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GENERALIZED LAGUERRE INTERPOLATION AND
PSEUDOSPECTRAL METHOD FOR UNBOUNDED DOMAINS∗
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Abstract. In this paper, error estimates for generalized Laguerre–Gauss-type interpolations are
derived in nonuniformly weighted Sobolev spaces weighted with ωα,β(x) = xαe−βx, α > −1, β > 0.
Generalized Laguerre pseudospectral methods are analyzed and implemented. Two model problems
are considered. The proposed schemes keep spectral accuracy and, with suitable choice of basis
functions, lead to sparse and symmetric linear systems.
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1. Introduction. With the extensive applications of Legendre- and Chebyshev-
spectral approximations to PDEs in bounded domains (cf. [2, 3, 4, 6, 7, 8]), consid-
erable progress has been made recently in using spectral methods for solving PDEs
in unbounded domains. Among the existing methods, the direct and commonly used
approach is based on orthogonal systems in infinite intervals, i.e., the Hermite and
Laguerre spectral methods (see, e.g., [5, 6, 9, 10, 17, 19]). In earlier studies, one usu-
ally considers Laguerre approximations in spaces weighted with e−x, which are not
the most appropriate in some cases. For instance, the approximations of some differ-
ential equations in financial mathematics, fluid dynamics, quantum mechanics, and
astronomical physics involve different weight functions for derivatives of different or-
ders. In such cases, we have to consider the generalized Laguerre approximation with
weight function ωα(x) = xαe−x, α > −1, which was used recently for two-dimensional
exterior problems; see [11]. Indeed, from both theoretical and computational points
of view, it is more interesting to consider an orthogonal system with a more general
weight function: ωα,β(x) = xαe−βx, α > −1, β > 0. One obvious advantage is that it
can provide us a variety of choices of polynomial bases to fit exact solutions of under-
lying differential equations with various asymptotic behaviors at infinity. Moreover,
as we will see later, some other good by-products can be obtained using this new
family of orthogonal polynomials.

In actual computations, it is more preferable to use the Laguerre interpolation.
As we know, there have been many results on the Laguerre polynomial approxima-
tion (e.g., see, [2, 5, 6, 8, 10, 11, 12, 13, 14, 17]), but only a few papers dealing with
the error analysis of Laguerre interpolation. Recently, some authors developed the
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Laguerre interpolation—for example, the Laguerre interpolation (α = 0, β = 1) with
its applications to approximation of differential equations (see [19]) and the standard
generalized Laguerre interpolation (α > −1, β = 1), which are very useful for approx-
imation of integral equations (see [15, 16]). The objective of this paper is to analyze
the generalized Laguerre–Gauss-type interpolation errors with a more general weight
ωα,β(x), α > −1, β > 0. In the special case of α = 0, β = 1, our new results are better
than the previous ones. Moreover, we derive the approximation results in nonuni-
formly weighted Sobolev spaces, which enables us to develop and analyze efficient
generalized Laguerre pseudospectral approximations of a large class of problems in
unbounded domains.

This paper is organized as follows. In section 2, we present some basic results
on this new generalized Laguerre–Gauss-type interpolation. In section 3, we establish
the main approximation results on the generalized Laguerre–Gauss and Laguerre–
Gauss–Radau interpolations, which provide us useful tools for numerical analysis of
generalized Laguerre pseudospectral methods for unbounded domains. Section 4 is
devoted to the generalized Laguerre pseudospectral method for unbounded domains
as an important application of the generalized Laguerre–Gauss interpolation. In sec-
tion 5, we develop a pseudospectral method for exterior problems as an application of
the generalized Laguerre–Gauss–Radau interpolation. In section 6, we present some
numerical results, which demonstrate the spectral accuracy of proposed schemes. The
final section is for some concluding remarks.

2. Generalized Laguerre–Gauss-type interpolations. In this section, we
shall introduce the new generalized Laguerre–Gauss-type interpolations, and study
the asymptotic behaviors of the interpolation nodes and weights.

2.1. Notation and preliminaries. Let Λ = (0,∞) and χ(x) be a certain
weight function on Λ in the usual sense. We define the weighted space L2

χ(Λ) as
usual with the inner product (u, v)χ and the norm ‖v‖χ. For simplicity, we de-
note ∂k

xv(x) = dk

dxk v(x), k ≥ 1. For any integer m ≥ 0, Hm
χ (Λ) = {v | ∂k

xv ∈ L2
χ(Λ),

0 ≤ k ≤ m} with the seminorm |v|m,χ and the norm ‖v‖m,χ. For any real r > 0, we
define the space Hr

χ(Λ) and its norm ‖v‖r,χ by space interpolation as in [1]. For
χ(x) ≡ 1, we drop the subscript χ in the previous notations as usual.

Let ωα,β(x) = xαe−βx, α > −1, β > 0. In particular, we denote ωα(x) =
ωα,1(x) = xαe−x. The new generalized Laguerre polynomial of degree l is defined by

L(α,β)
l (x) =

1

l!
x−αeβx∂l

x(xl+αe−βx), l = 0, 1, . . . .

Let L(α)
l (x) be the usual generalized Laguerre polynomials that are mutually

orthogonal with the weight function ωα(x). It is noted that L(α)
l (x) = L(α,1)

l (x), and

L(α,β)
l (x) = L(α)

l (y) = L(α)
l (βx), y = βx.(2.1)

Therefore, it is straightforward to derive the following properties (cf. [18]):

L(α,β)
l (0) = L(α)

l (0) =
Γ(l + α + 1)

Γ(α + 1)Γ(l + 1)
, l ≥ 0,(2.2)

∂xL(α,β)
l (x) = −βL(α+1,β)

l−1 (x), l ≥ 1,(2.3)

(l + 1)L(α,β)
l+1 (x) = (2l + α + 1 − βx)L(α,β)

l (x) − (l + α)L(α,β)
l−1 (x), l ≥ 1,(2.4)
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L(α,β)
l (x) = L(α+1,β)

l (x) − L(α+1,β)
l−1 (x) = β−1

(
∂xL(α,β)

l (x) − ∂xL(α,β)
l+1 (x)

)
, l ≥ 1.

(2.5)

The generalized Laguerre polynomials form a complete L2
ωα,β

(Λ)-orthogonal sys-
tem, (

L(α,β)
l ,L(α,β)

m

)
ωα,β

= γ
(α,β)
l δl,m, γ

(α,β)
l =

Γ(l + α + 1)

βα+1Γ(l + 1)
,(2.6)

where δl,m is the Kronecker symbol. Hence, for any v ∈ L2
ωα,β

(Λ), we can write

v(x) =

∞∑
l=0

v̂
(α,β)
l L(α,β)

l (x), v̂
(α,β)
l =

1

γ
(α,β)
l

(v,L(α,β)
l )ωα,β

.(2.7)

For integer N > 0, PN stands for the set of algebraic polynomials of degree ≤ N.
We denote by c a generic positive constant independent of N, β, and any function.

2.2. Generalized Laguerre–Gauss and Laguerre–Gauss–Radau interpo-
lations. Let ξ

(α,β)
G,N,j and ξ

(α,β)
R,N,j , 0 ≤ j ≤ N, be the zeros of L(α,β)

N+1 (x) and x∂xL(α,β)
N+1 (x),

respectively. They are arranged in ascending order. Denote ω
(α,β)
Z,N,j , 0 ≤ j ≤ N,

Z = G,R, the corresponding Christoffel numbers such that∫
Λ

φ(x)ωα,β(x) dx =

N∑
j=0

φ
(
ξ
(α,β)
Z,N,j

)
ω

(α,β)
Z,N,j ∀φ ∈ P2N+λZ

,(2.8)

where λz = 1 and 0 for Z = G and R, respectively. In particular, the usual generalized
Laguerre–Gauss-type quadrature nodes and weights are denoted by ξ

(α)
Z,N,j := ξ

(α,1)
Z,N,j

and ω
(α)
Z,N,j := ω

(α,1)
Z,N,j , Z = G,R, respectively. Thanks to (2.1), we have ξ

(α,β)
Z,N,j =

1
β ξ

(α)
Z,N,j . We next derive the expressions of the weights. Indeed,

ω
(α,β)
G,N,j =

1

∂xL(α,β)
N+1

(
ξ
(α,β)
G,N,j

) ∫
Λ

L(α,β)
N+1 (x)

x− ξ
(α,β)
G,N,j

ωα,β(x)dx, 0 ≤ j ≤ N,(2.9)

which, along with formula (15.3.5) of [18], leads to

ω
(α,β)
G,N,j =

1

βα+1
ω

(α)
G,N,j =

Γ(N + α + 2)

βαΓ(N + 2)

1

ξ
(α,β)
G,N,j

[
∂xL(α,β)

N+1

(
ξ
(α,β)
G,N,j

)]2 , 0 ≤ j ≤ N.

(2.10)

Similarly, for the Gauss–Radau weights, we have

ω
(α,β)
R,N,j =

1

∂x

[
x∂xL(α,β)

N+1 (x)
]
|
x=ξ

(α,β)

R,N,j

∫
Λ

x∂xL(α,β)
N+1 (x)

x− ξ
(α,β)
R,N,j

ωα,β(x)dx, 0 ≤ j ≤ N,

(2.11)

which, together with formula (3.6.2) of [6], yields

ω
(α,β)
R,N,j =

1

βα+1
ω

(α)
R,N,j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(α + 1)Γ2(α + 1)Γ(N + 1)

βα+1Γ(N + α + 2)
, j = 0,

Γ(N + α + 1)

βαΓ(N + 2)

1

L(α,β)
N+1 (ξ

(α,β)
R,N,j)∂xL

(α,β)
N (ξ

(α,β)
R,N,j)

, 1 ≤ j ≤ N.

(2.12)



2570 GUO BEN-YU, WANG LI-LIAN, AND WANG ZHONG-QING

Note that the earlier two types of quadratures have close relations:

ξ
(α,β)
R,N,j = ξ

(α+1,β)
G,N−1,j−1, ω

(α,β)
R,N,j =

(
ξ
(α,β)
R,N,j

)−1

ω
(α+1,β)
G,N−1,j−1, 1 ≤ j ≤ N.(2.13)

Indeed, the first identity follows from (2.3). Moreover, using (2.3), (2.9), (2.13), and

the definition of ξ
(α+1,β)
G,N−1,j−1, we obtain from (2.11) that for 1 ≤ j ≤ N,

ω
(α,β)
R,N,j =

1

∂x

(
xL(α+1,β)

N (x)
)
|
x=ξ

(α,β)

R,N,j

∫
Λ

xL(α+1,β)
N (x)

x− ξ
(α,β)
R,N,j

ωα,β(x) dx

=
1

ξ
(α,β)
R,N,j∂xL

(α+1,β)
N

(
ξ
(α+1,β)
G,N−1,j−1

) ∫
Λ

L(α+1,β)
N (x)

x− ξ
(α+1,β)
G,N−1,j−1

ωα+1,β(x) dx

=
(
ξ
(α,β)
R,N,j

)−1

ω
(α+1,β)
G,N−1,j−1.

(2.14)

To obtain the interpolation error estimates, it is necessary to study the asymptotic
behaviors of generalized Laguerre–Gauss interpolation nodes and weights.

• Using Theorem 8.9.2 of [18], we can verify that for a certain fixed number
η > 0,

2β
1
2

((
ξ
(α,β)
G,N,j

)) 1
2

=
1√

N + 1

(
jπ + O(1)

)
if 0 <

(
ξ
(α,β)
G,N,j

)
≤ η

β
.(2.15)

• Theorem 6.31.3 of [18] reveals that for large j,

c1j
2

β(N + α
2 + 3

2 )
<

(
ξ
(α,β)
G,N,j

)
<

c2j
2

β(N + α
2 + 3

2 )
, c1 ∼=

π2

4
, c2 ∼= 4.(2.16)

• Let Ñ = 2(N+1)+α+1. By Theorem 6.31.2 of [18], the largest node satisfies

ξ
(α,β)
G,N,N < β−1

(
Ñ +

(
Ñ2 +

1

4
− α2

)1/2) ∼= 4β−1(N + 1).(2.17)

• We can verify from formula (15.3.15) of [18] that for a certain fixed number
η > 0,

ω
(α,β)
G,N,j

∼=
π√
βN

e−βξ
(α,β)

G,N,j

(
ξ
(α,β)
G,N,j

)α+ 1
2

if 0 <
(
ξ
(α,β)
G,N,j

)
≤ η

β
.(2.18)

• Let ξ
(α,β)
G,N,−1 := 0. By the formulae (2.4), (2.5), and (2.7) of [15],

ω
(α,β)
G,N,j =

1

βα+1
ω

(α)
G,N,j ∼

1

βα+1
ωα

(
ξ
(α)
G,N,j

)(
ξ
(α)
G,N,j+1 − ξ

(α)
G,N,j

)
= ωα,β(ξ

(α,β)
G,N,j)

(
ξ
(α,β)
G,N,j − ξ

(α,β)
G,N,j−1

)
, 0 ≤ j ≤ N.

(2.19)

• Thanks to the relation (2.13), we deduce from (2.18) and (2.19) that

ω
(α,β)
R,N,j =

(
ξ
(α+1,β)
G,N−1,j−1

)−1

ω
(α+1,β)
G,N−1,j−1

∼=
π√

β(N − 1)
e−βξ

(α,β)

R,N,j

(
ξ
(α,β)
R,N,j

)α+ 1
2

if 0 < ξ
(α,β)
R,N,j ≤

η

β
, 1 ≤ j ≤ N,

(2.20)
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and

ω
(α,β)
R,N,j =

(
ξ
(α,β)
R,N,j

)−1

ω
(α+1,β)
G,N−1,j−1

∼
(
ξ
(α,β)
R,N,j

)−1

ωα+1,β

(
ξ
(α+1,β)
G,N−1,j−1

)(
ξ
(α+1,β)
G,N−1,j−1 − ξ

(α+1,β)
G,N−1,j−2

)
= ωα,β

(
ξ
(α,β)
R,N,j

)(
ξ
(α,β)
R,N,j − ξ

(α,β)
R,N,j−1

)
, 1 ≤ j ≤ N.

(2.21)

For notational convenience, we now introduce the discrete inner product and
norm,

(u, v)ωα,β ,Z,N =

N∑
j=0

u
(
ξ
(α,β)
Z,N,j

)
v
(
ξ
(α,β)
Z,N,j

)
ω

(α,β)
Z,N,j ,

‖v‖ωα,β ,Z,N = (v, v)
1
2

ωα,β ,Z,N , Z =G,R.

By the exactness of (2.8),

(φ, ψ)ωα,β ,Z,N = (φ, ψ)ωα,β
∀φψ ∈ P2N+δZ ,(2.22)

where δZ = 1, 0 for Z = G,R, respectively. In particular,

‖φ‖ωα,β ,Z,N = ‖φ‖ωα,β
∀φ ∈ PN , Z =G,R.(2.23)

The generalized Laguerre–Gauss interpolant IZ,N,α,βv ∈ PN is defined by

IZ,N,α,βv
(
ξ
(α,β)
Z,N,j

)
= v

(
ξ
(α,β)
Z,N,j

)
, Z = G,R, 0 ≤ j ≤ N.(2.24)

3. Generalized Laguerre interpolation error estimates. In this section,
we estimate the interpolation errors in weighted Sobolev spaces, which provide useful
tools for the analysis of generalized Laguerre pseudospectral methods.

3.1. L2
ωα,β

(Λ)-orthogonal projection. We first recall the L2
ωα,β

(Λ)-orthogonal

projection PN,α,β : L2
ωα,β

(Λ) → PN , defined by

(PN,α,βv − v, φ)ωα,β
= 0 ∀φ ∈ PN .

In order to describe approximation errors precisely, we introduce the nonuniformly
weighted Sobolev space Ar

α,β(Λ). For any integer r ≥ 0, its seminorm and norm are
given by

|v|Ar
α,β

= ‖∂r
xv‖ωα+r,β

, ‖v‖Ar
α,β

=

(
r∑

k=0

|v|2Ak
α,β

) 1
2

.

For any real r > 0, we define the space Ar
α,β(Λ) by space interpolation as in [1].

We have the following basic result; see Theorem 2.1 of [12].
Lemma 3.1. For any v ∈ Ar

α,β(Λ), an integer r, and 0 ≤ μ ≤ r,

‖PN,α,βv − v‖Aμ
α,β

≤ c(βN)
μ−r

2 |v|Ar
α,β

.(3.1)

In the analysis of generalized Laguerre–Gauss–Radau interpolation approximation
(cf. the proof of Theorem 3.7), we need to estimate |PN,α,βv(0) − v(0)|.
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Lemma 3.2. For any v ∈ Ar
α,β(Λ) and an integer r > α + 1,

|PN,α,βv(0) − v(0)| ≤ c(βN)
α−r+1

2 |v|Ar
α,β

.(3.2)

Proof. Let λ
(β)
l = βl. By virtue of (2.3) and (2.6), we find that for l ≥ r,

|v|2Ar
α,β

=

∞∑
l=r

β2rγ
(α+r,β)
l−r

(
v̂
(α,β)
l

)2
, dα,βl,r :=

(λ
(β)
l )rγ

(α,β)
l

γ
(α+r,β)
l−r

≤ cβ2r.

Therefore,

∞∑
l=N+1

(
λ

(β)
l

)r
γ

(α,β)
l

(
v̂
(α,β)
l

)2
=

∞∑
l=N+1

dα,βl,r γ
(α+r,β)
l−r

(
v̂
(α,β)
l

)2 ≤ c|v|2Ar
α,β

.(3.3)

Consequently, using (2.2), (2.6), (3.3), and the Cauchy–Schwarz inequality leads to

|PN,α,βv(0) − v(0)| =
∣∣∣ ∞∑
l=N+1

v̂
(α,β)
l L(α,β)

l (0)
∣∣∣

≤
( ∞∑

l=N+1

(λ
(β)
l )−r(L(α,β)

l (0))2(γ
(α,β)
l )−1

) 1
2
( ∞∑

l=N+1

(λ
(β)
l )rγ

(α,β)
l (v̂

(α,β)
l )2

) 1
2

≤ cβ
α−r+1

2

( ∞∑
l=N+1

Γ(l + α + 1)

lrΓ(l + 1)

) 1
2

|v|Ar
α,β

.

By the Stirling formula, Γ(s + 1) =
√

2πssse−s(1 + O(s−
1
5 )). Thus, for r > α + 1,

∞∑
l=N+1

Γ(l + α + 1)

lrΓ(l + 1)
≤ c

∞∑
l=N+1

lα−r ≤ cNα−r+1.

This completes the proof.

The approximation errors stated in Lemma 3.1 are measured in the space Aμ
α,β(Λ).

However, when we apply the generalized Laguerre approximation to numerical solu-
tions of differential and integral equations, we oftentimes need to estimate them in
the standard weighted Sobolev space Hr

ωα,β
(Λ), stated later.

Lemma 3.3. If v ∈ Hμ
ωα,β

(Λ)∩Ar
α−1,β(Λ)∩Ar

α−μ,β(Λ), then for integers 1 ≤ μ ≤
r,

|PN,α,βv − v|μ,ωα,β
≤ cβ− 1

2 (βN)μ−
r
2

(
|v|Ar

α−1,β
+ |v|Ar

α−μ,β

)
.(3.4)

Proof. We have

|PN,α,βv − v|1,ωα,β
≤ ‖PN,α,β∂xv − ∂xv‖ωα,β

+ ‖PN,α,β∂xv − ∂xPN,α,βv‖ωα,β
.(3.5)

By (3.1) with μ = 0, the first term at the right side of the previous inequality is

bounded above by c(βN)
1−r
2 |v|Ar

α−1,β
. Hence, it remains to estimate the second term.

To do this, let ∂xv(x) =
∑∞

l=0
ˆ̂v
(α,β)

l L(α,β)
l (x). By virtue of (2.5) and (2.7), we can
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derive that ˆ̂v
(α,β)

l = −β
∑∞

p=l+1 v̂
(α,β)
p . Thus, we follow the same lines as in [2, 8] to

deduce that

PN,α,β∂xv(x) − ∂xPN,α,βv(x) = −β

N∑
l=0

L(α,β)
l (x)

( ∞∑
p=l+1

v̂(α,β)
p

)
(3.6)

+ β
N−1∑
l=0

L(α,β)
l (x)

(
N∑

p=l+1

v̂(α,β)
p

)
= ˆ̂v

(α,β)

N

N∑
l=0

L(α,β)
l (x).

Accordingly, we use (2.6) and (3.1) with μ = 0 to obtain that

‖PN,α,β∂xv − ∂xPN,α,βv‖2
ωα,β

=
(
ˆ̂v
(α,β)

N

)2
γ

(α,β)
N

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1

≤ ‖PN−1,α,β∂xv − ∂xv‖2
ωα,β

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1
(3.7)

≤ c(βN)1−r|v|2Ar
α−1,β

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1
.

If α ≥ 0, then γ
(α,β)
l increases as l increases. In this case,

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1 ≤ N + 1.(3.8)

For −1 < α < 0, we use the Stirling formula to deduce that for a suitably large integer
M < N and l ≥ M,

γ
(α,β)
l ∼ β−α−1

(
1 +

α

l

)l+ 1
2

(l + α)α ∼ β−α−1lα.(3.9)

Hence, for certain c1 > 0,

N∑
l=0

γ
(α,β)
l

(
γ

(α,β)
N

)−1 ≤ cN−α

(
c1 + c

N∑
l=M

lα

)
≤ cN−α(c1 + cN1+α) ≤ cN.(3.10)

Inserting (3.8) and (3.10) into (3.7), we obtain the desired result with μ = 1.
Now, we use induction to derive the desired result with μ ≥ 2. We shall use the

following inverse inequality:

‖φ‖r,ωα,β
≤ c(βN)r‖φ‖ωα,β

∀φ ∈ PN , r > 0.

Assume that (3.4) holds for μ− 1. Then we obtain that

|PN,α,βv − v|μ,ωα,β
≤ |PN,α,β∂xv − ∂xv|μ−1,ωα,β

+ |PN,α,β∂xv − ∂xPN,α,βv|μ−1,ωα,β

≤ cβ− 1
2 (βN)μ−1− r−1

2 (|v|Ar
α−2,β

+ |v|Ar
α−μ,β

) + c(βN)μ−1‖PN,α,β∂xv

− ∂xPN,α,βv‖ωα,β
≤ cβ− 1

2 (βN)μ−
r
2−

1
2 (|v|Ar

α−2,β
+ |v|Ar

α−μ,β
)

+ cβ− 1
2 (βN)μ−

r
2 |v|Ar

α−1,β
.

(3.11)
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By the definition of | · |Ar
α,β

, we have that

|v|Ar
α−2,β

= ‖∂r
xv‖ωα+r−2,β

≤ c(|v|Ar
α−μ,β

+ |v|Ar
α−1,β

).

This fact with (3.11) implies the desired result.

3.2. Generalized Laguerre interpolation approximations. We first study
the stability of generalized Laguerre–Gauss interpolation.

Theorem 3.4. For any v ∈ H1
ωα,β

(Λ) ∩A1
α,β(Λ),

‖IG,N,α,βv‖ωα,β
≤ c

(
β−1N− 1

2 |v|1,ωα,β
+ (1 + β− 1

2 )(lnN)
1
2 ‖v‖A1

α,β

)
.(3.12)

Proof. By (2.23) and (2.24),

‖IG,N,α,βv‖2
ωα,β

= ‖IG,N,α,βv‖2
ωα,β ,G,N =

N∑
j=0

v2
(
ξ
(α,β)
G,N,j

)
ω

(α,β)
G,N,j := AN + BN ,(3.13)

where

AN =
∑

ξ
(α,β)

G,N,j
≤ η

β

v2
(
ξ
(α,β)
G,N,j

)
ω

(α,β)
G,N,j , BN =

∑
ξ
(α,β)

G,N,j
> η

β

v2
(
ξ
(α,β)
G,N,j

)
ω

(α,β)
G,N,j .

We first estimate AN . For simplicity of statements, let

Δ
(α,β)
j =

[
ξ
(α,β)
G,N,j−1,

(
ξ
(α,β)
G,N,j

)]
, |Δ(α,β)

j | = ξ
(α,β)
G,N,j − ξ

(α,β)
G,N,j−1,

δ
(α,β)
j,+ =

(
ξ
(α,β)
G,N,j

) 1
2 + (ξ

(α,β)
G,N,j−1)

1
2 , δ

(α,β)
j,− =

(
ξ
(α,β)
G,N,j

) 1
2 − (ξ

(α,β)
G,N,j−1)

1
2 .

By (13.7) of [2], we know that for any u ∈ H1(a, b),

sup
x∈[a,b]

|u(x)| ≤ c

(
1√
b− a

‖u‖L2(a,b) +
√
b− a‖∂xu‖L2(a,b)

)
.(3.14)

Thus, by (2.18) and (3.14),

AN ≤ c√
βN

∑
ξ
(α,β)

G,N,j
≤ η

β

(
ξ
(α,β)
G,N,j

) 1
2 sup
x∈Δ

(α,β)
j

|xαv2(x)|

≤ c√
βN

∑
ξ
(α,β)

G,N,j
≤ η

β

((
ξ
(α,β)
G,N,j

) 1
2 (δ

(α,β)
j,+ )−1(δ

(α,β)
j,− )−1‖xα

2 v‖2

L2
(
Δ

(α,β)
j

)
+
(
ξ
(α,β)
G,N,j

) 1
2 δ

(α,β)
j,+ δ

(α,β)
j,−

(
‖xα

2 ∂xv‖2

L2
(
Δ

(α,β)
j

) + ‖xα
2 −1v‖2

L2
(
Δ

(α,β)
j

))).
(3.15)

We now bound the terms in the previous summation. Using (2.15) yields

(
ξ
(α,β)
G,N,j

) 1
2 δ

(α,β)
j,+ δ

(α,β)
j,− ‖xα

2 −1v‖2

L2
(
Δ

(α,β)
j

) ≤
(
ξ
(α,β)
G,N,j

) 1
2 (δ

(α,β)
j,+ )2

∫
Δ

(α,β)
j

xα−2v2(x)dx

≤ c
(
ξ
(α,β)
G,N,j

) 3
2 (ξ

(α,β)
G,N,j−1)

−2

∫
Δ

(α,β)
j

xαv2(x)dx

≤ c
√
βN‖xα

2 v‖2

L2
(
Δ

(α,β)
j

).

(3.16)
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The expression (2.15) implies that for 0 < ξ
(α,β)
G,N,j ≤

η
β ,

δ
(α,β)
j,− ∼ 1√

βN
,

(
ξ
(α,β)
G,N,j

) 1
2 (δ

(α,β)
j,+ )−1 ≤ c,

(
ξ
(α,β)
G,N,j

) 1
2 δ

(α,β)
j,+ ≤ c

β
.(3.17)

Hence, plugging (3.16) and (3.17) into (3.15) gives

AN ≤ c
∑

Δ
(α,β)
j

(
‖xα

2 v‖2

L2
(
Δ

(α,β)
j

) + β−2N−1‖xα
2 ∂xv‖2

L2
(
Δ

(α,β)
j

))

≤ c(‖v‖2
ωα,β

+ β−2N−1|v|21,ωα,β
).

(3.18)

We next estimate BN in (3.13). By (2.19) and (2.17),

BN ≤ c
∑

ξ
(α,β)

G,N,j
> η

β

v2
(
ξ
(α,β)
G,N,j

)
ωα,β

(
ξ
(α,β)
G,N,j

)(
ξ
(α,β)
G,N,j − ξ

(α,β)
G,N,j−1

)
≤ c sup

x> η
β

|v2(x)ωα+1,β(x)|
∑

ξ
(α,β)

G,N,j
> η

β

1

ξ
(α,β)
G,N,j

(
ξ
(α,β)
G,N,j − ξ

(α,β)
G,N,j−1

)

≤ c sup
x> η

β

|v2(x)ωα+1,β(x)|
∫ 4β−1(N+1)

η
β

1

x
dx.

By a similar argument as in the derivation of Lemma 2.2 of [11], we deduce that

sup
x∈Λ

|v2(x)ωα+1,β(x)| ≤ max(α + 1, 2/β)‖v‖2
A1

α,β
.(3.19)

Consequently,

BN ≤ c(1 + 1/β) lnN‖v‖2
A1

α,β
.(3.20)

The combination of (3.13), (3.18), (3.20), and the fact ‖v‖ωα,β
≤ ‖v‖A1

α,β
leads

to the desired result.
With the aid of the previous theorem, we are able to estimate the interpolation

error.
Theorem 3.5. If v ∈ Ar

α−1,β(Λ) ∩Ar
α,β(Λ), then for integer r ≥ 1,

‖IG,N,α,βv − v‖ωα,β
≤ c(βN)

1
2−

r
2

(
β−1|v|Ar

α−1,β
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.(3.21)

If, in addition, v ∈ Ar
α−μ,β(Λ), then for integers 1 ≤ μ ≤ r,

|IG,N,α,βv − v|μ,ωα,β
≤ c(βN)μ+ 1

2−
r
2

(
β−1(|v|Ar

α−1,β
+ N− 1

2 |v|Ar
α−μ,β

)

+ (1 + β− 1
2 )(lnN)

1
2 |v|Ar

α,β

)
.

(3.22)

Proof. The use of (3.12), (3.1), and (3.4) with μ = 1 leads to

‖IG,N,α,βv − PN,α,βv‖ωα,β
= ‖IG,N,α,β(PN,α,βv − v)‖ωα,β

≤ cβ−1N− 1
2 |PN,α,βv − v|1,ωα,β

+ c(1 + β− 1
2 )(lnN)

1
2 ‖PN,α,βv − v‖A1

α,β

≤ c(βN)
1
2−

r
2

(
β−1|v|Ar

α−1,β
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.

(3.23)
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Thus, using the previous formula and (3.1) with μ = 0 yields

‖IG,N,α,βv − v‖ωα,β
≤ ‖IG,N,α,βv − PN,α,βv‖ωα,β

+ ‖PN,α,βv − v‖ωα,β

≤ c(βN)
1
2−

r
2

(
β−1|v|Ar

α−1,β
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.

(3.24)

This implies (3.21). Next, by (3.4), (3.23), and the inverse inequality as before, we
deduce that

|IG,N,α,βv − v|μ,ωα,β
≤ |IG,N,α,βv − PN,α,βv|μ,ωα,β

+ |PN,α,βv − v|μ,ωα,β

≤ c(βN)μ‖IG,N,α,βv − PN,α,βv‖ωα,β
+ cβ− 1

2 (βN)μ−
r
2 (|v|Ar

α−1,β
+ |v|Ar

α−μ,β
)

≤ c(βN)μ+ 1
2−

r
2

(
β−1

(
|v|Ar

α−1,β
+ N− 1

2 |v|Ar
α−μ,β

)
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.

(3.25)

This completes the proof.
We now turn to the generalized Laguerre–Gauss–Radau interpolation. We first

study the stability of interpolation, stated later.
Theorem 3.6. For any v ∈ H1

ωα,β
(Λ) ∩A1

α,β(Λ),

‖IR,N,α,βv‖ωα,β
≤ c

(
(βN)−

α+1
2 |v(0)| + β−1N− 1

2 |v|1,ωα,β

+ (1 + β− 1
2 )(lnN)

1
2 ‖v‖A1

α,β

)
.

(3.26)

In particular, for |α| < 1,

‖IR,N,α,βv‖ωα,β
≤ c

(
β−1N− 1

2 |v|1,ωα,β
+ (1 + β− 1

2 )(lnN)
1
2 ‖v‖A1

α,β

)
.(3.27)

Proof. Let η be the positive constant in (2.15). By the exactness (2.23),

‖IR,N,α,βv‖2
ωα,β

= ‖IR,N,α,βv‖2
ωα,β ,R,N = v2(0)ω

(α,β)
R,N,0 + ÃN + B̃N ,

where

ÃN =
∑

0<ξ
(α,β)

R,N,j
≤ η

β

v2(ξ
(α,β)
R,N,j)ω

(α,β)
R,N,j , B̃N =

∑
ξ
(α,β)

R,N,j
> η

β

v2(ξ
(α,β)
R,N,j)ω

(α,β)
R,N,j .

Using the Stirling formula, we have ω
(α,β)
R,N,0 ≤ c(βN)−α−1. On the other hand, we ob-

serve from (2.13) that the interior nodes ξ
(α,β)
R,N,j , 1 ≤ j ≤ N, satisfy asymptotic prop-

erties (2.15) and (2.16), while the corresponding weights ω
(α,β)
R,N,j , 1 ≤ j ≤ N, fulfill

(2.20) and (2.21). Thus, we can follow the same lines as in the proof of Theorem 3.4
to derive that

ÃN ≤ c(‖v‖2
ωα,β

+ β−2N−1|v|21,ωα,β
), B̃N ≤ c(1 + β−1) lnN‖v‖2

A1
α,β

.

Then the result (3.26) follows from the previous statements.
We next prove (3.27). For any x ∈ [0, 1

β ] and |α| < 1,

|v(x) − v(0)| ≤
(∫ 1

β

0

x−αeβx dx

) 1
2

‖∂xv‖L2
ωα,β

(0, 1
β ) ≤ cβ

α−1
2 ‖∂xv‖L2

ωα,β
(0, 1

β ).(3.28)
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Now, let |v(x∗)| = minx∈[0,1/β] |v(x)|. Clearly, for |α| < 1,

|v(x∗)| ≤ β

∫ 1
β

0

|v(x)| dx ≤ cβ
α+1

2 ‖v‖L2
ωα,β

(0, 1
β ).(3.29)

The previous formula with (3.28) gives

|v(0)| ≤ |v(x∗)| + |v(x∗) − v(0)| ≤ c
(
β

α+1
2 ‖v‖ωα,β

+ β
α−1

2 |v|1,ωα,β

)
.(3.30)

If 0 ≤ α < 1, then by (3.30) and the fact ‖v‖ωα,β
≤ ‖v‖A1

α,β
, we derive that

(βN)−
α+1

2 |v(0)| ≤ c
(
β−1N− 1

2 |v|1,ωα,β
+ (1 + β− 1

2 )(lnN)
1
2 ‖v‖A1

α,β

)
,

which, along with (3.26), leads to (3.27) with 0 ≤ α < 1. For −1 < α < 0, we change
slightly the derivation of (3.28) to obtain that for any x ∈ [0, 1

β ],

|v(x) − v(0)| ≤
∫ 1

β

0

|∂xv(x)| dx ≤ cβ
α
2 ‖∂xv‖L2

ωα+1,β
(0, 1

β ).

Correspondingly, (3.30) becomes

|v(0)| ≤ c
(
β

α+1
2 ‖v‖ωα,β

+ β
α
2 ‖∂xv‖ωα+1,β

)
≤ cβ

α+1
2 (1 + β− 1

2 )‖v‖A1
α,β

.

Then the result (3.27) with −1 < α < 0 follows from formula (3.26) and the fact

N−α+1
2 ≤ c.

The following two theorems describe the error of interpolation IR,N,α,βv.
Theorem 3.7. If v ∈ Ar

α,β(Λ) ∩ Ar
α−1,β(Λ), then for an integer r ≥ 1 and

r > α + 1,

‖IR,N,α,βv − v‖ωα,β
≤ c(βN)

1
2−

r
2

(
β−1|v|Ar

α−1,β
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.(3.31)

In particular, if |α| < 1, then the previous result holds for all integers r ≥ 1.
Proof. As a consequence of (3.26),

‖IR,N,α,βv − PN,α,βv‖ωα,β
= ‖IR,N,α,β(PN,α,βv − v)‖ωα,β

≤ c(βN)−
α+1

2 |PN,α,βv(0) − v(0)| + cβ−1N− 1
2 |PN,α,βv − v|1,ωα,β

+ c(1 + β− 1
2 )(lnN)

1
2 ‖PN,α,βv − v‖A1

α,β
.

(3.32)

According to Lemma 3.2, the first term on the right-hand side of (3.32) is bounded
above by c(βN)−

r
2 |v|Ar

α,β
for an integer r > α + 1. The other two terms can be

estimated by using Lemmas 3.1 and 3.3 with μ = 1 (cf. the proof of (3.21)).
If |α| < 1, we use (3.27) to derive (3.32), which does not contain the term

|PN,α,βv(0) − v(0)|, and consequently does not require r > α + 1.
We can follow the same approach as for the proof of (3.22) to derive the following

result.
Theorem 3.8. If v ∈ Ar

α,β(Λ) ∩ Ar
α−1,β(Λ) ∩ Ar−1

α−μ,β(Λ), then for integers 1 ≤
μ ≤ r and r > α + 1,

|IR,N,α,βv − v|μ,ωα,β
≤c(βN)μ+ 1

2−
r
2

(
β−1

(
|v|Ar

α−1,β
+ N− 1

2 |v|Ar
α−μ,β

)
+ (1 + β− 1

2 )(lnN)
1
2 |v|Ar

α,β

)
.

(3.33)

In particular, for |α| < 1, the previous result holds for all integers r ≥ 1.
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4. Generalized Laguerre pseudospectral method for unbounded do-
mains. This section is devoted to the generalized pseudospectral method based on
the generalized Laguerre–Gauss interpolation. Throughout this section, let Ω = Λ×S
and S be the unit spherical surface, S = {(λ, θ)| 0 ≤ λ < 2π, − π

2 ≤ θ < π
2 }. The

Laplacian operator on Ω is given by

Δv(ρ, λ, θ) =
1

ρ2
∂ρ(ρ

2∂ρv(ρ, λ, θ))+
1

ρ2 cos θ
∂θ(cos θ∂θv(ρ, λ, θ))+

1

ρ2 cos2 θ
∂2
λv(ρ, λ, θ).

We consider the following problem:{
− ΔW (ρ, λ, θ) + μW (ρ, λ, θ) = F (ρ, λ, θ), μ > 0, in Ω,

W (ρ, λ + 2π, θ) = W (ρ, λ, θ).
(4.1)

Here, we look for the solution of (4.1) such that ρ
1
2W (ρ, λ, θ) → 0 as ρ → 0 and

ρ
3
2W (ρ, λ, θ) → 0 as ρ → ∞. In addition, the solution W (ρ, λ, θ) satisfies the pole

condition, namely, ∂λW (ρ, λ, θ) = 0 for θ = ±π
2 .

It is noted that the usual weighted (with the weight e−βρ) Galerkin variational
formulation of (4.1), on which the generalized Laguerre approximations are often
based, is not well posed. One possible way to remedy this deficiency is to find a suitable
variable transform such that the weighted variational formulation of the transformed
equation becomes well posed. Motivated by [10], we make the variable transform

W (ρ, λ, θ) = e−
β
2 ρU(ρ, λ, θ), F (ρ, λ, θ) = e−

β
2 ρf(ρ, λ, θ),(4.2)

which converts (4.1) into

− ∂2
ρU(ρ, λ, θ) − 1

ρ
(2 − βρ)∂ρU(ρ, λ, θ) − 1

ρ2 cos θ
∂θ(cos θ∂θU(ρ, λ, θ))

− 1

ρ2 cos2 θ
∂2
λU(ρ, λ, θ) +

1

ρ

(
μρ + β − β2

4
ρ
)
U(ρ, λ, θ) = f(ρ, λ, θ).

(4.3)

To focus on our main idea, we consider only the spherically symmetric case, in which
U and f are independent of λ and θ, denoted by U(ρ) and f(ρ), respectively. Accord-
ingly,

−∂2
ρU(ρ) − 1

ρ
(2 − βρ)∂ρU(ρ) +

1

ρ

(
μρ + β − β2

4
ρ
)
U(ρ) = f(ρ).(4.4)

In addition, ρ
1
2U(ρ) → 0 as ρ → 0 and ρ

3
2 e−

β
2 ρU(ρ) as ρ → ∞.

With the previous general setup, we now derive a weak formulation of (4.4).
First, we observe that for any v ∈ H1

ω2,β
(Λ), we have ∂ρv(ρ) = o(ρ−

3
2 ) and v(ρ) =

o(ρ−
1
2 ) as ρ → 0, and ∂ρv(ρ) ∼ v(ρ) = o(ρ−

3
2 e

βρ
2 ) as ρ → ∞. Consequently, if

v ∈ H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ), then ρ2v(ρ)∂ρv(ρ)e
−βρ → 0 as ρ → 0,∞. Hence, we obtain

a weak formulation of (4.4). It is to find U ∈ H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ) such that

aμ,β(U, v) = (f, v)ω2,β
∀v ∈ H1

ω2,β
(Λ) ∩ L2

ω1,β
(Λ),(4.5)

where the bilinear form is defined by

aμ,β(u, v) = (∂ρu, ∂ρv)ω2,β
+
(
μ− β2

4

)
(u, v)ω2,β

+ β(u, v)ω1,β
.
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One can verify that aμ,β(·, ·) is continuous and elliptic in
(
H1

ω2,β
(Λ) ∩ L2

ω1,β
(Λ)

)2
.

Indeed,

|aμ,β(u, v)| ≤ c
(
(1 + β)‖u‖1,ω2,β

+ β
1
2 ‖u‖ω1,β

)(
(1 + β)‖v‖1,ω2,β

+ β
1
2 ‖v‖ω1,β

)
,(4.6)

and for μ > β2

4 , we have

aμ,β(v, v) ≥ c
(
‖v‖2

1,ω2,β
+ β‖v‖2

ω1,β

)
.(4.7)

Therefore, if f ∈ (H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ))′, then (4.5) admits a unique solution.

The corresponding pseudospectral scheme for (4.5) is to seek uN (ρ) ∈ PN such
that

aμ,β,N (uN , φ) = (f, φ)ω2,β ,G,N ∀φ ∈ PN ,(4.8)

where

aμ,β,N (u, v) = (∂ρu, ∂ρv)ω2,β ,G,N +
(
μ− β2

4

)
(u, v)ω2,β ,G,N + β(u, v)ω1,β ,G,N .

According to (2.22), (4.8) is equivalent to

aμ,β(uN , φ) = (IG,N,2,βf, φ)ω2,β
∀φ ∈ PN .(4.9)

Before analyzing the convergence of (4.8), we first consider a special orthogonal
projection P 1

N,β : H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ) → PN , defined by

(
∂ρ(P

1
N,βv − v), ∂ρφ

)
ω2,β

+
(
P 1
N,βv − v, φ

)
ω2,β

+
(
P 1
N,βv − v, φ

)
ω1,β

= 0 ∀φ ∈ PN .

(4.10)

To analyze its approximation error, we need the following two imbedding inequalities
which are the special cases of Lemmas 2.1 and 2.2 of [12].

• If v ∈ L2
ω0,β

(Λ), ∂ρv ∈ L2
ω2,β

(Λ), and v( 1
β ) = 0, then

‖v‖ω0,β
≤ c‖∂ρv‖ω2,β

.(4.11)

• If v ∈ H1
ω2,β

(Λ) ∩ L2
ω0,β

(Λ), then

‖v‖2
ω2,β

≤ 8β−2
(
‖∂ρv‖2

ω2,β
+ ‖v‖2

ω0,β

)
.(4.12)

Lemma 4.1. For any v ∈ H1
ω2,β

(Λ) ∩ L2
ω1,β

(Λ) ∩Ar
1,β(Λ) and integer r ≥ 1,

‖P 1
N,βv − v‖1,ω2,β

+ ‖P 1
N,βv − v‖ω1,β

≤ c(1 + β−1)(βN)
1−r
2 |v|Ar

1,β
.(4.13)

Proof. By projection theorem and the Cauchy–Schwarz inequality,

‖P 1
N,βv − v‖2

1,ω2,β
+ ‖P 1

N,βv − v‖2
ω1,β

≤ ‖φ− v‖2
1,ω2,β

+ ‖φ− v‖2
ω1,β

≤ |φ− v|21,ω2,β
+

3

2
‖φ− v‖2

ω2,β
+

1

2
‖φ− v‖2

ω0,β
∀φ ∈ PN .

Taking φ(ρ) = PN,1,βv(ρ)−PN,1,βv(
1
β ) + v( 1

β ), we have from (4.11), (4.12), and (3.1)
that

‖P 1
N,βv−v‖2

1,ω2,β
+ ‖P 1

N,βv − v‖2
ω1,β

≤ c(1 + β−2)‖∂ρ(φ− v)‖2
ω2,β

= c(1 + β−2)|PN,1,βv − v|2A1
1,β

≤ c(1 + β−2)(βN)1−r|v|2Ar
1,β

.
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We now go back to the convergence analysis of scheme (4.8). Let UN = P 1
N,βU ;

then by (4.5) and (4.10),

aμ,β(UN , φ) = −G(φ) + (IG,N,2,βf, φ)ω2,β
∀φ ∈ PN ,(4.14)

where

G(φ) =
(
μ− β2

4
−1

)
(U −UN , φ)ω2,β

+(β−1)(U −UN , φ)ω1,β
+(IG,N,2,βf −f, φ)ω2,β

.

Set ŨN = uN − UN . Then by (4.9) and (4.14),

aμ,β(ŨN , φ) = G(φ) ∀φ ∈ PN .(4.15)

Taking φ = ŨN in the previous formula and using (4.7) give

‖ŨN‖2
1,ω2,β

+ β‖ŨN‖2
ω1,β

≤ c|G(ŨN )|.(4.16)

Hence, it suffices to estimate |G(ŨN )|. For simplicity, we shall use the following nota-
tion:

B
(1)
N,β,r(v) = c(1 + β2)2(1 + β−1)2(βN)1−r|v|2Ar

1,β
,

B
(2)
N,β,r(v) = c(1 + β)2(1 + β−1)2(βN)1−r|v|2Ar

1,β
,

B
(3)
N,β,s(v) = c(βN)1−s

(
β−2|v|2

As−1
1,β

+ (1 + β−1) lnN |v|2As
2,β

)
.

By virtue of (4.13) and (3.21), for integers r, s ≥ 1,

|G(ŨN )| ≤ B
(1)
N,β,r(U) + B

(2)
N,β,r(U) + B

(3)
N,β,s(f) +

1

2
‖ŨN‖2

ω2,β
+

β

2
‖ŨN‖2

ω1,β
.

Plugging the previous formula into (4.16) leads to an estimate for ‖ŨN‖2
1,ω2,β

+

β‖ŨN‖2
ω1,β

. Since U − uN = U − P 1
N,βU − ŨN , we use (4.13) again to reach the

following conclusion.
Theorem 4.2. Let U and uN be the solutions of (4.5) and (4.8), respectively,

and let μ > 1
4β

2. If U ∈ Ar
1,β(Λ) and f ∈ As

1,β(Λ) ∩ As
2,β(Λ) with integers r, s ≥ 1,

then

‖U − uN‖2
1,ω2,β

+ β‖U − uN‖2
ω1,β

≤ c
(
B

(1)
N,β,r(U) + B

(2)
N,β,r(U) + B

(3)
N,β,s(f)

)
.

Remark 4.1. After solving uN (ρ) from (4.8), we evaluate the numerical solution

of the original problem by wN (ρ) = e−
β
2 ρuN (ρ). Indeed, a direct computation leads to

‖W − wN‖1,ω̂2 +
√
β‖W − wN‖ω̂1

≤ (1 + β)‖U − uN‖1,ω2,β
+
√
β‖U − uN‖ω1,β

= O(N
1−r
2 + (lnN)

1
2N

1−s
2 ),

where ω̂α(ρ) = ρα = ωα,0(ρ). A combination of the previous formula and (3.19) with
α = 1 yields

sup
ρ∈Λ

|ρ(W − wN )| = sup
ρ∈Λ

|(U − uN )ρe−
β
2 ρ| ≤ c‖U − uN‖A1

1,β

≤ c(|U − uN |1,ω2,β
+ ‖U − uN‖ω1,β

) = O(N
1−r
2 + (lnN)

1
2N

1−s
2 ).

Hence, a spectral accuracy is expected from theoretical analysis.
Remark 4.2. Given μ > 0, we can always choose the adjustable factor β such

that μ > 1
4β

2, which guarantees the well-posedness of our Galerkin formulation.
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5. Generalized Laguerre pseudospectral method for exterior problems.
This section is for the generalized Laguerre pseudospectral method based on Gauss–
Radau interpolation for exterior problems. As an example, we consider the following
equation induced by the spherically symmetric solution of the three-dimensional prob-
lem: ⎧⎪⎨⎪⎩

− 1

ρ2
∂ρ(ρ

2∂ρW (ρ)) + μW (ρ) = F (ρ), μ > 0, ρ > 1,

lim
ρ→∞

ρ
3
2W (ρ) = 0, W (1) = g.

(5.1)

For simplicity, let g = 0. We first shift the interval [1,∞) to [0,∞) by using the
variable transform: ρ = x + 1, W (ρ) = V (x), F (ρ) = G(x). Then (5.1) becomes⎧⎪⎨⎪⎩

− 1

(x + 1)2
∂x((x + 1)2∂xV (x)) + μV (x) = G(x), μ > 0, x > 0,

lim
x→∞

x
3
2V (x) = V (0) = 0.

(5.2)

As mentioned earlier, it is necessary to make the following transformation:

V (x) = e−
β
2 xU(x), G(x) = (x + 1)−2e−

β
2 xf(x).

Then (5.2) is rewritten as

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
− ∂2

xU(x) − 1

x + 1
(2 − β(x + 1))∂xU(x) +

1

x + 1

((
μ− 1

4
β2

)
(x + 1) + β

)
U(x)

=
1

(x + 1)2
f(x), μ > 0, x > 0,

lim
x→∞

x
3
2 e−

β
2 xU(x) = U(0) = 0.

(5.3)

Now, let σα,β(x) = (x+1)αe−βx, and denote 0H
1
σ2,β

(Λ) := {v ∈ H1
σ2,β

(Λ) : u(0) =

0}. A weak form of (5.3) is to find U ∈ 0H
1
σ2,β

(Λ) ∩ L2
σ1,β

(Λ) such that

ãμ,β(U, v) = (f, v)ω0,β
∀v ∈ 0H

1
σ2,β

(Λ) ∩ L2
σ1,β

(Λ),(5.4)

where the bilinear form

ãμ,β(u, v) = (∂xu, ∂xv)σ2,β
+
(
μ− 1

4
β2

)
(u, v)σ2,β

+ β(u, v)σ1,β
.

One can verify readily that

|ãμ,β(u, v)| ≤ c
(
(1 + β)‖u‖1,σ2,β

+ β
1
2 ‖u‖σ1,β

)(
(1 + β)‖v‖1,σ2,β

+ β
1
2 ‖v‖σ1,β

)
,(5.5)

and for μ > 1
4β

2,

|ãμ,β(v, v)| ≥ c
(
‖v‖2

1,σ2,β
+ β‖v‖2

σ1,β

)
.(5.6)

Hence, if f ∈ (H1
σ2,β

(Λ) ∩ L2
σ1,β

(Λ))′, then (5.4) has a unique solution.

The generalized Laguerre pseudospectral scheme for (5.4) is to seek uN ∈ 0PN :=
{u ∈ PN : u(0) = 0} such that

ãμ,β,N (uN , φ) = (f, φ)ω0,β ,R,N ∀φ ∈ 0PN ,(5.7)
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where

ãμ,β,N (u, v) = (∂xu, ∂xv)ω2,β ,R,N + 2(∂xu, ∂xv)ω1,β ,R,N + (∂xu, ∂xv)ω0,β ,R,N

+
(
μ− 1

4
β2

)
(u, v)ω2,β ,R,N +

(
2μ− 1

2
β2 + β

)
(u, v)ω1,β ,R,N

+
(
μ− 1

4
β2 + β

)
(u, v)ω0,β ,R,N .

According to (2.22), (5.7) is equivalent to

ãμ,β(uN , φ) = (IR,N,0,βf, φ)ω0,β
∀φ ∈ 0PN .(5.8)

5.1. A specific orthogonal projection. We next consider a specific orthogo-
nal projection that will be used in numerical analysis of generalized Laguerre pseu-
dospectral method for exterior problems. Let 0H

1
ωα,β

(Λ) := {v ∈ H1
ωα,β

(Λ) : v(0) =

0}. Note that H1
ω2,β

(Λ)∩H1
ω0,β

(Λ) ⊆ H1
σ2,β

(Λ)∩L2
σ1,β

(Λ). The orthogonal projection

0Π
1
N,β : 0H

1
ω2,β

(Λ) ∩H1
ω0,β

(Λ) → 0PN is defined by(
∂x( 0Π

1
N,βv − v), ∂xφ

)
σ2,β

+
(
0
Π1

N,βv − v, φ
)
σ2,β

= 0 ∀φ ∈ 0PN .(5.9)

In order to analyze approximation error of the previous projection, we need an-
other auxiliary orthogonal projection. To do this, we introduce the space H1

ω2,β ,ω0,β
(Λ),

equipped with the norm ‖v‖1,ω2,β ,ω0,β
= (‖∂xv‖2

ω2,β
+ ‖v‖2

ω0,β
)

1
2 .

The orthogonal projection P̃ 1
N,β : H1

ω2,β ,ω0,β
(Λ) → PN is defined by(

∂x(P̃ 1
N,βv − v

)
, ∂xφ)ω2,β

+
(
P̃ 1
N,βv − v, φ

)
ω0,β

= 0 ∀φ ∈ PN .(5.10)

Lemma 5.1. If v ∈ H1
ω2,β ,ω0,β

(Λ) ∩Ar
1,β(Λ) and an integer r ≥ 1, then

‖P̃ 1
N,βv − v‖1,ω2,β ,ω0,β

≤ c(βN)
1−r
2 |v|Ar

1,β
.

Proof. By projection theorem,

‖P̃ 1
N,βv − v‖1,ω2,β ,ω0,β

≤ ‖φ− v‖1,ω2,β ,ω0,β
∀φ ∈ PN .

We take φ(x) = PN,1,βv(x) − PN,1,βv(
1
β ) + v( 1

β ). Then by (4.11) and (3.1),

‖φ− v‖1,ω2,β ,ω0,β
≤ c‖∂x(φ− v)‖ω2,β

= c|PN,1,βv − v|A1
1,β

≤ c(βN)
1−r
2 |v|Ar

1,β
.

This completes the proof.
We are ready to estimate ‖0Π

1
N,βv − v‖1,σ2,β

. We shall use the fact that for v ∈
H1

ωα,β
(Λ), v(0) = 0 and α < 1, we have (see Lemma 2.2 of [12])

‖v‖ωα,β
≤ cβ−1||∂xv||ωα,β

.(5.11)

Lemma 5.2. For any v ∈ Ar
0,β(Λ) with v(0) = 0 and an integer r ≥ 2,

‖0Π
1
N,βv − v‖1,σ2,β

≤ c(1 + β−2)(βN)1−
r
2 |v|Ar

0,β
.

Proof. By projection theorem,

‖0Π
1
N,βv − v‖1,σ2,β

≤ ‖φ− v‖1,σ2,β
≤ c(‖φ− v‖1,ω2,β

+ ‖φ− v‖1,ω0,β
) ∀φ ∈ 0PN .
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Taking

φ(x) =

∫ x

0

P̃ 1
N−1,β∂ξv(ξ) dξ ∈ 0PN ,

we have from Lemma 5.1 that

‖∂x(φ− v)‖ω0,β
= ‖P̃ 1

N−1,β∂xv − ∂xv‖ω0,β
≤ c(βN)1−

r
2 |v|Ar

0,β
,(5.12)

which, along with (5.11) with α = 0, gives

‖φ− v‖ω0,β
≤ cβ−1‖∂x(φ− v)‖ω0,β

≤ cβ−1(βN)1−
r
2 |v|Ar

0,β
.(5.13)

Moreover, thanks to (4.12) with α = 2, we have from Lemma 5.1 that

‖∂x(φ− v)‖ω2,β
= ‖P̃ 1

N−1,β∂xv − ∂xv‖ω2,β

≤ cβ−1(‖∂x(P̃ 1
N−1,β∂xv − ∂xv)‖ω2,β

+ ‖P̃ 1
N−1,β∂xv − ∂xv‖ω0,β

)

≤ cβ−1(βN)1−
r
2 |v|Ar

0,β
.

(5.14)

Furthermore, using (4.12), (5.13), and (4.13) leads to

‖φ− v‖ω2,β
≤ cβ−1(‖∂x(φ− v)‖ω2,β

+ ‖φ− v‖ω0,β
) ≤ cβ−2(βN)1−

r
2 |v|Ar

0,β
.(5.15)

Finally, a combination of (5.12)–(5.15) leads to the desired result.

5.2. Convergence analysis. Let UN = 0Π
1
N,βU. Then by (5.4) and (5.9),

ãμ,β(UN , φ) = −G̃(φ) + (IR,N,0,βf, φ)ω0,β
∀φ ∈ 0PN ,(5.16)

where

G̃(φ) =
(
μ− 1

4
β2 − 1

)
(U − UN , φ)σ2,β

+ β(U − UN , φ)σ1,β
+ (IR,N,0,βf − f, φ)ω0,β

.

Set ŨN = uN − UN . Then subtracting (5.16) from (5.8) yields

ãμ,β(ŨN , φ) = G̃(φ) ∀φ ∈ 0PN .(5.17)

Taking φ = ŨN in the previous formula and using (5.6), we obtain

‖ŨN‖2
1,σ2,β

+ β‖ŨN‖2
σ1,β

≤ c|G̃(ŨN )|.(5.18)

Thus, it suffices to estimate |G̃(ŨN )|. For simplicity, we will use the following notation:

B̃
(1)
N,β,r(v) = c(β2 + 1)2(1 + β−2)2(βN)2−r|v|2Ar

0,β
,

B̃
(2)
N,β,r(v) = c(1 + β−2)2β(βN)2−r|v|2Ar

0,β
,

B̃
(3)
N,β,s(v) = cβ−1(βN)1−s

(
β−2‖∂s

xv‖2
ωs−1,β

+ (1 + β−1) lnN |v|2As
0,β

)
.

By virtue of Theorem 3.7 and Lemma 5.2, for integers r ≥ 2 and s ≥ 1,

|G̃(ŨN )| ≤ B̃
(1)
N,β,r(U) + B̃

(2)
N,β,r(U) + B̃

(3)
N,β,s(f) +

1

2
‖ŨN‖2

σ2,β
+

β

2
‖ŨN‖2

σ1,β
.
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Plugging the previous formula into (5.18) leads to an estimate for ‖ŨN‖2
1,σ2,β

+

β‖ŨN‖2
σ1,β

. Finally, we use Lemma 5.2 again to reach the following conclusion.

Theorem 5.3. Let U and uN be the solutions of (5.4) and (5.7), respectively,
and μ > 1

4β
2. If U ∈ Ar

0,β(Λ) with U(0) = 0, and f ∈ As
0,β(Λ) and ∂s

xf ∈ L2
ωs−1,β

(Λ)
with integers r ≥ 2 and s ≥ 1, then

‖U − uN‖2
1,σ2,β

+ β‖U − uN‖2
σ1,β

≤ B̃
(1)
N,β,r(U) + B̃

(2)
N,β,r(U) + B̃

(3)
N,β,s(f).

6. Numerical results. We present numerical results to illustrate the efficiency
of the proposed schemes.

6.1. The scheme (4.8). We first take a look at the matrix form of the system

(4.8). We take the base functions ψj(ρ) = L(1,β)
j (ρ) and let PN = span{ψ0, ψ1, . . . , ψN}.

By (2.5) and (2.3), we have

ψj(ρ) =
1

β

(
∂ρL(1,β)

j (ρ) − ∂ρL(1,β)
j+1 (ρ)

)
= −L(2,β)

j−1 (ρ) + L(2,β)
j (ρ).

This fact together with (2.3) and (2.6) leads to

ajk := (∂ρψk, ∂ρψj)ω2,β
= β2γ

(2,β)
k−1 δj,k, mjk := (ψk, ψj)ω1,β

= γ
(1,β)
k δj,k,

sjk := (ψk, ψj)ω2,β
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−γ

(2,β)
k−1 , j = k − 1,

γ
(2,β)
k−1 + γ

(2,β)
k , j = k,

−γ
(2,β)
k , j = k + 1,

0 otherwise.

Next, we set

uN (ρ) =

N∑
j=0

ûjψj(ρ), u= (û0, û1, · · · , ûN )T , fj = (f, ψj)ω2,β ,G,N ,

f = (f0, f1, . . . , fN )T , A= (ajk)0≤j,k≤N , M = (mjk)0≤j,k≤N ,

S=(sjk)0≤j,k≤N .

(6.1)

Then the system (4.9) becomes(
A +

(
μ− β2

4

)
S + βM

)
u = f .(6.2)

It is seen that this system is symmetric, tridiagonal, and easy to be inverted.
We now present some numerical results using the previous scheme to solve (4.1)

with spherically symmetric solution W (ρ). Basically, we find uN (ρ) from the sys-

tem (6.2), and then evaluate the numerical solution by wN (ρ) = e−
β
2 ρuN (ρ). In the

following computations, let μ = 5 in (4.8).

Example 1. We take the test function W (ρ) = e−γρ sinhρ, with γ > 0, which
decays exponentially at infinity. The corresponding solution of formula (4.4) is U(ρ) =
e(β/2−γ)ρ sinhρ. We measure the errors in two ways:

(i) maximum pointwise error:

max
0≤j≤N

∣∣∣(W (ξ1,β
G,N,j) − wN (ξ1,β

G,N,j)
)
ξ1,β
G,N,j

∣∣∣ ∼ sup
ρ∈Λ

|ρ(W (ρ) − wN (ρ))|;
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Fig. 6.1. Convergence rate: Example 1 with γ = 1 and h = 3 on the left. Generalized Laguerre
approximation: Example 1 with γ = 0.2 and h = 4 on the right.

(ii) discrete L2-error:

‖W − wN‖N := ‖U − uN‖ω1,β ,G,N ∼ ‖W − wN‖ω̂1
.

In the left part of Figure 6.1, we plot the log10 of maximum error and the log10

of L2-error against various N for γ = 1, h = 3, and different β. As predicted in
Theorem 4.2 and Remark 4.1, the approximate solution will converge faster than
any algebraic power, which is confirmed by the error behaviors (like e−cN , c > 0)
as shown in the figure. We also see that for fixed N, the scheme with β = 2 or
β = 1.5 produces better numerical results than that with β = 1 (the usual generalized
Laguerre approximation).

To see more clearly the role of β, we compare in the right part of Figure 6.1
the exact solution with γ = 0.2 and h = 4 with the numerical solution obtained by
our pseudospectral scheme with N = 96 and β = 1, 3. Notice that the approximation
solution with β = 1 exhibits an observable error, while the numerical solution with β =
3 is virtually indistinguishable with the exact solution. This example demonstrates
that a suitable choice of the parameter β can raise the accuracy, and also enhance
greatly the resolution capabilities of the generalized Laguerre approximations.

Example 2. We take W (ρ) = ρ
(ρ+1)k

with k > 1, which decays algebraically at
infinity. It is clear that ρ

3
2W (ρ) → 0, as ρ → ∞, if k > 5

2 .

In Figure 6.2, we plot the log10 of L2-errors vs.
√
N for different k and β. We see

that the convergence rates are of order O(e−c
√
N ) for all cases, which are somewhat

better than those predicted in Theorem 4.2 and Remark 4.1 (no more than order
k). We also observe that for larger N, better numerical result can be obtained by
choosing suitable β < 1 if the solution decays slowly (cf. the left part of Figure 6.2,
where W (ρ) = O(ρ−1.51)), while conversely for the solution decaying very fast (cf. the
right part of Figure 6.2, where W (ρ) = O(ρ−4)).

Example 3. We take W (ρ) = sinhρ
(1+ρ)k

with k > 0, which decays algebraically with

oscillation.
In Figure 6.3, we plot the log10 of L2-errors vs. log10 N. In the left part, we take

h = 3, k = 4, and β = 1, 2, 3, 4, while in the right part, we fix β = 2 and h = 3,
and test different k = 3, 4, 5. It is clear that in all cases, the errors decay at certain
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Fig. 6.2. Convergence rate of generalized Laguerre pseudospectral method: Example 2 with
k = 2.51 on the left; Example 2 with k = 5 on the right.
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Fig. 6.3. Convergence rate of generalized Laguerre pseudospectral method: Example 3 with
h = 3 and k = 4 on the left; Example 3 with h = 3 and β = 2 on the right.

algebraic rate. Once again, we see from the left part of this figure that a suitable
parameter β can produce better numerical results. On the other hand, the right part
shows that the faster the exact solution decays, the smaller the numerical errors would
be. The previous facts coincide again well with our theoretical results.

6.2. The scheme (5.8). We next describe an efficient implementation for scheme

(5.8). Set ψj(x) := L(0,β)
j (x) − L(0,β)

j+1 (x), j ≥ 0, β > 0. Clearly, ψj(0) = 0. Hence,

0PN = span{ψ0, ψ1, . . . , ψN−1}. We now study the structures of the corresponding
matrices. Thanks to (2.5), we have ∂xψj(x) = βL(0,β)

j (x), which, along with (2.3),
implies that (1 + x)2∂xψj(x) is a linear combination of L(0,β)

l , j − 2 ≤ l ≤ j + 2. This
fact with (2.3), (2.5), and (2.6) leads to

ajk := (∂xψk, ∂xψj)σ2,β
= 0 if |j − k| > 2,

bjk := (ψk, ψj)σ2,β
= 0 if |j − k| > 3,

cjk := (ψk, ψj)σ1,β
= 0 if |j − k| > 2.

(6.3)
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Fig. 6.4. Convergence rate: Example 4 with γ = 1 and h = 3 on the left; Example 5 with h = 1
and k = 5 on the right.

By setting

uN =

N−1∑
j=0

ûjψj(ρ), u= (û0, û1, . . . , ûN−1)
T,

fj = (f, ψj)ω0,β ,R,N , f = (f0, f1, . . . , fN−1)
T,

A = (ajk)0≤j,k≤N−1, B = (bjk)0≤j,k≤N−1, C = (cjk)0≤j,k≤N−1,

(6.4)

the system (5.8) becomes (
A +

(
μ− β2

4

)
B + βC

)
u = f .(6.5)

The coefficient matrix is symmetric and has only several nonvanishing diagonals.
Moreover, the nonzero entries can be determined explicitly by using properties of
generalized Laguerre polynomials as shown in section 2.

We present below two numerical examples to show the efficiency of generalized
Laguerre pseudospectral methods for exterior problems. Let μ = 5 in (5.7).

Example 4. We take the test function W (ρ) = e−γ(ρ−1) sinh(ρ− 1) with γ > 0
and ρ ≥ 1, which decays exponentially at infinity. The corresponding solution of
(5.3) is U(ρ) = e(β/2−γ)ρ sinhρ. We denote the discrete L2-error by ‖W − wN‖N :=
‖U − uN‖ω0,β ,R,N .

In the left part of Figure 6.4, we plot the log10 of L2-error against various N for
γ = 1, h = 3, and different β. We observe a convergence rate of order O(e−cN ), as
predicted in Theorem 5.3. Moreover, for fixed N, the scheme with β = 3 or β = 2
produces better numerical results than that with β = 1.

Example 5. We take W (ρ) = sin(h(ρ−1))
ρk with k > 0 and ρ ≥ 1, which decays

algebraically with oscillation. It is clear that ρ
3
2W (ρ) → 0, as ρ → ∞, if k > 3

2 .

In the right part of Figure 6.4, we plot the log10 of L2-error vs.
√
N for h = 1, k =

5, and different β. It is seen that the convergence rates are of order O(e−c
√
N ), which

are somewhat better than what were predicted in Theorem 5.3 (no more than order
k). Once again, the error behaviors confirm that a suitable choice of β gives better nu-
merical results than that obtained from the usual generalized Laguerre approximation
(β = 1).
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7. Concluding remarks. In this paper, we established a set of results on gen-
eralized Laguerre–Gauss-type interpolation in nonuniformly weighted Sobolev spaces
with the weight function ωα,β(x) = xαe−βx, α > −1, β > 0, which provided us useful
tools in developing and analyzing generalized pseudospectral methods for a variety of
problems in unbounded domains.

Several advantages justified our choice of working on the orthogonal system

{L(α,β)
l (x)} with general parameters α > −1, β > 0.

• The parameter α played an essential part in forming the pseudospectral
schemes, which was chosen to agree with the degree of singular coefficients
of leading terms in underlying equations. For instance, we take α = 2 for
three-dimensional problems as in (4.1) and (5.1), while we should take α = 1
for two-dimensional problems.

• The adjustable parameter β offers great flexibility to match various asymp-
totic behaviors of the solutions at infinity. In fact, a suitable choice of β
depends on certain coefficients which determine the asymptotic behaviors of
solutions such as the parameter μ in (4.1) and (5.1).

• The parameter β somehow played a role similar to a scaling factor, which
could improve the numerical resolution. But they are not exactly the same.
Indeed, in the scaling method with variable transformation, one approximates

the function v(βx) by the basis {L(α)
l (βx)}. However, we approximate the

function v(x) directly.
• As shown in sections 4 and 5, we could always choose a suitable value of β

to guarantee the well-posedness of our Galerkin formulation, provided that
some conditions are fulfilled.

• From theoretical point of view, our analysis included usual Laguerre (α = 0
and β = 1) and standard generalized Laguerre (α > −1 and β = 1) approx-
imations as special cases. Moreover, our estimates improved the previously
published results for the special case α = 0 and β = 1 (cf. [19]). Roughly
speaking, the factor Nγ , γ > 0 appearing in the upper bound of the interpo-
lation error of [19] is now replaced by lnN .

In this paper, our pseudospectral method was designed for transformed equa-
tions (cf. (4.4) and (5.3)). We may also take the generalized Laguerre functions

L̂(α,β)
l (x) = e−

β
2 xL(α,β)

l (x) as the base functions that are mutually orthogonal with
the weight ω̂α(x) = xα. In this case, the weights of Gauss quadrature, ω̂

(α,β)
Z,N,j =

eβξ
(α,β)

Z,N,jω
(α,β)
Z,N,j , Z = G,R, 0 ≤ j ≤ N. Then, the pseudospectral scheme for (4.4) is

to find wN ∈ P̂N := {φ : φ = e−
β
2 xψ ∀ψ ∈ PN} such that

(∂xwN , ∂xφ)ω̂2,G,N + μ(wN , φ)ω̂2,G,N = (f, φ)ω̂2,G,N ∀φ ∈ P̂N ,

where (·, ·)ω̂2,G,N is the corresponding discrete inner product.
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