Erratum for the book

Spectral Methods

Algorithms, Analysis and Applications

by Jie Shen, Tao Tang and Li-Lian Wang
[Updated on December 28, 2015 with corrections in shaded text]

1 Chapter 1

1. Page 16, Line 12: Change $h=\frac{2 \pi}{N}$ to $h=\frac{2 \pi}{N+1}$.

2 Chapter 2

1. Page 28 in (2.25), replace $D_{N / 2-1}\left(x-x_{j}\right)$ by $\mathcal{D}_{N / 2-1}\left(x-x_{j}\right)$.
2. Page 29 in Table 2.1, replace $2 \tilde{u}_{N / 2-1}$ by $\tilde{u}_{N / 2-1}$, and replace $\tilde{u}_{N / 2}$ by $2 \tilde{u}_{N / 2}$.
3. Page 36 , four lines below (2.53), change " $e^{\mathrm{i}(p-k) x_{j}}=1$ " to $" \frac{1}{2 N} \sum_{j=0}^{2 N-1} e^{\mathrm{i}(p-k) x_{j}}=1$ "

3 Chapter 3

1. Page 69, remove "3.1.8.1" before "A Short Summary of this Section".
2. Page 83 , Line 7: change " $G_{N-1}^{\alpha, \beta+1 "}$ and " $\widetilde{G}_{N-1}^{\alpha, \beta+1 "}$ to " $G_{N-2}^{\alpha+1, \beta+1 "}$ " and " $\widetilde{G}_{N-2}^{\alpha+1, \beta+1 "}$ ", respectively.
3. Page 86 , " π " is missing in (3.147), which should be

$$
\frac{2 j+1}{2 N+3} \pi \leq \theta_{j} \leq \frac{2 j+2}{2 N+3} \pi, \quad 0 \leq j \leq N
$$

4. Page 94, remove the factor 2^{n} in the denominator of the terms in the sum of (3.169).
5. Page 104, a comma is missing in the last line of (3.203).
6. Page $106, T(x)$ should be $T_{n}(x)$ in (3.212a).
7. Page 118, Theorem 3.35 above (3.257), add the condition on l : " $0 \leq l<N+1$ "
8. Page 120, the line above (3.267), change " $0 \leq l \leq m$ " to " $1 \leq l \leq m$ ", and two lines below (3.267), remove ", β "
9. Page 130 , the proof in lines $2-6$ should be changed to

$$
\begin{aligned}
\left\|I_{N}^{c} u\right\|_{\omega}^{2} & =\frac{\pi}{N+1} \sum_{j=0}^{N} \hat{u}^{2}\left(\theta_{j}\right) \leq \frac{\pi}{N+1} \sum_{j=0}^{N}\left\{\max _{\theta \in K_{j}}|\hat{u}(\theta)|\right\}^{2} \\
& \leq \sum_{j=0}^{N}\left(\|\hat{u}\|_{L^{2}\left(K_{j}\right)}+\frac{\pi}{N+1}\left\|\partial_{\theta} \hat{u}\right\|_{L^{2}\left(K_{j}\right)}\right)^{2} \\
& =\sum_{j=0}^{N}\|\hat{u}\|_{L^{2}\left(K_{j}\right)}^{2}+\frac{2 \pi}{N+1} \sum_{j=0}^{N}\|\hat{u}\|_{L^{2}\left(K_{j}\right)}\left\|\partial_{\theta} \hat{u}\right\|_{L^{2}\left(K_{j}\right)}+\frac{\pi^{2}}{(N+1)^{2}} \sum_{j=0}^{N}\left\|\partial_{\theta} \hat{u}\right\|_{L^{2}\left(K_{j}\right)}^{2} \\
& \leq\|\hat{u}\|_{L^{2}(0, \pi)}^{2}+\frac{2 \pi}{N+1}\left(\sum_{j=0}^{N}\|\hat{u}\|_{L^{2}\left(K_{j}\right)}^{2}\right)^{\frac{1}{2}}\left(\sum_{j=0}^{N}\left\|\partial_{\theta} \hat{u}\right\|_{L^{2}\left(K_{j}\right)}^{2}\right)^{\frac{1}{2}}+\frac{\pi^{2}}{(N+1)^{2}}\left\|\partial_{\theta} \hat{u}\right\|_{L^{2}(0, \pi)}^{2} \\
& \leq\|\hat{u}\|_{L^{2}(0, \pi)}^{2}+\frac{2 \pi}{N+1}\|\hat{u}\|_{L^{2}(0, \pi)}\left\|\partial_{\theta} \hat{u}\right\|_{L^{2}(0, \pi)}+\frac{\pi^{2}}{(N+1)^{2}}\left\|\partial_{\theta} \hat{u}\right\|_{L^{2}(0, \pi)}^{2} \\
& =\left(\|\hat{u}\|_{L^{2}(0, \pi)}+\frac{\pi}{N+1}\left\|\partial_{\theta} \hat{u}\right\|_{L^{2}(0, \pi)}\right)^{2} .
\end{aligned}
$$

This implies

$$
\left\|I_{N}^{c} u\right\|_{\omega} \leq\|\hat{u}\|_{L^{2}(0, \pi)}+\frac{\pi}{N+1}\left\|\partial_{\theta} \hat{u}\right\|_{L^{2}(0, \pi)}
$$

Finally, the inverse change of variable $\theta \rightarrow x$ leads to (3.297).
10. The above modification also applies to line $7-10$ on Page 132.
11. Page 137, above Theorem 3.44, change "Chap. 5" to "Chap. 6"
12. Page 138 , the last line, change " $\sum_{n=k}^{N}$ " to " $\sum_{n=0}^{N-k}$ "

4 Chapter 4

1. Page 141, the line below (4.3), change "necessary" to "sufficient"
2. Page 146 , replace $a_{-} b+$ by $a_{-} b_{+}$.
3. Page 151 , Line 4 , replace $\mathrm{O}\left(N^{2}\right)$ by $O\left(N^{2}\right)$.
4. Page 169, in the proof of Theorem 4.3, add "and with integration by parts" after "Under the assumption (4.3)"; and remove $H^{2}(I) \cap$ in the definition of X in the line below (4.85).

5 Chapter 6

1. Page 202: Last line: replace (6.3) by (6.4).
2. Page 212, above (6.37), " $\phi_{k}(x)=\gamma_{k} J_{n+3}^{-2,-1}(x)$ " should be " $\phi_{k}(x)=\gamma_{k} J_{k+3}^{-2,-1}(x)$ ".
3. Page 223 , the part of the proof below (6.68) should be changed to: \qquad while for $m=1$, we verify from the Cauchy-Schwarz inequality that

$$
\left\|\partial_{x} \tilde{u}\right\| \leq c\left(\left\|\partial_{x} u\right\|+|u(-1)-u(1)|\right) \leq c\left(\left\|\partial_{x} u\right\|+\left|\int_{-1}^{1} \partial_{x} u d x\right|\right) \leq c\left\|\partial_{x} u\right\| .
$$

This ends the proof of Theorem 3.4.
4. Page 236, Problem 6.4, change "(6.18)" to "(6.32)"

6 Chapter 7

1. Page 241, Formula (7.15): change "if $\alpha>0$ " in the second line, to "if $-1<\alpha<0$ ".
2. Page 246, Eqn. (7.36): change " $\forall p \cdot q \in \widehat{P}_{2 N+\delta}$ " to " $\forall p \in \widehat{P}_{K}, \forall q \in \widehat{P}_{L}, K+L \leq 2 N+\delta$ ".
3. Page 258, Eqn. (7.82): change " $\forall p \cdot q \in \widehat{P}_{2 N+1}$ " to " $\forall p \in \widehat{P}_{K}, \forall q \in \widehat{P}_{L}, K+L \leq 2 N+1$ ".
4. Page 268 , right below Eqn. (7.119): change

$$
-\frac{1}{4}\left(\left(u e^{x / 2}\right)-\Pi_{N}^{1,0}\left(u e^{x / 2}\right), v_{N}\right)_{\omega} \text { to }-\frac{1}{4}\left(\left(u e^{x / 2}\right)-\Pi_{N}^{1,0}\left(u e^{x / 2}\right), w_{N}\right)_{\omega}
$$

and add the missing parentheses in the term

$$
-\frac{1}{2} \int_{0}^{+\infty}\left[\left(\left(u e^{x / 2}\right)-\Pi_{N}^{1,0}\left(u e^{x / 2}\right)\right) w_{N}\right]^{\prime} e^{-x} d x
$$

7 Chapter 8

1. Page 302, above and in (8.12), change " $(E A)^{-1}$ (resp. $\left.(E A)^{-T}\right)$ " to " $(A E)^{-1}$ (resp. $\left.(A E)^{-T}\right) "$
2. Page 303 , lines $7-8$, change " $(E A)^{-1} "$ to $"(A E)^{-1}$ ", and change " $(E A)^{-T "}$ to " $(A E)^{-T "}$
3. Page 304, change $E^{T B E}$ and $E^{T A E}$ to $E^{T} B E$ and $E^{T} A E$, respectively, in (8.20) and (8.21).

8 Chapter 9

1. Page 371, change $T(u)=-\mathrm{i} u$ in (9.21) to $T(u)=-\mathrm{i} k u$.
2. Page 394, replace the superscript n by k in the last line.
3. Page 395, replace ψ^{k+1} by ϕ^{k+1} in (9.118)-(9.119).
4. Page $396,2 p_{N}^{k}-p_{N}^{k-1}$ should be p_{N}^{k} in (9.121) corresponding to (9.102).
5. Page 396, the first "Poisson equation" should be "Poisson-type equation" in the last line.
