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Abstract

A modified Laguerre pseudospectral method is proposed for differential equations on the half-line. The numerical
solutions are refined by multidomain Legendre pseudospectral approximation. Numerical results show the spectral
accuracy of this approach. Some approximation results on the modified Laguerre and Legendre interpolations are
established. The convergence of proposed method is proved.
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1. Introduction

Spectral methods have high accuracy. The usual spectral methods are only available for bounded do-
mains. However it is also interesting to consider spectral methods for differential equations on unbounded
domains, such as the KdV equation and the Klein–Gordon equation on the half-line and exterior prob-
lems. Some authors developed the Laguerre spectral method for the half-line, see [3,4,6,9,11]. In actual
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computation, it is more preferable to use the Laguerre pseudospectral method, since it only needs to
evaluate numerical solutions at the Laguerre interpolation nodes, say xj , 0�j �N . It is also much easier
to deal with nonlinear terms. However, the distances between the adjacent interpolation nodes increase
very fast as the mode N increases, especially for large xj . Therefore, although numerical solutions fit exact
solutions well at the nodes, but as global approximate solutions, they only can simulate exact solutions
roughly between the large interpolation nodes.

In this paper, we propose a combined Laguerre and multidomain Legendre pseudospectral method for
the half-line. We first use the modified Laguerre pseudospectral method to obtain numerical solutions
on the half-line, which fit exact solutions well at the interpolation nodes. Then we refine them locally
by using multidomain Legendre pseudospectral approximation. This technique can be also regarded as
recovering the accuracy by reconstructing numerical solutions.

The paper is organized as follows. In the next section, we describe the combined Laguerre and mul-
tidomain Legendre pseudospectral method. In Section 3, we discuss its implementation and present some
numerical results demonstrating its efficiency. In Section 4, we establish some results on the modified
Laguerre and Legendre interpolations, which play important role in the analysis of spectral methods. In
Section 5, we prove the convergence of proposed method. The final section is for concluding discussions.

2. Combined spectral method

Let I=(a, b), 0�a < b�∞, and �(x)be a certain weight function. For real r �0, we define the weighted
Sobolev space Hr

� (I ) as usual, with the semi-norm |v|m,�,I and the norm ‖v‖m,�,I . In particular, we denote
by (u, v)�,I and ‖v‖�,I the inner product and norm of L2

�(I ). The space Hr
0,�(I ) stands for the closure

of set D(I ) consisting of all infinitely differential functions with compact support in I. For �(x) ≡ 1, we
drop the subscript � in notations.

For any integer M �0, PM(I) denotes the set of all algebraic polynomials of degree at most M.
Moreover 0PM = {v ∈ PM |v(a) = 0} and P0

M = {v ∈ 0PM |v(b) = 0}. Denote by c a generic positive
constant independent of any function and M.

Now let �=(0, ∞) and �(x)=e−x . Denote by Ll(x) the Laguerre polynomials of degree l, l=0, 1, . . .

. They satisfy the recurrence relation

Ll(x) = �xLl(x) − �xLl+1(x), l = 0, 1, . . . , (1)

and form the L2
�(�)-orthogonal system, i.e., (Ll ,Lm)�,� = �l,m.

In this paper, we introduce the modified Laguerre interpolation. Firstly let 0H
1(�)={v ∈ H 1(�)|v(0)=

0} and take the approximation spaces as

SM(�) = {�(x)|�(x) = �1/2(x)�(x), ∀�(x) ∈ PM(�)}, 0SM(�) = SM(�) ∩ 0H
1(�).

Next, let {xj }Mj=0 and {�j }Mj=0 be the nodes and weights of the standard Laguerre–Gauss–Radau inter-

polation IL,M . Indeed, xj are the zeros of x�xLM+1(x), and �j = 1/(M + 1)L2
M(xj ). Further, let

�̃j = �j�−1(xj ). Then by the property of Laguerre–Gauss–Radau interpolation (see [12]),

(�, �)� = (�, �)M,� :=
M∑

j=0

�(xj )�(xj )�̃j , ∀� · � ∈ S2M(�). (2)
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For any v ∈ C(�̄), the modified Laguerre–Gauss–Radau interpolant ĨLv(x) ∈ SM(�), satisfying

(ĨL,Mv)(xj ) = v(xj ), 0�j �M . (3)

We now turn to the Legendre–Gauss–Lobatto interpolation. Let the reference interval Î = (−1, 1), and
Ll(x) be the Legendre polynomials of degree l, l = 0, 1, . . . . They satisfy the recurrence relation

(2l + 1)Ll(x) = �xLl+1(x) − �xLl−1(x), l = 1, 2, . . . , (4)

and form the L2(Î )-orthogonal system, i.e., (Ll, Lm)
Î

= (2/(2l + 1))�l,m.
Let {x̂}Nj=0 and {�̂}Nj=0 be the nodes and weights of the Legendre–Gauss–Lobatto interpolation. Indeed,

x̂j are the zeros of (1 − x2)�xLN(x), and �̂j = 2/N(N + 1)L2
N(x̂j ). By Szegö [12]

(�, �)
Î

= (�, �)
N,Î

:=
M∑

j=0

�(x̂j )�(x̂j )�̂j , ∀� · � ∈ P2N−1(Î ). (5)

For any v ∈ C(
¯̂
I ), the Legendre–Gauss–Lobatto interpolant ÎL,Nv(x) ∈ PN(Î ), satisfying

(ÎL,Nv)(x̂j ) = v(x̂j ), 0�j �N . (6)

Now, we describe the combined pseudospectral method. For clearness, we focus on the simple model
problem

−�2
xU(x) + �U(x) = f (x), � > 0, x ∈ �,

lim
x→∞ U(x) = U(0) = 0. (7)

We may derive a weighted variational formulation of (7), and then solve it by the standard Laguerre
spectral method as in [6]. But in this paper, we prefer a natural (not weighted) variational formulation,
and solve it by using the Laguerre functions as in [11], which is easier to match the multidomain Legendre
pseudospectral approximation for refining numerical results. To do this, let a�(u, v) = (�xu, �xv)� +
�(u, v)�. A weak formulation of (7) is to find U(x) ∈ 0H

1(�) such that

a�(U, v) = (f, v)�, ∀v ∈ 0H
1(�). (8)

If f (x) ∈ H−1(�), then (8) has a unique solution U(x) ∈ 0H
1(�).

Next, Let aM,�(u, v) = (�xu, �xv)M,� + �(u, v)M,�. The numerical solution u0
M(x) ∈ 0SM(�) is

uniquely determined by

aM,�(u0
M, �) = (f, �)M,�, � ∈ 0SM(�). (9)

We shall use the multidomain Legendre pseudospectral method to refine u0
M(x). Let �k = (ak, bk) ⊂

(0, ∞), 1�k�K , such that �k∩�l=] for k 
= l.The endpointsak andbk are some Laguerre–Gauss–Radau
nodes usually. But in this case, the lengths of (ak, bk) might be very different, since the distribution of
the interpolation nodes is not uniform, see [12]. In particular, for large M, the length of (ak, bk) increases
very fast as k increases. Thus, for refining numerical results on �k , we should split �k into Jk subintervals
I k
j = (dk

j−1, d
k
j ) where ak = dk

0 < dk
1 < · · · < dk

Jk−1 < dk
Jk

= bk . Their lengths hk
j = dk

j − dk
j−1.
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In each I k
j , we use the Legendre–Gauss–Lobatto interpolation with the nodes x

k,j
i =(hk

j /2)x̂i +(dk
j−1+

dk
j )/2 and the weights �

k,j
i =(2/hk

j )�̂i , 0�i�Nk
j . For anyu, v ∈ C(�̄k), we define the following discrete

inner product and norm on each I k
j ,

(u, v)Nk
j ,I k

j
=

Nk
j∑

i=0

uk,j (x
k,j
i )vk,j (x

k,j
i )�

k,j
i , ‖v‖Nk

j ,I k
j

= (v, v)
1/2
Nk

j ,I k
j

.

Further, let Nk = (Nk
1 , Nk

2 , . . . , Nk
Jk

), and define the discrete inner product and norm on �k by

(u, v)Nk,�k
=

Jk∑
j=1

(u, v)Nk
j ,I k

j
, ‖v‖Nk,�k

= (v, v)
1/2
Nk,�k

.

For any fixed �k , we take the approximation spaces as

VNk
(�k) = {v ∈ H 1(�k)|vk,j ∈ PNj

(I k
j ), 1�j �Jk}, V0

Nk
(�k) = VNk

(�k) ∩ H 1
0 (�k).

Let vk,j := v|I k
j
. For any v ∈ C(�̄k), the multidomain Legendre–Gauss–Lobatto interpolantIL,Nk

v(x) ∈
VNk

(�k) is defined by

(IL,Nk
v)|I k

j
(x

k,j
i ) = vk,j (x

k,j
i ), 0�i�Nk

j . (10)

If � · �|I k
j

∈ PNj−1(I
k
j ), 1�j �Jk , then by (5),

(�, �)Nk,�k
= (�, �)�k

, ∀� · � ∈ V2Nk−1(�k). (11)

We now derive the algorithm for refining numerical results. Let Uk := U |�k
, f k := f |�k

and

Wk(x) = bk − x

bk − ak

Uk(ak) + x − ak

bk − ak

Uk(bk), x ∈ �k .

Due to (7), Uk(x) ∈ H 1(�k) satisfies

a�k
(Uk, v) = (f k, v)�k

, ∀v ∈ H 1
0 (�k). (12)

Equivalently, it is to seek Uk∗ (x) = Uk(x) − Wk(x) ∈ H 1
0 (�k) such that

a�k
(Uk∗ , v) = (f k, v)�k

− a�k
(Wk, v), ∀v ∈ H 1

0 (�k). (13)

Next, let uk
Nk

be the approximation of Uk on �k , and

wk
M(x) = bk − x

bk − ak

u0
M(ak) + x − ak

bk − ak

u0
M(bk), x ∈ �k .
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Let aNk,�k
(u, v) = (�xu, �xv)Nk,�k

+ �(u, v)Nk,�k
. Then the multidomain Legendre pseudospectral ap-

proximation of (12) is to find uk
Nk

(x) ∈ VNk
(�k) such that

aNk,�k
(uk

Nk
, �) = (f k, �)Nk,�k

, ∀� ∈ V0
Nk

(�k). (14)

Equivalently, it is to seek uk
Nk,∗(x) = uk

Nk
(x) − wk

M(x) ∈ V0
Nk

(�k) such that

aNk,�k
(uk

Nk,∗, �) = BNk,�k
(f, �), ∀� ∈ V0

Nk
(�k), (15)

where BNk,�k
(f, �) := (f k, �)Nk,�k

− aNk,�k
(wk

M, �).

3. Implementation and numerical results

We first consider the implementation of (9). Let L̂l(x)=�1/2(x)Ll(x) and �̂l(x)=L̂l(x)−L̂l+1(x).
Since L̂l(0) = 1 for all l, we have that 0SM(�) = span{�̂0, �̂1, . . . , �̂M−1}.

Now, let u0
M(x)=∑M−1

l=0 û0
l �̂l(x) and u = (û0

0, û
0
1, . . . , û

0
M−1)

T. Also set A = (ail)i,l=0,1,...,M−1, B =
(bil)i,l=0,1,...,M−1 and r = (r0, r1, . . . , rM−1)

T, with the elements ail = (�x �̂l , �x �̂i)�, bil = (�̂l , �̂i)�

and ri = (f, �̂i)M,�. Due to (1), we have �x �̂l(x) = 1
2 (L̂l(x) + L̂l+1(x)). This with the orthogonality of

Laguerre polynomials leads to ail = ali = 1
2�i,l + 1

4�i−1,l . It is easy to show that bil = bli = 2�i,l − �i−1,l .
Finally, we obtain the matrix form of scheme (9) as (A + �B)u = r. This system is symmetric and
tridiagonal.

We now turn to the implementation of (15). As in [8], we let P0
Nk

j

(I k
j ) := PNk

j
(I k

j ) ∩ H 1
0 (I k

j ), and

L̃
k,j
l (x) = Ll(x̂) where x̂ = (2/hk

j )x − (dk
j−1 + dk

j )/hk
j , x ∈ I k

j . We define the local polynomials such
that for 1�k�K, 1�j �Jk and 0� l�Nj − 2,

�̃
k,j
l (x) =

{
c
k,j
l (L̃

k,j
l (x) − L̃

k,j
l+2(x)), x ∈ Ī k

j , c
k,j
l = 1

2

√
hk

j/(2l + 3),

0, x ∈ �k\Ī k
j .

(16)

Clearly, the set {̃�k,j
l }N

k
j −2

l=0 forms a basis of P0
Nk

j

(I k
j ). Next, we define the subinterval matching functions

as �̃
k,0

(x) = �̃
k,Jk

(x) ≡ 0, and for 1�j �Jk − 1,

�̃
k,j

(x) =

⎧⎪⎪⎨⎪⎪⎩
(L̃

k,j
0 (x) + L̃

k,j
1 (x))/2, x ∈ Ī k

j ,

(L̃
k,j+1
0 (x) − L̃

k,j+1
1 (x))/2, x ∈ Ī k

j+1,

0, x ∈ �k\Ī k
j ∪ Ī k

j+1.

(17)

Obviously �̃
k,j

(dk
j ) = 1 and supp �̃

k,j ⊂ [dk
j−1, d

k
j+1].



B.-Y. Guo, L.-L. Wang / Journal of Computational and Applied Mathematics 190 (2006) 304–324 309

Now let �k
j = uk

Nk,∗(d
k
j ). We expand the numerical solution uk

Nk,∗(x) as

uk
Nk,∗(x) =

Jk∑
j=1

vk,j (x) +
Jk−1∑
j=1

�k
j �̃

k,j
(x), vk,j (x) =

Nk
j −2∑
l=0

v̂
k,j
l �̃

k,j
l (x). (18)

Taking � = �̃
k,j
i , 0�i�Nk

j − 2 in (15) and using (16)–(18), we obtain that

aNk,�k
(vk,j , �̃

k,j
i ) = BNk,�k

(f, �̃
k,j
i ) − �k

j−1aNk,�k
(̃�

k,j−1
, �̃

k,j
i ) − �k

j aNk,�k
(̃�

k,j
, �̃

k,j
i ). (19)

System (19) is the basic algorithm for refining numerical results in which all unknown variables are
coupled. So it is not convenient for actual computation. To remedy this deficiency, we split this system into

four subsystems. Firstly, we try to find the three functions, v
k,j
m (x) =∑Nk

j −2

l=0 v̂
k,j
m,l�̃

k,j
l (x), m = 1, 2, 3,

such that

aNk,�k
(v

k,j
1 , �̃

k,j
i ) = BNk,�k

(f, �̃
k,j
i ), 0�i�Nk

j − 2, (20)

aNk,�k
(v

k,j
2 , �̃

k,j
i ) = −aNk,�k

(̃�
k,j−1

, �̃
k,j
i ), 0�i�Nk

j − 2, (21)

aNk,�k
(v

k,j
3 , �̃

k,j
i ) = −aNk,�k

(̃�
k,j

, �̃
k,j
i ), 0�i�Nk

j − 2. (22)

Obviously Eqs. (20)–(22) can be solved separately in each subinterval I k
j . In other words, all the compu-

tations can be carried out in parallel. Moreover by (19)–(22),

vk,j (x) = v
k,j
1 (x) + �k

j−1v
k,j
2 (x) + �k

j v
k,j
3 (x), 1�j �Jk . (23)

Inserting (23) into (18), we deduce that

uk
Nk,∗(x) =

Jk−1∑
j=1

(v
k,j+1
2 (x) + v

k,j
3 (x) + �̃

k,j
(x))�k

j +
Jk∑

j=1

v
k,j
1 (x). (24)

Thus it remains to evaluate the unknown values {�k
j }Jk−1

j=1 . For this purpose, we take �= �̃
k,i

, 1�i�Jk −1
in (15), and obtain that

Jk−1∑
j=1

aNk,�k
(v

k,j+1
2 + v

k,j
3 + �̃

k,j
, �̃

k,i
)�k

j = BNk,�k
(f, �̃

k,l
) −

Jk∑
j=1

aNk,�k
(v

k,j
1 , �̃

k,i
). (25)

Finally we resolve (25) and obtain the refined solution uk
Nk,∗(x) by (24).

We can also derive the simple matrix forms for subsystems (20)–(22).
We now present some numerical results. We take the exact solution U(x) = e−(x−	0)

2/h0 with h0 > 0.
As shown in Fig. 1, the interested information of U(x) is mainly contained in the subinterval 
(	0, h0)=
[	0 − 3

√
h0/2, 	0 + 3

√
h0/2].
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Fig. 1. U(x) vs. u0
32(x).

We take � = 1, 	0 = 95 and h0 = 20, and use (9) with M = 32 to solve (7) numerically. In Fig. 1,
we plot the exact solution U(x) by solid line, the numerical solution u0

M(x) by dash dotted line, and the
numerical solution at the interpolation nodes by ‘o’. Clearly u0

M(x) fits U(x) very well at the nodes. But
the errors are very big for large x which are not nodes. So the pure modified Laguerre pseudospectral
method can not identify the interested structure of exact solution in detail.

We next refine the numerical solution u0
M(x). Since the numerical gradients between x25 and x32 are

very big, we take K = 1, Jk = 1, a1 = x25 and b1 = x32. We use (15) with N1
1 = 32 to solve (13) in

the subinterval [a1, b1], with the approximate boundary values u0
M(a1) and u0

M(b1). In Fig. 2, we plot
the exact solution U(x) by solid line, the numerical solution u0

M(x) by dash dotted line, and the refined
numerical solution u1

32(x) by dotted line. Clearly, the refined numerical result fits the exact solution very
well, even for large x which are not the interpolation nodes. In fact we cannot distinguish U(x) and u1

32(x)

in Fig. 2.
The proposed method is also suitable for solutions with several peaks. For instance, we consider the

exact solution as U(x) = ∑3
j=0 e−(x−	j )2/hj , hj > 0. We take 	0 = 20, 	1 = 100, 	2 = 140, 	3 = 180

and hj = 10, j = 0, 1, 2, 3, and use (9) with M = 64 to solve (7) numerically. In Fig. 3, we plot the exact
solution U(x) by solid line, the numerical solution u0

M(x) by dash dotted line, and the numerical solution
at interpolation nodes by ‘o’. Fig. 3 indicates again that for large x, the numerical solution only fits the
exact solution well at the nodes.

We now refine the numerical solution u0
64(x). Since the numerical gradients and residuals are very

big between x44 and x64, we take K = 1, Jk = 2, a1 = x44, b1 = x64, d
1
0 = a1, d

1
1 = (b1 − a1)/2 and

d1
2 = b1. We use (15) with N1

1 =N1
2 = 45 to resolve (13) in the subinterval [a1, b1], with the approximate
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Fig. 2. U(x), u0
32(x) vs. u1

32(x).
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Fig. 3. U(x) vs. u0
64(x).
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Fig. 4. U(x) vs. u1
45,45(x).

boundary values u0
64(a1) and u0

64(b1). In Fig. 4, we plot the exact solution U(x) by solid line, and the
refined numerical solution u1

45,45(x) by dash dotted line. Obviously, the refined numerical solution fits
the exact solution very well.

4. Some approximation results

4.1. Modified Laguerre interpolation

We first consider the orthogonal projection PM : L2
�(�) → PM(�), defined by

(PMv − v, �)�,� = 0, ∀� ∈ PM(�).

To describe approximation result, we introduce the weighted Sobolev space Ar(�). Let �r (x) = xre−x .
For integer r �0, the semi-norm and norm of Ar(�) are given by |v|Ar,� = ‖�r

xv‖�r ,� and ‖v‖Ar,� =
(
∑r

k=0 |v|2
Ak,�

)1/2, respectively. For real r > 0, we define the space Ar(�) and its norm by space inter-
polation. We can prove the following result in the same manner as in [13].

Theorem 1. If v ∈ Ar(�) and integer r ���0, then ‖PMv − v‖A�,� �cM(�−r)/2|v|Ar,�.

Theorem 2. If v ∈ H 1
�(�), �xv ∈ Ar−1(�) and integer r �1, then

|PMv − v|1,�,� �cM1−r/2|�xv|Ar−1,�.
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Proof. We have

|PMv − v|1,�,� �‖PM�xv − �xv‖�,� + ‖PM�xv − �xPMv‖�,�.

By Theorem 1, ‖PM�xv − �xv‖�,� �cM1/2−r/2|�xv|Ar−1,�. Thus it suffices to estimate ‖PM�xv −
�xPMv‖�,�. Let �xv(x) =∑∞

l=0
ˆ̂vlLl(x). By (1),

�xv(x) =
∞∑
l=0

ˆ̂vl(�xLl(x) − �xLl+1(x)) =
∞∑
l=1

( ˆ̂vl − ˆ̂vl−1)�xLl(x).

On the other hand, �xv(x) = ∑∞
l=1 v̂l�xLl(x). Therefore v̂l = ˆ̂vl − ˆ̂vl−1, and so ˆ̂vl = −∑∞

p=l+1 v̂p.

Moreover, (1) implies that �xLl(x) = −∑l−1
p=0 Lp(x). The above statements lead to that

PM�xv(x) = −
M∑
l=0

Ll(x)

⎛⎝ ∞∑
p=l+1

v̂p

⎞⎠ , �xPMv(x) = −
M−1∑
l=0

Ll(x)

⎛⎝ M∑
p=l+1

v̂p

⎞⎠ .

Thus

PM�xv(x) − �xPMv(x) = −
(

M∑
l=0

Ll(x)

)⎛⎝ ∞∑
p=M+1

v̂p

⎞⎠= ˆ̂vM

M∑
l=0

Ll(x).

Accordingly, we use Theorem 1 to obtain that

‖PM�xv − �xPMv‖2
�,� = ˆ̂v2

M

M∑
l=0

‖Ll‖2
�,� �cM ˆ̂v2

M �cM‖PM−1v − v‖2
�,� �cM2−r |�xv|2

Ar−1,�.

This completes the proof. �

We next consider the orthogonal projection 0P
1
M : 0H

1
�(�) → 0PM(�), defined by

(�x(0P
1
Mv − v), �x�)�,� = 0, ∀�∈0PM(�).

Lemma 1. If v ∈ 0H
1(�), �xv ∈ Ar−1(�) and integer r �1, then

‖0P
1
Mv − v‖1,�,� �cM1/2−r/2|�xv|Ar−1,�.

Proof. Let �(x) = ∫ x

0 PM−1�yv(y) dy. By projection theorem and Theorem 1,

|0P 1
Mv − v|1,�,� � |� − v|1,�,� = ‖PM−1�xv − �xv‖�,� �cM1/2−r/2|�xv|Ar−1,�.

According to Lemma 2.2 of [6], ‖v‖�,� �2|v|1,�,� for any v ∈ 0H
1
�(�). A combination of the above two

estimates leads to the desired result. �

We now derive an important result on the modified Laguerre approximation.
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Theorem 3. For any v ∈ 0H
1(�), let 0P̄

1
Mv(x) = e−x/2

0P
1
M(ex/2v(x)). Then the projector 0P̄

1
M :

0H
1(�) → 0SM(�) satisfies

(�x(0P̄
1
Mv − v), �x�)� + 1

4(0P̄
1
Mv − v, �)� = 0, ∀� ∈ 0SM(�). (26)

Moreover, for integer r �1,

‖0P̄
1
Mv − v‖1,� �cM1/2−r/2|�x(e

x/2v)|Ar−1,�. (27)

Proof. Result (26) comes from Lemma 3.2 of [11]. Next, by Lemmas 1 and 2.2 of [6],

|0P̄ 1
Mv − v|1,� � 1

2‖0P
1
M(ex/2v) − ex/2v‖�,� + |0P 1

M(ex/2v) − ex/2v|1,�,�

�2|0P 1
M(ex/2v) − ex/2v|1,�,� �cM1/2−r/2|�x(e

x/2v)|Ar−1,�. (28)

Furthermore, by the definition of 0P̄
1
M ,

‖0P̄
1
Mv − v‖� = ‖0P

1
M(ex/2v) − ex/2v‖�,� �2|0P 1

M(ex/2v) − ex/2v|1,�,�. (29)

A combination of (28) and (29) leads to the desired result. �

In the end of this subsection, we deal with the interpolations IL,M and ĨL,M , respectively. We first
study the stability of the interpolation IL,M .

Lemma 2. For any v ∈ H 1
�(�) ∩ A1(�),

‖IL,Mv‖�,� �c(‖v‖�,� + ‖v‖1/2
�,�|v|1/2

1,�,� + (ln M)1/2‖v‖A1,�).

Proof. We have ‖IL,Mv‖2
�,�=AM +BM where AM =∑0�xj �1 v2(xj )�j and BM =∑xj>1 v2(xj )�j .

As shown in the proof of Lemma 2.1 of [14], for any v ∈ H 1
�(�),

‖e−x/2v‖L∞(�)�‖v‖�,� + √
2‖v‖1/2

�,�|v|1/2
1,�,�.

Since
∑M

j=0 �j = 1, we deduce that

AM �‖v‖2
L∞(0,1)

∑
0�xj<1

�j �c‖e−x/2v‖2
L∞(�)�c(‖v‖2

�,� + 2‖v‖�,�|v|1,�,�).

Next, let L
(1)
l (x) be the generalized Laguerre polynomial of degree l, i.e., L

(1)
l (x) = 1/l! ex/xdl/

dxl(e−xxl+1). Denote by �j , 1�j �M the zeros of L
(1)
M (x), arranged in increasing order. Since

�xLM+1(x) = −L
(1)
M (x)(see [12]), we have xj = �j , 1�j �M . Moreover by the properties of the
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Laguerre–Gauss and Laguerre–Gauss–Radau quadratures (see [12]),

�j = 1

�x(x�xLM+1(x))|x=xj

∫
�

x�xLM+1(x)

x − xj

�(x) dx

= 1

�x(xL
(1)
M (x))|x=xj

∫
�

xL
(1)
M (x)

x − xj

�(x) dx

= 1

�j�xL
(1)
M (�j )

∫
�

L
(1)
M (x)

x − �j

x�(x) dx = �−1
j j .

By (2.4) and (2.7) of [10], we know that j �c�
3/2
j e−�j (4M−�j )

−1/2 and �j+1−�j��
1/2
j (4M−�j )

−1/2.

Moreover, we have from Lemma 2.6 of [14] that ‖x1/2e−x/2v‖2
L∞(0,∞)�2‖v‖2

A1,�
. Thus

BM =
∑
xj>1

v2(xj )�
−1
j j �c

∑
xj>1

v2(xj )�
1/2
j e−�j (4M − �j )

−1/2

�c‖v‖2
A1,�

∑
xj>1

�
−1/2
j (4M − �j )

−1/2�c‖v‖2
A1,�

∑
xj>1

�−1
j (�j+1 − �j )

�c‖v‖2
A1,�

∫ M

1
�−1 d��c ln M‖v‖2

A1,�.

The proof is completed. �

Theorem 4. If v ∈ Ar(�), �xv ∈ Ar−1(�) and integer r �1, then for 0���1,

‖IL,Mv − v‖�,�,� �c(ln M)1/2M�+1/2−r/2(|v|Ar,� + |�xv|Ar−1,�).

Proof. By Theorems 1 and 2 and Lemma 2,

‖IL,Mv − PMv‖�,� = ‖IL,M(PMv − v)‖�,�

�c(‖PMv − v‖�,� + ‖PMv − v‖1/2
�,�|PMv − v|1/2

1,�,�

+ (ln M)1/2‖PMv − v‖A1,�)

�c(M−r/2|v|Ar,� + M1/2−r/2|v|1/2
Ar,�|�xv|1/2

Ar−1,�

+ (ln M)1/2M1/2−r/2|v|Ar,�).

Therefore

‖IL,Mv − v‖�,� �‖IL,Mv − PMv‖�,� + ‖PM − v‖�,�

�c(ln M)1/2M1/2−r/2(|v|Ar,� + |�xv|Ar−1,�).
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Next, for any � ∈ PM(�), ‖�x�‖�,� �cM‖�‖�,� (see [2]). This with Theorem 2 leads to that

|IL,Mv − v|1,�,� � |IL,Mv − PMv|1,�,� + |PMv − v|1,�,�

�cM(‖IL,Mv − v‖�,� + ‖PMv − v‖�,�) + |PMv − v|1,�,�

�c(ln M)1/2M3/2−r/2(|v|Ar,� + |�xv|Ar−1,�).

Finally we use space interpolation to complete the proof. �

We now derive an important result on the modified Laguerre interpolation. We introduce the space
Br(�). For integer r �0, its norm is given by

‖v‖Br,� =
(

r∑
k=0

‖x(r−1)/2(x + 1)1/2�r
xv‖2

�

)1/2

.

For any real r > 0, we define the space Br(�) by space interpolation.

Theorem 5. For any v ∈ Br, r �1 and 0���1,

‖ĨL,Mv − v‖�,� �c(ln M)1/2M�+1/2−r/2‖v‖Br,�. (30)

Proof. Let u(x) = ex/2v(x). Then ĨL,Mv(x) = e−x/2IL,Mu(x). By Theorem 4,

‖ĨL,Mv − v‖� = ‖IL,Mu − u‖�,� �c(ln M)1/2M1/2−r/2(|u|Ar,� + |�xu|Ar−1,�)

�c(ln M)1/2M1/2−r/2‖v‖Br,�.

We can estimate |ĨL,Mv − v|1,� similarly. Finally we use space interpolation to complete the proof. �

In the error estimations, we need an imbedding inequality. In fact, for any v ∈ H 1(�), we have that
v(x) → 0, a e. as x → ∞. Therefore

sup
x∈�̄

|v(x)|�√
2‖v‖1/2

� |v|1/2
1,�. (31)

4.2. Multidomain Legendre interpolation

We first derive some results on the Legendre approximation, which are more precise than those in
the existing literatures. Let P0

N(Î ) = {v ∈ PN(Î )|v(±1) = 0}. We introduce the orthogonal projections

P̂N , P̂ 1
N and P̂

1,0
N , defined by

(P̂Nv − v, �)
Î

= 0, ∀v ∈ L2(Î ), � ∈ PN(Î ),

(�xP̂
1
Nv − �xv, �x�)

Î
+ (P̂ 1

Nv − v, �)
Î

= 0, ∀v ∈ H 1(Î ), � ∈ PN(Î ),

(�xP̂
1,0
N v − �xv, �x�)

Î
= 0, v ∈ H 1

0 (Î ), � ∈ P0
N(Î ).
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Lemma 3. If v, (1 − x2)r/2�r
xv ∈ L2(Î ) and integer r �0, then

‖P̂Nv − v‖
Î
�cN−r‖(1 − x2)r/2�r

xv‖
Î
. (32)

Moreover, if v ∈ H �(Î ), (1 − x2)(r−1)/2�r
xv ∈ L2(Î ) and integer r �1, then for 0���1,

‖P̂ 1
Nv − v‖�,Î

�cN�−r‖(1 − x2)(r−1)/2�r
xv‖

Î
. (33)

Proof. The first result comes from [1,5]. Next, due to [5, Lemma 2.3], for any v ∈ H 1(Î ) with v(0)=0, we
have ‖v‖

Î
�c|v|1,Î

. Let �(x)=∫ x

−1 P̂N−1�yv(y) dy+	, where 	 is chosen in such a way that v(0)=�(0).
Then by projection theorem and (32),

‖P̂ 1
Nv − v‖1,Î

�‖� − v‖1,Î
�c|� − v|1,Î

�c‖P̂N−1�xv − �xv‖
Î
�cN1−r‖(1 − x2)(r−1)/2�r

xv‖
Î
.

This leads to (33) with �=1. Moreover, we can derive (33) with �=0 by the previous result and a duality
argument as usual. Finally, result (33) with 0 < � < 1 follows from space interpolation. �

Lemma 4. If v ∈ H 1
0 (Î ), (1 − x2)(r−1)/2�r

xv ∈ L2(Î ) and integer r �1, then for any 0���1,

‖P̂ 1,0
N v − v‖�,Î

�cN�−r‖(1 − x2)(r−1)/2�r
xv‖

Î
.

Proof. We first prove the desired result with � = 1. Let

v0
N(x) =

∫ x

−1

(
P̂N−1�yv(y) − 1

2

∫
Î

P̂N−1�zv(z) dz

)
dy.

Clearly v0
N ∈ P0

N(Î ). By the Poincaré inequality, projection theorem and (32),

‖P̂ 1,0
N v − v‖1,Î

�c|P̂ 1,0
N v − v|1,Î

�c|v0
N − v0

N |1,Î

�c

(
‖P̂N−1�xv − �xv‖

Î
+
∣∣∣∣∫

Î

(P̂N−1�xv(x) − �xv(x)) dx

∣∣∣∣)
�c‖P̂N−1�xv − �xv‖

Î
�cN1−r‖(1 − x2)(r−1)/2�r

xv‖
Î
. (34)

Next, using (34) and a duality argument as in the proof of Lemma 3.16 of [7], we reach that ‖P̂ 1,0
N v −

v‖
Î
�cN−r‖(1−x2)(r−1)/2�r

xv‖
Î
. Finally, the desired result follows from the above statements and space

interpolation. �

Lemma 5. If v ∈ H 1(Î ), (1 − x2)(r−1)/2�r
xv ∈ L2(Î ) and integer r �1, then

‖ÎL,Nv − v‖
Î
�cN−r‖(1 − x2)(r−1)/2�r

xv‖
Î
.

Proof. Let

v∗
N(x) = P̂

1,0
N (v(x) − v∗(x)) + v∗(x), v∗(x) = 1 − x

2
v(−1) + 1 + x

2
v(1).



318 B.-Y. Guo, L.-L. Wang / Journal of Computational and Applied Mathematics 190 (2006) 304–324

Clearly, v∗
N(x) ∈ PN(Î ) and v∗

N(±1) = v(±1). Moreover, |v∗|1,Î
= 1

2 |v(−1) − v(1)|�c|v|1,Î
. Thus, we

have from Lemma 4 that for 0���1�r ,

‖v∗
N − v‖�,Î

= ‖P̂ 1,0
N (v − v∗) − (v − v∗)‖�,Î

�cN�−r‖(1 − x2)(r−1)/2�r
x(v − v∗)‖

Î
�cN�−r‖(1 − x2)(r−1)/2�r

xv‖
Î
. (35)

Since ÎL,Nv∗
N = v∗

N , we use Lemma 4.9 of [7] and (35) to obtain that

‖ÎL,Nv − v∗
N‖

Î
= ‖ÎL,N(v∗

N − v)‖
Î
�c(‖v∗

N − v‖
Î

+ N−1‖(1 − x2)1/2�x(v
∗
N − v)‖

Î
)

�cN−r‖(1 − x2)(r−1)/2�r
xv‖

Î
.

The above with (35) leads to the desired result. �

Finally, we present the main results of this subsection. Define the affine mapping

v(x) = v̂(x̂), x = hk
j

2
x̂ + dk

j−1 + dk
j

2
, x̂ ∈ Î , x ∈ I k

j . (36)

Let �k
j (x)= 1

4(x−dk
j−1)(d

k
j −x)(hk

j )
−2 �1. By (36), we have that 1− x̂2=�k

j (x) and �x̂ v̂(x̂)= 1
2hk

j�xv(x).
Thus we have that

‖(1 − x̂2)(r−1)/2�r
x̂
v̂‖

Î
�c(hk

j )
r−1/2‖(�k

j )
(r−1)/2�r

xv‖I k
j
. (37)

For description of the multidomain Legendre approximation, we introduce several piecewise Sobolev
spaces. Let vk,j (x)= v(x)|I k

j
, and define Ĥ 1(�k)={v|vk,j (x) ∈ H 1(I k

j ), 1�j �Jk}, equipped with the

following norm and semi-norm

‖v‖
Ĥ 1(�k)

=
⎛⎝ Jk∑

j=0

‖vk,j‖2
H 1(I k

j )

⎞⎠1/2

, |v|
Ĥ 1(�k)

=
⎛⎝ Jk∑

j=0

‖�xv
k,j‖2

I k
j

⎞⎠1/2

.

We also define the spaces H̄ r(�k)(r �0) and H̃ r(�k)(r �1). For integer r, their semi-norms are given by

|v|H̄ r (�k)
=
⎛⎝ Jk∑

j=1

‖(�k
j )

r/2�r
xv

k,j‖2
I k
j

⎞⎠1/2

, |v|H̃ r (�k)
=
⎛⎝ Jk∑

j=1

‖(�k
j )

(r−1)/2�r
xv

k,j‖2
I k
j

⎞⎠1/2

.

For any real r �0, we define these spaces by space interpolation.
Next, we introduce the operators P̃Nk

: L2(�k) → VNk
(�k) and P̃ 1

Nk
: H̃ 1(�k) → VNk

(�k), defined
by

(P̃Nk
v)|I k

j
(x) = (P̃Nk

v)k,j = P̂Nk
j
v̂k,j (x̂), (P̃ 1

Nk
v)| I k

j
(x) = (P̂ 1

Nk
j

v̂k,j )(x̂), 1�j �Jk .

Let h̄k = maxj∈Jk
{hk

j · (Nk
j )−1}. We have the following important result.

Theorem 6. For any v ∈ H̄ r(�k) and integer r �0,

‖P̃Nk
v − v‖�k

�ch̄r
k|v|H̄ r (�k)

. (38)
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For any v ∈ H̃ r(�k) and integer r �1,

‖P̃ 1
Nk

v − v‖�k
+ h̄k|P̃ 1

Nk
v − v|

Ĥ 1(�)
�ch̄r

k|v|H̄ r (�k)
. (39)

Proof. By using (32), (36) and (37), we verify that

‖P̃Nk
v − v‖2

�k
=

Jk∑
j=1

‖(P̃Nk
v)k,j − vk,j‖2

I k
j

�c

Jk∑
j=1

hk
j‖P̂Nk

j
v̂k,j − v̂k,j‖2

Î

�c

J∑
j=1

hk
j (N

k
j )−2r‖(1 − x̂2)r/2�r

x̂
v̂k,j‖2

Î

�c

J∑
j=1

hk
j (N

k
j )−2r (hk

j )
2r−1‖(�k

j )
r/2�r

xv
k,j‖2

I k
j

�ch̄2r
k |v|2

H̄ r (�k)
. (40)

We can use (34) to prove the second result similarly. �

The main result on the multidomain Legendre interpolation IL,Nk
is stated below.

Theorem 7. For any v ∈ H̃ r(�k) and integer r �1, we have ‖IL,Nk
v − v‖�k

�ch̄r
k|v|H̃ r (�k)

.

Proof. By Definitions (6) and (10), we find that ( ̂IL,Nk
v)k,j = ̂IL,Nk

v|I k
j

= ÎL,Nk
j
v̂k,j . In view of this

fact, we can use Lemma 5 and a similar argument as in the derivation of (40) to obtain the desired result.
�

In numerical analysis, we also need the following results.

Lemma 6. For any � ∈ VNk
(�k),

‖�‖�k
�‖�‖Nk,�k

�
√

3‖�‖�k
. (41)

Moreover, for any v ∈ H̃ r(�k) and integer r �1,

|(v, �)Nk,�k
− (v, �)�k

|�ch̄r
k|v|H̃ r (�k)

‖�‖�k
, ∀� ∈ VNk

(�k). (42)

Proof. The proof of the first result is simple. Next, by (11), (38), Theorem 7 and (41),

|(v, �)�k
− (v, �)Nk,�k

|� |(v, �)�k
− (P̃Nk−1v, �)�k

| + |(P̃Nk−1v, �)�k
− (IL,Nk

v, �)Nk,�k
|

�(‖P̃Nk−1v − v‖�k
+ ‖P̃Nk−1v − IL,Nk

v‖Nk,�k
)‖�‖�k

�(2‖P̃Nk−1v − v‖�k
+ ‖IL,Nk

v − v‖�k
)‖�‖�k

�ch̄r
k|v|H̃ r (�k)

‖�‖�k
. �
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5. Error estimation

In this section, we prove the convergence of the mixed pseudospectral method proposed in Section 2.
We first consider (9).

Theorem 8. Let U(x) and u0
M(x) be the solutions of (8) and (9), respectively. If U ∈ 0H

1(�) ∩ Bs(�),
f ∈ B�(�) and ��1, then

‖u0
M − U‖1,� + sup

x∈�̄

|(u0
M − U)(x)|�c(M1/2−s/2‖U‖Bs,� + (ln M)1/2M1/2−�/2‖f ‖B�,�).

Proof. Let ĨL,M and 0P̄
1
M be the same as in (3) and (26). Set U∗

M = 0P̄
1
MU . By (8) and (26),

a�(U∗
M, �) = a�(U, �) + (� − 1

4)(U∗
M − U, �)�, ∀� ∈ S0

M(�).

Thus, by (2), (8) and (9),

a�(u0
M − U∗

M, �) = (1
4 − �)(U∗

M − U, �)� + (ĨL,Mf − f, �)�, � ∈ S0
M(�). (43)

Taking � = u0
M − U∗

M in (43) and using Theorems 3 and 5, we verify that

‖u0
M − U∗

M‖1,� �c(‖U∗
M − U‖1,� + ‖ĨL,Mf − f ‖�)

�c(M1/2−s/2‖U‖Bs,� + (ln M)1/2M1/2−�/2‖f ‖B�,�).

This with (31) leads to the desired result. �

We next deal with the convergence of (12).

Theorem 9. Let Uk(x) and uk
Nk

(x) be the solutions of (12) and (14), respectively. If U ∈ 0H
1(�) ∩

Bs(�), Uk ∈ H̃ r(�k), f ∈ B�(�), f k ∈ H̃ �′
(�k) with integers r �1, �′�0 and real numbers s, ��1,

then we have

‖uk
Nk

− Uk‖�k
+ |uk

Nk
− Uk|

Ĥ 1(�k)
�c∗

k(M
1/2−s/2‖U‖Bs,� + (ln M)1/2M1/2−�/2‖f ‖B�,�

+ h̄
r−1/2
k |Uk|H̃ r (�k)

+ h̄�′
k |f k|

H̃ �′
(�k)

),

where c∗
k is positive constant only depending on � and the length of �k .

Proof. Let Uk
Nk

= P̃ 1
Nk

Uk, Uk
Nk,∗(x) = Uk

Nk
(x) − Wk

Nk
(x), and

Wk
Nk

(x) = bk − x

bk − ak

Uk
Nk

(ak) + x − ak

bk − ak

Uk
Nk

(bk), x ∈ �k .
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Then by (13) and (15),

min(�, 1)‖uk
Nk,∗ − Uk

Nk,∗‖2
Ĥ 1(�k)

�aNk,�k
(uk

Nk,∗ − Uk
Nk,∗, u

k
Nk,∗ − Uk

Nk,∗)

= BNk,�k
(uk

Nk,∗ − Uk
Nk,∗) − aNk,�k

(Uk
Nk,∗, u

k
Nk,∗ − Uk

Nk,∗)
= (f k, uk

Nk,∗ − Uk
Nk,∗)Nk,�k

− aNk,�k
(wk

M, uk
Nk,∗ − Uk

Nk,∗)
− aNk,�k

(Uk
Nk,∗, u

k
Nk,∗ − Uk

Nk,∗) + a�k
(Uk∗ , uk

Nk,∗ − Uk
Nk,∗)

+ a�k
(Wk, uk

Nk,∗ − Uk
Nk,∗) − (f k, uk

Nk,∗ − Uk
Nk,∗)�k

.

Thus, we have that

min(�, 1)‖uk
Nk,∗ − Uk

Nk,∗‖Ĥ 1(�k)

� sup
�∈V0

Nk
� 
=0

|a�k
(Uk∗ , �) − aNk,�k

(Uk
Nk,∗, �)|

‖�‖
Ĥ 1(�k)

+ sup
�∈VNk

�
=0

|a�k
(Wk, �) − aNk,�k

(wk
M, �)|

‖�‖
Ĥ 1(�k)

+ sup
�∈VNk

� 
=0

|(f k, �)�k
− (f k, �)Nk,�k

|
‖�‖

Ĥ 1(�k)

. (44)

We now estimate the terms at the right-hand side of (44). Firstly, by the definitions of Uk∗ and Uk
Nk,∗,

a�k
(Uk∗ , �) − aNk,�k

(Uk
Nk,∗, �) = a�k

(Uk, �) − aNk,�k
(Uk

Nk
, �) + A1(�),

where A1(�) = aNk,�k
(Wk

Nk
, �) − a�k

(Wk, �). Moreover, thanks to (11) and Uk
Nk

= P̃ 1
Nk

Uk ,

aNk,�k
(Uk

Nk
, �) = (�xU

k
Nk

, �x�)�k
+ �(Uk

Nk
, �)Nk,�k

= (�xU
k, �x�)�k

+ (Uk, �)�k
+ �(Uk

Nk
, �)Nk,�k

− (Uk
Nk

, �)�k

= a�k
(Uk, �) + A2(�) + A3(�),

where A2(�)=�(Uk
Nk

, �)Nk,�k
−�(Uk, �)�k

and A3(�)=(Uk, �)�k
−(Uk

Nk
, �)�k

. The previous statements
imply that

|a�k
(Uk∗ , �) − aNk,�k

(Uk
Nk,∗, �)|� |A1(�)| + |A2(�)| + |A3(�)|. (45)

So it suffices to estimate |Aj(�)|, j = 1, 2, 3. By the Sobolev inequality, for any v ∈ H 1(a, b),

max
x∈[a,b] |v(x)|�

(
1

b − a
+ 2

)1/2

‖v‖1/2
L2(a,b)

|v|1/2
H 1(a,b)

. (46)

In view of (11), (39) and (46), a direct calculation gives that

|A1(�)|�c∗
k(|(Uk

Nk
− Uk)(ak)| + |(Uk

Nk
− Uk)(bk)|)‖�‖

Ĥ 1(�k)

�c∗
k‖Uk

Nk
− Uk‖1/2

�k
|Uk

Nk
− Uk|1/2

Ĥ 1(�k)
‖�‖

Ĥ 1(�k)
�c∗

k h̄
r−1/2
k |Uk|H̃ r (�k)

‖�‖
Ĥ 1(�k)

.
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By (11) and Theorem 6,

|A2(�)|��|(Uk − P̃Nk−1U
k, �)�k

| + �|(P̃Nk−1U
k − Uk

Nk
, �)Nk,�k

|
�c(‖P̃Nk−1U

k − Uk‖�k
+ ‖P̃Nk−1U

k − Uk
Nk

‖�k
)‖�‖�k

�ch̄r
k|Uk|H̄ r (�k)

‖�‖�k
.

Using Theorem 6 again yields that |A3(�)|�ch̄r
k|Uk|H̄ r (�k)

‖�‖�k
. Substituting the estimates for |Aj(�)|

into (45), we assert that

|a�k
(Uk∗ , �) − aNk,�k

(Uk
Nk,∗, �)|�c∗

k h̄
r−1/2
k |Uk|H̃ r (�k)

‖�‖
Ĥ 1(�k)

. (47)

Next, by Theorem 8,

|aNk,�k
(wk

M, �) − a�k
(Wk, �)|�c∗

k(|(u0
M − Uk)(ak)| + |(u0

M − Uk)(bk)|)‖�‖
Ĥ 1(�k)

�c∗
k(M

1/2−s/2‖U‖Bs,� + (ln M)1/2M1/2−�/2‖f ‖B�,�)‖�‖
Ĥ 1(�k)

.

(48)

Moreover, (42) implies that

|(f k, �)�k
− (f k, �)Nk,�k

|�ch̄�′
k |f k|

H̃ �′
(�k)

‖�‖�k
. (49)

Inserting (47)–(49) into (44), we obtain that

‖uk
Nk,∗ − Uk

Nk,∗‖Ĥ 1(�k)
�c∗

k(M
1/2−s/2‖U‖Bs,� + (ln M)1/2M1/2−�/2‖f ‖B�,�

+ h̄
r−1/2
k |Uk|H̃ r (�k)

+ h̄�′
k |f k|

H̃ �′
(�k)

). (50)

Furthermore,

‖uk
Nk

− Uk‖�k
�‖Uk

Nk
− Uk‖�k

+ ‖uk
Nk

− Uk
Nk

‖�k

�‖Uk
Nk

− Uk‖�k
+ ‖uk

Nk,∗ − Uk
Nk,∗‖�k

+ ‖wk
M − Wk

Nk
‖�k

�‖Uk
Nk

− Uk‖�k
+ ‖uk

Nk,∗ − Uk
Nk,∗‖�k

+ c∗
k(|(u0

M − Uk)(ak)|
+ |(Uk

Nk
− Uk)(ak)| + |(u0

M − Uk)(bk)| + |(Uk
Nk

− Uk)(bk)|). (51)

Due to Uk
Nk

= P̃ 1
Nk

Uk , we can use Theorem 6 and (50) to estimate the first two terms at the right-hand side
of the above inequality, and estimate the last four terms as in the derivations of (48) and the upper-bound
of |A1(�)|. Accordingly

‖uk
Nk

− Uk‖�k
�c∗

k(M
1/2−s/2‖U‖Bs,� + (ln M)1/2M1/2−�/2‖f ‖B�,�

+ h̄
r−1/2
k |Uk|H̃ r (�k)

+ h̄�′
k |f k|

H̃ �′
(�k)

).

By replacing the norm ‖ · ‖�k
in (51) by | · |

Ĥ 1(�k)
, we can prove the second result similarly. �

Using the above theorem and (46), we have the same upper-bound for ‖uk
Nk

− Uk‖L∞(�k).
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6. Concluding discussions

In this paper, the modified Laguerre interpolation was first proposed for differential equations on the
half-line. It keeps the natural weight as in continuous version, and so simplifies computation and numerical
analysis. But like the standard Laguerre interpolation, the distance between the large interpolation nodes
increases fast as the mode N increases. So the numerical solutions can not describe the character of exact
solutions well, if the exact solution varies rapidly between the large nodes. To remedy this deficiency,
we used the multidomain Legendre pseudospectral method to refine numerical solution. In other words,
we reconstruct the numerical solutions by the multidomain Legendre pseudospectral approximation to
recover the accuracy on certain subintervals where the exact solutions vary rapidly. These two techniques
matched each other very well. Numerical results demonstrated the efficiency of this method, even for
oscillated solutions. This method can be also regarded as a cascade multigrid pseudospectral method on
the half line, which is also available for many other problems, such as nonlinear problems and exterior
problems.

We improved some results on the standard Laguerre interpolation, and first built up the results on the
modified Laguerre interpolation. These results are applied successfully to analyzing the proposed method.
In fact, they play important role in numerical analysis of pseudospectral methods for various problems
on unbounded domains.

We established some results on the multidomain Legendre pseudospectral approximation, which served
as one of basic tools in the error estimates. In particular, in the expressions of norms appearing in the
error estimates, there exist piecewise Jacobi-type weights which tend to zero as x goes to the endpoints
of subintervals. Thus the conditions on the smoothness of unknown functions and numerical solutions
at the endpoints of subintervals are weekened. The related results seem very appropriate for numerical
analysis of domain decomposition spectral method.
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