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Abstract. A general framework is introduced to analyze the approximation properties of
mapped Legendre polynomials and of interpolations based on mapped Legendre–Gauss–Lobatto
points. Optimal error estimates featuring explicit expressions on the mapping parameters for several
popular mappings are derived. These results not only play an important role in numerical analysis
of mapped Legendre spectral and pseudospectral methods for differential equations but also provide
quantitative criteria for the choice of parameters in these mappings.
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1. Introduction. In a spectral method, global polynomials are used as trial
functions to approximate solutions of partial differential equations (PDEs); if the un-
derlying solutions are smooth throughout the domain, the spectral method will pro-
vide very accurate approximations with significantly fewer degrees of freedom when
compared with finite difference or finite element methods (cf. [13, 8, 7]). However,
if the solutions of PDEs exhibit localized rapid variations such as spikes, sharp inter-
faces, or internal layers, standard spectral methods usually fail to produce accurate
approximations with a reasonable number of degrees of freedom, for the grid is fixed
in a standard spectral method and does not take into account the localized solution
behaviors. Thus, for problems with localized rapid variations, it is advisable to use a
grid adapted to the localized solution behaviors rather than a standard fixed grid.

However, unlike in a finite difference or finite element method, spectral methods
cannot gracefully handle an arbitrarily locally refined grid, for the spectral accuracy
will usually be lost due to the fact that the locally refined grid cannot, in general, be
“smoothly” mapped to the standard spectral grid. Thus the adaptivity for spectral
methods is best realized through a “smooth” map which transforms a function having
sharp interfaces in the physical domain to a slow varying function on the computa-
tional domain. Hence two questions need to be addressed: (i) what is the influence
of the mapping on the accuracy of the spectral methods? (ii) how do we adaptively
determine a suitable mapping? In this paper, we aim to provide a complete answer to
the first question, which is a first step toward a long-term goal of designing a robust
adaptive spectral method for solving PDEs.

In general, a coordinate transformation takes the form

x = g(y;λ), y ∈ [−1, 1], λ ∈ Dλ,(1.1)
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such that

g′(y;λ) > 0, g(±1, λ) = ±1, λ ∈ Dλ,(1.2)

where λ is a parameter vector and Dλ is the feasible domain of λ, and ′ denotes the
derivative with respect to y so (1.1) maps the interval [−1, 1] univalently onto itself.
Without loss of generality, we assume that the mapping (1.1) is explicitly invertible
and denote

y = g−1(x;λ) := h(x;λ), x, y ∈ [−1, 1], λ ∈ Dλ.

Several interesting mappings have been proposed and implemented in practice.
In particular, Kosloff and Tal-Ezer [20] introduced the one-parameter mapping

x = g(y;λ) =
arcsin(λy)

arcsinλ
, 0 < λ < 1.(1.3)

This mapping stretches the Chebyshev–Gauss–Lobatto grid toward a uniform grid as
λ → 1−. Bayliss et al. [3] used a mapped Chebyshev method to treat the boundary
layer problem with the mapping

x = g(y;λ) = (4/π) arctan(tan(π(y − 1)/4)/λ) + 1, λ > 0.(1.4)

The mapping clusters more and more points near x = −1 (resp., x = 1) as λ → 0+

(resp., as λ→ +∞). Bayliss and Turkel [4] introduced a two-parameter mapping

x = g(y;λ) = λ2 + tan(a1(y − a0))/λ1, λ1 > 0, −1 ≤ λ2 < 1,(1.5)

where a0 and a1 are chosen to satisfy (1.2). Here, as λ1 increases, more and more
points are clustered near x = λ2. These mappings have been successfully used to
treat some practical problems with localized rapid variations. We note that in [1],
the authors used properties special to Chebyshev polynomials to derive some error
estimates on projection and interpolation errors of the mapped Chebyshev methods
with the mapping (1.3). However, as far as we know, there is neither a systematic
framework for analyzing the mapped spectral methods for solving PDEs nor a precise
rigorous analysis on how the mapping parameter(s) would affect the accuracy. For
example, there have been controversies as to whether λ (with λ close to 1) in [20]
would degrade the accuracy [20, 9, 1, 23].

The main purposes of this paper are: (i) to establish a general framework for
analyzing the mapped Legendre spectral methods as a first step toward an efficient
adaptive spectral method; (ii) to provide precise information on how the mapping
parameters affect the accuracy of the mapped spectral method.

For a given mapping, there are essentially two approaches to implement (and
analyze) a mapped spectral method. In the first approach, we use x = g(y;λ) to
transform the original equation (with localized rapid variations in x) to a mapped
equation (with smooth behaviors in y), and then apply a standard spectral method
(in y) to the mapped equation (see, for instance, [14, 17]). The main advantage of this
approach is that standard spectral approximation results can be used for the analysis,
but its main disadvantage is that the mapped equation is usually very complicated
and its analysis is often cumbersome. In the second approach, we do not transform the
equation, but we approximate its solution using a new family of orthogonal functions
{pk(h(x;λ))}, which are obtained by applying the mapping y = h(x;λ) to classical



328 JIE SHEN AND LI-LIAN WANG

orthogonal polynomials {pk(y)} (see, for instance, [6, 18, 16]) and which are suitable
for capturing the localized rapid variations in the solution of the given problem. The
analysis of this approach will require approximation results by using the new family of
orthogonal functions. The advantage of this approach is that once these approxima-
tion results are established, it can be directly (i.e., without using a transform) applied
to a large class of problems. We shall take the second approach and establish approx-
imation results for the mapped Legendre polynomials. We emphasize that the two
approaches will yield essentially the same approximate solutions (although the two
implementations can be quite different). Hence the dependence of the error estimates
on the mapping parameters established here for the second approach is essentially
valid for the first approach.

The remainder of the paper is organized as follows. In the next section, we
introduce the general framework for the mapped Legendre spectral and pseudospectral
approximations. In section 3, we apply our general results to the specific mappings
(1.3)–(1.5). In section 4, we consider the mapped Legendre approximations for a
model problem and present some illustrative numerical results. Some concluding
remarks are given in section 5.

2. The general framework. In this section, we introduce a general framework
for the error analysis of Legendre spectral methods using mapping (1.1) with (1.2).
We assume that for a certain positive integer r ≥ 1,

h(x;λ) ∈ Cr((−1, 1)), λ ∈ Dλ.(2.1)

2.1. Preliminaries. We first introduce some notation. Let I = (−1, 1), and let
χ(x) > 0 be a given weight function on I. We define

L2
χ(I) = {v | v is measurable on I and ‖v‖χ <∞},

equipped with the following inner product and norm:

(u, v)χ =

∫

I

u(x)v(x)χ(x)dx, ‖v‖χ = (v, v)
1
2
χ .

The weighted Sobolev spaces Hm
χ (I) and Hm

0,χ(I) are defined as usual. The norm of
Hm

χ (I) is defined as

‖v‖m,χ =

(
m∑

k=0

‖∂kxv‖2
χ

) 1
2

.

In case χ(x) ≡ 1, we shall drop the subscript χ in the notation for the sake of
simplicity.

Let ωα,β(x) = (1−x)α(1 +x)β be the Jacobi weight function and N be the set of
all nonnegative integers. For any m ∈ N, we define the nonuniformly weighted Hilbert
space

Am(I) = {v | ∂kxv ∈ L2
ωk,k(I), 0 ≤ k ≤ m}(2.2)

equipped with the inner product, the seminorm, and the norm as follows:

(u, v)m,A =

m∑

k=0

(∂kxu, ∂
k
xv)ωk,k , |v|m,A = ‖∂mx v‖ωm,m , ‖v‖m,A = (v, v)

1
2

m,A.
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For any real r > 0, we define the space Ar(I) and its norm by space interpolation.
We shall use the expression A . B to mean that there exist a generic positive

constant c, independent of any function, N , and the parameters of the mappings, such
that A ≤ cB.

Let Ll(y) be the Legendre polynomial of degree l, which is the eigenfunction of
the Sturm–Liouville problem

∂y((1 − y2)∂yv(y)) + µv(y) = 0, y ∈ I,(2.3)

with the corresponding eigenvalues µl = l(l + 1), l = 0, 1, 2, . . . . We have Ll(±1) =
(±1)l and the following recurrence relations:

Ll+1(y) =
2l + 1

l + 1
yLl(y) −

l

l + 1
Ll−1(y), l ≥ 1,(2.4)

(2l + 1)Ll(y) = ∂yLl+1(y) − ∂yLl−1(y), l ≥ 1.(2.5)

The set of Legendre polynomials forms an L2(I)-orthogonal system, i.e.,

∫

I

Ll(y)Lm(y)dy = γlδl,m, with γl =
2

2l + 1
.(2.6)

For any v ∈ L2(I), we write

v(y) =

∞∑

l=0

v̂lLl(y), with v̂l =
1

γl
(v, Ll).

We have the following equivalence (see [17]):

‖∂ryv‖ωr,r ∼
( ∞∑

l=r

µr
l v̂

2
l γl

) 1
2

∀v ∈ Ar(I).(2.7)

We now recall some results on the Legendre spectral approximations. Let PN be
the set of all polynomials of degree less than or equal to N and P0

N = {φ ∈ PN :

φ(±1) = 0}. We define P̂N : L2(I) → PN the L2(I)-orthogonal projector by

(P̂Nv − v, φ) = 0 ∀φ ∈ PN .(2.8)

The following result was proved in [11] (see also [2, 15]).
Lemma 2.1.

‖∂µy (P̂Nv − v)‖ωµ,µ . Nµ−r‖∂ryv‖ωr,r , 0 ≤ µ ≤ r, v ∈ Ar(I).(2.9)

We define the H1(I)-orthogonal projector P̂ 1
N : H1(I) → PN by

(P̂ 1
Nv − v, φ)1 = 0 ∀φ ∈ PN(2.10)

and the H1
0 (I)-orthogonal projector P̂ 1,0

N : H1
0 (I) → P0

N by

(∂y(P̂
1,0
N v − v), ∂yφ) = 0 ∀φ ∈ P0

N .(2.11)
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As two special cases of Theorem 3.1 and Theorem 3.4 in Guo and Wang [19], we have
the following lemma.

Lemma 2.2. If v ∈ H1(I) and ∂ryv ∈ L2
ωr−1,r−1(I), then

‖P̂ 1
Nv − v‖µ . Nµ−r‖∂ryv‖ωr−1,r−1 , 0 ≤ µ ≤ 1 ≤ r.(2.12)

If v ∈ H1
0 (I) and ∂ryv ∈ L2

ωr−1,r−1(I), then

‖P̂ 1,0
N v − v‖µ . Nµ−r‖∂ryv‖ωr−1,r−1 , 0 ≤ µ ≤ 1 ≤ r.(2.13)

Next, let ζN,j , 0 ≤ j ≤ N, be the Legendre–Gauss–Lobatto (LGL) points, which
are the zeros of (1 − y2)∂yLN (y). We assume that they are arranged in ascending
order. There exists a unique set of Christoffel numbers {ωN,j} such that

∫

I

φ(y)dy =

N∑

j=0

φ(ζN,j)ωN,j ∀φ ∈ P2N−1.(2.14)

In fact, we have

ωN,0 = ωN,N =
2

N(N + 1)
, ωN,j =

2

N(N + 1)
(LN (ζN,j))

−2, 1 ≤ j ≤ N − 1.

(2.15)

We define the discrete inner product and discrete norm as

(u, v)N =

N∑

j=0

u(ζN,j)v(ζN,j)ωN,j , ‖v‖N = (v, v)
1
2

N .

Note that we have (see, for instance, formula (21.8) of Bernardi and Maday [5])

‖φ‖ ≤ ‖φ‖N ≤
√

2 +N−1‖φ‖ ∀φ ∈ PN .(2.16)

On the other hand, we also have (see Theorem 4.9 of Guo and Wang [15])

‖v‖N . ‖v‖ +N−1‖∂yv‖ω1,1 ∀v ∈ H1
0 (I).(2.17)

2.2. Mapped Legendre orthogonal approximations. For a given mapping
y = h(x;λ), we define the mapped Legendre polynomials by

L(λ)
l (x) = Ll(y) = Ll(h(x;λ)), l = 0, 1, 2, . . . .(2.18)

Due to h(±1;λ) = ±1, we have L(λ)
l (±1) = (±1)l. We denote the weight function

ωλ(x) := h′(x;λ) =
1

g′(y;λ)
.(2.19)

Thanks to (2.5), we have the recurrence relation

(2l + 1)ωλ(x)L(λ)
l (x) = ∂xL(λ)

l+1(x) − ∂xL(λ)
l−1(x), l ≥ 1.(2.20)
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By virtue of (2.6), the set {L(λ)
l }∞l=0 forms a complete orthogonal system in L2

ωλ
(I),

and consequently, for any v ∈ L2
ωλ

(I), we can write

v(x) =

∞∑

l=0

v̂
(λ)
l L(λ)

l (x), with v̂
(λ)
l =

1

γl
(v,L(λ)

l )ωλ
.(2.21)

Moreover, L(λ)
l is the eigenfunction of the Sturm–Liouville problem

w−1
λ (x)∂x(ω̃λ(x)∂xL(λ)

l (x)) + µlL(λ)
l (x) = 0, x ∈ I,

with ω̃λ(x) = (1−h2(x;λ))ω−1
λ (x). This implies that {∂xL(λ)

l }∞l=1 forms an orthogonal
system in L2

ω̃λ
(I), i.e.,

∫

I

∂xL(λ)
l (x)∂xL(λ)

m (x)ω̃λ(x)dx = µlγlδl,m.(2.22)

We now consider error estimates for approximations using the orthogonal system

{L(λ)
l }∞l=0. For λ ∈ Dλ, we set VN,λ = span{L(λ)

0 ,L(λ)
1 , . . . ,L(λ)

N }. Let PN,λ : L2
ωλ

(I) →
VN,λ be the L2

ωλ
(I)-orthogonal projector defined by

(PN,λv − v, φ)ωλ
= 0 ∀φ ∈ VN,λ.(2.23)

For clarity, the following notation will be used in what follows:

Vλ(y) = v ◦ g(y;λ) = v(x), Φλ(y) = φ ◦ g(y;λ) = φ(x), x, y ∈ I, λ ∈ Dλ.(2.24)

For λ ∈ Dλ and r ∈ N, we define

Ar
λ(I) = {v ∈ L2

ωλ
(I) | |v|Ar

λ
= ‖(1 − y2)

r
2 ∂ryVλ‖ <∞, y = h(x;λ)}(2.25)

and

Br
λ(I) = {v ∈ L2

ωλ
(I) | |v|Br

λ
= ‖(1 − y2)

r−1
2 ∂ryVλ‖ <∞, y = h(x;λ)}.(2.26)

The following is a fundamental result for the mapped Legendre spectral approxi-
mations.

Theorem 2.1. For any v ∈ Ar
λ(I), λ ∈ Dλ, and r ≥ 1,

‖∂x(PN,λv − v)‖ω̃λ
+N‖PN,λv − v‖ωλ

. N1−r|v|Ar
λ
.(2.27)

Moreover, for r > 1,

|PN,λv(±1) − v(±1)| . N1−r|v|Ar
λ
.(2.28)

Proof. For v ∈ L2
ωλ

(I), we have Vλ ∈ L2(I), so we can write

v(x) =

∞∑

l=0

v̂
(λ)
l L(λ)

l (x) =

∞∑

j=0

V̂
(λ)
l Ll(y) = Vλ(y)(2.29)

with

v̂
(λ)
l =

1

γl
(v,L(λ)

l )ωλ
=

1

γl
(Vλ, Ll) = V̂

(λ)
l .(2.30)
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Let P̂N and PN,λ be the projectors defined in (2.8) and (2.23). We derive from
(2.30) and Lemma 2.1 with µ = 0 that

‖PN,λv −v‖2
ωλ

=

∞∑

l=N+1

(v̂
(λ)
l )2γl =

∞∑

l=N+1

(V̂
(λ)
l )2γl = ‖P̂NVλ − Vλ‖2

. N−2r‖(1 − y2)
r
2 ∂ryVλ‖2 = N−2r|v|2Ar

λ
.

(2.31)

On the other hand, since {∂yLl} is L2
ω1,1(I)-orthogonal, we derive from (2.22), (2.30),

and Lemma 2.1 with µ = 1 that

‖∂x(PN,λv − v)‖2
ω̃λ

=

∞∑

l=N+1

µlγl(v̂
(λ)
l )2 =

∞∑

l=N+1

µlγl(V̂
(λ)
l )2

= ‖∂y(P̂NVλ − Vλ)‖2
ω1,1 . N2(1−r)|v|2Ar

λ
.

Next, since |L(λ)
l (±1)| = 1, we derive from (2.7), (2.29), and (2.30) that

|PN,λv(±1) − v(±1)| ≤
∞∑

l=N+1

|V̂ (λ)
l | ≤ CN,r

( ∞∑

l=N+1

µr
l (V̂

(λ)
l )2γl

) 1
2

. CN,r‖∂ryVλ‖ωr,r . CN,r|v|Ar
λ
,

where for r > 1,

CN,r =

( ∞∑

l=N+1

µ−r
l γ−1

l

) 1
2

.

( ∞∑

l=N+1

l1−2r

) 1
2

.

(∫ ∞

N

x1−2rdx

) 1
2

. N1−r.

The proof is complete.
When analyzing mapped Legendre spectral methods for numerical solutions of

PDEs, we often need to consider the H1
ωλ

(I)-orthogonal projection P 1
N,λ : H1

ωλ
(I) →

VN,λ defined by

(P 1
N,λv − v, φ)1,ωλ

= 0 ∀φ ∈ VN,λ.

Theorem 2.2. For any v ∈ H1
ωλ

(I) ∩Br
λ(I), λ ∈ Dλ, and r ≥ 1,

‖P 1
N,λv − v‖1,ωλ

. (dλ,1 + 1)N1−r|v|Br
λ
,(2.32)

where dλ,1 = maxx∈Ī |ωλ(x)|.
Proof. By (2.19) and (2.24),

‖φ− v‖2
1,ωλ

=

∫

I

(∂y(Φλ(y) − Vλ(y)))2
(dy
dx

)2

dy +

∫

I

(Φλ(y) − Vλ(y))2dy

≤ (dλ,1 + 1)2‖Φλ − Vλ‖2
1.

(2.33)

Next, we take φ(x) = Φλ(y) = P̂ 1
NVλ(y) in (2.33), where P̂ 1

N is defined in (2.10), and
we obtain from the projection theorem and Lemma 2.2 that

‖P 1
N,λv − v‖1,ωλ

= inf
φ∈VN,λ

‖φ− v‖1,ωλ
≤ (dλ,1 + 1)‖P̂ 1

NVλ − Vλ‖1

. (dλ,1 + 1)N1−r‖∂ryVλ‖ωr−1,r−1 . (dλ,1 + 1)N1−r|v|Br
λ
.
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Next, we consider the bilinear form

a(ν)
ωλ

(u, v) = ν1(∂xu, ∂x(vωλ)) + ν2(u, v)ωλ

(where ν = (ν1, ν2) and νi > 0, i = 1, 2) associated to the mapped Legendre spectral
approximation of the model elliptic equation

−µ1vxx + µ2v = f, v(±1) = 0.(2.34)

Due to the nonuniform weight function ωλ(x), the bilinear form a
(ν)
ωλ (u, v) is not sym-

metric. We first study its continuity and coercivity.
Lemma 2.3. For any u, v ∈ H1

ωλ
(I),

a(ν)
ωλ

(u, v) ≤ ν1(dλ,2 + 1)|u|1,ωλ
‖v‖1,ωλ

+ ν2‖u‖ωλ
‖v‖ωλ

,(2.35)

where

dλ,2 = max
x∈Ī

|ω−1
λ (x)∂xωλ(x)|.(2.36)

For any v ∈ H1
0,ωλ

(I),

a(ν)
ωλ

(v, v) ≥ ν1|v|21,ωλ
+
(
ν2 −

ν1
2
dλ,3

)
‖v‖2

ωλ
,(2.37)

where

dλ,3 = max
x∈Ī

{ω−1
λ (x)∂2

xωλ(x)}.(2.38)

Proof. By the Cauchy inequality,

a
(ν)
ωλ (u, v) ≤ ν1|(∂xu, ∂xv)ωλ

+ (∂xu, v∂xωλ)| + ν2|(u, v)ωλ
|

≤ ν1(|u|1,ωλ
|v|1,ωλ

+ max
x∈Ī

|ω−1
λ (x)∂xωλ(x)||u|1,ωλ

‖v‖ωλ
) + ν2‖u‖ωλ

‖v‖ωλ

≤ ν1(dλ,2 + 1)|u|1,ωλ
‖v‖1,ωλ

+ ν2‖u‖ωλ
‖v‖ωλ

.

On the other hand,

a
(ν)
ωλ (v, v) = ν1|v|21,ωλ

+ ν2‖v‖2
ωλ

+
ν1
2

∫

I

∂x(v
2(x))∂xωλ(x)dx

= ν1|v|21,ωλ
+ ν2‖v‖2

ωλ
− ν1

2

∫

I

v2(x)∂2
xωλ(x)dx

≥ ν1|v|21,ωλ
+

(
ν2 −

ν1
2
dλ,3

)
‖v‖2

ωλ
.

(2.39)

This lemma indicates that if ν2 >
ν1

2 dλ,3, then ‖|v‖|1,ωλ
:=

√
a
(ν)
ωλ (v, v) is a norm

for the space H1
0,ωλ

(I).

Next, we set V0
N,λ = H1

0,ωλ
(I) ∩ VN,λ and define the orthogonal projector P 1,0

N,λ :

H1
0,ωλ

(I) → V0
N,λ by

a(ν)
ωλ

(P 1,0
N,λv − v, φ) = 0 ∀φ ∈ V0

N,λ.(2.40)
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Theorem 2.3. If ν2 >
ν1

2 dλ,3, then for any v ∈ H1
0,ωλ

(I) ∩ Br
λ(I), λ ∈ Dλ, and

r ≥ 1,

‖|P 1,0
N,λv − v‖|1,ωλ

. (ν
1
2
1 (dλ,1 + 1)(dλ,2 + 1)

1
2 + ν

1
2
2 N

−1)N1−r|v|Br
λ
,(2.41)

where dλ,i, i = 1, 2, 3, are the same as before.

Proof. By the projection theorem, (2.33), and (2.35),

‖|P 1,0
N,λv −v‖|21,ωλ

= inf
φ∈V0

N,λ

‖|φ− v‖|21,ωλ

≤ ν1(dλ,2 + 1)|φ− v|1,ωλ
‖φ− v‖1,ωλ

+ ν2‖φ− v‖2
ωλ

≤ ν1(dλ,1 + 1)2(dλ,2 + 1)‖Φλ − Vλ‖2
1 + ν2‖Φλ − Vλ‖2.

(2.42)

Let P̂ 1,0
N be the H1

0 (I)-orthogonal projection as in Lemma 2.2. Hence, by taking

φ(x) = Φλ(y) = P̂ 1,0
N Vλ(y) in (2.42), where P̂ 1,0

N is defined in (2.11), we can obtain
the desired result thanks to Lemma 2.2.

2.3. Mapped Legendre pseudospectral approximations. In this subsec-
tion, we consider the interpolation operator based on the mapped Legendre–Gauss–
Lobatto (MLGL) points.

Let {ζN,j}Nj=0 and {ωN,j}Nj=0 be the LGL points and weights. The MLGL points
and weights are defined by

ξ
(λ)
N,j = g(ζN,j ;λ), ω

(λ)
N,j = ωN,j , 0 ≤ j ≤ N, λ ∈ Dλ.(2.43)

It is clear that ξ
(λ)
N,0 = −1 and ξ

(λ)
N,N = 1, and thanks to (2.14),

∫

I

φ(x)ωλ(x)dx =

∫

I

φ(g(y;λ))dy =

N∑

j=0

φ(ξ
(λ)
N,j)ω

(λ)
N,j ∀φ ∈ V2N−1,λ.(2.44)

Let the discrete inner product and discrete norm be defined as

(u, v)ωλ,N =

N∑

j=0

u(ξ
(λ)
N,j)v(ξ

(λ)
N,j)ω

(λ)
N,j , ‖v‖ωλ,N = (v, v)

1
2

ωλ,N
.

We have from (2.16) that

‖φ‖ωλ
≤ ‖φ‖ωλ,N ≤

(
2 +

1

N

) 1
2 ‖φ‖ωλ

∀φ ∈ VN,λ.(2.45)

Let IN,λv be the interpolation of v(x) in VN,λ at points ξ
(λ)
N,j . We first establish

a result on the stability of IN,λ.
Lemma 2.4. For any v ∈ L2

ωλ
(I) ∩H1

ω̃λ
(I) and λ ∈ Dλ,

‖IN,λv‖ωλ
. ‖v‖ωλ

+N−1(|v(1)| + |v(−1)| + |v|1,ω̃λ
).(2.46)

Proof. By (2.15), (2.43), and (2.45),

‖IN,λv‖2
ωλ

≤ ‖IN,λv‖2
ωλ,N

=
2

N(N + 1)
(v2(−1) + v2(1)) +

N−1∑

j=1

v2(ξ
(λ)
N,j)ω

(λ)
N,j

=
2

N(N + 1)
(v2(−1) + v2(1)) +

N−1∑

j=1

V 2
λ (ζN,j)ωN,j .

(2.47)



MAPPED LEGENDRE METHODS 335

Thanks to (2.17), we have from (2.24) that

N−1∑

j=1

V 2
λ (ζN,j)ωN,j ≤ ‖Vλ‖2

N . ‖Vλ‖2 +N−2‖∂yVλ‖2
ω1,1

. ‖v‖2
ωλ

+N−2|v|21,ω̃λ
.

(2.48)

This completes the proof.
Remark 2.1. For the treatment of nonlinear problems, we often need to estimate

the terms such as IN,λφ with φ ∈ V0
M,λ,M > N. By the formula (5.9) in [5], we have

the following inverse inequality:

|φ|1,ω̃λ
= |Φλ|1,ω1,1 ≤

√
2N‖Φλ‖ =

√
2N‖φ‖ωλ

∀φ ∈ VN,λ.(2.49)

So we obtain from (2.46) that for any φ ∈ V0
M,λ and ψ ∈ V0

L,λ,

‖IN,λφ‖ωλ
. ‖φ‖ωλ

+N−1|φ|1,ω̃λ
.
(
1 +

M

N

)
‖φ‖ωλ

.(2.50)

On the other hand, by (2.45),

|(φ, ψ)ωλ,N | = |(IN,λφ, IN,λψ)ωλ,N | ≤ ‖IN,λφ‖ωλ,N‖IN,λψ‖ωλ,N

≤
(
2 +

1

N

)
‖IN,λφ‖ωλ

‖IN,λψ‖ωλ

.
(
1 +

M

N

)(
1 +

L

N

)
‖φ‖ωλ

‖ψ‖ωλ
.

(2.51)

The following is the main result on the MLGL interpolation.
Theorem 2.4. For any v ∈ Ar

λ(I), λ ∈ Dλ, and r > 1,

‖∂x(IN,λv − v)‖ω̃λ
+N‖IN,λv − v‖ωλ

. N1−r|v|Ar
λ
.(2.52)

Proof. By (2.27), (2.28), and (2.46),

‖IN,λv −PN,λv‖ωλ
= ‖IN,λ(PN,λv − v)‖ωλ

. ‖PN,λv − v‖ωλ
+N−1(|PN,λv(1) − v(1)|

+ |PN,λv(−1) − v(−1)| + ‖∂x(PN,λv − v)‖ω̃λ
)

. N−r|v|Ar
λ
.

(2.53)

Due to (2.49), we obtain from (2.53) that

|IN,λv − PN,λv|1,ω̃λ
. N‖IN,λv − PN,λv‖ωλ

. N1−r|v|Ar
λ
.

We then derive from (2.27) that

|IN,λv −v|1,ω̃λ
+N‖IN,λv − v‖ωλ

≤ |IN,λv − PN,λv|1,ω̃λ
+N‖IN,λv − PN,λv‖ωλ

+ |PN,λv − v|1,ω̃λ
+N‖PN,λv − v‖ωλ

. N1−r|v|Ar
λ
.

Remark 2.2. As a direct consequence, we can estimate the difference between the
continuous and discrete inner products. In fact, we deduce from (2.27), (2.44), (2.45),
and (2.52) that for any v ∈ Ar

λ(I) and φ ∈ VN,λ with r > 1 and λ ∈ Dλ,

|(v, φ)ωλ
− (v, φ)ωλ,N |

≤ |(v, φ)ωλ
− (PN−1,λv, v)ωλ

| + |(PN−1,λv, φ)ωλ,N − (IN,λv, φ)ωλ,N |
≤ ‖PN−1,λv − v‖ωλ

‖φ‖ωλ
+ ‖PN−1,λv − IN,λv‖ωλ,N‖φ‖ωλ,N

. N−r|v|Ar
λ
‖φ‖ωλ

.

(2.54)
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3. The upper bounds of |v|Ar

λ
and |v|Br

λ
. In this section, we provide upper

bounds of |v|Ar
λ

and |v|Br
λ

in terms of derivatives of v(x) for the mappings (1.3)–(1.5).
We also derive explicit bounds on the positive constants dλ,i (i = 1, 2, 3) defined in
the previous section. These bounds provide, in particular, explicit information on how
the mapping parameters affect the accuracy of the mapped Legendre approximation.

3.1. The mapping (1.3). In this case, we have Dλ = (0, 1). The inverse of the
mapping (1.3) is

y = h(x;λ) =
sin(ax)

λ
, a = arcsinλ, λ ∈ (0, 1).(3.1)

Moreover,

ωλ(x) =
dy

dx
=
a

λ
cos(ax) =

(dx
dy

)−1

=
a

λ

√
1 − λ2y2.(3.2)

Since a→ λ as λ→ 0, λ
a is uniformly bounded for λ ∈ (0, 1). For clarity, let Ql(y;λ)

be a polynomial of degree l with respect to y. Then for any integer k ≥ 1,

dkx

dyk
=
λ

a

k−1∑

j=0

(
k − 1

j

)(
(1 − λy)−

1
2

)(j)(
(1 + λy)−

1
2

)(k−j−1)

=

k−1∑

j=0

Ek
j (λ)(1 − λy)−

1
2−j(1 + λy)

1
2+j−k

= (1 − λ2y2)
1
2−k

k−1∑

j=0

Ek
j (λ)(1 − λy)k−1−j(1 + λy)j

= (1 − λ2y2)
1
2−kQk−1(y;λ),

(3.3)

where Ek
j (λ) is a constant in terms of j, k, and λ. By direct calculations,

∂yVλ(y) = ∂xv(x)
dx

dy
= (1 − λ2y2)−

1
2Q0(y;λ)∂xv(x),

∂2
yVλ(y) = ∂2

xv(x)
(dx
dy

)2

+ ∂xv(x)
d2x

dy2

= (1 − λ2y2)−1Q0(y;λ)∂2
xv(x) + (1 − λ2y2)−

3
2Q1(y;λ)∂xv(x),

∂3
yVλ(y) = ∂3

xv(x)
(dx
dy

)3

+ 3∂2
xv(x)

dx

dy

d2x

dy2
+ ∂xv(x)

d3x

dy3

= (1 − λ2y2)−
3
2Q0(y;λ)∂3

xv(x) + (1 − λ2y2)−2Q1(y;λ)∂2
xv(x)

+ (1 − λ2y2)−
5
2Q2(y;λ)∂xv(x).

(3.4)

Thus an induction argument leads to

∂kyVλ(y) =

k∑

j=1

(1 − λ2y2)
j
2−kQk−j(y;λ)∂jxv(x), k ≥ 1,(3.5)

where Ql(y;λ) (0 ≤ l ≤ k) are uniformly bounded for all y ∈ Ī and λ ∈ (0, 1). Then,
by the definition of |v|Ar

λ
, we derive from (3.5) that for r ≥ 1,

|v|2Ar
λ

= ‖∂ryVλ‖2
ωr,r .

r∑

j=1

∫

I

(1 − λ2y2)j−2r(1 − y2)r(∂jxv(x))
2ωλ(x)dx,(3.6)
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where y = g(x;λ) ∈ Ī . Since 1− y2 ≤ 1−λ2y2 and A0
λ(I) = L2

ωλ
(I), we conclude that

|v|Ar
λ

. (1 − λ2)
1
2− r

2 ‖v‖r,ωλ
, r ≥ 0, λ ∈ (0, 1).(3.7)

Similarly, we derive from by the definition of Br
λ(I) that

|v|Br
λ

. (1 − λ2)−
r
2 ‖v‖r,ωλ

, r ≥ 1, λ ∈ (0, 1).(3.8)

Next, we derive from (3.1) and (3.2) that the values of dλ,i, 1 ≤ i ≤ 3, in (2.32),
(2.35), and (2.38) are

dλ,1 =
a

λ
, dλ,2 =

aλ√
1 − λ2

, dλ,3 = −a2.(3.9)

In summary, we have proved the following results.
Corollary 3.1. For any v ∈ Hr

ωλ
(I), λ ∈ (0, 1), and r ≥ 1,

‖∂x(PN,λv − v)‖ω̃λ
+N‖PN,λv − v‖ωλ

. (1 − λ2)
1
2− r

2N1−r‖v‖r,ωλ
,(3.10)

‖P 1
N,λv − v‖1,ωλ

. (1 − λ2)−
r
2N1−r‖v‖r,ωλ

,(3.11)

and for r > 1,

‖∂x(IN,λv − v)‖ω̃λ
+N‖IN,λv − v‖ωλ

. (1 − λ2)
1
2− r

2N1−r‖v‖r,ωλ
.(3.12)

If ν1, ν2 > 0 and v ∈ H1
0,ωλ

(I) ∩Hr
ωλ

(I) with r ≥ 1, then

‖|P 1,0
N,λv − v|‖1,ωλ

. (ν
1
2
1 (1 − λ2)−

1
4 + ν

1
2
2 N

−1)(1 − λ2)−
r
2N1−r‖v‖r,ωλ

.(3.13)

Remark 3.1. For λ = 0, (1.3) becomes the identity map. So we obtain the same
results as in the standard Legendre case, i.e.,

|v|Ar
λ

. ‖(1 − x2)
r
2 ∂rxv‖, |v|Br

λ
. ‖(1 − x2)

r−1
2 ∂rxv‖, λ→ 0.

Remark 3.2. For λ = 1, (1.3) becomes y = sin(πx/2). This mapping has singu-
larities at x = ±1, and therefore, (3.7)–(3.8) are no longer valid. However, we find
from (3.1), (3.2), and (3.6) that

|v|Ar
1

.

(
r∑

j=1

∫

I

(1 − y2)j−r(∂jxv(x))
2ωλ(x)dx

) 1
2

.

(
r∑

j=1

∫

I

(1 − x2)j−r+ 1
2 (∂jxv(x))

2dx

) 1
2

.

This implies that |v|Ar
1

is bounded if v ∈ Hr(I) and for some σ < 1,

(1 − x2)j−r+ 1
2 (∂jxv(x))

2 .
1

(1 − x2)σ
as |x| → 1, 1 ≤ j ≤ r.(3.14)

In particular, one can verify that (3.14) is satisfied if

∂jxv(±1) = 0, 1 ≤ j ≤ r − 2, v ∈ Hr(I).(3.15)
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Indeed, by the Hardy’s inequality (see [12]), we have that for α < 1,

∫

I

u2(x)(1 − x2)α−1dx .

∫

I

u2(x)(1 − x2)α−2dx .

∫

I

(∂xu(x))
2(1 − x2)αdx,

provided that u(±1) = 0 and the right-hand side of the inequality is finite. Using this
equality and the condition (3.15), we have for 1 ≤ j ≤ r − 2,

∫

I

(∂jxv(x))
2 (1 − x2)j−r+ 1

2 dx .

∫

I

(∂j+1
x v(x))2(1 − x2)j−r+ 3

2 dx

. · · · .

∫

I

(∂r−1
x v(x))2(1 − x2)−

1
2 dx.

Then, by the inequality (13.5) in [5], we have that for α > 1,

∫

I

u2(x)(1 − x2)α−2dx .

∫

I

((∂xu(x))
2 + u2(x))(1 − x2)αdx,

which implies that
∫

I

(∂r−1
x v(x))2(1 − x2)−

1
2 dx .

∫

I

((∂rxv(x))
2 + (∂r−1

x v(x))2)(1 − x2)
3
2 dx.

A combination of the above estimates show that under the condition (3.15), we have

|v|Ar
1

. (‖(1 − x2)
3
4 ∂r−1

x v‖ + ‖(1 − x2)
1
4 ∂rxv‖).(3.16)

Similar results can also be derived for |v|Br
1
. The estimates indicate, in particular,

that, for the mapping (1.3) with λ = 1, the convergence rate of the mapped Legendre
method is of order r if (3.15) is satisfied. In particular, only a second-order convergence
rate can be expected if the function does not vanish at the end-points.

Remark 3.3. If the parameter λ was chosen as (cf. [1] and [10])

λ = λ(N, ε) = sech
( | ln ε|

N

)
=

2

ε1/N + ε−1/N
∼ 1 − 1

2
(ln2 ε)N−2 for N � 1,(3.17)

where ε is the desired accuracy, then we find from (3.7) and (3.8) that for any v ∈
Hr

ωλ
(I),

|v|Ar
λ
∼ (| ln ε|)1−rNr−1, |v|Br

λ
∼ (| ln ε|)−rNr,

which, along with Corollary 3.1, implies that

‖PN,λv − v‖ωλ
∼ | ln ε|1−rN−1, ‖P 1

N,λv − v‖1,ωλ
∼ | ln ε|−rN.

Thus a lower order (< r) of accuracy is expected by choosing (3.17), except when ε
and N are such that ε . exp(−γN), γ > 0.

3.2. The mapping (1.4). In this case, Dλ = {λ | λ > 0}, and (1.4) is

y = h(x;λ) = (4/π) arctan(λ tan(π(x− 1)/4)) + 1, λ > 0,(3.18)

ωλ(x) =
dy

dx
=

λ

1 + (λ2 − 1) sin2(π(x− 1)/4)
.(3.19)
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In particular, h(x;λ) = x and ωλ(x) = 1 for λ = 1.
Let us denote

Cλ =

{
λ−1, 0 < λ ≤ 1,

λ, λ > 1,
C1 =

{
1, 0 < λ ≤ 1,

λ−2, λ > 1,
C2 =

{
λ2, 0 < λ ≤ 1,

1, λ > 1.

We have C1, C2 ≤ 1 for λ > 0, and by (3.19),

dx

dy
= (cos2(π(x− 1)/4) + λ2 sin2(π(x− 1)/4))/λ

= Cλ(C1 cos2(π(x− 1)/4) + C2 sin2(π(x− 1)/4)).
(3.20)

We set

Tl = span{cos(kπ(x− 1)/4), sin(kπ(x− 1)/4), 1 ≤ k ≤ l}, l ∈ N.

For j ≥ 1, we denote by Tk,j(x) some functions in Tl with coefficients in terms of C1

and C2. Then, by (3.18) and (3.20),

∂yVλ(y) = ∂xv(x)
dx

dy
= CλT2,1(x)∂xv(x),

∂2
yVλ(y) =

d(∂yVλ(y))

dx

dx

dy
= C2

λ(T4,2(x)∂
2
xv(x) + T4,1(x)∂xv(x)).

Hence, by an induction argument, we find that for k ≥ 1,

∂kyVλ(y) = Ck
λ

k∑

j=1

Tk,j(x)∂
j
xv(x),(3.21)

where Tk,j(x) (1 ≤ j ≤ k) are uniformly bounded for all x ∈ Ī and λ > 0. Let

ω
(r)
λ (x) := ωλ(x)(1 − y2)r = ωλ(x)(1 − h2(x;λ))r (. ωλ(x), x ∈ I, λ > 0).

By (3.18) and (3.20),

lim
x→1

1 − h(x;λ)

1 − x
= λ, lim

x→−1

1 + h(x;λ)

1 + x
= λ−1.

By virtue of (3.21) and the definitions of |v|Ar
λ

and |v|Br
λ
, we derive that

|v|Ar
λ

. Cr
λ‖v‖r,ω(r)

λ

, |v|Br
λ
≤ Cr

λ‖v‖r,ω(r−1)

λ

, λ > 0.(3.22)

Next, we deduce from (3.18)–(3.20) that the values of the constants dλ,i, 1 ≤ i ≤
3, are

dλ,1 = Cλ, dλ,2 =
π/4|λ2 − 1‖ sin(π(x− 1)/2)|

cos2(π(x− 1)/4) + λ2 sin2(π(x− 1)/4)
≤ π|λ2 − 1|

4λ
,

dλ,3 =





max{π2

8 (1 − λ2), Sλ(z0)} if 0 < λ ≤ e0,

π2

8 (1 − λ2) if e0 < λ ≤ 1,

π2(λ2−1)
8λ2 if 1 < λ ≤ e1,

max{π2(λ2−1)
8λ2 , Sλ(z0)} if λ > e1,

(3.23)
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where e0 =

√√
97−5
6 , e1 =

√
5
3 , z0 = 5λ2−3

3(1−λ4) , and

Sλ(z) =
π2b(−2bz2 + (3b− 2)z + 1)

8(1 − bz)2
, with b = 1 − λ2.

The estimate on dλ,2 is derived using a simple inequality a2 + b2 ≥ 2ab. The estimate
on dλ,3 is nontrivial and its derivation is given in Appendix A.

In summary, we obtained the following approximation results for mapping (1.4).
Corollary 3.2. For any v ∈ Hr

ω
(r)

λ

(I), λ ∈ (0, 1), and r ≥ 1,

‖∂x(PN,λv − v)‖ω̃λ
+N‖PN,λv − v‖ωλ

. Cr
λN

1−r‖v‖
r,ω

(r)

λ

,(3.24)

and for r > 1,

‖∂x(IN,λv − v)‖ω̃λ
+N‖IN,λv − v‖ωλ

. Cr
λN

1−r‖v‖
r,ω

(r)

λ

,(3.25)

while for any v ∈ Hr

ω
(r−1)

λ

(I) and r ≥ 1,

‖P 1
N,λv − v‖1,ωλ

. Cr+1
λ N1−r‖v‖

r,ω
(r−1)

λ

.(3.26)

If, in addition, ν2 >
ν1

2 dλ,3 and v ∈ H1
0,ωλ

(I), then

|||P 1,0
N,λv − v|||1,ωλ

. (ν
1
2
1 (dλ,1 + 1)(dλ,2 + 1)

1
2 + ν

1
2
2 N

−1)N1−r‖v‖
r,ω

(r−1)

λ

,(3.27)

where dλ,i, i = 1, 2, 3 are given in (3.23).

3.3. The mapping (1.5). In this case, λ = (λ1, λ2) and Dλ = {(λ1, λ2) | λ1 >
0, − 1 ≤ λ2 < 1}. The mapping (1.5) is explicitly invertible:

y = h(x;λ) = a0 + arctan(λ1(x− λ2))/a1.(3.28)

The values of a0 and a1 are

a0 = a0(λ) =
κ1 − κ2

κ1 + κ2
, a1 = a1(λ) =

κ1 + κ2

2
,(3.29)

where

κ1 = arctan(λ1(1 + λ2)), κ2 = arctan(λ1(1 − λ2)).(3.30)

With the above choice, we find that

−1 ≤ a0 < 1, 0 < a1 <
π

2
.(3.31)

The weight functions are

ωλ(x) =
dy

dx
=

λ1

a1(1 + λ2
1(x− λ2)2)

=
(dx
dy

)−1

=
λ1

a1
cos2(a1(y − a0)),(3.32)

ω̃λ(x) = a−1
1 λ−1

1 (κ1 − q(x;λ))(κ2 + q(x;λ))(1 + λ2
1(x− λ2)

2),(3.33)
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where q(x;λ) = arctan(λ1(x− λ2)).
For simplicity, we rewrite (3.32) as

dx

dy
=
a1(λ1 + 1)2

λ1

(
1

(λ1 + 1)2
+

λ2
1

(λ1 + 1)2
(x− λ2)

2

)
:= Cλ(D1 +D2(x− λ2)

2).

(3.34)

Since a1 → λ1 as λ1 → 0, we have that for all λ ∈ Dλ,

Cλ . λ1 + 1, 0 < C−1
λ , D1, D2 ≤ 1.(3.35)

Let us denote by Ql(x − λ2) a polynomial of degree l with respect to x − λ2 with
coefficients in terms of D1, D2, and C−1

λ . Then, by (3.28) and (3.34),

∂yVλ(y) = ∂xv(x)
dx

dy
= CλQ2(x− λ2)∂xv(x),

∂2
yVλ(y) =

d(∂yVλ(y))

dx

dx

dy
= C2

λ(Q4(x− λ2)∂
2
xv(x) +Q3(x− λ2)∂xv(x)).

Hence, by an induction argument, we find that for k ≥ 1,

∂kyVλ(y) = Ck
λ

k∑

j=1

Qk+j(x− λ2)∂
j
xv(x),(3.36)

where Qk+j(x−λ2) (1 ≤ j ≤ k) are uniformly bounded for all x ∈ Ī and λ ∈ Dλ. Let
us denote

Sλ(x; r) := (1 − y2)r =
1

a2r
1

(
κ2 − arctan(λ1(x− λ2))

)r(
κ1 + arctan(λ1(x− λ2))

)r
.

(3.37)

We have Sλ(x; r) ≤ 1, and

lim
x→1

κ2 − arctan(λ1(x− λ2))

1 − x
=

λ1

1 + λ2
1(1 − λ2)2

,

lim
x→−1

κ1 + arctan(λ1(x− λ2))

1 + x
=

λ1

1 + λ2
1(1 + λ2)2

.

Consequently,

lim
|x|→1

Sλ(x; r) = Gr
λ(1 − x2)r with Gλ =

λ2
1

a2r
1 (1 + λ2

1(1 − λ2)2)(1 + λ2
1(1 + λ2)2)

.

(3.38)

Next, let

$
(r)
λ (x) := ωλ(x)Sλ(x; r) . ωλ(x), x ∈ I, λ ∈ Dλ.

By the definition of |v|Ar
λ

and (3.35),

|v|Ar
λ

. (λ1 + 1)r‖v‖
r,$

(r)

λ

, r ≥ 0, λ ∈ Dλ.(3.39)
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Similarly, we deduce that

|v|Br
λ

. (λ1 + 1)r‖v‖
r,$

(r−1)

λ

, r ≥ 1, λ ∈ Dλ.(3.40)

Remark 3.4. We find from (3.28)–(3.30) and (3.32) that

a0 → λ2, a1 → 1, h(x;λ) → x, ωλ(x) → 1, as λ1 → 0.

So we have the same estimate as for the standard Legendre case:

|v|Ar
λ

. ‖(1 − x)
r
2 ∂rxv‖, |v|Br

λ
. ‖(1 − x)

r−1
2 ∂rxv‖.

Remark 3.5. We observe from the derivation of (3.36) that if the function v
possesses certain special properties as specified below, more precise estimates can be
derived. For instance, if the rapid variational region of v(x) is contained in Oε(λ2) :=
(λ2 − ε, λ2 + ε) for some ε > 0, we can assume

sup
x∈Iε

|∂jxv(x)| ≤ δ(ε)C−r
λ , 0 ≤ j ≤ r,

where Iε = Ī \Oε(λ2), and δ(ε) is a small positive number corresponding to ε. Then

|v|Ar
λ

.
(
δ(ε) + ar1λ

−r
1 (1 + λ2

1ε
2)r‖v‖Hr

ω
(r)

λ
(Oε(λ2))

)
.

In particular, if

supp{∂jxv(x)} ⊆ Oε(λ2) ⊆ [−1, 1], 0 ≤ j ≤ r,

then we have

|v|Ar
λ

.
(
ar1λ

−r
1 (1 + λ2

1ε
2)r‖v‖Hr

ω
(r)

λ
(Oε(λ2))

)
.

The above analysis is also valid for |v|Br
λ
.

Next, we compute the values of dλ,i, i = 1, 2, 3. Using (3.28) and (3.32) yields

dλ,1 = a1λ
−1
1 , dλ,2 = max

x∈Ī

2λ2
1|x− λ2|

1 + λ2
1(x− λ2)2

≤ λ1, dλ,3 ≤ 3

2
λ2

1.(3.41)

The derivation of dλ,3 is a little complicated, so we defer it to Appendix B.
A combination of Theorems 2.1–2.4 and the above estimates leads to the following

approximation results.
Corollary 3.3. For any v ∈ Hr

$
(r)

λ

(I), λ ∈ Dλ, and r ≥ 1,

‖∂x(PN,λv − v)‖ω̃λ
+N‖PN,λv − v‖ωλ

. (λ1 + 1)rN1−r‖v‖
r,$

(r)

λ

,(3.42)

and for r > 1,

‖∂x(IN,λv − v)‖ω̃λ
+N‖IN,λv − v‖ωλ

. (λ1 + 1)rN1−r‖v‖
r,$

(r)

λ

,(3.43)

while for any v ∈ Hr

$
(r−1)

λ

(I) and r ≥ 1,

‖P 1
N,λv − v‖1,ωλ

. (λ1 + 1)rN1−r‖v‖
r,$

(r−1)

λ

.(3.44)

If, in addition, ν2 >
ν1

2 dλ,3 and v ∈ H1
0,ωλ

(I), then

|||P 1,0
N,λv − v|||1,ωλ

. (ν
1
2
1 (dλ,1 + 1)(dλ,2 + 1)

1
2 + ν

1
2
2 N

−1)N1−r‖v‖
r,$

(r−1)

λ

,(3.45)

where dλ,i, i = 1, 2, 3, are given in (3.41).
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3.4. Some other mappings. We consider here several useful mappings which
do not quite fit into our framework.

Let us consider first the mapping

C(s) = (1 − b)
sinh(θs)

sinh(θ)
+ b

tanh(θ(s+ 1/2)) − tanh(θ/2)

2tanh(θ/2)
, s ∈ [−1, 0],(3.46)

which was first introduced by Song and Haidvogel [26] as part of the so-called s-
coordinates in their ocean circulation model. The two parameters 0 ≤ θ ≤ 20 and
0 ≤ b ≤ 1 are used to fit the surface and bottom topography.

In order to apply our general framework, we set s = y−1
2 , x = 2C(s) + 1, λ1 = θ,

and λ2 = b in (3.46) to get

x = g(y;λ) = 2(1 − λ2)
sinh(λ1(y − 1)/2)

sinh(λ1)
+ λ2

tanh(λ1y/2) − tanh(λ1/2)

tanh(λ1/2)
+ 1,

y ∈ [−1, 1], λ1 ≥ 0, 0 ≤ λ2 ≤ 1.

(3.47)

Clearly, it maps the interval [−1, 1] univalently onto itself with g(±1;λ) = ±1, and it
is an identity mapping when λ1 = 0. However, this mapping is not explicitly invertible.
For simplicity, we consider only the special case λ2 = 0 and denote λ := λ1. In this
case, the weight function is

ωλ(x) =
(dx
dy

)−1

=
sinhλ

λ
sech(λ(y − 1)/2) > 0, x, y ∈ I, λ > 0.(3.48)

One can verify readily that

tanhλ

λ
≤ ωλ(x) ≤ sinhλ

λ
, x ∈ I, λ > 0.

To estimate the corresponding upper bounds of |v|Ar
λ

and |v|Br
λ

(cf. section 2),
we can follow the same procedure as for the mapping (1.3). Since

dkx

dyk
=

2

sinhλ

(λ
2

)k
{

sinh(λ(y − 1)/2) if k is even,

cosh(λ(y − 1)/2) if k is odd,

we find

∣∣∣d
kx

dyk

∣∣∣ . λkcothλ, x ∈ Ī , λ > 0, k ≥ 1.

As in the derivations of (3.4)–(3.6), we obtain that for any v ∈ Hr
ωλ

(I),

|v|Ar
λ
, |v|Br

λ
. λr(cothλ)r||v||r,ωλ

.(3.49)

In view of the facts

cothλ ∼ λ−1 if λ� 1, cothλ ∼ 1 if λ� 1,

we conclude that for small λ, this mapping is close to the identity mapping, while for
large λ, an extra factor λr appears in the error estimates.
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The mapping techniques have been successfully used in spectral methods to re-
solve boundary layers. For instance, the following mapping is used in [21] and [22]:

x = g(y;m) = −1 + σm

∫ y

−1

(1 − t2)mdt, with σm = 2
/∫ 1

−1

(1 − y2)mdy, m ∈ N.

(3.50)

Clearly, we have g(±1;m) = ±1, and

ωm(x) = σ−1
m (1 − y2)−m, x, y ∈ I.(3.51)

As m increases, more and more Gauss-type collocation points are clustered near the
end-points ±1 so it is suitable for resolving very thin boundary layers. However, the
mapping is singular at the end-points, which implies in particular that dλ,1 = ∞. The
same is true for the iterated mappings introduced by Tang and Trummer [27],

x0 = y, xm = sin
(π

2
xm−1

)
, m ≥ 1,(3.52)

which are very effective mappings for problems with thin boundary layers. Hence
we cannot directly apply our general framework to these mappings. Although it is
possible to derive some special estimates as we did in Remark 3.2, the computations
would be very tedious. However, we shall consider in a forthcoming paper the mapped
Jacobi method in which we will be able to handle mappings with singularities at the
end-points.

4. The mapped Legendre methods for a model equation. To illustrate
how the results we developed in previous sections can be applied to analyze the
mapped Legendre spectral and pseudospectral methods for PDEs, we consider the
following model equation:

{
−ε∂2

xu(x) + u(x) = f(x), x ∈ I,

u(±1) = 0.
(4.1)

Let ν1 = ε and ν2 = 1 and ωλ(x), a
(ν)
ωλ (·, ·) be the same as in section 2. A weighted

variational formulation for (4.1) is to find u ∈ H1
0,ωλ

(I) such that

a(ν)
ωλ

(u, v) = (f, v)ωλ
∀v ∈ H1

0,ωλ
(I).(4.2)

It is clear from Lemma 2.3 that, if εdλ,3 < 2 and f ∈ L2
ωλ

(I), (4.2) admits a unique
solution.

4.1. Error estimates. The mapped Legendre spectral approximation for (4.2)
is to find uN ∈ V0

N,λ such that

a(ν)
ωλ

(uN , vN ) = (f, vN )ωλ
∀vN ∈ V0

N,λ.(4.3)

Let P 1,0
N,λ be the projector as in Theorem 2.3. Then, by (2.40), (4.2), and (4.3),

a(ν)
ωλ

(u− uN , vN ) = a(ν)
ωλ

(P 1,0
N,λu− uN , vN ) = 0 ∀vN ∈ V0

N,λ.

As a consequence of Theorem 2.3, we have the following theorem.
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Theorem 4.1. Let u and uN be, respectively, the solutions of (4.2) and (4.3). If

εdλ,3 < 2, u ∈ H1
0,ωλ

(I) ∩Br
λ(I), λ ∈ Dλ, and r ≥ 1, then

|||u− uN |||1,ωλ
. (ε

1
2 (dλ,1 + 1)(dλ,2 + 1)

1
2 +N−1)N1−r|u|Br

λ
,(4.4)

where dλ,i, i = 1, 2, 3, are the same as in Theorem 2.3. For the mappings (1.3)–(1.5),
the upper bound of |u|Br

λ
and the values of dλ,i, i = 1, 2, 3, are given in section 3.

Unlike in the standard Legendre–Galerkin method, where the linear system can
be made sparse by choosing suitable basis functions [24], the linear system associated
to (4.3) is in general full (unless a very special mapping is used), and furthermore, it
is very costly to evaluate the entries of the linear system. Hence it is often convenient
to use the mapped Legendre collocation method: find uN ∈ V0

N,λ such that

−ε∂2
xuN (ξ

(λ)
N,j) + uN (ξ

(λ)
N,j) = f(ξ

(λ)
N,j), 1 ≤ j ≤ N − 1,(4.5)

where {ξ(λ)
N,j}Nj=0 are the mapped LGL points defined in (2.43). Taking the discrete

inner product of (4.5) with any vN ∈ V0
N,λ, thanks to (2.44), we find that (4.5) is

equivalent to the following: find uN ∈ V0
N,λ such that

ε(∂xuN , ∂x(ωλvN )) + (uN , vN )ωλ,N = (f, vN )ωλ,N ∀vN ∈ V0
N,λ.(4.6)

We note that the linear system associated with the above formulation is full and ill
conditioned. However, as demonstrated in [24, 25], it can be efficiently solved by
using a preconditioned conjugate gradient–type iterative method with the standard
Legendre–Galerkin method for (4.1) as a preconditioner. Note that with the collo-
cation approach, there is no additional cost involved if the original PDE (4.1) has
variable coefficients.

Theorem 4.2. Let u and uN be, respectively, the solutions of (4.2) and (4.6). If

εdλ,3 < 2, u ∈ H1
0,ωλ

(I) ∩Br
λ(I), and f ∈ As

λ(I), λ ∈ Dλ with r ≥ 1 and s > 1, then

|||u− uN |||1,ωλ
. (ε

1
2 (dλ,1 + 1)(dλ,2 + 1)

1
2 +N−1)N1−r|u|Br

λ
+N−s|f |As

λ
,(4.7)

where dλ,i, i = 1, 2, 3, are the same as in Theorem 2.3. For the mappings (1.3)–(1.5),
the upper bounds of |u|Br

λ
, |f |As

λ
and the values of dλ,i, i = 1, 2, 3, are given in section

3.

Proof. Let UN = P 1,0
N,λu and êN = UN − uN . Then by (2.40), (4.2), and (4.6),

ε(∂xêN , ∂x(ωλvN )) + (êN , vN )ωλ,N = (UN , vN )ωλ,N − (UN , vN )ωλ

+(f, vN )ωλ
− (f, vN )ωλ,N ∀vN ∈ V0

N,λ.
(4.8)

Taking vN = êN in (4.8), we have from (2.45) that

a
(ν)
λ (êN , êN ) ≤ ε(∂xêN , ∂x(ωλêN )) + ‖êN‖2

ωλ,N

≤ |(UN , êN )ωλ,N − (UN , êN )ωλ
| + |(f, êN )ωλ

− (f, êN )ωλ,N |.
(4.9)

By Remark 2.3,

|(f, êN )ωλ
− (f, êN )ωλ,N | . N−s|f |As

λ
‖êN‖ωλ

.
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Fig. 2. Errors for mapping (1.3).

Moreover, by (2.44), (2.45), and Theorem 2.3,

|(UN , êN )ωλ,N − (UN , êN )ωλ
| ≤ |(UN − P 1,0

N−1,λu, êN )ωλ,N | + |(UN − P 1,0
N−1,λu, êN )ωλ

|

. ‖UN − P 1,0
N−1,λu‖ωλ

‖eN‖ωλ
. (|||UN − u|||1,ωλ

+ |||P 1,0
N−1,λu− u|||1,ωλ

)‖êN‖ωλ

. (ε
1
2 (dλ,1 + 1)(dλ,2 + 1)

1
2 +N−1)N1−r|u|Br

λ
‖êN‖ωλ

.

The desired results follow from the above estimates.

4.2. Numerical results. We now present some numerical results with emphasis
on how the accuracy depends on the choice of the parameters in the mappings (1.3)–
(1.5).

We first illustrate the effects of the parameters on the distributions of the MLGL
points. In Figure 1, we plot the LGL points vs. the MLGL points (N = 64) with
several typical parameters. It is clear that the mapping (1.3) stretches the grid evenly
as λ → 1; the mapping (1.4) clusters the points to x = −1 (resp., x = 1) for λ < 1
(resp., λ > 1); and the mapping (1.5) clusters the points to x = λ2 for λ1 > 1.

Example 1. We consider (4.1) with the exact solution

u(x) =
e(1+x)/

√
ε − e−(1+x)/

√
ε

e2/
√
ε − e−2/

√
ε

− 1 + x

2
.

This solution exhibits a boundary layer of width O(
√
ε) at x = −1.

We first take ε = 0.1 so the solution is smoothly varying throughout the domain.
We use (4.5) with the mapping (1.3) and N = 100 to approximate (4.1). In Figure
2, we plot the maximum absolute errors between u and uN at the MLGL points
with λ ∈ [0.9, 1]. We see that the error increases very quickly as λ → 1, which is in
agreement with the theoretic analysis in Corollary 3.1 and Theorem 4.2. Hence it is
not advisable to use mapping (1.3) with λ close to 1.

Next we take ε = 10−8 so the solution has a thin boundary layer at x = −1, and
we use (4.5) with the mapping (1.4) and N = 100 to approximate (4.1). We plot in
Figure 3 the errors with λ ∈ [20, 200]. The results indicate that the errors grow as λ
increases, as predicted by Corollary 3.2 and Theorem 4.2.

Example 2. We take u(x) = tanh(ax) with a = 150. This solution has a large
derivative at x = 0; see Figure 4. We use (4.5) with mapping (1.5) and N = 100. In
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Fig. 5. Errors for mapping (1.5) with λ2 = 0 and various λ1 (left), and with λ1 = 51 and
various λ2 (right).

Figure 5, we plot the maximum absolute errors at the MLGL points with λ2 = 0 and
various λ1 (left panel) and with λ1 = 51 and different λ2 (right panel). Note that the
accuracy is very sensitive to the choice of the parameter λ2, which should be at the
location of large variation, but less sensitive to the values of λ1, which represents the
intensity of the mapping at x = λ2. Again, the numerical results are in agreement
with Corollary 3.3 and Theorem 4.2.

5. Concluding remarks. We presented a general framework for analyzing the
approximation properties of mapped Legendre polynomials and of interpolations based
on MLGL points and derived optimal error estimates for general mappings. More
precisely, we introduced a new family of orthogonal functions which are obtained by
applying the mapping to Legendre polynomials, and we analyzed various projection
and interpolation operators based on these mapped Legendre functions.

As an application of our general results, we considered the popular mappings
(1.3)–(1.5) introduced in [20, 3, 4] and derived error estimates featuring explicit ex-
pressions on the mapping parameters. We used a model equation to show that these
results not only play an important role in numerical analysis of mapped Legendre
spectral and pseudospectral methods for differential equations but also provide quan-
titative criteria for the choice of parameters in these mappings.

This paper is a first step toward a long-term goal of designing a robust adaptive
spectral method for solving PDEs.
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Appendix A. The derivation of dλ,3 in (3.23). For λ = 1, we have dλ,3 ≡ 0.
We next consider λ 6= 1. For simplicity, let z = sin2(π(x − 1)/4) and b = 1 − λ2. By
(3.19) and a direct calculation, we find that

Sλ(z) := ω−1
λ (x)∂2

xωλ(x) =
π2b(−2bz2 + (3b− 2)z + 1)

8(1 − bz)2

and

S′
λ(z) =

π2b(3b(b− 2)z + 5b− 2)

8(1 − bz)3
.

Let us denote

z0 = − 5b− 2

3b(b− 2)
=

5λ2 − 3

3(1 − λ4)
, e0 =

√√
97 − 5

6
, e1 =

√
5

3
.

We find that

if 0 < λ ≤ e0 or λ ≥ e1, then |z0| ≤ 1.

Hence

dλ,3 = max
z∈[0,1]

Sλ(z) = max{Sλ(0), Sλ(z0), Sλ(1)}

=





max{π2

8 (1 − λ2), Sλ(z0)} if 0 < λ ≤ e0,

π2

8 (1 − λ2) if e0 < λ ≤ 1,

π2(λ2−1)
8λ2 if 1 < λ ≤ e1,

max{π2(λ2−1)
8λ2 , Sλ(z0)} if λ > e1.

Appendix B. The derivation of dλ,3 in (3.41). By (3.28), (3.32), and a
direct calculation, we find

Wλ(x) := ω−1
λ (x)∂2

xωλ(x) =
2λ2

1(3λ
2
1(x− λ2)

2 − 1)

(1 + λ2
1(x− λ2)2)2

and

∂xWλ(x) =
4λ2

1(x− λ2)(5 − 3λ2
1(x− λ2)

2)

(1 + λ2
1(x− λ2)2)3

.

Clearly, Wλ(λ2) = −2λ2
1, and if x is such that λ2

1(x−λ2)
2 = 5

3 , we have Wλ(x) = 9
8λ

2
1.

Hence

Wλ(λ2) ≤Wλ(±1) =
2λ2

1(3λ
2
1(±1 − λ2)

2 − 1)

(1 + λ2
1(±1 − λ2)2)2

≤ 6λ2
1

( λ1| ± 1 − λ2|
1 + λ2

1(±1 − λ2)2

)2

≤ 3

2
λ2

1.

Therefore,

−2λ2
1 ≤Wλ(x) ≤ 3

2
λ2

1, x ∈ Ī .

This completes the proof.
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