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SPECTRAL APPROXIMATION OF THE HELMHOLTZ EQUATION
WITH HIGH WAVE NUMBERS∗

JIE SHEN† AND LI-LIAN WANG†

Abstract. A complete error analysis is performed for the spectral-Galerkin approximation of
a model Helmholtz equation with high wave numbers. The analysis presented in this paper does
not rely on the explicit knowledge of continuous/discrete Green’s functions and does not require
any mesh condition to be satisfied. Furthermore, new error estimates are also established for multi-
dimensional radial and spherical symmetric domains. Illustrative numerical results in agreement
with the theoretical analysis are presented.
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1. Introduction. Time harmonic wave propagations appear in many applica-
tions, e.g., wave scattering and transmission, noise reduction, fluid-solid interaction,
and sea and earthquake wave propagation. In many situations, time harmonic wave
propagations are governed by the following Helmholtz equation in an exterior domain
with the so-called Sommerfeld radiation boundary condition:

− Δu− k2u = f in Rn\D,

u|∂D = 0, ∂ru− iku = o
(
‖x‖

1−n
2

)
as ‖x‖ → ∞,

(1.1)

where D is a bounded domain in Rn (n = 1, 2, 3), ∂r is the radial derivative, and k
is the nondimensional wave number: k = ωL

c , where ω is a given frequency, L is the
measure of the domain, and c is the sound speed in the acoustic medium.

Problem (1.1) presents a great challenge to numerical analysts and computational
scientists because (i) the domain is unbounded, and (ii) the solution is highly oscil-
latory (when k is large) and decays slowly. There is abundant literature on different
numerical techniques that have been developed for this problem, such as bound-
ary element methods [5], infinite element methods [11], methods using nonreflecting
boundary conditions [14], perfectly matched layers (PML) [2], among others. In many
of these approaches, an essential step is to solve the following problem:

− Δu− k2u = f in Ω := B\D,

u|∂D = 0, (∂ru− iku)|∂B = g,
(1.2)

where ∂r is the outward normal derivative, f, g are given data, and B is a sufficiently
large ball containing D.

The analysis and implementation of numerical schemes for (1.2) are challenging
when the wave number k is large. The Galerkin finite element method (FEM) for (1.2)
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in the one-dimensional case was first carried out in [8], where the well-posedness and
error estimates of the Galerkin FEM were established under the condition k2h � 1
using the Green’s function and an argument due to Schatz [21]. A refined analysis
for (1.2) in the one-dimensional case was performed in [18] (resp., [19]) for the h
version (resp., hp version) of FEM, where the well-posedness and error estimates were
established under the condition kh � 1 using the discrete Green’s functions. The
proofs in these works rely heavily on the use of explicit forms of continuous and/or
discrete Green’s functions. Hence, it is extremely complicated, if not impossible, to
extend to more general cases and higher space dimensions.

On the other hand, the error estimates in the aforementioned papers concluded
that the mesh condition k2h � 1 has to be verified for the error estimates to be
independent of k. This so-called pollution effect associated with high wave numbers
was discussed in detail in [1]. It is well known [13] that spectral methods are suitable
for problems with highly oscillatory solutions since they require fewer grid points
per wavelength compared with finite difference methods and FEMs. Furthermore,
since the convergence rate of spectral methods increases with the smoothness of the
solution, the effect of pollution on the convergence rate of spectral methods is much
less significant for smooth (but highly oscillatory) solutions. Hence, it is advantageous
to use a spectral method for the Helmholtz equation (1.2) with high wave numbers.

In a recent work [7], Cummings and Feng obtained sharp regularity results for
(1.2) in general two- or three-dimensional domains by using Rellich identities instead
of using representations in terms of double-layer potentials (cf. [10]). Their analysis
not only leads to sharper regularity results but also greatly simplifies the usual process
for obtaining a priori estimates and is applicable to general and multidimensional star-
shaped domains. Unfortunately, the technique used in [7] cannot be directly applied
to Galerkin FEMs because the finite element subspaces do not contain the special
test functions used in [7]. However, the situation is different in a spectral-Galerkin
method, for which the procedure in [7] can be applied.

We consider in this paper the spectral-Galerkin method for the Helmholtz equa-
tion with high wave numbers. In the next section, we set up a prototypical one-
dimensional Helmholtz equation which is derived from a multidimensional Helmholtz
equation, and we establish its well-posedness; then we derive a priori estimates which
are essential for the error analysis. In section 3, we introduce the spectral-Galerkin
method and use the same arguments for the space continuous problem to establish the
well-posedness and a priori estimates for the discrete problem; then we employ some
new optimal Jacobi approximation results to carry out a complete error analysis. In
section 4, we consider an alternative formulation which leads to an efficient numerical
algorithm and present some illustrative numerical results. We extend our analysis to
multidimensional domains in section 5.

We now introduce some notation. Let ω(x) be a given real weight function in
I = (a, b), which is not necessary in L1(I). We denote by L2

ω(I) a Hilbert space of
real or complex functions with inner product and norm

(u, v)ω =

∫
I

u(r)v(r)ω(r)dr, ‖u‖ω = (u, u)
1
2
ω ,

where v̄ is the complex conjugate of v. Then the weighted Sobolev spaces Hs
ω(I) (s =

0, 1, 2, . . . ) can be defined as usual with inner products, norms, and seminorms denoted
by (·, ·)s,ω, ‖ · ‖s,ω, and | · |s,ω, respectively. For real s > 0, Hs

ω(I) is defined by space
interpolation. The subscript ω will be omitted from the notation in the case ω ≡ 1.

For simplicity, we denote ∂l
rv = dlv

drl
, l ≥ 1.
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2. Model equation and a priori estimates. Since a global spectral method
is most efficient on regular domains, we shall restrict our attention to the following
special cases (b > a ≥ 0):

• One-dimensional case (1-D): D = (0, a) and B = (0, b).
• Two-dimensional case (2-D): D = {(x, y) : x2 + y2 < a2} and B = {(x, y) :
x2 + y2 < b2}.

• Three-dimensional case (3-D): D = {(x, y, z) : x2 + y2 + z2 < a2} and B =
{(x, y, z) : x2 + y2 + z2 < b2}.

In the 2-D (resp., 3-D) case, we expand functions in polar (resp., spherical) co-
ordinates, i.e., u =

∑
um(r)eimθ (resp., u =

∑
ulm(r)Yl,m(θ, φ), where {Yl,m(θ, φ)}

are the usual spherical harmonic functions). Hence, the problem (1.2) reduces, after
a polar (when n = 2) or spherical (when n = 3) transform, to a sequence (for each m
in 2-D and (l,m) in 3-D) of 1-D equations (for brevity, we use u to denote um/ulm,
and likewise for f and g, below):

− 1

rn−1
∂r(r

n−1∂ru) + dm
u

r2
− k2u = f, r ∈ (a, b), n = 1, 2, 3, m ≥ 0(2.1)

(dm = 0,m2,m(m+1) for n = 1, 2, 3, respectively), with suitable boundary conditions
to be specified below.

If a > 0, the coefficients rn−1 and r−2 in (2.1) are uniformly bounded, so (2.1)
with a > 0 is easier to handle than the case a = 0. Hence, for brevity of presentation,
we shall be concerned mainly with the case a = 0, while some results for a > 0 will
be stated without proof in section 5. On the other hand, the character of (2.1) does
not change with the change of variable: r → rb. Consequently, it suffices to consider
the problem (2.1) in I := (0, 1). The appropriate boundary conditions for (2.1) are
the pole conditions at r = 0,

u(0) = 0 if n = 1 and if n = 2 with m > 0,(2.2)

and the Robin boundary condition (derived from the Sommerfeld radiation boundary
condition) at r = 1,

u′(1) − iku(1) = g.(2.3)

We note that error estimates for finite element approximations to the Helmholtz
equation (2.1) with high wave numbers were derived in [8, 18, 19] for the 1-D case,
and in [9, 6] for 2-D cases and in [12] for the 1-D Bessel equation reduced from a 3-D
spherical domain, respectively.

Let N be the set of all nonnegative integers and let PN be the space of all poly-
nomials of degree at most N . We shall use c to denote a generic positive constant
independent of any function, the wave frequency k, the radial/spherical frequency m,
and the number of modes N . We use the expression A � B to mean that there exists
a generic positive constant c such that A ≤ cB.

2.1. Variational formulation and weak solution. Let us denote ωα(r) = rα

and ω(r) = r. We define a Hilbert space,

X := X(m,n) := {u ∈ H1
ωn−1(I) : u ∈ L2

ωn−3(I) for n = 2, 3; u satisfies (2.2)},

and a sesquilinear form on X ×X,

B(u, v) := Bmn(u, v) := (∂ru, ∂rv)ωn−1 + dm(u, v)ωn−3 − k2(u, v)ωn−1

− iku(1)v(1).
(2.4)
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Note that to lighten the presentation, we will often omit m and n from the notation.
Then the weak formulation of (2.1)–(2.2) is to find u ∈ X such that

B(u, v) = (f, v)ωn−1 + gv(1) ∀v ∈ X, n = 1, 2, 3.(2.5)

Theorem 2.1. Given f ∈ X ′, the problem (2.5) admits a unique weak solution.
Proof. This result with n = 1 was established in [8, 18]. Hence, we shall prove

only the cases with n = 2 and 3.
We first consider the uniqueness. It suffices to show that u = 0 is the only solution

of the problem (2.5) with f ≡ 0 and g = 0.
Taking v = u in (2.5) with f ≡ 0 and g = 0, we find from (2.4) that

B(u, u) = ‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 − k2‖u‖2
ωn−1 − ik|u(1)|2 = 0,(2.6)

which implies immediately u(1) = 0.
Next, let Jμ(r) be the Bessel function of the first kind of order μ. We recall that

φm(r;h, n) :=

⎧⎨⎩
Jm(hr), n = 2, r, h > 0,

1√
r
Jm+ 1

2
(hr), n = 3, r, h > 0,

(2.7)

is the solution of the modified Bessel equation (cf. [25]):

− 1

rn−1
∂r(r

n−1∂rφm) −
(
h2 − dm

r2

)
φm = 0, n = 2, 3, m ≥ 0.(2.8)

Let {ξj}∞j=1 be the set of all positive real zeros of the Bessel function Jm+n
2 −1(r).

Then {φm(r; ξj , n)}∞j=1 forms a complete orthogonal system in L2
ωn−1(I) (cf. [26]),

namely, ∫ 1

0

φm(r; ξj , n)φm(r; ξl, n)rn−1dr

=

∫ 1

0

Jm+n
2 −1(rξj)Jm+n

2 −1(rξl)rdr =
1

2
J2
m+n

2
(ξj)δj,l.

(2.9)

Since u ∈ L2
ωn−1(I), we can write

u(r) =

∞∑
j=1

ũ(j)
m φm(r; ξj , n),(2.10)

with

ũ(j)
m =

1

γ
(j)
m

∫ 1

0

u(r)φm(r; ξj , n)rn−1dr, γ(j)
m =

1

2
J2
m+n

2
(ξj).(2.11)

Thanks to u(1) = 0, we derive from (2.8) with h = ξj , (2.11), and integration by parts
that

0 = B(u, φm) =

∫ 1

0

u(r)
{
− 1

rn−1
∂r(r

n−1∂rφm) −
(
k2 − dm

r2

)
φm

}
rn−1dr

= (ξ2
j − k2)

∫ 1

0

u(r)φm(r; ξj , n)rn−1dr = (ξ2
j − k2)γ(j)

m ũ(j)
m .

(2.12)
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If Jm+n
2 −1(k) 
= 0 (i.e., k 
= ξj for all j ≥ 1), then (2.12) implies ũ

(j)
m = 0 for all

j. Accordingly, we have u ≡ 0 (cf. (2.10)).
On the other hand, if Jm+n

2 −1(k) = 0, then k = ξj0 for some j0 ≥ 1. We then

derive from (2.12) that ũ
(j)
m = 0 for all j 
= j0. Thus, by (2.10),

u(r) = ũ(j0)
m φm(r; ξj0 , n),(2.13)

and it remains to verify ũ
(j0)
m = 0. Due to u(1) = 0, integration by parts yields∫ 1

0

∂ru(r)∂r(r
m)rn−1dr = −dm

∫ 1

0

u(r)rm+n−3dr, n = 2, 3, m ≥ 0.(2.14)

Taking v = rm(∈ X) in (2.5), we obtain from (2.13) that

0 = B(u, rm) = ũ(j0)
m B(φm(·; ξj0 , n), rm)

= −k2ũ(j0)
m

∫ 1

0

φm(r; ξj0 , n)rm+n−1dr = −k2ũ(j0)
m

∫ 1

0

Jm+n
2 −1(rξj0)r

m+n
2 dr.

(2.15)

We recall that rμ, μ ≥ 0, can be expanded as (see [26, p. 581])

rμ =

∞∑
j=1

2Jμ(rξj)

ξjJμ+1(ξj)
, 0 ≤ r < 1.(2.16)

Inserting (2.16) with μ = m+ n
2 −1 into (2.15) and using the orthogonality (2.9) lead

to

0 = −k2ũ(j0)
m

∫ 1

0

Jm+n
2 −1(rξj0)r

m+n
2 dr = −k2ũ(j0)

m

Jm+n
2
(ξj0)

ξj0
.

This implies ũ
(j0)
m = 0. Hence, we have u ≡ 0, which implies the uniqueness.

To prove the existence, we note from (2.6) that the following G̊arding-type in-
equality holds:

Re(B(u, u)) ≥ ‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 − k2‖u‖2
ωn−1 .(2.17)

Since all the arguments above apply also to the dual problem of (2.5), by the clas-
sical Fredholm alternative argument (see, for instance, [20, p. 194]); problem (2.5)
either has a nontrivial solution with f ≡ 0 and g = 0 or it has at least one solution
for every f ∈ X ′. Since the uniqueness is proved, existence follows from the above
argument.

2.2. A priori estimates.
Theorem 2.2. If f ∈ L2

ωn−1(I), we have

‖∂ru‖ωn−1 +
√
dm‖u‖ωn−3 + k‖u‖ωn−1 � |g| + ‖f‖ωn−1 , n = 1, 2, 3.(2.18)

Proof. The proof consists of taking two different test functions in (2.5). The first
test function is the usual one. As in [7], the key step is to choose a suitable second
test function which enables us to obtain a priori estimates without using the Green’s
functions as in [8, 18, 19]. In the following proof, εj > 0, 1 ≤ j ≤ 5, are adjustable
real numbers.
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Step 1. We take v = u in (2.5) whose imaginary and real parts are as follows:

−k|u(1)|2 = Im(gu(1)) + Im(f, u)ωn−1 ,

‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 − k2‖u‖2
ωn−1 = Re(gu(1)) + Re(f, u)ωn−1 .

(2.19)

Applying the Cauchy–Schwarz inequality to the imaginary part, we obtain

k|u(1)|2 ≤ |Im(gu(1))| + |Im(f, u)ωn−1 |,

≤ k

2
|u(1)|2 +

1

2k
|g|2 +

ε1k

2
‖u‖2

ωn−1 +
1

2ε1k
‖f‖2

ωn−1 ;
(2.20)

likewise, we obtain from the real part that

‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 ≤ k2‖u‖2
ωn−1 + |Re(gu(1))| + |Re(f, u)ωn−1 |

≤ k2‖u‖2
ωn−1 + ε2k

2|u(1)|2 +
1

4ε2k2
|g|2 +

ε3k
2

2
‖u‖2

ωn−1 +
1

2ε3k2
‖f‖2

ωn−1 .
(2.21)

Therefore, by (2.20),

|u(1)|2 ≤ ε1‖u‖2
ωn−1 +

1

k2
|g|2 +

1

ε1k2
‖f‖2

ωn−1 ,(2.22)

and by (2.21)–(2.22) with ε2 = ε3
2ε1

,

‖∂ru‖2
ωn−1 + dm‖u‖2

ωn−3 ≤ (1 + ε3)k
2‖u‖2

ωn−1

+
( ε3

2ε1
+

ε1

2ε3k2

)
|g|2 +

( ε3

2ε2
1

+
1

2ε3k2

)
‖f‖2

ωn−1 .
(2.23)

It remains to bound k2‖u‖2
ωn−1 .

Step 2. Using a usual regularity argument, one can easily derive that, for f ∈
L2
ωn−1(I), the weak solution of (2.5) satisfies r∂ru ∈ X, and we now consider the real

part of (2.5) with v = 2r∂ru. After integrating by parts, the first three terms become

2Re(∂ru, ∂r(r∂ru))ωn−1 = |∂ru(1)|2 + (2 − n)‖∂ru‖2
ωn−1 ;(2.24a)

2Re(u, r∂ru)ωn−3 = |u(1)|2 + (2 − n)‖u‖2
ωn−3 ;(2.24b)

−2k2Re(u, r∂ru)ωn−1 = −k2|u(1)|2 + nk2‖u‖2
ωn−1 .(2.24c)

Consequently, the real part of (2.5) with v = 2r∂ru is

(2 − n)
(
‖∂ru‖2

ωn−1 + dm‖u‖2
ωn−3

)
+ nk2‖u‖2

ωn−1 + |∂ru(1)|2 + dm|u(1)|2

= k2|u(1)|2 + 2Re
(
(iku(1) + g)∂ru(1)

)
+ 2Re(f, r∂ru)ωn−1 .

(2.25)

We now proceed separately for the three different cases.
Case (i): n = 1. Thanks to dm = 0, we derive from (2.25) and the Cauchy–

Schwarz inequality that

‖∂ru‖2 + k2‖u‖2 + |∂ru(1)|2 ≤ k2|u(1)|2 +
1

2
|∂ru(1)|2

+ 2k2|u(1)|2 + 2|g|2 +
1

2
‖∂ru‖2 + 2‖f‖2.

(2.26)
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Hence, we obtain from (2.22) that

1

2
‖∂ru‖2 + k2‖u‖2 +

1

2
|∂ru(1)|2 ≤ 3ε1k

2‖u‖2 + c
(
|g|2 + (ε−1

1 + 2)‖f‖2
)

≤ k2

2
‖u‖2 + c(|g|2 + ‖f‖2),

(2.27)

where we have taken ε1 = 1
6 to derive the last inequality. This implies (2.18) with

n = 1.
Case (ii): n = 2. Similarly, we have from (2.22), (2.23), and (2.25) that

2k2‖u‖2
ω + |∂ru(1)|2 + dm|u(1)|2 ≤ 1

2
|∂ru(1)|2 + 3k2|u(1)|2

+ 2|g|2 + ε4‖∂ru‖2
ω + ε−1

4 ‖f‖2
ω

≤ 1

2
|∂ru(1)|2 +

(
3ε1 + ε4(1 + ε3)

)
k2‖u‖2

ω + C1|g|2 + C2‖f‖2
ω,

where C1 and C2 are two positive constants in terms of ε1, ε3, and ε4. We take
ε1 = 1/6, ε3 = 1, ε4 = 1/4 and obtain that

k2‖u‖2
ω + dm|u(1)|2 +

1

2
|∂ru(1)|2 � |g|2 + ‖f‖2

ω.(2.28)

A combination of (2.23) and (2.28) leads to (2.18) with n = 2.
Case (iii): n = 3. As in the derivation of Case (ii), using (2.22), (2.23), and (2.25)

yields

3k2‖u‖2
ω2 + |∂ru(1)|2 + dm|u(1)|2 ≤ ‖∂ru‖2

ω2 + dm‖u‖2 +
1

2
|∂ru(1)|2 + 3k2|u(1)|2

+ 2|g|2 + ε5‖∂ru‖2
ω2 + ε−1

5 ‖f‖2
ω2

≤ 1

2
|∂ru(1)|2 +

(
3ε1 + (1 + ε5)(1 + ε3)

)
k2‖u‖2

ω2 + C3|g|2 + C4‖f‖2
ω2 ,

where C3 and C4 are two positive constants depending only on ε1, ε3, and ε5. Taking
ε1 = 2/27 and ε3 = ε5 = 1/3 such that 3ε1 + (1 + ε5)(1 + ε3) = 2 gives

k2‖u‖2
ω2 + dm|u(1)|2 +

1

2
|∂ru(1)|2 � |g|2 + ‖f‖2

ω2 .(2.29)

This completes the proof.
Remark 2.1. We have also proved that

|∂ru(1)| +
√
dm|u(1)| + k|u(1)| � |g| + ‖f‖ωn−1 , n = 1, 2, 3.(2.30)

Remark 2.2. A combination of (2.1) and (2.18) leads to

|u|2 � k|g| + (1 + k)‖f‖ if n = 1,(2.31a)

‖D2u‖ � k|g| + (1 + k)‖f‖ωn−1 if n = 2, 3,(2.31b)

where D2u = −∂r(r
n−1∂ru) + dmrn−3u.

3. Spectral-Galerkin approximation. In this section, we shall present the
spectral-Galerkin scheme and analyze its errors in suitably weighted Sobolev spaces.
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3.1. Spectral-Galerkin solution. Let us denote XN := X ∩ PN , where PN is
the space of all polynomials of degree at most N . The spectral-Galerkin approximation
of (2.5) is to find uN ∈ XN such that

B(uN , vN ) = (f, vN )ωn−1 + gvN (1) ∀vN ∈ XN .(3.1)

We observe that the sesquilinear form B(·, ·) is not coercive in XN ×XN . To prove
the well-posedness of (3.1) with n = 1, Douglas et al. [8] used an argument due to
Schatz [21] for the (finite element) discrete system under the condition k2h � 1, while
Ihlenburg and Babuška [18] used an inf-sup argument due to Babuška and Brezzi
under the condition kh � 1. However, the spectral-Galerkin approximation space
XN , unlike in the Galerkin FEM, has the following property: For uN ∈ XN , we have
r∂ruN ∈ XN . Hence, the proof of Theorem 2.2 is also valid for the discrete system
(3.1); i.e., we have the following.

Theorem 3.1. Let uN be a solution of (3.1). Then Theorem 2.2 holds with uN

in place of u.
An immediate consequence is the following.
Corollary 3.1. The problem (3.1) admits a unique solution.
Proof. Since (3.1) is a finite-dimensional linear system, it suffices to prove the

uniqueness. Now, let uN be a solution of (3.1) with f ≡ 0 and g = 0. We derive from
Theorem 3.1 that uN ≡ 0, which implies the uniqueness.

Remark 3.1. It is interesting to note that while the existence of a solution for
finite element approximations to the Helmholtz equation is guaranteed only under a
mesh condition kh � 1 (see, for instance, [8, 18]), the spectral-Galerkin approximation
(3.1) always admits a unique solution, just as (2.1) itself.

3.2. Error estimates. Thanks to Theorems 2.2 and 3.1, we can analyze the
errors of the proposed scheme by comparing the numerical solution with some orthog-
onal projection of the exact solution as usual. For this purpose, let Π1,m

N,n : X → XN

be an orthogonal projection, defined by

(∂r(u− Π1,m
N,nu), ∂rvN )ωn−1 = 0 ∀vN ∈ XN , n = 1, 3 ∀m and n = 2 with m = 0.

(3.2)

In order to estimate the errors between u and uN , we have to analyze the ap-
proximation properties of the projector Π1,m

N,n for functions in the following suitably
weighted Sobolev spaces:

H̃s
ωn−1(I) := {u : u ∈ L2

ωn−1(I), (r − r2)
k−1
2 ∂k

r u ∈ L2
ωn−1(I), 1 ≤ k ≤ s},

with the norm and seminorm

‖u‖
H̃s

ωn−1

=
(
‖u‖2

ωn−1 +

s∑
k=1

‖(r − r2)
k−1
2 ∂k

r u‖2
ωn−1

) 1
2

,

|u|
H̃s

ωn−1

= ‖(r − r2)
s−1
2 ∂s

ru‖ωn−1 , s ≥ 1, s ∈ N.

Lemma 3.1. For any u ∈ X ∩ H̃s
ωn−1(I), with s ≥ 1 and s ∈ N,

‖Π1,m
N,nu− u‖μ,ωn−1 � Nμ−s‖(r − r2)

s−1
2 ∂s

ru‖ωn−1 ,(3.3)

μ = 0, 1, n = 1, 3 ∀m and n = 2 with m = 0.
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Proof. This result for n = 1 can be derived from [4] with an improvement of the

norm in terms of the weights (r − r2)
s−1
2 given in [16]. For n = 2 with m = 0 and

n = 3, one can refer to [15, 16] for the proofs.
Next, we shall estimate eN = uN − Π1,m

N,nu. We denote ẽN = u− Π1,m
N,nu.

Lemma 3.2. Let u and uN be, respectively, the solutions of (2.5) and (3.1). Then
we have, for n = 1, 3 for all m and n = 2 with m = 0,

‖∂reN‖ωn−1 +
√
dm‖eN‖ωn−3 + k‖eN‖ωn−1

�
√
dm

(
‖∂r ẽN‖ωn−1 + ‖ẽN‖ωn−3

)
+ k2‖ẽN‖ωn−1 + k(1 + dmk−2)|ẽN (1)|.

(3.4)

Proof. By (2.5) and (3.1), we have B(u − uN , vN ) = 0 for all vN ∈ XN . Hence,
we derive from (2.5) and (3.2) that, for any vN ∈ XN ,

B(eN , vN ) = B(u− Π1,m
N,nu, vN )

= dm(ẽN , vN )ωn−3 − k2(ẽN , vN )ωn−1 − ikẽN (1)vN (1).
(3.5)

We can view (3.5) in the form of (2.5) with u = eN , g = −ikẽN (1), f = −k2ẽN plus
an extra term dm(ẽN , vN )ωn−3 . Hence, as in the proof of Theorem 2.2, we take two
different test functions vN = eN , r∂reN ∈ XN and estimate the extra term by

dm|(ẽN , eN )ωn−3 | ≤ ε6dm‖eN‖2
ωn−3 +

dm
4ε6

‖ẽN‖2
ωn−3 ,

dm|(ẽN , r∂reN )ωn−3 | = dm|ẽN (1)eN (1) − (∂r ẽN , eN )ωn−2 − (n− 2)(ẽN , eN )ωn−3 |

≤ ε7k
2|eN (1)|2 +

d2
m

4k2ε7
|ẽN (1)|2 + ε8dm‖eN‖2

ωn−3

+
cdm
4ε8

(
‖∂r ẽN‖2

ωn−1 + ‖ẽN‖2
ωn−3

)
.

Thus, choosing suitable constants {εj}8
j=6 , and following a procedure similar to the

proof of Theorem 2.2, we can derive

‖∂reN‖2
ωn−1 + dm‖eN‖2

ωn−3 + k2‖eN‖2
ωn−1

� dm(‖∂r ẽN‖2
ωn−1 + ‖ẽN‖2

ωn−3) + k4‖ẽN‖2
ωn−1 + k2(1 + d2

mk−4)|ẽN (1)|2,
(3.6)

which leads to the desired result.
We now recall the following inequalities.
Lemma 3.3.

|u(1)| � ‖u‖
1
2

ωn−1‖u‖
1
2

1,ωn−1 ∀u ∈ H1
ωn−1(I), n = 1, 2, 3,(3.7a)

‖u‖ � ‖u‖1,ω2 ∀u ∈ H1
ω2(I).(3.7b)

Proof. By the Sobolev inequality (see the appendix in [4]),

|u(1)| � ‖u‖
1
2

L2(1/2,1)‖u‖
1
2

H1(1/2,1) � ‖u‖
1
2

L2

ωn−1
(1/2,1)

‖u‖
1
2

H1

ωn−1
(1/2,1)

� ‖u‖
1
2

ωn−1‖u‖
1
2

1,ωn−1 .

Here, we used the fact that the weight function rn−1 is uniformly bounded on [1/2, 1].
The inequality (3.7b) follows directly from formula (13.5) of [3].
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As a consequence of (3.7b) and Lemma 3.1, we derive that for n = 3,

‖Π1,m
N,nu− u‖ωn−3 � ‖Π1,m

N,nu− u‖1,ωn−1 � N1−s‖(r − r2)
s−1
2 ∂s

ru‖ωn−1 .(3.8)

With the above preparations, we can now prove our main results.
Theorem 3.2. Let u and uN be, respectively, the solutions of (2.5) and (3.1)

such that u ∈ X ∩ H̃s
ωn−1(I) with s ≥ 1, s ∈ N.

(i) For n = 1 or n = 2, 3,m = 0,

‖∂r(u− uN )‖ωn−1 + k‖u− uN‖ωn−1 � (1 + k2N−1)N1−s‖(r − r2)
s−1
2 ∂s

ru‖ωn−1 .

(3.9)

(ii) For n = 3 and m > 0,

‖∂r(u− uN )‖ω2 +
√
dm‖u− uN‖ + k‖u− uN‖ω2

�
(√

dm + d2
mk−4 + k2N−1

)
N1−s‖(r − r2)

s−1
2 ∂s

ru‖ω2 ,
(3.10)

where dm = m(m + 1).
Proof. We first prove (3.9). Since

‖∂r(u− uN )‖ωn−1 + k‖u− uN‖ωn−1 � ‖∂r(Π1,m
N,nu− u)‖ωn−1

+ k‖Π1,m
N,nu− u‖ωn−1 + ‖∂reN‖ωn−1 + k‖eN‖ωn−1 ,

formula (3.9) follows from Lemmas 3.1 and 3.2 and (3.7a).
Similarly, for n = 3 and m > 0, we derive from (3.7a) and Lemmas 3.1 and 3.2

that

‖∂r(u− uN )‖ωn−1 +
√
dm‖u− uN‖ωn−3 + k‖u− uN‖ωn−1

�
√
dm

(
‖∂r(Π1,m

N,nu− u)‖ωn−1 + ‖Π1,m
N,nu− u‖ωn−3

)
+ k2‖Π1,m

N,nu− u‖ωn−1 + k(1 + dmk−2)|(Π1,m
N,nu− u)(1)|

�
√
dm

(
‖∂r(Π1,m

N,nu− u)‖ωn−1 + ‖Π1,m
N,nu− u‖ωn−3

)
+ 2k2‖Π1,m

N,nu− u‖ωn−1 + (1 + dmk−2)2‖Π1,m
N,nu− u‖1,ωn−1

�
(√

dm + (1 + dmk−2)2 + k2N−1
)
N1−s‖(r − r2)

s−1
2 ∂s

ru‖ωn−1

+
√
dm‖Π1,m

N,nu− u‖ωn−3 .

(3.11)

Hence, we can obtain (3.10) by using (3.8) to estimate the last term in (3.11).
Remark 3.2. For n = 1, an error estimate of the same order as in (3.9) was

derived in [19] for the hp FEM under the condition kh � 1. Our estimate is valid
without any restriction on k and N and is bounded by a weaker weighted seminorm.

Although we believe that the estimate (3.10), modulo perhaps a logarithmic term,
is also valid for the case n = 2 with m > 0, the above proof cannot be directly extended
to this case due to a breakdown in the Hardy inequality (cf. [17]) as ε → 0,∫ 1

0

u2

r2
r1−εdr ≤ 4

ε

∫ 1

0

(∂ru)2r1−εdr,(3.12)
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which indicates that ‖Π1,m
N,nu−u‖ω−1 in the last term of (3.11) cannot be bounded by

‖∂r(Π1,m
N,nu− u)‖ω.

Next, we perform the error estimate for the case n = 2 with m > 0 by using a
different approach.

Let am(u, v) := (∂ru, ∂rv)ω + dm(u, v)ω−1 and define the orthogonal projection
π1,m
N : X → XN by

am(π1,m
N u− u, vN ) = 0 ∀vN ∈ XN .(3.13)

To analyze the approximation properties of the above projector, we first consider an
auxiliary projection. Let ω̂ = r(1− r), let P 0

N := {u ∈ PN : u(0) = u(1) = 0}, and let
πN be the L2

ω̂−1-orthogonal projection onto P 0
N defined by

(πNu− u, vN )ω̂−1 = 0 ∀vN ∈ P 0
N .

The following result can be derived directly from the generalized Jacobi approximation
with parameters α = β = −1 (cf. Theorem 3.1 of [24]).

Lemma 3.4. For any u ∈ L2
ω̂−1(I) ∩ H̃s(I) with s ≥ 1, s ∈ N,

‖∂r(πNu− u)‖ + N‖(πNu− u)‖ω̂−1 � N1−s‖(r − r2)
s−1
2 ∂s

ru‖.(3.14)

Corollary 3.2. There exists an operator π1
N : H1(I) → PN such that (π1

Nu)(r) =

u(r) for r = 0, 1 and for any u ∈ H̃s(I), with s ≥ 1, s ∈ N,

‖∂r(π1
Nu− u)‖ + N‖π1

Nu− u‖ω̂−1 � N1−s‖(r − r2)
s−1
2 ∂s

ru‖.(3.15)

Proof. Let u∗(r) = (1 − r)u(0) + ru(1) ∈ P1 for all u ∈ H1(I). By construction,
we have (u − u∗)(r) = 0 for r = 0, 1. Next, we derive from the Hardy inequality
(cf. [17]) that

(∫ 1

0

(u− u∗)
2(r − r2)−1dr

) 1
2 �

(∫ 1

0

(∂r(u− u∗))
2dr

) 1
2

� ‖∂ru‖ + |u(1) − u(0)| � ‖∂ru‖ +

∫ 1

0

|∂ru|dr � ‖∂ru‖.
(3.16)

Hence, u− u∗ ∈ L2
ω̂−1(I) and we can define

π1
Nu = πN (u− u∗) + u∗ ∈ PN ∀u ∈ H1(I).

Clearly, (π1
Nu)(r) = u(r) for r = 0, 1, and by Lemma 3.4,

‖∂r(π1
Nu− u)‖ + N‖(π1

Nu− u)‖ω̂−1 � N1−s‖(r − r2)
s−1
2 ∂s

r(u− u∗)‖.(3.17)

Since ∂s
ru∗ ≡ 0 for s ≥ 2, and ∂ru∗ = u(1) − u(0), which implies that

‖∂ru∗‖ = |u(1) − u(0)| � ‖∂ru‖,

the desired result follows from (3.17).

Using the above corollary leads to the following lemma.
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Lemma 3.5. For any u ∈ X ∩ H̃s(I) with s ≥ 1, s ∈ N,

‖∂r(π1,m
N u− u)‖ω +

√
dm‖π1,m

N u− u‖ω−1

� (1 +
√
dmN−1)N1−s‖(r − r2)

s−1
2 ∂s

ru‖;
(3.18a)

‖π1,m
N u− u‖ω � (d

− 1
2

m + N−1)N1−s‖(r − r2)
s−1
2 ∂s

ru‖.(3.18b)

Proof. The definition (3.13) implies that for any φ ∈ XN ,

am(π1,m
N u− u, π1,m

N u− u) ≤ am(φ− u, φ− u).(3.19)

Taking φ = π1
Nu ∈ XN in (3.19), we obtain from Corollary 3.2 that

‖∂r(π1,m
N u− u)‖ω +

√
dm‖π1,m

N u− u‖ω−1 � ‖∂r(π1
Nu− u)‖ +

√
dm‖π1

Nu− u‖ω̂−1

� (1 +
√
dmN−1)N1−s‖(r − r2)

s−1
2 ∂s

ru‖.

Since ‖π1,m
N u− u‖ω ≤ ‖π1,m

N u− u‖ω−1 , (3.18b) follows from (3.18a).
We can now derive an error estimate for the case n = 2 with m > 0.
Theorem 3.3. If u ∈ X ∩ H̃s(I), with s ≥ 1 and s ∈ N, we have

‖∂r(u− uN )‖ω +
√
dm‖u− uN‖ω−1 + k‖u− uN‖ω

�
(
(1 +

√
dmN−1 + d2

mk−4) + k2(d
− 1

2
m + N−1)

)
N1−s‖(r − r2)

s−1
2 ∂s

ru‖.
(3.20)

Proof. Let us still denote eN = uN − π1,m
N u and ẽN = u− π1,m

N u. Due to (3.13),
the error equation (3.5) becomes

B(eN , vN ) = −k2(ẽN , vN )ω − ikẽN (1)vN (1).

Consequently, (3.6) is changed to

‖∂reN‖2
ω + dm‖eN‖2

ω−1 + k2‖eN‖2
ω � k4‖ẽN‖2

ω + k2(1 + d2
mk−4)|ẽN (1)|2.

Thus, following a procedure similar to that in the proof of Theorem 3.2, and thanks
to Lemma 3.5, we can obtain (3.20).

4. An alternate formulation and its numerical implementation. In this
section, we shall give an alternate formulation for problem (2.1)–(2.3), which is more
suitable for implementation and also leads to a convergence rate similar to that of
Theorem 3.2.

4.1. The formulation. We make the transform

u(r) = v(r)eikr, f(r) = h(r)eikr, r ∈ I,(4.1)

and we convert the problem (2.1)–(2.3) to

− 1

rn−1
∂r(r

n−1∂rv) + dm
v

r2
− ik

(
2∂rv + (n− 1)

v

r

)
= h,

r ∈ I := (0, 1), n = 1, 2, 3, m ≥ 0,
(4.2)

where v satisfies the Dirichlet boundary condition (2.2) and the Neumann boundary
condition:

v′(1) = g̃ := ge−ik.(4.3)
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Let the spaces X and XN be the same as before. The weak formulation of (4.2)
with (2.2) and (4.3) is to find v ∈ X such that

B̃(v, w) := (∂rv, ∂rw)ωn−1 + dm(v, w)ωn−3 − 2ik(∂rv, w)ωn−1

− (n− 1)ik(v, w)ωn−2 = (h,w)ωn−1 + g̃w(1) ∀w ∈ X.
(4.4)

The well-posedness of this formulation is guaranteed by (4.1) and Theorem 2.1.
The spectral-Galerkin approximation to (4.4) is to seek vN ∈ XN such that

B̃N (vN , wN ) = (h,wN )ωn−1 + g̃wN (1) ∀wN ∈ XN .(4.5)

Using a procedure similar to the one used before, we can derive corresponding a
priori estimates and error estimates. For simplicity, we consider the case g = 0.

Theorem 4.1. Let v and vN be the solutions of (4.4) and (4.5) with g̃ = 0 and
h ∈ L2

ωn−1(I). Then

‖∂rv‖ωn−1 +
√
dm‖v‖ωn−3 � ‖h‖ωn−1 ,(4.6)

‖∂rvN‖ωn−1 +
√
dm‖vN‖ωn−3 � ‖h‖ωn−1 .(4.7)

Proof. As in the proof of Theorem 2.2, we take two different test functions in
(4.4). We first take w = v in (4.4), whose real part is

‖∂rv‖2
ωn−1 + dm‖v‖2

ωn−3 + 2kIm(∂rv, v)ωn−1 = Re(h, v)ωn−1 ,(4.8)

and using integration by parts, its imaginary part becomes

−2kRe(∂rv, v)ωn−1 − (n− 1)k‖v‖2
ωn−2 = −k|v(1)|2 = Im(h, v)ωn−1 .(4.9)

Here, in the derivation of (4.8) (likewise for (4.10) below), we have used the fact
Re(i(u, v)) = −Im(u, v).

Next, we take w = 2r∂rv (∈ X) in (4.4), and thanks to (2.24a)–(2.24b), its real
part becomes

(2 − n)(‖∂rv‖2
ωn−1 + dm‖v‖2

ωn−3) + dm|v(1)|2

+ 2(n− 1)kIm(v, ∂rv)ωn−1 = 2Re(h, r∂rv)ωn−1 .
(4.10)

As a consequence of (4.10), we have that for n = 1 (we recall that dm = 0 in this
case),

‖∂rv‖2 ≤ 2‖h‖ω2‖∂rv‖ ≤ 2‖h‖‖∂rv‖,(4.11)

which implies (4.6) with n = 1.
It remains to prove (4.6) with n = 2, 3. Since ∂rv(1) = 0, it is easy to verify

Im(∂rv, v)ωn−1 = −Im(v, ∂rv)ωn−1 .(4.12)

Therefore, multiplying (4.8) by n− 1 and adding the resulting equation to (4.10), we
derive from the Cauchy–Schwarz inequality that

‖∂rv‖2
ωn−1 + dm‖v‖2

ωn−3 + dm|v(1)|2 = (n− 1)Re(h, v)ωn−1

+ 2Re(h, r∂rv)ωn−1 ≤ 2‖h‖ωn−1‖v‖ωn−1 +
1

4
‖∂rv‖2

ωn−1 + 4‖h‖2
ωn−1 .

(4.13)



636 JIE SHEN AND LI-LIAN WANG

Clearly, we have

|v(1)|2 =

∫ 1

0

∂r(|v(r)|2rn)dr = n

∫ 1

0

|v(r)|2rn−1dr + 2

∫ 1

0

∂rv(r)v(r)r
ndr,

and by the Cauchy–Schwarz inequality,

n‖v‖2
ωn−1 ≤ |v(1)|2 + 2‖v‖ωn−1‖∂rv‖ωn+1 ≤ |v(1)|2 +

n

2
‖v‖2

ωn−1 +
2

n
‖∂rv‖2

ωn−1 ,

which together with (4.9) leads to

‖v‖2
ωn−1 ≤ 2

n
|v(1)|2 +

4

n2
‖∂rv‖2

ωn−1 ≤ 2

nk
|Im(h, v)ωn−1 | + 4

n2
‖∂rv‖2

ωn−1

≤ 1

2
‖v‖2

ωn−1 +
2

n2k2
‖h‖2

ωn−1 +
4

n2
‖∂rv‖2

ωn−1 .

(4.14)

As a result of (4.13) and (4.14), we obtain

‖∂rv‖2
ωn−1 + dm‖v‖2

ωn−3 ≤ 2‖h‖ωn−1

( 2

nk
‖h‖ωn−1 +

2
√

2

n
‖∂rv‖ωn−1

)
+

1

4
‖∂rv‖2

ωn−1 + 4‖h‖2
ωn−1 ≤ 1

2
‖∂rv‖2

ωn−1 +
( 4

nk
+

32

n2
+ 4

)
‖h‖2

ωn−1 .

This completes the proof of (4.6).
Since r∂rvN ∈ XN , we have the same results for the numerical solution vN .
Thanks to the above theorem, we can derive the following convergence result by

using an argument similar to the proof of Theorem 3.2.
Theorem 4.2. Let v and vN be, respectively, the solutions of (4.4) and (4.5) with

g̃ = 0, and we have
(i) for n = 1, 3 or n = 2,m = 0, and v ∈ X ∩ H̃s

ωn−1(I) with s ≥ 1 and s ∈ N,

‖∂r(v − vN )‖ωn−1 +
√
dm‖v − vN‖ωn−3 � (k +

√
dm)N1−s‖(r − r2)

s−1
2 ∂s

rv‖ωn−1 ;

(4.15)

(ii) for n = 2, m > 0, and v ∈ X ∩ H̃s(I), with s ≥ 1 and s ∈ N,

‖∂r(v − vN )‖ω +
√
dm‖v − vN‖ω−1

�
(
(1 +

√
dmN−1) + k2(d

− 1
2

m + N−1)
)
N1−s‖(r − r2)

s−1
2 ∂s

rv‖.
(4.16)

Proof. Let Π1,m
N,n be the orthogonal projection defined in (3.2), and denote eN =

vN − Π1,m
N,nv and êN = v − Π1,m

N,nv. Like (3.5), the error equation is

B̃(eN , wN ) = dm(êN , wN )ωn−3 − 2ik(∂r êN , wN )ωn−1 − (n− 1)ik(êN , wN )ωn−2 .

Therefore, taking the test function wN = eN , r∂reN , setting h = −2ik∂r êN − (n −
1)ikr−1êN in (4.5), and dealing with the term dm(êN , wN )ωn−3 the same as that in
the proof of Lemma 3.2, we obtain

‖∂reN‖2
ωn−1 + dm‖eN‖2

ωn−3 � (k2 + dm)(‖∂r êN‖2
ωn−1 + ‖êN‖2

ωn−3).

The rest of the proof of (4.15) is similar to that of Theorem 3.2.
The estimate (4.16) can be proved in the same fashion by using the results in

Lemma 3.5.
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4.2. Numerical implementations.

4.2.1. Choice of basis functions. Without loss of generality, we still assume
that g̃ = 0 in (4.2). For computational convenience, we transform I = (0, 1) to the
reference interval Î = (−1, 1) with x = 2r − 1, r = 1

2 (1 + x), r ∈ I, x ∈ Î . As
demonstrated in [22, 23], it is advantageous to construct basis function satisfying
the underlying homogeneous boundary conditions by using compact combinations of
orthogonal polynomials. Hence, we define

WN = W
(m,n)
N := {w ∈ PN : w′(1) = 0; w(−1) = 0 if n = 1 and if n = 2 with m > 0},

and we let Ll(x) denote the Legendre polynomial of degree l. Define

φj(x) := (Lj(x) + Lj+1(x)) −
(j + 1

j + 2

)2

(Lj+1(x) + Lj+2(x));

ψj(x) := Lj(x) − j

j + 2
Lj+1(x).

(4.17)

Since Ll(−1) = (−1)l and L′
l(1) = 1

2 l(l + 1), one can verify easily that

φj(−1) = φ′
j(1) = ψ′

j(1) = 0.(4.18)

Hence, for n = 1 or n = 2 with m > 0, W
(m,n)
N = span{φj : j = 0, 1, . . . , N − 2}; and

for n = 3 or n = 2 with m = 0, W
(m,n)
N = span{ψj : j = 0, 1, . . . , N − 1}.

Now, let us write

vN (r) := wR
N (x) + iwI

N (x), 2n−3rn−1h(r) := qR(x) + iqI(x),(4.19)

where wR
N , wI

N , qR, and qI are real functions in Î. Our spectral-Galerkin algorithm is
to seek wR

N , wI
N ∈ WN such that for any real polynomials φ, ψ ∈ WN ,

((1 + x)n−1∂xw
R
N , ∂xφ) + dm((1 + x)n−3wR

N , φ) + k((1 + x)n−1∂xw
I
N , φ)

+
n− 1

2
k((1 + x)n−2wI

N , φ) = (qR, φ);

((1 + x)n−1∂xw
I
N , ∂xψ) + dm((1 + x)n−3wI

N , ψ) − k((1 + x)n−1∂xw
R
N , ψ)

− n− 1

2
k((1 + x)n−2wR

N , φ) = (qI , ψ).

(4.20)

Thanks to the nice properties of the Legendre polynomials, one can find that the coef-
ficient matrix of the above system is sparse, and its nonzero entries can be determined
exactly.

4.2.2. Numerical results. We present some numerical results for the problem
(2.1)–(2.3) by using the schemes proposed above.

Example 1. We consider (2.1)–(2.3) with n = 2, dm = 100, and g = 0 and set
the exact solution to be

u(r) = v(r)eikr, r ∈ I,(4.21)

where v(r) = (cos 2k−cos(2k(1−r)))+i( 1
k (sin 2k−sin(2k(1−r)))−2r cos(2k(1−r)))

is the exact solution of the transformed problem (4.2).
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Fig. 4.1. Left: exact solution vs. numerical solution. Right: errors vs. N (k = 100).
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In Figure 4.1 (left), we plot the numerical solution at Legendre–Gauss–Lobatto
points with k = 80 and N = 96 (asterisk-markers for the real part (raised by 5 unit)
and plus-markers for the imaginary part) vs. the exact solution (solid line).

We now examine the convergence rate. According to Theorem 3.3, the predicted
order of convergence for the exact solution (4.21) is

‖u− uN‖ω ∼ k1+sN1−s, N � 1, k > 0, s ≥ 1.(4.22)

In Figure 4.1 (right), we fix the wave number k = 100 and plot the discrete L2-
errors and relative errors at r = 1 vs. different modes N. As expected, an exponential
convergence rate is observed once N is large enough to resolve the oscillation.

Next, we fix α = k
N and examine the error behavior with respect to α. In Figure

4.2, we plot the discrete L2-errors with 0.5 ≤ α ≤ 1, 50 ≤ k ≤ 150, and N = k
α . The

results indicate that the proposed scheme can provide very accurate approximations
to highly oscillatory solutions under the condition k

N = α < 1, which is necessary for
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convergence (cf. [13]).

Example 2. We consider the problem (2.1)–(2.3) with n = 2 and dm = 1. An
exact solution is

u(r) = J1(kr), with f ≡ 0 and g = k(J ′
1(k) − iJ1(k)),(4.23)

where J1(·) is the first degree Bessel function of the first kind. As pointed out in [26],
we have the following asymptotic property:

u(r) = J1(kr) =

√
2

πkr
cos

(
kr − 3

4
π

)
+ O((kr)−

3
2 ) if kr � 1.(4.24)

Hence, the solution is highly oscillating when the wave number k is large (see Figure

4.3 (left)). We derive from (4.24) that the expected convergence rate is k
1
2+sN1−s. In

Figure 4.3 (left), we plot the exact solution vs. the numerical solution with k = 200
and N = 256. In this case, the discrete L2-error is 2.45 × 10−15 and relative error at
r = 1 is 3.84 × 10−13. The error behaviors with several fixed α = k

N are plotted in
Figure 4.3 (right), which demonstrates that the spectral-Galerkin method is capable
of providing very accurate results even for α close to 1.

5. Extensions to multidimensional cases. The results we derived for the
prototypical 1-D problem (2.1)–(2.3) (with n = 2, 3) can be used to derive error
estimates for the spectral-Galerkin approximation to the multidimensional problem
(1.2). As an example, we consider the case n = 3:

−ΔU − k2U = F in Ω̂ := {(x, y, z) : a2 < x2 + y2 + z2 < b2},
∂rU − ikU = G on Sb := {(x, y, z) : x2 + y2 + z2 = b2},

U = 0 on Sa := {(x, y, z) : x2 + y2 + z2 = a2} if a > 0.

(5.1)

Applying the spherical transformation

x = r cos θ sinφ, y = r sin θ sinφ, z = r cosφ(5.2)
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to (5.1) and setting u(r, θ, φ) = U(x, y, z), f(r, θ, φ) = F (x, y, z), g(θ, φ) = G(x, y, z),
and S := [0, 2π) × [0, π), we obtain

−
( ∂2

∂r2
+

2

r

∂

∂r
+

1

r2
ΔS

)
u− k2u = f in Ω := (a, b) × S,

∂ru− iku = g on Sb,

u = 0 on Sa if a > 0,

(5.3)

where ΔS is the Laplace–Beltrami operator (the Laplacian on the unit sphere S):

ΔS =
1

sin2 φ

∂2

∂θ2
+

cosφ

sinφ

∂

∂φ
+

∂2

∂2φ
.(5.4)

We recall that the spherical harmonic functions {Yl,m} are the eigenfunctions of the
Laplace–Beltrami operator (see [25])

−ΔSYl,m(θ, φ) = m(m + 1)Yl,m(θ, φ)(5.5)

and are defined by

Yl,m(θ, φ) =

√
(2m + 1)(m− l)!

4π(m + l)!
eilθP l

m(cosφ), m ≥ |l| ≥ 0,

where P l
m(x) is the associated Legendre functions given by

P l
m(x) =

(−1)l

2mm!
(1 − x2)

l
2
dm+l

dxm+1
{(x2 − 1)m}.

The set of harmonic functions forms a complete orthonormal system in L2(S), i.e.,∫ 2π

0

∫ π

0

Yl,m(θ, φ)Yl′,m′(θ, φ) sinφdφdθ = δl,l′δm,m′ .(5.6)

Hence, for any function U(x, y, z) ∈ L2(Ω̂), the function u(r, θ, φ) = U(x, y, z) can be
expanded as

u =

∞∑
|l|=0

∞∑
m≥|l|

ulm(r)Yl,m(θ, φ), with ulm(r) =

∫
S

u(r, θ, φ)Y l,m(θ, φ)dS,(5.7)

and we have

‖u‖2
L2

ω2 (Ω) =

∞∑
|l|=0

∞∑
m≥|l|

‖ulm‖2
ω2 = ‖U‖2

L2(Ω̂)
(ω2 = r2).(5.8)

For a scalar function v on S, the gradient operator �∇S on the unit sphere is
defined by �∇Sv =

(
1

sinφ∂θv, ∂φv
)
. One can verify readily that

−(ΔSu, v)S = (�∇Su, �∇Sv)S ∀u, v ∈ D(ΔS),(5.9)

where D(ΔS) is the domain of the Laplace–Beltrami operator ΔS . In particular, as a
consequence of (5.5)–(5.9), we have

(�∇SYl,m, �∇SYl,m)S = m(m + 1), m ≥ |l| ≥ 0.(5.10)
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Accordingly, we can define the Sobolev space on S:

H1(S) := {u : u is measurable on S and ‖u‖2
H1(S) < ∞},

where ‖u‖H1(S) =
(
‖u‖2

L2(S) + ‖�∇Su‖2
L2(S)

) 1
2 .

The variational formulation of (5.3) is to find u ∈ V := H1
ω2(I;L2(S))∩L2(I;H1(S))

such that (ω2 = r2)

a(u, v) := (∂ru, ∂rv)ω2,Ω + (�∇Su, �∇Sv)Ω − k2(u, v)ω2,Ω

− ikb2(u(b, ·), v(b, ·))S = (f, v)ω2,Ω + b2(g, v(b, ·))S ∀v ∈ V.
(5.11)

The spectral-Galerkin approximation of (5.11) is to find uMN ∈ VMN such that

a(uMN , v) = (f, v)ω2,Ω + b2(g, v(b, ·))S ∀v ∈ VMN ,(5.12)

where VMN := WM ×XN , and

WM := span{Yl,m : 0 ≤ |l| ≤ m ≤ M}, XN := {u ∈ PN : u(a) = 0 if a > 0}.

Hence, we can write

(u(r, θ, φ), f(r, θ, φ), g(θ, φ)) =
∞∑

|l|=0

∞∑
m≥|l|

(ulm(r), flm(r), glm)Yl,m(θ, φ);(5.13a)

uMN (r, θ, φ) =

M∑
|l|=0

M∑
m≥|l|

uN
lm(r)Yl,m(θ, φ).(5.13b)

In order to describe the error bounds, we define a nonisotropic space H̃s
ω2(I;Ht(S))

as follows:

H̃s
ω2(I;Ht(S)) =

⎧⎨⎩u ∈ L2
ω2(Ω) :

∞∑
|l|=0

∞∑
m≥|l|

mt(m + 1)t‖ulm‖2

H̃s

ω2 (I)
< +∞

⎫⎬⎭ ,(5.14)

where {ulm} are the expansion coefficients of u in terms of Yl,m as in (5.7). Thanks

to (5.10), we can define the norm on H̃s
ω2(I;Ht(S)) by

‖u‖
H̃s

ω2 (I;Ht(S))
=

⎛⎝ ∞∑
|l|=0

∞∑
m≥|l|

mt(m + 1)t‖ulm‖2

H̃s

ω2 (I)

⎞⎠
1
2

(5.15)

and its seminorm by replacing ‖ulm‖
H̃s

ω2 (I)
with |ulm|

H̃s

ω2 (I)
. In particular, L2

ω2(I;Ht(S))

= H̃0
ω2(I;Ht(S)) and H̃s

ω2(I;L2(S)) = H̃s
ω2(I;H0(S)).

5.1. In a sphere (a = 0). Without loss of generality, we assume that b = 1. In
this case, we can show that {ulm} (resp., {uN

lm}) satisfy the 1-D problem (2.5) (resp.,
(3.1)) with n = 3 and f, g being replaced by flm and glm, respectively.

Theorem 5.1. Let u and uMN be, respectively, the solutions of (5.11) and (5.12),
and denote e = u− uMN . Then if

u ∈ L2(I;Ht(S)) ∩H1
ω2(I;Ht−1(S)) ∩ H̃s

ω2(I;L2(S)), s, t ≥ 1, s, t ∈ N,(5.16)
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we have

‖∂re‖L2

ω2 (Ω) + ‖�∇Se‖L2(Ω) + k‖e‖L2

ω2 (Ω)

� C∗

(
(M + M4k−4 + k2N−1)N1−s + M1−t(1 + kM−1)

)
,

(5.17)

where C∗ is a positive constant depending only on the seminorms of u in the spaces
mentioned in (5.16).

Proof. Let elm(r) = ulm(r) − uN
lm(r). We deduce from Theorem 3.2 that

‖∂relm‖L2

ω2 (I) +
√
dm‖elm‖L2(I) + k‖elm‖L2

ω2 (I)

�
(
1 +

√
dm + d2

mk−4 + k2N−1
)
N1−s|elm|

H̃s

ω2 (I)
,

(5.18)

where dm = m(m + 1). Therefore, by (5.6)–(5.10) and (5.13b)–(5.14),

‖∂re‖2
L2

ω2 (Ω) + ‖�∇Se‖2
L2(Ω) + k2‖e‖2

L2

ω2 (Ω)

=

M∑
|l|=0

M∑
m≥|l|

(
‖∂relm‖2

L2

ω2 (I) + dm‖elm‖2
L2(I) + k2‖elm‖2

L2

ω2 (I)

)

+

⎛⎝ ∞∑
|l|=0

∞∑
m>M

+

∞∑
|l|>M

∞∑
m≥|l|

⎞⎠(
‖∂rulm‖2

L2

ω2 (I) + dm‖ulm‖2
L2(I) + k2‖ulm‖2

L2

ω2 (I)

)

�
(
1 +

√
dM + d2

Mk−4 + k2N−1
)2

N2−2s
M∑

|l|=0

M∑
m≥|l|

|ulm|2
H̃s

ω2 (I)

+ d1−t
M

∞∑
|l|=0

∞∑
m≥|l|

(
dt−1
m (‖∂rulm‖2

L2

ω2 (I) + dm‖ulm‖2
L2(I) + k2‖ulm‖2

L2

ω2 (I))
)

� (M + M4k−4 + k2N−1)2N2−2s|u|2
H̃s

ω2 (I;L2(S))

+ d1−t
M

(
|u|2H1

ω2 (I;Ht−1(S)) + |u|2L2(I;Ht(S)) + k2d−1
m |u|2L2

ω2 (I;Ht(S))

)
,

which implies the desired result.

5.2. In a spherical shell (a > 0). In this case, {ulm} are the solutions of

B̂lm(ulm, v) = (flm, v)ω2 + b2glmv(b) ∀v ∈ X, 0 ≤ |l| ≤ m,(5.19)

where X := {u ∈ H1(I) : u(a) = 0}, and

B̂lm(u, v) := (∂ru, ∂rv)ω2 + dm(u, v) − k2(u, v)ω2 − ikb2u(b)v(b),(5.20)

with ω2 = r2, dm = m(m+1). The numerical approximations uN
lm (0 ≤ |l| ≤ m, m =

0, 1, . . . ,M) are defined by

B̂lm(uN
lm, vN ) = (flm, vN )ω2 + b2glmvN (b) ∀vN ∈ XN := X ∩ PN .(5.21)

Since ulm, (r−a)ulm ∈ X (resp., uN
lm, (r−a)uN

lm ∈ XN ), we can use them as test
functions in (5.19) (resp., (5.21)), and derive the following results using an argument
analogous to that in the proof of Theorem 2.2.
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Lemma 5.1. Let {ulm} and {uN
lm} be, respectively, the solution of (5.19) and

(5.21). Then there exists ξ ∈ (a, b) such that for Cξ := (2 − 2a
ξ )−1, we have

‖∂rulm‖2
L2

ω2 (I) + dm‖ulm‖2
L2(I) + k2‖ulm‖2

L2

ω2 (I) � Cξb
3(|glm|2 + b2‖flm‖2

L2

ω2 (I)),

‖∂ruN
lm‖2

L2

ω2 (I) + dm‖uN
lm‖2

L2(I) + k2‖uN
lm‖2

L2

ω2 (I) � Cξb
3(|glm|2 + b2‖flm‖2

L2

ω2 (I)).

The above a priori estimates allow us to perform the error analysis for the spherical
shell case. Similar to the case a = 0, we can prove the following.

Theorem 5.2. Let u and uMN be, respectively, the solutions of (5.11) and (5.12),
and denote e = u− uMN . Then if

u ∈ L2((a, b);Ht(S)) ∩H1
ω2((a, b);Ht−1(S)) ∩ H̃s

ω2((a, b);L2(S)), s, t ≥ 1, s, t ∈ N,

there exists ξ ∈ (a, b) such that for Cξ := (2 − 2a
ξ )−1, we have

‖∂re‖L2

ω2 (Ω) + ‖�∇Se‖L2(Ω) + k‖e‖L2

ω2 (Ω)

� C∗b
2(1 +

√
Cξ)

(
(M + M4k−4 + k2N−1)N1−s + M1−t(1 + kM−1)

)
,

where C∗ is a positive constant depending only on the seminorms of u in the spaces
mentioned in (5.16).

Remark 5.1. A similar procedure can be performed for the Helmholtz equation
(1.2) in a 2-D axisymmetric domain (n = 2) by using a Fourier expansion in the
θ-direction.

6. Concluding remarks. We presented in this paper a complete error analysis
and an efficient numerical algorithm for the spectral-Galerkin approximation of the
Helmholtz equation with high wave numbers in a 1-D domain as well as in multidi-
mensional radial and spherical symmetric domains.

Our analysis is made possible by using two new arguments: (i) we employed a new
procedure advocated in [7] which allowed us to obtain sharp (in terms of k) a priori
estimates for both the continuous and discrete problems; (ii) we used new Jacobi and
generalized Jacobi approximation results developed recently in [16, 24] which enabled
us to derive optimal estimates for the cases n = 2, 3 which involve degenerate/singular
coefficients.

Unlike in most of the previous studies on the approximation of the Helmholtz
equation with high wave numbers, our analysis does not rely on explicit knowledge
of continuous/discrete Green’s functions and is valid without any restriction on the
wave number k and the discretization parameter N . Hence, it is possible to extend our
results to more complex problems such as Helmholtz equations in an inhomogeneous
medium and to more complex domains through a suitable mapping or a domain
perturbation technique.

Acknowledgment. The authors would like to thank Dr. Xiaobing Feng for many
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