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Abstract. Dual-Petrov-Galerkin approximations to linear third-order equa-
tions and the Korteweg-de Vries equation on semi-infinite intervals are consid-
ered. It is shown that by choosing appropriate trial and test basis functions
the Dual-Petrov-Galerkin method using Laguerre functions leads to strongly
coercive linear systems which are easily invertible and enjoy optimal conver-
gence rates. A novel multi-domain composite Legendre-Laguerre dual-Petrov-
Galerkin method is also proposed and implemented. Numerical results illus-
trating the superior accuracy and effectiveness of the proposed dual-Petrov-
Galerkin methods are presented.

1. Introduction. For numerical approximations of partial differential equations
which are set on semi-infinite intervals, an effective tool is to use the Laguerre
polynomials/functions which are mutually orthogonal with respect to appropriate
inner product in (0,∞). There have been a number of investigations on using
Laguerre polynomials/functions for elliptic type equations (cf. [15, 7, 10, 16, 9]),
but not many results are available on using Laguerre polynomials/functions for
equations of other type. However, some physically interesting equations, e.g., the
Korteweg-de Vries (KDV) equation, are naturally set on a semi-infinite interval.
Hence, it would be desirable to have an accurate and efficient numerical method for
third-order equations on a semi-infinite interval. This is a challenging task since it
involves two distinct difficulties associated with unbounded domain and third-order
operator.

Recently, the first author introduced in [17] a dual-Petrov-Galerkin method for
third and higher odd-order equations in a finite interval. The key idea is to use trial
functions satisfying the underlying boundary conditions of the differential equations
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and test functions satisfying a set of “dual” boundary conditions. The resulted
variational formulation for third and higher odd-order dispersive equations becomes
strongly coercive. Consequently, it leads to optimal spectral convergence rates and
a very efficient and accurate algorithm. We note that the well-posedness and decay
properties of this dual-Petrov-Galerkin formulation for the KDV equation has been
studied recently in [4].

The purpose of this paper is two-fold: (i) to develop and analyze a dual-Petrov-
Galerkin method on a semi-infinite interval using Laguerre functions; and (ii) to
develop a well-posed multi-domain composite Legendre-Laguerre method which is
better suited in practical use than the single domain Laguerre method. We note that
although multi-domain techniques are well developed for second-order equations, it
is a non-trivial task to design a well-posed multi-domain spectral algorithm for
third-order equations.

We now introduce some notations. Let Λ = (a, b) with −∞ < a < b ≤ +∞, and
ω(x) be a given weight function in Λ, which is not necessary in L1(Λ). We shall use
the weighted Sobolev spaces Hr

ω(Λ) (r = 0, 1, 2, · · · ), whose inner products, norms
and semi-norms are denoted by (·, ·)r,ω, ‖ · ‖r,ω and | · |r,ω. For real r > 0, we define
the space Hr

ω(Λ) by space interpolation. In particular, the norm and inner product
of L2

ω(Λ) = H0
ω(Λ) are denoted by ‖ · ‖ω and (·, ·)ω, respectively. The subscript

ω will be omitted from the notations in case of ω ≡ 1. For simplicity, we denote
∂k

xv = dkv
dxk , k ≥ 1.

We denote by c a generic positive constant independent of any function and N .
The expression A . B means that there exists a generic positive constant c such
that A ≤ cB.

The remainder of the paper is organized as follows. In the next section, we
introduce the Laguerre Dual-Petrov-Galerkin method, provide details for its effi-
cient implementation and present illustrative numerical experiments. In Section 3,
we prove the error estimates for both a third-order linear equation and the KDV
equation. In Section 4, we develop a multi-domain composite Legendre-Laguerre
dual-Petrov-Galerkin method and present some numerical results.

2. Laguerre Dual-Petrov-Galerkin Method. In this section, we propose a La-
guerre dual-Petrov-Galerkin (LDPG) method for third-order equations, and provide
a theoretical and numerical study on the third-order derivative operator.

Let us first recall some basic properties of the Laguerre polynomial which is
denoted by Ln(x) (cf. [21]):

∫ ∞

0

Lm(x)Ln(x)e−xdx = δm,n; (2.1)

Ln(0) = 1, L′n(0) = −n, Ln(x) = ∂xLn(x)− ∂xLn+1(x). (2.2)

It is well-known that the Laguerre polynomials are not suitable for practical use be-
cause their wild behaviors as x → +∞. On the other hand, the Laguerre functions,
defined as L̂n(x) = Ln(x)e−x/2, have desirable properties which are preferable in
practice. Let R+ := (0, +∞), one derives from (2.1) that {L̂n(x)} form a sequence
of orthogonal basis in L2(R+), i.e.,

∫ ∞

0

L̂n(x)L̂m(x)dx = δn,m. (2.3)
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We emphasize that in contrast to the Laguerre polynomials, the Laguerre functions
are well-behaved, as indicated by the following relations (cf. page 40 in [6])

L̂n(0) = 1, |L̂n(x)| ≤ 1, n ≥ 0, x ∈ R+, (2.4)

and (cf. Thm. 8.22.1 in [21])

L̂n(x) = π−1/2(nx)−1/4 cos(2(nx)1/2−π/4)+O(e−x/2n−3/4), ∀x ∈ R+. (2.5)

2.1. A linear third-order equation. Let us consider first the following model
third-order equation

uxxx + βu = f, β > 0, x ∈ R+,

u(0) = 0, lim
x→+∞

u(x) = lim
x→+∞

∂xu(x) = 0. (2.6)

Since the third-order operator is not symmetric, it is natural to use a Petrov-
Galerkin method, in which the trial and test function spaces are different. It is
shown in [17] that for third and higher odd-order equation, it is advantageous to
choose the trail and test function spaces satisfying “dual” boundary conditions.

Let us denote P̂N := span{L̂n : n = 0, 1, · · · , N}. Then, thanks to (2.5), the as-
ymptotic “boundary” conditions at infinity are automatically satisfied by functions
in P̂N . Hence, it is natural to define the “dual” approximation spaces as follows:

XN := {u ∈ P̂N : u(0) = 0}, X∗
N := {u ∈ P̂N+1 : u(0) = ux(0) = 0}. (2.7)

The Laguerre dual-Petrov-Galerkin approximation to (2.6) is to: Find uN ∈ XN

such that
(∂xuN , ∂2

xvN ) + β(uN , vN ) = (f, vN ), ∀vN ∈ X∗
N . (2.8)

It is clear that xuN ∈ X∗
N for any uN ∈ XN . We denote hereafter

ωα(x) = xαe−x, ω̂α(x) = xα. (2.9)

For simplicity, we also denote ω(x) = ω0(x) and ω̂(x) = ω̂0(x). We have the
following result on the stability and well-posedness of the LDGP scheme (2.8).

Lemma 2.1.
β

2
‖uN‖2ω̂1

+
3
2
|uN |21 ≤

1
2β
‖f‖2ω̂1

. (2.10)

Proof. Thanks to the homogeneous boundary conditions built in XN , integration
by parts yields

(∂xuN , ∂2
x(xuN )) = (∂xuN , x∂2

xuN + 2∂xuN )

=
1
2
(∂x(∂xuN )2, x) + 2|uN |21 =

3
2
|uN |21.

(2.11)

On the other hand,

|(f, xuN )| ≤ β

2
‖uN‖2ω̂1

+
1
2β
‖f‖2ω̂1

.

We obtain the desired result by taking vN = xuN in (2.8).

As suggested in [18, 19, 17], one should choose appropriate basis functions to
minimize the band-width and the condition number of the underlying matrix. Using
(2.2)-(2.5), one verifies readily that

φ̂k(x) = L̂k(x)− L̂k+1(x) ∈ Xk+1,

ψ̂k(x) = L̂k(x)− 2L̂k+1(x) + L̂k+2(x) ∈ X∗
k+1.

(2.12)
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Therefore,

XN = span{φ̂0, φ̂1, · · · , φ̂N−1}, X∗
N = span{ψ̂0, ψ̂1, · · · , ψ̂N−1}. (2.13)

We now consider the linear system of (2.8) associated with the above basis functions.
Thanks to (2.2), we have

φ̂′k(x) =
1
2
(L̂k(x) + L̂k+1(x)), ψ̂′′k (x) =

1
4
(L̂k(x) + 2L̂k+1(x) + L̂k+2(x)). (2.14)

Hence, by setting
sij = (φ̂′j , ψ̂

′′
i ), mij = (φ̂j , ψ̂i),

one can use (2.14) and the orthogonality of the Laguerre functions to verify that

sij =





1
8 , j = i + 2,

3
8 , j = i + 1,

3
8 , j = i,

1
8 , j = i− 1,

0, otherwise,

mij =





1, j = i + 2,

−3, j = i + 1,

3, j = i,

−1, j = i− 1,

0, otherwise.

(2.15)

Let use denote

uN (x) =
N−1∑

k=0

ûkφ̂k(x), ū = (û0, û1, · · · , ûN−1)t;

f̂k = (f, ψ̂k), f̄ = (f̂0, f̂1, · · · , f̂N−1)t,

S = (sij)i,j=0,1,··· ,N−1, M = (mij)i,j=0,1,··· ,N−1.

(2.16)

Then, the linear system (2.8) becomes

(S + βM)ū = f̄ , (2.17)

which can be efficiently solved.
We state below a convergence result which will be proved in Section 3.

Theorem 2.1. Let u and uN be the solutions of (2.6) and (2.8), respectively. If
u ∈ L2

ω̂−1
(R+) ∩Hm

ω̂m−1
(R+) ∩Hm

ω̂m
(R+) with m ≥ 2, then

β

2
‖u− uN‖ω̂1 + |u− uN |1 . N1−m/2(‖u‖m,ω̂m + N−1/2‖u‖m,ω̂m−1). (2.18)

2.2. Application to the KDV equation. There exist a large body of literature
on the theoretical and numerical results of the KDV type equations. Although most
of the studies were concerned with the Cauchy problems of the KDV equations, the
initial-boundary problems also received considerable attention (see, for instance,
[20, 13, 1, 3, 12, 11, 2] and the references therein).

As an example of the LDPG method for nonlinear problems, we consider the
KDV equation on the half line




∂tu + αuux + βuxxx = f, x ∈ (0,∞), t ∈ (0, T ],

u(0, t) = 0, lim
x→+∞

u(x, t) = lim
x→+∞

ux(x, t) = 0, t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ [0,∞).
(2.19)

The two positive constants α and β are introduced to accommodate the scaling
of spatial interval. For the sake of simplicity, we consider here a homogeneous
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boundary condition. Non-homogeneous boundary conditions can be easily handled
by subtracting a simple function from the solution (cf. [17]).

The semi-discrete LDPG approximation to (2.19) is: Find uN (x, t) ∈ XN such
that

(∂tuN (·, t), vN )− α

2
((uN (·, t))2, ∂xvN )

+ β(∂xuN (·, t), ∂2
xvN ) = (f, vN ), ∀vN ∈ X∗

N , t ∈ (0, T ],
(2.20)

with initial condition uN (0) = π̂0
Nu0, where π̂0

N : L2
ω̂−1

(R+) → XN is an orthogonal
projection defined by

(π̂0
Nu− u, vN )ω̂−1 = 0, ∀vN ∈ XN .

The approximation properties of this projector will be studied in Section 4.
Next, let τ be the step size in time, and tk = kτ (k = 0, 1, · · · , nT = [T/τ ]). For

simplicity, we denote uk := u(x, tk), and

Dτuk :=
1
2τ

(uk+1 − uk−1), ûk :=
1
2
(uk+1 + uk−1). (2.21)

We consider the following Crank-Nicolson leap-frog LDPG scheme: Find uk
N ∈ XN

such that

(Dτuk
N , vN )− α

2
((uk

N )2, ∂xvN ) + β(∂xûk
N , ∂2

xvN )

= (fk, vN ), ∀vN ∈ X∗
N , 1 ≤ k ≤ nT ,

(2.22)

with u0
N = π̂0

Nu0, and

u1
N = π̂0

N (u0 + τ∂tu|t=0) = π̂0
N [u0 + τ(f |t=0 − β∂3

xu0 − αu0∂xu0)].

Note that in the scheme (2.22), we only need to solve a linear equation of the form
(2.8) at each time step.

The following convergence results will be proved in Section 3.

Theorem 2.2. Let u and uN be the solutions of (2.19) and (2.20), respectively. We
assume that

u ∈ L2(0, T ; L2
ω̂−1

(R+) ∩Hm
ω̂m−1

(R+) ∩Hm
ω̂m

(R+))∩
L∞(0, T ; L2

ω̂1
(R+) ∩H1(R+) ∩H3

ω̂2
(R+) ∩W 1,∞(R+)),

∂tu ∈ L2(0, T ;Hm−1
ω̂m−1

(R+)), m ≥ 3.

(2.23)

Then,

‖u− uN‖L∞(0,T ;L2
ω̂1

(R+)) + ‖∂x(u− uN )‖L2(0,T ;L2(R+)) ≤ c∗N1−m/2, (2.24)

where c∗ is a positive constant depending only on α, β, T, and the norms of u and
∂tu in the spaces mentioned in (2.23).

2.3. Numerical results. To examine numerically the convergence behavior, we
first consider the following two exact solutions of (2.6) with β = 1:

Example 2.1. u(x) = sin(kx)e−x (exponential decay at infinity).
Example 2.2. u(x) = x/(1+x)h (algebraic decay without essential singularity at

infinity).
In Figure 2.1, we compare the exact solutions in Examples 2.1 and 2.2 with

numerical solutions obtained by the LDPG scheme (2.8). It shows that this scheme
provides accurate numerical results. To illustrate the rate of the convergence, we
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Figure 2.1. LDPG approximation: Example 2.1 with k = 3 (left)
and Example 2.2 with h = 3 (right).

Figure 2.2. Convergence rate: Example 2.1 with k = 2 (left) and
Example 2.2 with h = 3 (right).

plot in Figure 2.2 the maximum errors at the Laguerre-Gauss-Radau nodes, and
the discrete L2

ω̂1
(R+) and H1(R+) errors.

From Figure 2.2 (left), we observe a geometric convergence rate (like e−cN ) for
Example 2.1. This is consistent with Theorem 2.1 which asserts that the approx-
imate solution will converge faster than any algebraic power of N. On the other
hand, we find from Figure 2.2 (right) that the maximum and the discrete L2

ω̂1
(R+)

and H1(R+) errors for Example 2.2 behave like e−c
√

N , while Theorem 2.1 only
predicts a convergence of no more than h− 1

2 . This error behavior is also observed
for Laguerre approximation of second-order equations (cf. [16]).

Example 2.3. We consider the KDV equation (2.19) with α = β = 1, f ≡ 0 and
the exact soliton solution:

u(x, t) = 12κ2sech2(κx− 4κ3t− x0). (2.25)

Here, we take κ = 0.3, x0 = 4, and use the scheme (2.22) with τ = 10−3. The
maximum absolute errors at t = 1 and t = 10 with various N are plotted in Figure
2.3 (left). It also indicates a sub-geometric convergence rate (like e−c

√
N ) which is

consistent with Theorem 2.2.



DUAL-PETROV-GALERKIN METHOD 1387

Figure 2.3. Left: Convergence rate of LDPG to KDV; Right:
Approximation by LDPG with scaling.

Although the Laguerre dual-Petrov-Galerkin method presented above have a the-
oretical spectral convergence rate, the poor resolution property of Laguerre poly-
nomials/functions, which was pointed out in [8], is one of the main reasons why
Laguerre polynomials/functions are not used very frequently in practice. However,
it is shown in [16] the resolution of Laguerre functions for second-order equations can
be significantly improved by using a scaling factor. We illustrate with an example
below that the same is true for the LDPG method.

Example 2.4. u(x) = sin kx/(1+x)h (algebraic decay with essentially singularity
at infinity).

We choose a scaling factor M such that |u(xN/M)| < ε, where xN is the max-
imum Laguerre-Gauss-Radau node, and ε is a given accuracy threshold (cf. [16]).
The approximations of Example 2.4 with k = 10 and h = 5 using the LPDG scheme
(2.8) with scaling factor 15 and without scaling are plotted in Figure 2.3 (right).
Notice that if no scaling is used, the approximation with N = 128 still exhibits
a noticeable error, while the approximation with a scaling using only 32 nodes is
virtually indistinguishable with the exact solution.

3. Approximation Results and Error Estimates. In this section, we provide
proofs for the two main theorems stated in the previous section.

We need to first establish some approximation properties of several orthogonal
projection operators associated with the dual-Petrov-Galerkin method. We note
that although there exist many results on approximations by Laguerre polynomi-
als/functions (cf. [15, 7, 10, 16, 9]), but most of them are not applicable here. Since
the trial and test spaces in our dual-Petrov-Galerkin formulations are linked by a
weight function such as x or x−1, it is convenient to consider generalized Laguerre
polynomials, L(α)

n (x) (α > −1, n ≥ 0), which are defined by



L(α)

n (x) =
2n + α− 1− x

n
L(α)

n−1(x)− n + α− 1
n

L(α)
n−2(x), n ≥ 2,

L(α)
0 (x) = 1, L(α)

1 (x) = −x + α + 1.
(3.1)

We note that the Laguerre polynomial Ln(x) is L(0)
n (x).
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We recall some basic properties of the generalized Laguerre polynomials below
(cf. [21]):

∫ ∞

0

L(α)
m (x)L(α)

n (x)ωα(x)dx = γ(α)
n δn,m, with γ(α)

n =
(n + α)!

n!
; (3.2)

L(α+1)
n (x) =

n∑

k=0

L(α)
k (x); (3.3)

∂xL(α)
n (x) = −L(α)

n−1(x), n ≥ 1; (3.4)

L(α)
n (x) = ∂xL(α)

n (x)− ∂xL(α)
n+1(x), n ≥ 0; (3.5)

x∂xL(α)
n (x) = nL(α)

n (x)− (n + α)L(α)
n−1(x), n ≥ 1; (3.6)

xL(α+1)
n (x) = (n + α + 1)L(α)

n (x)− (n + 1)L(α)
n+1(x), n ≥ 0. (3.7)

3.1. Approximation results. Although we are interested in the approximation
properties of Laguerre functions, it is convenient to study first the approximation
properties of Laguerre polynomials. Let

φn(x) = Ln(x)− Ln+1(x), x ∈ R+. (3.8)

Using (3.4)-(3.6) yields

φn(x) =
1

n + 1
xL(1)

n (x), ∀x ∈ R+; (3.9)

∂k
xφn(x) = ∂k−1

x Ln(x) = (−1)k−1L(k−1)
n−k+1(x), 1 ≤ k ≤ n + 1. (3.10)

Hence, as a consequence of (3.2) and (3.9), {φn} forms a L2
ω−1

(R+)−orthogonal
system, and by (3.10),∫ ∞

0

∂k
xφm(x)∂k

xφn(x)ωk−1(x)dx = ηn,kδm,n, 0 ≤ k ≤ n + 1, (3.11)

where
ηn,k = γ

(k−1)
n−k+1 =

n!
(n− k + 1)!

. (3.12)

Let P0
N := {v : v ∈ PN , v(0) = 0}. We consider the orthogonal projection

π0
N : L2

ω−1
(R+) → P0

N defined by

(π0
Nv − v, vN )ω−1 = 0, ∀vN ∈ P0

N . (3.13)

Lemma 3.1. If v ∈ L2
ω−1

(R+) and ∂m
x v ∈ L2

ωm−µ
(R+), then

‖∂l
x(π0

Nv − v)‖ωl−µ
. N l/2−r/2‖∂m

x v‖ωm−µ , 0 ≤ l ≤ m, µ = 0, 1. (3.14)

Proof. We first consider the case µ = 1. For any v ∈ L2
ω−1

(R+), we write

v(x) =
∞∑

n=0

v̂nφn(x), with v̂n =
1

ηn,0
(v, φn)ω−1 . (3.15)

So formally by (3.11),

‖∂k
xv‖2ωk−1

=
∞∑

n=k−1

ηn,kv̂2
n. (3.16)

On the other hand,

π0
Nv(x)− v(x) = −

∞∑

n=N

v̂nφn(x).
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Therefore, we derive from (3.16) that

‖∂l
x(π0

Nv − v)‖2ωl−1
=

∞∑

n=N

ηn,lv̂
2
n = Dl,m

N

∞∑

n=N

ηn,mv̂2
n ≤ Dl,m

N ‖∂m
x v‖2ωm−1

(3.17)

where (by (3.12))

Dl,m
N = max

n≥N

( ηn,l

ηn,m

)
=

(N −m + 1)!
(N − l + 1)!

. N l−m.

This implies (3.14) with µ = 1.
Next, by the definition of φn and (3.15),

v(x) =
∞∑

n=0

v̂n(Ln(x)− Ln+1(x)) =
∞∑

n=0

ṽnLn(x) (3.18)

where
ṽn = v̂n − v̂n−1, v̂−1 = 0.

By (3.2) and (3.4), we have

‖∂k
xv‖2ωk

=
∞∑

n=k

ṽ2
n‖L(k)

n−k‖2ωk
=

∞∑

n=k

ṽ2
nγ

(k)
n−k. (3.19)

Therefore,

‖∂l
x(π0

Nv − v)‖2ωl
=

∞∑

n=l

ṽ2
nγ

(l)
n−l ≤ Cl,m

N

∞∑

n=N

ṽ2
nγ

(m)
n−m ≤ Cl,m

N ‖∂m
x v‖2ωm

where (by (3.12))

Cl,m
N = max

n≥N

( γ
(l)
n−l

γ
(m)
n−m

)
=

(N −m)!
(N − l)!

. N l−m.

This yields (3.14) with µ = 0.

For the error analysis, we also need the following result:

Lemma 3.2. If v ∈ L2
ω−1

(R+) and ∂m
x v ∈ L2

ωm+1
(R+), then for m ≥ 0,

‖π0
Nv − v‖ω1 . N−m/2‖∂m

x v‖ωm+1 . (3.20)

Proof. By (3.1) and (3.9),

φn(x) = −L(1)
n−1(x) + 2L(1)

n (x)− L(1)
n+1(x), L(1)

−1(x) := 0, n ≥ 0.

So for any v ∈ L2
ω−1

(R+), we derive from (3.15) that

v(x) =
∞∑

n=0

v̄nL(1)
n (x), with v̄n = −v̂n−1 + 2v̂n − v̂n+1, v̂−1 := 0.

Thus, by (3.2) and (3.4),

‖∂m
x v‖2ωm+1

=
∞∑

n=m

v̄2
n‖L(m+1)

n−m ‖2ωm+1
=

∞∑
n=m

v̄2
nγ

(m+1)
n−m . (3.21)

Consequently,

‖π0
Nv − v‖2ω1

=
∞∑

n=0

v̄2
nγ(1)

n ≤ C̄N,m

∞∑

n=N

v̄2
nγ

(m+1)
n−m ≤ C̄N,m‖∂m

x v‖2ωm+1
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where (by (3.12))

C̄N,m = max
n≥N

( γ
(1)
n

γ
(m+1)
n−m

)
=

(N −m)!
N !

. N−m.

This completes the proof.

We will also need the following imbedding results:

Lemma 3.3. If v ∈ L2
ωα

(R+) and ∂xv ∈ L2
ωα+1

(R+) with α > −1, then

‖v‖ωα+1 ≤
√

2(α + 1)‖v‖ωα
+ 2‖∂xv‖ωα+1 . (3.22)

Moreover, for any v ∈ H1
ω0

(R+) with v(0) = 0,

‖v‖ω0 ≤ 2‖∂xv‖ω0 . (3.23)

Proof. We derive from

xα+1e−xv2(x) =
∫ x

0

∂y(yα+1e−yv2(y))dy,

that

ωα+1(x)v2(x) +
∫ x

0

ωα+1(y)v2(y)dy

= 2
∫ x

0

ωα+1(y)v(y)∂yv(y)dy + (α + 1)
∫ x

0

ωα(y)v2(y)dy

≤ 1
2

∫ x

0

ωα+1(y)v2(y)dy + 2‖∂xv‖2ωα+1
+ (α + 1)‖v‖2ωα

.

Letting x → +∞, we obtain (3.22). We recall that (3.23) was proved in [10].

We now consider the approximation properties of Laguerre functions under the
projection operator π̂0

N : L2
ω̂−1

(R+) → XN defined by

π̂0
Nu = e−x/2π0

N (uex/2). (3.24)

Clearly, by (3.13), we have that

(π̂0
Nu− u, vN )ω̂−1 = (π0

N (uex/2)− (uex/2), vNex/2)ω−1 = 0, ∀vN ∈ XN . (3.25)

It is straightforward to verify that

‖∂m
x (ue

x
2 )‖ωk

. ‖u‖m,ω̂k
, ∀u ∈ Hm

ω̂k
(R+). (3.26)

We have the following results related to the projection operator π̂0
N .

Theorem 3.1.

‖π̂0
Nu− u‖ω̂µ . N−m/2‖u‖m,ω̂m+µ ,

∀u ∈ L2
ω̂−1

(R+) ∩Hm
ω̂m+µ

(R+), m ≥ 0, µ = −1, 0, 1,
(3.27)

‖∂x(π̂0
Nu− u)‖ω̂µ . N1/2−m/2‖u‖m,ω̂m+µ−1 ,

∀u ∈ L2
ω̂−1

(R+) ∩Hm
ω̂m+µ−1

(R+), m ≥ 1, µ = 0, 1,
(3.28)

‖∂2
x(π̂0

Nu− u)‖ω̂2 . N1−m/2‖u‖m,ω̂m ,

∀u ∈ L2
ω̂−1

(R+) ∩Hm
ω̂m

(R+), m ≥ 2.
(3.29)
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Proof. Let v = uex/2. By Lemma 3.1 with l = 0, µ = 0, 1, and Lemma 3.2,

‖π̂0
Nu− u‖ω̂µ = ‖π0

Nv − v‖ωµ . N−m/2‖∂m
x v‖ωm+µ .

Thus, (3.27) follows from above and (3.26).
We now prove (3.28). Due to (π0

Nv − v)(0) = 0, we derive from (3.23) that

‖π0
Nv − v‖ω0 ≤ 2‖∂x(π0

Nv − v)‖ω0 . (3.30)

Since

∂x(π̂0
Nu− u) = e−x/2(∂x(π0

Nv − v)− 1
2
(π0

Nv − v)), (3.31)

we obtain from Lemma 3.1 with µ = 0, l = 1, and (3.30) that

‖∂x(π̂0
Nu− u)‖ . ‖∂x(π0

Nv − v)‖ω0 + ‖π0
Nv − v‖ω0 . ‖∂x(π0

Nv − v)‖ω0

. N1/2−m/2‖∂m
x (uex/2)‖ωm−1 . N1/2−m/2‖u‖m,ω̂m−1 .

This yields (3.28) with µ = 0. Next, by (3.22) with α = 0,

‖π0
Nv − v‖ω1 . ‖π0

Nv − v‖ω0 + ‖∂x(π0
Nv − v)‖ω1 . (3.32)

This fact with (3.31) and Lemma 3.2 with µ = 1, l = 0, 1 leads to

‖∂x(π̂0
Nu− u)‖ω1 . ‖∂x(π0

Nv − v)‖ω1 + ‖π0
Nv − v‖ω1

. ‖∂x(π0
Nv − v)‖ω1 + ‖π0

Nv − v‖ω0

. N1/2−m/2‖∂m
x (uex/2)‖ωm . N1/2−m/2‖u‖m,ω̂m .

This implies (3.28) with µ = 1.
Next, we prove (3.29). By (3.22) with α = 1,

‖∂x(π0
Nv − v)‖ω2 . ‖∂2

x(π0
Nv − v)‖ω2 + ‖∂x(π0

Nv − v)‖ω1 . (3.33)

Also by (3.22) with α = 1, (3.32) and (3.33),

‖π0
Nv − v‖ω2 . ‖∂x(π0

Nv − v)‖ω2 + ‖π0
Nv − v‖ω1

. ‖∂x(π0
Nv − v)‖ω2 + ‖∂x(π0

Nv − v)‖ω1 + ‖π0
Nv − v‖ω0

. ‖∂2
x(π0

Nv − v)‖ω2 + 2‖∂x(π0
Nv − v)‖ω1 + ‖π0

Nv − v‖ω0 .

(3.34)

Since

∂2
x(π̂0

Nu− u) = e−x/2(∂2
x(π0

Nv − v)− ∂x(π0
Nv − v) +

1
4
(π0

Nv − v)),

using (3.33), (3.34) and Lemma 3.2 with µ = 1, l = 0, 1, 2, we derive that

‖∂2
x(π̂0

Nu− u)‖ω̂2

. ‖∂2
x(π0

Nv − v)‖ω2 + ‖∂x(π0
Nv − v)‖ω2 + ‖π0

Nv − v‖ω2

. ‖∂2
x(π0

Nv − v)‖ω2 + ‖∂x(π0
Nv − v)‖ω1 + ‖π0

Nv − v‖ω0

. N1−m/2‖∂m
x (uex/2)‖ωm . N1−m/2‖u‖m,ω̂m .

(3.35)

The proof is complete.
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3.2. Proof of Theorem 2.1. Let u and uN be the solutions of (2.6) and (2.8),
respectively. Let π̂0

N be the projector as in (3.24), and set êN = π̂0
Nu− uN . Then,

by (2.6) and (2.8),

(∂xêN , ∂2
xvN ) + β(êN , vN ) = −(∂x(π̂0

Nu− u), ∂2
xvN )

+ β(π̂0
Nu− u, vN ), ∀vN ∈ X∗

N .
(3.36)

Taking vN = xêN ∈ X∗
N in (3.36), we derive from (2.11) that

3
2
|êN |21 + β‖êN‖2ω̂1

≤ |(∂x(π̂0
Nu− u), ∂2

x(xêN ))|+ β|(π̂0
Nu− u, xêN )|. (3.37)

By (3.28) with µ = 0 and (3.29),

|(∂2
x(π̂0

Nu− u), ∂x(xêN ))| ≤ |(∂2
x(π̂0

Nu− u), x∂xêN )|+ |(∂2
x(π̂0

Nu− u), êN )|

≤ |(x∂2
x(π̂0

Nu− u), ∂xêN )|+ |(∂x(π̂0
Nu− u), ∂xêN )|

≤ 1
2
|êN |21 + ‖∂2

x(π̂0
Nu− u)‖2ω̂2

+ ‖∂x(π̂0
Nu− u)‖2

≤ 1
2
|êN |21 + cN2−m(‖u‖2m,ω̂m

+ N−1‖u‖2m,ω̂m−1
).

(3.38)

Moreover, by Lemma 3.1, (3.22) with α = 0 and Lemma 3.2 with µ = 0, l = 0, 1,
we obtain that

‖π̂0
Nu− u‖ω̂1 = ‖π0

N (uex/2)− uex/2‖ω1

. ‖∂x(π0
N (uex/2)− uex/2)‖ω1 + ‖π0

N (uex/2)− uex/2‖ω0

. N1/2−m/2‖∂m
x (uex/2)‖ωm . N1/2−m/2‖u‖m,ω̂m .

(3.39)

Thus,

|(π̂0
Nu− u, xêN )| ≤ β

2
‖êN‖2ω̂1

+
1
2β
‖π̂0

Nu− u‖2ω̂1

≤ β

2
‖êN‖2ω̂1

+ cN1−m‖u‖2m,ω̂m
.

(3.40)

A combination of (3.37), (3.39) and (3.40) leads to that

β

2
‖êN‖2ω̂1

+ |êN |21 . N2−m(‖u‖2m,ω̂m
+ N−1‖u‖2m,ω̂m−1

). (3.41)

Finally, we obtain from (3.28) with µ = 0, (3.39) and (3.41) that

β

2
‖u− uN‖ω̂1 + |u− uN |1

≤ β

2
‖êN‖ω̂1 + |êN |1 +

β

2
‖π̂0

Nu− u‖ω̂1 + |π̂0
Nu− u|1

. N1−m/2(‖u‖m,ω̂m + N−1/2‖u‖m,ω̂m−1).

(3.42)

Thus, the proof of Theorem 2.1 is complete.
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3.3. Proof of Theorem 2.2. Some additional lemmas are needed for the numer-
ical analysis of nonlinear problems such as KDV equation.

Lemma 3.4.

‖x 1
2 π̂0

Nu‖L∞ . ‖u‖ω̂1 + ‖u‖1, ∀u ∈ L2
ω̂1

(R+) ∩H1(R+), (3.43)

‖∂xπ̂0
Nu‖L∞ . ‖u‖3,ω̂2 , ∀u ∈ H3

ω̂2
(R+). (3.44)

Proof. We have

xv2(x) =
∫ x

0

∂y(yv2(y))dy =
∫ x

0

v2(y)dy + 2
∫ x

0

yv(y)∂yv(y)dy

≤ ‖v‖2 + 2‖v‖ω̂1 |v|1,ω̂1 .

Thus by (3.28) with µ = 0, 1, and (3.29),

‖x 1
2 π̂0

Nu‖2L∞ ≤ ‖π̂0
Nu‖2 + 2‖π̂0

Nu‖ω̂1 |π̂0
Nu|1,ω̂1

. ‖u‖2 + ‖u‖ω̂1‖u‖1 . ‖u‖2ω̂1
+ ‖u‖21.

This leads to (3.43).
Next, let v = uex/2. Then, by (3.24), (2.14) and (3.15),

∂xπ̂0
Nu = ∂x(e−x/2π0

Nv) =
N−1∑
n=0

v̂n∂xφ̂n(x) =
1
2

N−1∑
n=0

v̂n(L̂n(x) + L̂n+1(x)).

Therefore, by (2.4), (3.12), (3.16) and Lemma 3.1 with µ = 1, l = 3,

‖∂xπ̂0
Nu‖L∞ ≤

N−1∑
n=0

|v̂n| ≤
( N−1∑

n=0

η−1
n,3

) 1
2
( N−1∑

n=0

v̂2
nηn,3

) 1
2

. ‖∂3
x(π0

Nv)‖ω2 . ‖∂3
xv‖ω2 . ‖u‖3,ω̂2 .

The proof is complete.

Lemma 3.5.

‖u‖ ≤ ‖u‖ω̂1 + 2|u|1, ∀u ∈ L2
ω̂1

(R+) ∩H1(R+), with u(0) = 0, (3.45)

‖x−1u‖L∞ . N
1
2 (‖u‖ω̂1 + |u|1), ∀u ∈ XN . (3.46)

Proof. We first prove (3.45). Thanks to u(0) = 0, we obtain from the Hardy in-
equality (cf. [14]) that

∫ 1

0

u2(x)xd−2dx ≤ 4
1− d

∫ 1

0

(∂xu(x))2xddx, d < 1.

Thus, ∫ 1

0

u2(x)dx ≤
∫ 1

0

u2(x)x−2dx ≤ 4
∫ 1

0

(∂xu(x))2dx ≤ 4|u|21.

On the other hand, it is clear that
∫ ∞

1

u2(x)dx ≤
∫ ∞

1

xu2(x)dx ≤ ‖u‖2ω̂1
.

A combination of the above two inequalities leads to (3.45).
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Next, let φn(x) be the same as in (3.8), and set v = uex/2. Then by (3.9), (3.3)
and (2.4),

|x−1u(x)| = |x−1v(x)e−x/2| ≤
N−1∑
n=0

|v̂n|
n + 1

|L(1)
n (x)|e−x/2

≤
N−1∑
n=0

|v̂n|
n + 1

n∑

k=0

|L̂k(x)| ≤
N−1∑
n=0

|v̂n|.

Furthermore, by (3.12), (3.16) and (3.45),

|x−1u(x)| ≤
( N−1∑

n=0

η−1
n,1

) 1
2
( N−1∑

n=0

v̂2
nηn,1

) 1
2 ≤ N

1
2 ‖∂xv‖ω0 = N

1
2 ‖∂x(uex/2)‖ω0

. N
1
2 (|u|1 + ‖u‖) . N

1
2 (|u|1 + ‖u‖ω̂1).

This completes the proof.

Now, let u and uN be the solutions of (2.19) and (2.20), respectively. Set UN =
π̂0

Nu and eN = uN − UN . By (2.19),

(∂tUN , vN )− α

2
(U2

N , ∂xvN ) + β(∂xUN , ∂2
xvN )

+
3∑

j=1

Gj(u,UN ; vN ) = (f, vN ), ∀vN ∈ X∗
N , t ∈ (0, T ],

(3.47)

where
G1(u,UN ; vN ) = (∂tu− ∂tUN , vN ),

G2(u,UN ; vN ) = −α

2
(u2 − U2

N , ∂xvN ),

G3(u,UN ; vN ) = β(∂xu− ∂xUN , ∂2
xvN ).

Subtracting (3.47) from (2.20) yields

(∂teN , vN )− α

2
(e2

N , ∂xvN ) + β(∂xeN , ∂2
xvN )

=
4∑

j=1

Gj(u,UN ; vN ), ∀vN ∈ X∗
N ,

(3.48)

where

G4(u,UN ; vN ) = α(UNeN , ∂xvN ).

Taking vN = xeN ∈ X∗
N in (3.48), we derive from Lemma 2.1 that

1
2

d

dt
‖eN‖2ω̂1

+
3β

2
|eN |21 ≤

α

2
|(e2

N , ∂x(xeN ))|+
4∑

j=1

|Gj(u,UN ;xeN )|. (3.49)

Now, we estimate the terms at the right side of (3.49). An integration by parts
yields that

(e2
N , ∂x(xeN )) =

∫ ∞

0

e3
N (x, t)dx +

1
3

∫ ∞

0

x∂xe3
N (x, t)dx =

2
3

∫ ∞

0

e3
N (x, t)dx.
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By Lemma 3.5,

|(e2
N , ∂x(xeN ))| . ‖x−1eN‖L∞‖eN‖2ω̂1

. N
1
2 (|eN |1 + ‖eN‖ω̂1)‖eN‖2ω̂1

≤ β

4
|eN |21 +

c

β
N‖eN‖4ω̂1

+ cN
1
2 ‖eN‖3ω̂1

.

(3.50)

Next, by (3.28) with µ = 1, we obtain

|G1(u,UN ; xeN )| ≤ ‖eN‖2ω̂1
+ ‖∂t(u− UN )‖2ω̂1

. ‖eN‖2ω̂1
+ N1−m‖∂tu‖2m−1,ω̂m

.
(3.51)

Then, by (3.28) with µ = 1, (3.29) with µ = 0 and (3.43),

|G2(u,UN ;xeN )| = α|(u∂xu− UN∂xUN , xeN )|

≤ α(‖eN‖2ω̂1
+ ‖(u− UN )∂xu‖2ω̂1

+ ‖UN (∂xu− ∂xUN )‖2ω̂1
)

. ‖eN‖2ω̂1
+ ‖∂xu‖2L∞‖u− UN‖2ω̂1

+ ‖x 1
2 UN‖2L∞‖∂x(u− UN )‖2

. ‖eN‖2ω̂1
+ N1−m‖∂xu‖2L∞‖u‖2m−1,ω̂m

+ N1−m(‖u‖2ω̂1
+ ‖u‖21)‖u‖2m,ω̂m

. ‖eN‖2ω̂1
+ N1−m(‖∂xu‖2L∞ + ‖u‖2ω̂1

+ ‖u‖21)‖u‖2m,ω̂m
.

By (3.38), we find

|G3(u,UN ;xeN )| ≤ β

4
|eN |21 +

c

β
N2−m(‖u‖2m,ω̂m

+ N−1‖u‖2m,ω̂m−1
).

By Lemma 3.4, we obtain

|G4(u,UN ; xeN )| = α|(∂x(UNeN ), xeN )| = α|(∂xUNeN + UN∂xeN , xeN )|

≤ α(‖∂xUN‖L∞‖eN‖2ω̂1
+

β

4α
|eN |21 +

α

β
‖xUNeN‖2)

≤ β

4
|eN |21 + c(‖∂xUN‖L∞ + ‖x 1

2 UN‖2L∞)‖eN‖2ω̂1

≤ β

4
|eN |21 + c(‖u‖2ω̂1

+ ‖u‖21 + ‖u‖23,ω̂2
)‖eN‖2ω̂1

.

Hence, a combination of the above estimates yields

1
2
‖eN‖2ω̂1

+ β

∫ t

0

|eN (s)|21ds ≤ b∗1N
2−m

+
∫ t

0

‖eN (s)‖2ω̂1
(b∗2 + c1N

1
2 ‖eN (s)‖

3
2
ω̂1

+ c2N‖eN (s)‖2ω̂1
)ds

(3.52)

where c1, c2 are two generic positive constants, and b∗1, b
∗
2 are two constants depend-

ing only on the norms of u in the mentioned spaces.
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We are now in position to apply a Gronwall type lemma. Indeed, for m ≥ 3, the
conditions of Lemma 3.6 below hold for all t ∈ [0, T ]. As a consequence of (3.52)
and Lemma 3.6, we obtain that

1
2
‖eN‖2L∞(0,t;L2

ω̂1
(R+)) + β‖∂xeN‖2L2(0,t;L2(R+)) ≤ b∗1N

2−me2b∗2t, ∀t ∈ [0, T ].

(3.53)
Finally, the desired results follow from a similar procedure as in the derivation of
(3.42).

Lemma 3.6. (cf. [5]) Assume that

• z(t) is a nonnegative function of t,
• the constants bj , dj , rj > 0, j = 1, 2,

• for certain t1 > 0, b1e
2b2t1 ≤ min

j=1,2

( b2

dj

) 1
rj ,

• ∀t ∈ [0, t1],

z(t) ≤ b1 +
∫ t

0

z(s)(b1 + d1z
r1(s) + d2z

r2(s))ds,

Then for all t ∈ [0, t1], we have z(t) ≤ b0e
2b2t.

Remark 3.1. By a procedure similar to that used in the proof of Theorem 2.2 and
in [17], we can also obtain an error estimate for the fully-discrete LDPG scheme
(2.22). More precisely, it can be proved that if u possesses the similar regularity as
in Theorem 2.2, and τN ≤ c0, then for 1 ≤ k ≤ nT ,

‖u(tk)− uk
N‖ω̂1 +

(
τ

∑

0≤l≤k−1

‖∂x(u(tl)− ul
N )‖2

) 1
2 . d∗(τ2 + N1−m/2). (3.54)

We leave the details of the proof to the interested readers.

4. Composite Legendre-Laguerre Dual-Petrov-Galerkin Method. It should
be noted that even with a proper scaling, a single domain Laguerre method is not
suitable to resolve solutions with sharp interfaces or multiple internal layers. Hence,
it is necessary to develop a multi-domain spectral method for such problems.

A natural choice for a multi-domain spectral method in a semi-infinite interval
is to use Legendre polynomials for all but one subdomain in which the Laguerre
functions should be used. Such an approach is relatively straightforward for second-
order equations and has been studied in [9]. However, it is not obvious how to
properly design a multi-domain spectral algorithm for third-order equations. In
this section, we propose a well-posed composite Legendre-Laguerre multi-domain
approach.

We recall first some basic properties of Legendre polynomials {Lk(x)}:
∫ 1

−1

Lk(x)Lj(x)dx =
2

2k + 1
δk,j ; (4.1)

(2k + 1)Lk(x) = L′k+1(x)− L′k−1(x), k ≥ 1; (4.2)

Lk(±1) = (±1)k, L′k(±1) =
1
2
(±1)k−1k(k + 1). (4.3)
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We consider first the model equation (2.6) in the interval I := (−1,∞). In order
to design a well-posed multi-domain formulation, we will start with a a proper
variational formulation for (2.6). Let us denote

V := {v ∈ H1(I) : v(−1) = 0, lim
x→+∞

v(x) = lim
x→+∞

∂xv(x) = 0}
W := {v ∈ H2(I) : v(−1) = vx(−1) = 0, lim

x→+∞
v(x) = 0} (4.4)

and
a(u, v) := (∂xu, ∂2

xv) + β(u, v), u ∈ V, v ∈ W. (4.5)

Then, a dual-Petrov-Galerkin formulation for (2.6) is: Find u ∈ V such that

a(u, v) = (f, v), ∀v ∈ W. (4.6)

Thus, it is clear that when constructing approximation spaces (VN ,WN ) for (V, W ),
it is natural to require that VN ∈ C(I) and WN ∈ C1(I).

For the sake of clarity, we will concentrate on the case of two subdomains. The
approach can be extended to more than two subdomains in a straightforward man-
ner.

Let I1 := (−1, 1), I2 := (1,∞), uI1 := u|I1 and uI2 := u|I2 . Further, let
N := (N1, N2), PN1(I1) be the space of all polynomials of degree ≤ N1 on I1,

and P̂N2(I2) := span{L̂n(x + 1) : n = 0, 1, · · · , N}. Then, a set of proper trial and
test function spaces are

VN := {u : uI1 ∈ PN1(I1); uI2 ∈ P̂N2(I2); u ∈ C0(I), u(−1) = 0},
WN := {u : uI1 ∈ PN1+1(I1); uI2 ∈ P̂N2+1(I2); u ∈ C1(I), u(−1) = ux(−1) = 0}.

(4.7)

We note that dim(VN ) = dim(WN ) = N1 + N2. Hence, the composite Legendre-
Laguerre dual-Petrov-Galerkin (LLDPG) approximation to (2.6) is : Find uN ∈ VN

such that
a(uN , vN ) = (f, vN ), ∀vN ∈ WN . (4.8)

We will show below that the choice of VN and WN guarantees the well-posedness
of the above variational formulation.

4.1. Basis functions and implementations. In this subsection, we are con-
cerned with the implementation details for (4.8).

We introduce two pairs of trial and test functions spaces for the two subdomains
as follows:

V̊ I1
N1

:= {uI1 : uI1 ∈ PN1(I1); uI1(±1) = uI1
x (1) = 0},

W̊ I1
N1

:= {uI1 : uI1 ∈ PN1+1(I1); uI1(±1) = uI1
x (±1) = 0};

(4.9)

V̊ I2
N2

:= {uI2 : uI2 ∈ P̂N2(I2); uI2(1) = 0},
W̊ I2

N2
:= {uI2 : uI2 ∈ P̂N2+1(I2); uI2(1) = uI2

x (1) = 0}.
(4.10)

Using (4.2) and (4.3), one verifies readily that

φI1
k (x) = Lk(x)− 2k + 3

2k + 5
Lk+1(x)− Lk+2(x) +

2k + 3
2k + 5

Lk+3(x) ∈ V̊ I1
k+3,

ψI1
k (x) = Lk(x)−

(
1 +

2k + 3
2k + 7

)
Lk+2(x) +

2k + 3
2k + 7

Lk+4(x) ∈ W̊ I1
k+3.

(4.11)
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Note that {φI1
k } are the basis functions used in [17] for third-order equations, while

{ψI1
k } are used in [18] for forth-order equations. As in (2.12), we choose

φI2
k (x) = L̂k(x + 1)− L̂k+1(x + 1) ∈ V̊ I2

k+1,

ψI2
k (x) = L̂k(x + 1)− 2L̂k+1(x + 1) + L̂k+2(x + 1) ∈ W̊ I2

k+1.
(4.12)

Therefore,

V̊
Ij

Nj
= span{φIj

0 , φ
Ij

1 , · · · , φ
Ij

N ′
j
}, W̊

Ij

Nj
= span{ψIj

0 , ψ
Ij

1 , · · · , ψ
Ij

N ′
j
},

j = 1, 2, N ′
1 = N1 − 3, N ′

2 = N2 − 1.
(4.13)

Note that these basis functions are local, i.e., their support is restricted in one
subdomain.

Let us denote

V̊N := {u : uI1 ∈ V̊ I1
N1

, uI2 ∈ V̊ I2
N2
}, W̊N := {u : uI1 ∈ W̊ I1

N1
, uI2 ∈ W̊ I2

N2
}. (4.14)

Next, we construct global basis function {Φ1, Φ2} ∈ VN and {Ψ1,Ψ2} ∈ WN such
that the spaces VN and WN can be decomposed into

VN = V̊N ∪ span{Φ1, Φ2}, WN = W̊N ∪ span{Ψ1,Ψ2}. (4.15)

More precisely, we seek Φj(x) and Ψj(x), j = 1, 2, x ∈ I such that

Φ1 ∈ VN , Φ1(−1) = 0, Φ1(1) = 1, Φ′1(1) = 0,

Φ2 ∈ VN , Φ2(−1) = 0, Φ2(1) = 0, Φ′2(1) = 1, ΦI2
2 (x) ≡ 0, x ∈ I2;

(4.16)

Ψ1 ∈ WN , Ψ1(−1) = Ψ′1(−1) = 0, Ψ1(1) = 1, Ψ′1(1) = 0,

Ψ2 ∈ WN , Ψ2(−1) = Ψ′2(−1) = 0, Ψ2(1) = 0, Ψ′2(1) = 1.
(4.17)

A simple set of functions satisfying these conditions are given below:

Φ1(x) =

{
2
3L0(x) + 1

2L1(x)− 1
6L2(x), x ∈ I1,

L̂0(x− 1), x ∈ I2,
(4.18)

Φ2(x) =

{
− 1

3L0(x) + 1
3L2(x), x ∈ I1,

0, x ∈ I2,
(4.19)

Ψ1(x) =

{
1
2L0(x) + 3

5L1(x)− 1
10L3(x), x ∈ I1,

3
2 L̂0(x− 1)− 1

2 L̂1(x− 1), x ∈ I2,
(4.20)

Ψ2(x) =

{
1
6 (L2(x)− L0(x)) + 1

10 (L3(x)− L1(x)), x ∈ I1,

L̂0(x− 1)− L̂1(x− 1), x ∈ I2.
(4.21)

With this set of basis functions, the linear system associated with (4.8) can be
solved using the procedure below.

• Pre-computation: We construct the orthogonal compliment of VN with respect
to the bilinear form a(·, ·). To this end, let Φ̊1, Φ̊2 ∈ V̊N be the solutions of
the following problems:

a(Φ̊j , v̊N ) = −a(Φj , v̊N ), ∀̊vN ∈ W̊N , j = 1, 2. (4.22)

Setting Θj = Φ̊j + Φj , j = 1, 2, and V H
N := span{Θ1,Θ2}. By construction,

we have W̊N ⊥ V H
N in the sense that

a(vN , wN ) = 0, ∀vN ∈ V H
N , ∀wN ∈ W̊N .
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• First step: Find ůN ∈ V̊N such that

a(̊uN , v̊N ) = (f, v̊N ), ∀̊vN ∈ W̊N . (4.23)

• Second step: We determine the unknowns (uN (1), u′N (1)) at the interface by

a(Θ1, Ψj)uN (1) + a(Θ2, Ψj)u′N (1) = (f, Ψj)− a(̊uN ,Ψj), j = 1, 2. (4.24)

We observe from (4.23) and (4.24) that

a(̊uN + uN (1)Θ1 + u′N (1)Θ2, vN ) = (f, vN ), ∀vN ∈ WN , (4.25)

which implies that the solution of (4.8) is

uN = ůN + uN (1)Θ1 + u′N (1)Θ2. (4.26)

Note that the equation (4.23) (and (4.22)) can be solved separately on each sub-
domain. We have already showed in Section 2 that the problem (4.23) on I2 is
well-posed and can be efficiently solved.

Note that the subproblem on I1 is different from the dual-Petrov-Galerkin for-
mulation studied in [17]. However, we still have the following result:

Lemma 4.1. The dual-Petrov-Galerkin formulation: find uI1
N ∈ V̊ I1

N1
such that

(∂xuI1
N1

, ∂2
xvI1

N1
) + β(uI1

N1
, vI1

N1
) = (f I1 , vI1

N1
), ∀vI1

N1
∈ W̊ I1

N1
, (4.27)

admits a unique solution. Furthermore,
β

2
‖(1 + x)1/2uI1

N1
‖2 +

3
2
|uI1

N1
|21 ≤

1
2β
‖(1 + x)1/2f I1‖2. (4.28)

Proof. Given uI1
N1
∈ V̊ I1

N1
, we have (1 + x)uI1

N1
∈ W̊ I1

N1
. Taking vI1

N1
= (1 + x)uI1

N1
in

(4.27), one can verify that

(∂xuI1
N1

, ∂2
x((1 + x)uI1

N1
)) = (∂xuI1

N1
, (1 + x)∂2

xuI1
N1

+ 2∂xuI1
N1

)

=
1
2
(∂x(∂xuI1

N1
)2, (1 + x)) + 2|uI1

N1
|21 =

3
2
|uI1

N1
|21,

and

(f I1 , (1 + x)uI1
N1

) ≤ β

2
‖(1 + x)1/2uI1

N1
‖2 +

1
2β
‖(1 + x)1/2f I1‖2.

The desired result follows from the Lax-Milgram Lemma.

Setting
dI1

ij = (∂xφI1
j , ∂2

xψI1
i ) + β(φI1

j , ψI1
i ),

one can readily obtain that

dI1
ij =





βciγi+4, j = i + 4,

− βai+3ciγi+4, j = i + 3,

β(biγi+2 − ciγi+4), j = i + 2,

− 2(2i + 3)(2i + 5) + β(−ai+1biγi+2 − ai+1ciγi+4), j = i + 1,

2(2i + 3)2 + β(γi − biγi+2), j = i,

β(−ai−1γi + ai−1biγi+2), j = i− 1,

− βγi, j = i− 2,

βai−3γi, j = i− 3,

0, otherwise.

(4.29)
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Figure 4.1. Left: Errors at interface; Right: LDPG vs. LLDPG

where

ak =
2k + 3
2k + 5

, bk = −1− 2k + 3
2k + 7

, ck =
2k + 3
2k + 7

, γk =
2

2k + 1
.

Thus, the problem (4.23) on I1 can also be efficiently solved.

Remark 4.1. By combining the techniques in Section 2 & [17] and [9], one can de-
rive error estimates for the composite Legendre-Laguerre scheme (2.20) and (2.22).
However, the details are beyond the scope of this paper.

4.2. Numerical results. In order to examine the convergence rate of the LLDPG
method, we first compare it with the LDPG method.

Example 4.1. We consider linear equation (2.6) with the exact solution given in
Example 2.2 (h = 3.5). We take N1 = N2 = N/2, where N is the mode used in the
LDPG scheme (2.8). In Figure 4.1 (left), we plot the errors at the interface, which
shows a very accurate approximation to the values u(1) and u′(1).

The maximum absolute errors at the nodes for the LDPG scheme (2.8) and the
LLDPG (4.8) are illustrated in Figure 4.1 (right). Note that much better numerical
results can be obtained with the LLDPG method.

We now consider the application of the LLDPG method to the KDV equation. As
in Section 2, we use the Crank-Nicolson leap-frog scheme for the time discretization.
Notice that at each time step, we only need to solve an equation of the form (4.8).

Example 4.2. We consider the initial value KDV problem:

ut + uux + uxxx = 0, u(x, 0) = u0(x), (4.30)

with the exact soliton solution given in (2.25). Since |u(x, t)| tends to 0 exponentially
as |x| → +∞, we can approximate the initial value problem (4.30) by an initial
boundary value problem in (−S, +∞), where S > 0 such that |u(−S, t)| is negligibly
small. We take κ = 0.3, x0 = −5, S = 30, τ = 10−3 and apply the LLDPG method
with two subdomains (−30, 30) and (30,∞) and with N1 = 2N/3, N2 = N/3. On the
left of Figure 4.2, we plot time evaluation of the approximate solution (N = 160),
and on the right, we plot the maximum errors at t = 1, 10, 20. (Here, the wave did
not reach the interface x = 30). A geometric convergence rate is observed in this
case.

Example 4.3. We still consider problem (4.30) with exact solution (2.25), and
take κ = 0.3, x0 = 1 We use the LLDPG scheme with two subdomains (−10, 10)
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Figure 4.2. Left: Numerical solution by LLDPG; Right: Maxi-
mum errors vs. N

Figure 4.3. Left: Numerical solution by LLDPG; Right: uN (S, t)
vs. u(S, t)

and (10,∞), and we take τ = 10−3, N1 = N2 = 100. We plot in Figure 4.3 (left),
the time evaluation of the solution, and on the right, we plot the interface uN (S, t)
vs. u(S, t) at different time t. It shows that we can also get accurate numerical
results when the wave passes through the interface.

5. Concluding Remarks. We proposed in this paper a dual-Petrov-Galerkin me-
thod for linear third-order equations and the Korteweg-de Vries equation in semi-
infinite intervals.

We first presented a single domain dual-Petrov-Galerkin method using Laguerre
functions and carried out a complete error analysis for a linear third-order equation
and the KDV equation. It is shown that the dual-Petrov-Galerkin method leads to
an efficient numerical algorithm and optimal error estimates.

We then presented a multi-domain dual-Petrov-Galerkin method using Legendre
polynomials in the finite interval(s) and Laguerre functions in the infinite interval.
By carefully choosing trial and test function spaces, we developed a well-posed and
efficient multi-domain algorithm for third-order equations.

We also presented ample numerical results for both single domain and multi-
domain approaches which illustrated the superior accuracy and effectiveness of the
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proposed dual-Petrov-Galerkin methods for third-order equations in semi-infinite
intervals.

REFERENCES

[1] J. L.Bona, and W. G. Pritchard, and L. R. Scott,, An evaluation of a model equation for
water waves, Philos. Trans. Roy. Soc. London Ser. A, 302 (1981), no. 1471, 457–510.

[2] J. L. Bona, and S. M. Sun, and B. Y Zhang,, A non-homogeneous boundary-value problem
for the Korteweg-de Vries equation in a quarter plane, Trans. Amer. Math. Soc., 354 (2002),
no. 2, 427–490 (electronic).

[3] J. Bona and R. Winther, The Korteweg-de Vries equation, posed in a quarter-plane, SIAM
J. Math. Anal., 14 (1983), no. 6, 1056–1106.

[4] Goubet Olivier and Jie Shen, On the dual Petrov-Galerkin formulation of the KdV equation
in a finite interval, submitted to DCDS (series A)

[5] Qiang Du, Benyu Guo and Jie Shen, Fourier spectral approximation to a dissipative sys-
tem modeling the flow of liquid crystals, SIAM J. Numer. Anal., 39 (2001), no. 3, 735–762
(electronic).

[6] Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, Second edition,
Computer Science and Applied Mathematics, Academic Press Inc., Orlando, FL, 1984.

[7] D. Funaro, Polynomial Approxiamtions of Differential Equations, Springer-verlag, 1992.
[8] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods: Theory and Appli-

cations, SIAM-CBMS, Philadelphia, 1977,
[9] Ben-yu Guo and He-ping Ma, Composite Legendre-Laguerre approximation in unbounded

domains, J. Comput. Math., 19 (2001), no. 1, 101–112.
[10] Benyu Guo and Jie Shen, Laguerre-Galerkin Method for Nonlinear Partial Differential Equa-

tions on a Semi-Infinite Interval, Numer. Math., 86 (2000), 635-654.
[11] Ben-yu Guo and Jie Shen, On spectral approximations using modified Legendre rational func-

tions: application to the Korteweg-de Vries equation on the half line, Indiana Univ. Math. J.,
50 (2001), Special Issue, 181–204, Dedicated to Professors Ciprian Foias and Roger Temam
(Bloomington, IN, 2000)

[12] Ben-yu Guo, Numerical solution of an initial-boundary value problem of the Korteweg-de
Vries equation, Acta Math. Sci. (English Ed.), 5 (1985), no. 3, 337–348.

[13] Joseph L. Hammack and Harvey Segur, The Korteweg-de Vries equation and water waves.
II. Comparison with experiments, J. Fluid Mech., 65 (1974), 289–313.
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