) leads to

Im(Dm)=
M

(1)
m (ξ3;q)M

(2)
m

′
(ξ3;q)−M

(2)
m (ξ3;q)M

(1)
m

′
(ξ3;q)

|M(3)
m (ξ3;q)|2

=
2/π

|M(3)
m (ξ3;q)|2

>0. (B.2)

Moreover, by (3.33d),

Re(Dm)=
M

(1)
m (ξ3;q)M

(1)
m

′
(ξ3;q)+M

(2)
m (ξ3;q)M

(2)
m

′
(ξ3;q)

|M(3)
m (ξ3;q)|2

. (B.3)

Note that {M
(i)
m (ξ;q)}2

i=1 can not have common zero, and are analytic for all ξ > 0 (see,
e.g., [1]), so |Re(Dm)| is a finite constant for fixed m,q and ξ3. To this end, let C be a generic
positive constant depending on m,q,ξ2 and ξ3.

We first consider (3.36) and obtain that

Re
{

Bc
m(v̂

c
m,v̂c

m)
}

=‖̟(v̂c
m)

′‖2+λ̃c
m‖̟−1v̂c

m‖2−4q‖̟−1χv̂c
m‖2−Re(Dc

m)|v̂c
m(ξ3)|2, (B.4)

and
Im

{

Bc
m(v̂

c
m,v̂c

m)
}

=−Im(Dc
m)|v̂c

m(ξ3)|2. (B.5)
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Let I2 = (ξ2,ξ3) as before. Recall the Sobolev inequality (see, e.g., [54, (B.33)]): for any
w∈H1(I2),

max
x∈ Ī2

|w(x)|2 ≤
( 1

ξ3−ξ2
+2

)

‖w‖L2(I2)‖w‖H1(I2). (B.6)

Therefore, we further derive from the Cauchy-Schwartz inequality that

|Re(Dc
m)||v̂c

m(ξ3)|2≤C
(

‖̟(v̂c
m)

′‖2+‖χv̂c
m‖2

)1/2‖χv̂c
m‖

≤C
(

‖̟(v̂c
m)

′‖‖χv̂c
m‖+‖χv̂c

m‖2
)

≤ 1

2
‖̟(v̂c

m)
′‖2+C‖χv̂c

m‖2. (B.7)

Therefore, by (B.4) and (B.7),

Re
{

Bc
m(v̂

c
m,v̂c

m)
}

≥ 1

2
‖̟(v̂c

m)
′‖2+λ̃c

m‖̟−1v̂c
m‖2−(4q+C)‖̟−1χv̂c

m‖2. (B.8)

Moreover, by (B.2), v̂c
m(ξ3) = 0, if φ̂c

m = 0. Using the Fredholm alternative (see, e.g., [48,
Thm. 5.4.5]), we reach the conclusion.

The uniqueness of the solution for (3.37) can be shown similarly.
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