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Abstract— This paper presents a participatory sensing-based
urban traffic monitoring system. Different from existing works
that heavily rely on intrusive sensing or full cooperation from
probe vehicles, our system exploits the power of participatory
sensing and crowdsources the traffic sensing tasks to bus riders’
mobile phones. The bus riders are information source providers
and, meanwhile, major consumers of the final traffic output. The
system takes public buses as dummy probes to detect road traffic
conditions, and collects the minimum set of cellular data together
with some lightweight sensing hints from the bus riders’ mobile
phones. Based on the crowdsourced data from participants, the
system recovers the bus travel information and further derives the
instant traffic conditions of roads covered by bus routes. The real-
world experiments with a prototype implementation demonstrate
the feasibility of our system, which achieves accurate and fine-
grained traffic estimation with modest sensing and computation
overhead at the crowd.

Index Terms— Urban traffic monitoring, participatory sensing,
bus systems, bus riders, cellular signal.

I. INTRODUCTION

REAL-TIME and comprehensive urban traffic information
benefit urban citizens’ daily life and improve the effi-

ciency of urban transportation. Tremendous efforts have been
made to explore the accurate, efficient, and inexpensive urban
traffic monitoring approaches. People used to widely deploy
infrastructural devices, e.g, inductive loop detectors [22] and
traffic cameras [25], at roadsides to detect instant traffic condi-
tions. These conventional approaches, however, incur substan-
tial deploying and maintenance costs, which thus greatly limits
the road coverage. Recently people take the roving vehicles,
e.g., taxis, on roads as probes to detect the instant traffic
conditions [18], [36], [40]. Although these passive probing
methods can extract on-site information from probes freely
roving in the city with lightweight cost, they still cannot pro-
vide complete traffic estimations for the whole road network
due to insufficient probes. In addition, as probe vehicles are
usually managed by transit companies or agencies, it requires
substantial efforts for obtaining the traffic data.

In this paper, we present a participatory sensing based urban
traffic monitoring system, which takes the public buses as
probes to sample the instant road traffic conditions. In urban
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cities, the public buses cover most roads with a high cov-
erage ratio of the whole road network (see more details in
Section III). Instead of requesting the GPS traces from any
third parity, our system relies on the help of bus riders and
crowdsources the traffic sensing tasks to their commodity
mobile phones. The mobile phones automatically collect real-
time traffic sensing data and anonymously upload the data
to a backend server, which is responsible for processing and
analyzing the uploaded information from different buses. Bus
travel information are extracted and general travel speeds at
different road segments are estimated to generate the traffic
map of roads covered by public buses. Our system is fully
built on the bus riders’ commodity mobile phones with low
computation and energy costs, which can encourage wide
participation for large service coverage. The lightweight design
allows the immediate adoption of our system to other cities.

Despite these advantages, the realization of such a partic-
ipatory urban monitoring system encounters a set of chal-
lenges which call for practical and effective solutions to
cope with. First, accurately and efficiently tracking bus trip
is non-trivial. Considering the practical requirements of a
participatory sensing system, energy-hungry GPS sensor is
undesirable. Instead, we prefer the cellular signal together with
several lightweight sensing hints, e.g., audio and acceleration
signals, from the mobile phones to detect and identify the bus
trip information. However, the cellular signals only provide
rough location references which are insufficient for precise
vehicle tracking [17], [37]. By leveraging the fact that public
buses travel along determined routes and stop at known bus
stations, we propose a novel method that exploits the invariant
locations and cellular attributes of bus stations to build a
location mapping between the physical space and the cellular
space. Second, the sensing data collected from bus riders are
complicated and noisy even with errors. To guarantee accurate
traffic estimation, we clean the sensing data at individual
mobile phone and propose some clustering and aggregation
methods at the backend server to process and analyze the
joint data from all participants. Third, it is difficult to build
and maintain a cellular fingerprint database which stores the
cellular signatures for all bus stops. The offline construction
and maintenance of such a database requires intensive manual
workload and affects the ease of system deployment. In this
work, we further exploit the power of bus riders and propose
an online method. Specifically, we bootstrap the database from
a small set of bus stops with manually collected cellular
data and crowdsource the full database construction to bus
riders.

We detail and integrate all above techniques for a complete
urban traffic monitoring system, and implement a prototype
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system on the Android platform and a laboratory server.
To evaluate the performance of our system, we conduct
extensive experiments with 8 bus routes in a ∼28 km2 region
in Singapore. During the 2-month experiments, our system has
received data from 122 participants and derived instant traffic
map of the studied area. Experimental results demonstrate the
feasibility and effectiveness of our system in practice. The
system overhead is also carefully investigated.

The rest of this paper is organized as follows. We review
the related work in Section II. The system design is motivated
and detailed in Section III and Section IV, respectively.
In Section V, we describe our crowdsourced online database
construction. The evaluation results are reported in Section VI.
Finally we conclude this paper and discuss future works in
Section VII.

II. RELATED WORK
A. Traffic Monitoring

There are numerous approaches proposed to derive traffic
conditions of urban cities. People used to deploy plenty of
intrusive infrastructures, e.g., inductive loop detectors [22]
and traffic cameras [25], to measure spot traffic speeds,
which incurs huge deployment and maintenance costs and
thus provides limited coverage. Recently researchers resort
to using the GPS traces collected from probe vehicles for
low-cost traffic monitoring. In the transportation domain,
some operational systems adopting the Automatic Vehicle
Location (AVL) system have been developed for automobile
traveling time prediction [9], [29], freeway traffic condition
measure [10], and general travel condition inference from bus
information [23]. In the computer science domain, the traffic
data from probe vehicles, e.g., taxis and buses, are leveraged
to develop various systems for traffic condition estimation and
prediction [1], [2], [18], [19], [35], [36], [40]. For example,
both [1] and [19] build advanced models to capture the spatial-
temporal correlation among road traffic conditions for accurate
traffic prediction. To overcome the data sparsity issue in the
data-driven solutions, Asif et al. [2] use tensor decomposition
to recover the missing traffic conditions from available traffic
data. Liu et al. [18] propose an approach that exploits the
mined road network correlation for real-time traffic estimation
with instant taxi data. Zhu et al. [40] make use of singular
value decomposition technique for missing traffic condition
recovery from traffic data. These traffic data also enable other
applications, e.g., traffic volume estimation [3], route traveling
time prediction [28], [34], taxi traveling fare estimation [4].
These works heavily rely on the cooperations with particular
companies or transit agencies to access the large amount of
traffic data, which are prohibitively obtained without permit.
Our work significantly differs from existing works by crowd-
sourcing traffic sensing tasks to bus riders. Rather than relying
on special infrastructure devices or cooperation with any third
parties, we encourage participatory efforts from bus riders to
collect traffic data and derive the traffic conditions through
careful data processing and analysis.

B. Tracking and Localization
Object tracking and localization have been extensively

studied in recent years. Thiagarajan et al. [26] present a

crowdsourced alternative that exploits the sensors on mobile
phones, e.g., GPS, WiFi and accelerometer sensor, for transit
tracking. CTrack [27] maps the vehicle trajectory in an energy-
efficient manner by using the cell tower signals and various
sensors on mobile phones. Zhou et al. [39] leverage the
sensing signals from mobile phones of bus riders to track
bus movement and predict bus arrival time. Our work is
fundamentally different from the work in [39] that traffic
estimation focuses on the processing and analysis of the bus
trip data collected from various buses rather than classifying
and inspecting specific bus route in the problem of bus arrival
time prediction. EasyTracker [6] can automatically track, map,
and predict the arrival time of transits by carefully analyzing
GPS traces collected from mobile phones installed on vehicles.
VeTrack [38] can timely track a vehicle’s location based on
only inertial sensors of mobile phones for indoor environ-
ment. Musa and Eriksson [21] propose to passively track
mobile phones by exploiting available WiFi signals. Previous
works [6], [27], [28] extensively use the hidden Markov
model to map GPS data with road network to derive vehicle’s
trajectory, which introduces huge computation overhead for
probability calculations and the best candidate searching.
Different from those works on accurate vehicle tracking, our
system only requires accurate bus stop identification to map
traffic estimation on the roads. Thus we propose the cellular
signal based bus stop identification and mapping methods that
effectively satisfy the requirements of participatory sensing
systems on the high scalability and lightweight deployment
overhead.

C. Participatory Sensing

People-centric mobile computing has inspired the develop-
ment of many participatory platforms and applications [8].
For example, GreenGPS [12] calculates the fuel consump-
tion on city streets based on the participatory sensing data,
and thus enables the fuel-efficient navigation service for
drivers. CrowdAtlas [33] automates map updating based on
the participants’ traveling trajectories. Ear-phone [24] relies
on participatory sensing to generate the urban noise map.
Ganti et al. [11] collect traffic data from a roving sensor
network of more than 2,000 taxis and present the data analysis
results. Some works [7], [31], [32] propose sensing schemes
to support practical and energy-efficient mobile phone sens-
ing. As a middleware, Pogo [7] provides fine-grained user-
level control for volunteering mobile phone users to preserve
their privacy. ARTSense [31] is a framework for solving the
problem of “trust without identity” in participatory sensing
networks based on a privacy-preserving provenance model.
Wang et al. [32] propose an Markov-optimal sensor sampling
policy for mobile applications and services to save the energy
of mobile phones. For the participatory sensing systems, it is
significantly important to incentivize users’ active and reliable
participation. Existing incentive mechanisms are reviewed and
discussed in [13]. Those works have addressed many open
problems on practical participatory sensing systems and are
parallel with our work.
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Fig. 1. GPS localization errors in downtown Singapore.

III. MOTIVATION

Although there exists many works about traffic moni-
toring, the intrusive sensing approaches usually incur huge
infrastructure costs and the probe vehicle based approaches are
usually limited by data availability. To get rid of these disad-
vantages, we prefer a participatory sensing based urban traffic
monitoring system that resorts to public buses for probing real-
time traffic conditions. Specifically, we fundamentally decom-
pose the traffic sensing tasks from the running buses to bus
riders’ mobile phones. The bus riders themselves contribute
the primary traffic sensing data and meanwhile consume the
final traffic output. Such a low-cost and flexible system can
be easily adopted in other cities with slight modification.

The public bus network covers most of the roads in a
city to provide convenient commuting for citizens, which thus
provides good coverage of traffic monitoring. For example, the
road network coverage ratio by bus routes is as high as 75%
in Seattle1 and London,2 79% in Singapore3 and New York.4

Taking the Jurong West area of size ∼28 km2 in Singapore,
shown in Fig. 2(a), as a concrete example, we find that ∼80%
roads in the area are covered by more than 20 bus routes.
Therefore, once we track the movements of these buses, we
can map down the probed traffic conditions for this area.

The straightforward approach for vehicle tracking is using
GPS sensors [26]–[28], however, it may not be a good
choice due to the considerations of energy consumption
and localization accuracy. First, GPS device is energy
aggressive, that sorely discourages user participation due to
the limited battery capacity of commodity mobile phones.
We have measured the energy consumption of GPS sensor on
Google Nexus One mobile phone using the Monsoon power
monitor. The measurement shows that continuous GPS track-
ing incurs as high as 300 mW energy consumption (see details
in Section VI-E). Second, GPS suffers from large localization
error in the downtown area due to the complicated surround-
ings, e.g., dense and high buildings. It is even worse when the
mobile phones are placed inside buses where the GPS signal is
further attenuated. Our measurement proves this phenomenon,
as shown in Fig. 1, that the average errors are as high as 41 m
and 68 m when the phone is at the bus stops (i.e., “stationary”
in Fig. 1) and on a moving bus (i.e., “Mobile on buses”
in Fig. 1), respectively. Such a phenomenon is common in
practice and has been reported in other works [14], [20], [26].

1Seattle bus service. http://www.seattle.gov/html/citizen/bus.htm/.
2Bus Transport in London. http://www.tfl.gov.uk/.
3Bus transport in Singapore. http://en.wikipedia.org/wiki/Bus_transport_

in_Singapore.
4New York city bus system. http://www.ny.com/transportation/buses/.

Although modern buses are equipped with GPS devices for
management purpose, the collected data are held by transit
agency and not available for the public. Despite possibly
public open of these data in the future, the traffic data collected
from bus riders can still be a complementary to the public open
data for more comprehensive urban traffic monitoring.

Compared to energy-hungry GPS sensors, cellular signal
from mobile phones is more energy-friendly and widely avail-
able [16], which makes it a better sensing hint for vehicle
tracking. Meanwhile cellular signal outperforms other possible
wireless signals, e.g., WiFi [30], for location references due
to the following advantages. First, mobile phones always keep
the cellular module working to support persistent telecommu-
nication services. Thus the marginal energy consumption of
collecting cellular signals is negligible. Much extra energy,
however, will be consumed for scanning other wireless signals
like WiFi [27], [41]. Second, cell towers are widely deployed
to provide the complete coverage of the entire city while
other wireless signals are usually sporadically available with
poor coverage in outdoor areas. Third, unlike other transient
wireless signal sources, e.g., WiFi hotspots, the cellular signal
sources are much more consistent over time, which makes the
cellular signature database more stable and easier to maintain.

The typical coverage of a cell tower in the urban area is
about 200 ∼ 900 m2. Thus the cellular signals provide only
rough location references and are insufficient for instant and
accurate bus tracking. The fact that public buses strictly follow
the determined bus routes and stop at the known bus stations,
however, provides us an opportunity to relax the requirement
of precise bus tracking. As Fig. 2(a) depicts, more than 100 bus
stops densely distribute over the area and spontaneously divide
the roads covered by bus routes into small road segments.
The precise locations of the bus stops and how bus routes
operate over those bus stops are public information and can
be readily obtained from the web. Thus we transform the
precise bus tracking problem to the bus status detection and
bus stop identification among all possible bus stops. Based on
the bus status information, we can recover the bus movements
and estimate the traffic conditions on the road segments in
between bus stops. The final traffic map can be derived by
assembling the traffic estimations of all covered road segments.
To accurately identify bus stops, we need to collect the cellular
signals for all bus stops as cellular fingerprints, and later use
these fingerprints to match bus stops in cellular space with the
cellular signals uploaded from bus riders’ mobile phones.

We conduct some preliminary experiments to explore the
feasibility and effectiveness of using cellular signals as fin-
gerprints to distinguish different bus stops in the cellular
space. We experiment with 5 bus routes (i.e., bus route 179,
199, 243, 252, and 257 in the region as shown in Fig. 2(a))
and extensively measure the cell tower signals at 86 bus
stops. Two scenarios are considered during the cellular signal
measurements: stationary when we stand at the bus stops and
mobile when we pass by the stops on a bus. Our data collection
covers various weather conditions and different time of a day.

The mobile phone can perceive signals from multiple nearby
cell towers at one time, and will connect to the one with
the strongest signal strength. In general, 4∼7 cell towers can
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Fig. 2. Similarity measurement of bus stop cellular fingerprints. (a) Measured bus routes. (b) Similarity of the cellular fingerprints collected at the same bus
stop. (c) Similarity of the cellular fingerprints collected at different bus stops.

Fig. 3. An example area with the cellular fingerprints.

be captured by the mobile phones at each bus stop during
our measurements. For each bus stop, we order the visible
cell tower IDs in descending order of their Received Signal
Strengths (RSS) and employ such an ordered ID set as the
fingerprint for bus stops in the cellular space. Fig. 3 presents
an example where we label the cellular fingerprints for 15 bus
stops in the area. We find that there exists obvious differences
among the cellular fingerprints of different bus stops.

We investigate the stability of such a cellular fingerprint
by analyzing the similarities of cell ID sets collected at
the same bus stop in different runs under various time and
weather conditions. A modified Smith-Waterman matching
algorithm (see details in Section IV-E) is used to calculate
the similarities, where higher scores mean higher similarities.
We present the statistics of self-similarity scores for all bus
stops of the 5 routes in Fig. 2(b), which suggests that the
similarity score between the cell ID sets collected at the same
bus stop is quite high. The similarity scores of 90% cases are
higher than 3 and more than 50% cases are higher than 4.
The results shows that the cell ID sets are sufficiently stable
to signature bus stops at different conditions.

We also investigate the differential ability of the cellular
fingerprint by analyzing the similarities of cell ID sets col-
lected from different bus stops. We summarize the results in
Fig. 2(c). We can see that the similarity scores of >70% bus
stops are 0 (no common cell IDs at all) and >90% bus stops
have similarity scores lower than 2. We carefully inspect the
cases with similarity scores higher than 3 and find that they
are from the cell ID sets of two bus stops at opposite sides of

the two-way roads. These bus stops can be viewed as the same
bus stop in terms of location reference, which will not degrade
the performance of our system. As the uploaded traffic data are
time-stamped, we can infer the moving direction of the target
bus and distinguish the right bus stop for traffic estimation.
After such processing, we plot the effective CDF in Fig. 2(c)
and find that >94% bus stops now have similarity scores lower
than 2. The results validate the effectiveness of using cellular
signals to distinguish different bus stops.

The above study demonstrates that we are able to design
a participatory sensing based traffic monitoring system which
relies on the power of bus riders’ mobile phones. This system
requires no special devices or cooperation with transit agency,
and can work independently only with the help of bus riders.
The energy-efficient sensing and automatic data collection of
the system leave negligible overhead to the crowd and their
mobile phones, which will thus encourage wide participation.

IV. SYSTEM DESIGN

The system consists of two major components, i.e.,
online/offline data collection and trajectory mapping for traffic
estimation, as sketched in Fig. 4. In the following subsections,
we will elaborate each component in details.

A. Data Collection
As depicted in Fig. 4 (top), the system input mainly comes

from the following three data sources.
1) Bus Riders: The bus riders serve as the traffic probes

along bus routes and are the major information sources of
our system. Once the users are detected on buses, our system
will automatically start the online data collection from mobile
phones. A beep detection approach similar with that in [39]
is applied to detect whether the user is on a public bus or
not. Nowadays IC card systems are worldwide adopted by bus
operators, e.g., ORCA in Seattle, EZ-link in Singapore, Oyster
in London, and MetroCard in New York, to automatically
collect transit fees. Typically the bus riders tap their IC
cards on the card readers to pay their fees when getting on
or off the bus at some bus stop, and meanwhile the card
readers generate a unique beep, which is always consist of
audio signals in specific frequencies, e.g., a combination of
1 k H z and 3 k H z in Singapore and 2.4 k H z in London.
To efficiently detect such a beep signal, we prefer the Goertzel
algorithm [5] instead of Fast Fourier Transform (FFT) used
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Fig. 4. System architecture and workflow.

in [39] to extract specific frequencies rather than all frequen-
cies based on the prior knowledge of frequency components
in the beep. The Goertzel algorithm performs tone detection
using much less CPU computation than FFT, and thus sig-
nificantly saves energy. To detect the beeps, we measure and
normalize the signal strength of several interested frequency
bands. If the signal strength of the frequency bands obviously
jumps and exceeds an empirical threshold (e.g., three stan-
dard deviation of the signal strength), the beep detection is
confirmed. To enhance the robustness of beep detection, we
further adopt a standard sliding window averaging method
with window size 300 ms to filter out possible noises. The
“sound” hints are widely adopted in IC card systems to let
passengers be aware of the transactions. Thus our system can
work in other cities with presetting the frequency components
in audio signal. Even without such “sound” hints, our system
can still detect the on-bus status using some inertial sensors
based transportation mode detection methods [15].

The mobile phone will automatically start recording a bus
trip after a confirmed beep detection. For each thereafter
detected beep event, the mobile phone records the set of
visible cell tower signals with an attached timestamp. Thus the
sensing data on the mobile phone corresponds to a sequence of
timestamped cellular samples along the bus trip. These data are
uploaded to the backend server anonymously and periodically.
The mobile phone terminates current trip if no beep is detected
for � = 10 mins, which implies the user has got off the bus.
Once new beeps are thereafter detected, the mobile phone will
start recording and uploading another independent bus trip.
The system parameter � can be adjusted for different cities.
To detect possible traffic jams between two consecutive bus
stops where bus travel time exceeds �, our system tracks the
trip status of each anonymous mobile phone. Specifically, if
two consecutive cellular samples are collected from the same
bus route, we treat they belong to the same trip; otherwise,
we think the user starts a new trip.

For the beep detection, we continuously filter out the noisy
beep detections (e.g., the beeps in rapid train stations using the
same IC card systems or the beeps false positively detected by
the users waiting for other buses at the bus stops) by analyzing
the readings of accelerometers on mobile phones to distinguish
human mobility. A simple threshold based method is enough to
filter out the noisy beeps. In general, buses usually travel with
frequent acceleration changes while rapid trains are operated
more smoothly. Similarly, the readings collected when the user
is walking or standing at the bus stop are much smoother than

those collected on a moving bus.
2) Bus Stop Database: We assume at this moment that there

is an offline built database which stores the cellular fingerprints
for all bus stops. The backend server relies on these cellular
fingerprints to identify the corresponding bus stops for each
uploaded cellular sample. Later we will show that the bus stop
database construction can be crowdsourced to bus riders in
an online manner (detailed in Section V), which significantly
saves the manual workload in war-driving the bus stops.

3) Bus Routes and Traffic Model: The bus operators pub-
licly publish the bus operational route information on the
web, which implies constraints on how bus stops are passed.
We will make use of such information for trajectory map-
ping later. In addition, some mature and classical traffic
models [9], [10], [23], which describe the transformation
between travel speeds of buses and general vehicles, are
available for us to derive the general traffic conditions from
buses. Therefore, although we reply on public buses to probe
traffic conditions, our system reports the general travel speeds
that are useful for all vehicles.

B. Trajectory Mapping
As depicted in Fig. 4 (bottom), we take the bus stops as

landmarks and match the uploaded cellular samples to map the
bus trajectories. For the received sequence of cellular samples
from each independent trip, the backend server will recover the
bus trip information by identifying the passing by bus stops.
The server will do three levels of mapping to enhance the
accuracy of trajectory mapping.

1) Per Sample Matching: For a typical IC card system, the
card readers are only enabled when the buses arrive at the
bus stops, where bus riders pay their transit fees by tapping
IC cards. The beep, detected by bus riders’ mobile phones,
thus indicates the bus arrival at a bus stop, and the collected
cellular sample at that time corresponds to a particular bus
stop.

To identify one bus stop for each cellular sample of one
trip, we match it with the signature sets stored in the fin-
gerprint database. We adopt the modified Smith-Waterman
algorithm [39] to measure the similarity of different cell
ID sets. This algorithm focuses on the orders rather than
the absolute RSS values of cell towers, which thus tolerates
possible variances of RSS values due to different conditions
(e.g., on/off buses, weather, time, etc.). The backend server
reorganizes the cell IDs in a set in a descending order
according to their RSS values. For the cell ID set of each
cellular sample, the algorithm compares all possible segments
to determine the optimal alignment with one cellular signature
in the fingerprint database, and assigns different weighs to
the matching results of match, mismatch and gap. As the
penalty cost for gaps and mismatches will significantly affect
the matching performance, we conduct simulations to select
the best penalty cost by varying its value from −0.1 to −0.9.
Simulation shows that −0.3 as the penalty cost achieves
the best matching accuracy. We illustrate this algorithm with
an example in Table I where the uploaded cellular sample
with cell ID set as cupload = 〈1, 2, 3, 4, 5〉 is compared
with one cellular fingerprint cdatabase = 〈1, 7, 3, 5〉. The
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TABLE I

BUS STOP MATCHING INSTANCE FOR ONE CELLULAR SAMPLE
WHICH CONTAINS 5 CELL TOWER IDs IN THE SET

Fig. 5. A sample co-clustering example. 20 cellular samples are clustered
into 3 groups corresponding to 3 bus stops.

algorithm finally scores 2.4 by aggregating 3 matches, 1 gap
and 1 mismatch.

The matching algorithm runs over all bus stop candidates in
the database, and selects one bus stop with the highest similar-
ity score. To guarantee the accuracy of trajectory mapping, we
further filter out possible noise cellular samples whose highest
matching scores with candidate bus stops are lower than a
threshold. We empirically set the threshold as 2 according
to our measurement results in Fig. 2(c). Thus all cellular
samples with low highest similarity scores are discarded with
no further processing. If more than one bus stops are matched
with one cellular sample, we select the one with a larger
number of common cell IDs. Such a tie-breaker setting can
effectively determine one bus stop for each valid cellular
sample according to our practical tests. Besides, if the cellular
sample e(x) finally matches the bus stop fingerprint b(y) we
denote M(e(x), b(y)) = 1, otherwise M(e(x), b(y)) = 0.

2) Per Bus Stop Clustering: Generally a number of pas-
sengers board and alight at a bus stop when the bus arrives,
which triggers multiple beeps. As a result, the mobile phones
of bus riders can collect and upload multiple cellular samples
at one bus stop to the backend server. Such redundant infor-
mation allows us to further improve the bus stop identification
accuracy. We can group the cellular samples according to their
matched bus stops and timestamps, and then identify the bus
stop for each closely clustered cellular samples with more
confidence.

Given a sequence E = {e1, e2, . . . , em} of m cellular
samples with attached timestamps T = {t1, t2, . . . , tm}, we
can obtain their corresponding bus stops {b1, b2, . . . , bm} with
similarity scores {s1, s2, . . . , sm}. Fig. 5 depicts an actual
sequence of cellular samples collected from one mobile phone.
We can observe a clear clustering effect in the space enabled
by three dimensions of time, bus stop, and matching score. The
cellular samples collected at 3 different bus stops are clustered
into 3 groups in the space. In the co-clustering algorithm,
for cellular samples corresponding to the same bus stop, we

Fig. 6. Co-clustering accuracy with various ε values.

denote the maximum mutual similarity score as s0 and the
maximum possible time interval between their timestamps as
t0, which are empirically set as 7 and 30 seconds in our
system, respectively. For any two cellular samples ei and e j ,
we weigh their matching relationship as

L(ei , e j ) =
⎧
⎨

⎩

s0 − |s j − si |
s0

, if bi = b j

0, otherwise.

Considering the timestamp information, we put ei and e j into
the same cluster if

t0 − |t j − ti |
t0

+ L(ei , e j ) > ε, (1)

where ε is a threshold to verdict whether ei and e j belong to
the same cluster. Only when two cellular samples are collected
close in time and have approximate similarity scores, they will
be grouped into the same cluster. We conduct experimental
trial with bus route 243 in Singapore to study the impact of
ε on the clustering accuracy. We vary the value of ε from
0 to 2 with a step length of 0.1 and plot the results in Fig. 6.
In principle, the parameter ε in range of 0.3 ∼ 1.0 achieves
reasonably high clustering accuracy, while other settings result
in degraded clustering performance with mis-classifications.
We finally choose ε = 0.6 in the system implementation.

By applying the co-clustering on all cellular samples,
we finally derive a sequence of n clusters {C1, C2, . . . , Cn}.
Each cluster Ci should correspond to one bus stop. Due to the
noises, however, the cellular samples from the same cluster
may match different bus stops. To guarantee the accuracy
of bus stop identification, each cluster Ci is thus temporar-
ily associated with several potential bus stop candidates, as
demonstrated in Fig. 7. In practice, however, most clusters only
have one bus stop candidate according to our experiments.

3) Per Trip Mapping: The pre-configured bus routes greatly
constrain the possible sequences or combinations of bus
stops that can be visited by a specific bus. Such con-
straints help us filter out the impossible bus stop candi-
dates and finally match each cluster of cellular samples to
a sole bus stop. Fig. 7 depicts a concrete example where a
sequence of n clusters are derived from all cellular samples.
Each cluster Ck(k = 1, 2, . . . , n) includes Ek cellular sam-
ples {ek(1), ek(2), . . . , ek(Ek)} and Bk bus stop candidates
{bk(1), bk(2), . . . , bk(Bk)}. We assign each bus stop candidate

bk(i) a probability pk(i) =
∑Ek

j=1 M(ek( j ),bk(i))

Ek
and an average

similarity sk(i) =
∑Ek

j=1[M(ek( j ),bk(i))·Sim(ek( j ),bk(i))]
∑Ek

j=1 M(ek( j ),bk(i))
. Now we

try to find out a segment from one bus route or the possible
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Fig. 7. Bus stop identification with a sequence of clusters. Each cluster
contains multiple bus stop candidates.

concatenation of multiple different bus routes that best matches
the current trip and then derive the most “correct” bus stop for
each cellular sample cluster.

For any two bus stops x and y, we denote their order
relationship in bus routes as R(x, y) = 1 if y is later visited
by buses after passing by x in some bus route, R(x, y) = 0 if
x = y, and R(x, y) = −1 for the rest. As some cellular sample
cluster may match more than one bus stops, we thus can derive
a set of possible bus stop sequences S = {S1, S2, . . . , SN },
where N = ∏n

k=1 Bk . Each Sj represents a sequence of n bus
stops as {b1(Sj (1)), b2(Sj (2)), . . . , bn(Sj (n))}. We determine
the bus stop sequence best matched with current trip using the
maximum likelihood estimation as

S∗ = arg max
S j :1∼N

{p1(Sj (1)) · s1(Sj (1)) +
n∑

i=2

[pi(Sj (i))

· si (Sj (i)) · R(bi−1(Sj (i − 1)), bi (Sj (i)))]},
(2)

where we weigh Sj using both the probabilities pi (Sj (i)) and
average similarities si (Sj (i)). The output S∗ finally recovers
the trajectory of current trip in the form of the best matched
bus stop sequence, which also determines the most likely bus
stop for each cellular sample cluster on the trajectory.

C. Traffic Estimation
In this subsection, we will describe how we make use of

the trajectory mapping results to estimate traffic conditions of
road segments in between bus stops on the trajectories.

Based on the matched bus stop sequences, we first purge the
cellular samples by filtering the noise samples which falsely
match other bus stops. Then by ordering the cellular samples
in the same cluster according to their timestamps, we can
extract the arrival time and departing time of one bus at the
corresponding bus stop. Fig. 8 illustrates an example with a set
of cellular samples from the same trip. These cellular samples
are classified into 2 clusters corresponding to two bus stops,
i.e., i and j . Based on the cellular sample cluster for bus
stop i , we can extract the corresponding arrival time ta(i) and
departing time td(i). The same information can be derived
for bus stop j . Then we estimate the bus travel time between
stop i and j as ti j = ta( j) − td (i). In practice, some bus
stops may be skipped by the buses if no passengers board or
alight, which results in information missing at these bus stops.
In such cases, our system automatically treats the adjacent road

Fig. 8. Bus stop clustering and time duration at bus stops of an example
trip. 5 samples are collected at stop i and 4 samples are collected at stop j ,
which are clustered into 2 groups. The bus arrival time and departing time at
bus stops are estimated and used for travel time estimation.

segments as one and estimate the travel time on the combined
road segment.

The travel time on a road segment by public buses may not
accurately reflect the practical traffic condition. There exists a
gap between the travel time of general automobiles (TA) and
that of buses (TB) on the same road segment. The difference
arises mainly due to the special operations of buses, e.g.,
frequent stopping at bus stops for passengers boarding and
alighting, repetitive accelerations and decelerations from and
to bus stops. Besides, there is a natural difference between
buses and general automobiles due to their different operating
abilities and speed limits. Fortunately, the relationship between
the two kinds of travel times has been well explored in the
transportation domain [9], [10], [23]. We have tested different
models, both linear and non-linear models. The experimental
results suggest that compared to non-linear models, the linear
models are good enough for the travel time transformation,
which are easy to learn without complex parameter settings
and overfitting issues. Thus we use one classical linear traffic
model proposed in [9] to estimate TA from TB :

TA = a + b × TB, (3)

where a = road length
f ree travel speed represents the average travel time

by a typical automobile on the road segment when there is little
or no traffic, and b represents the traffic congestion effect on
TA (as measured by the travel time of public buses). Based
on historical traffic data, we can learn the parameter b using
ordinary least-square technique. According to our experiments,
we find that the best values of b for different road segments
fall in a narrow range [0.13, 0.18]. In our system, we set b =
0.15 for all road segments for simplicity. The average travel
speed of general automobiles on the road segment can thus
be estimated as vA = road length

TA
. Although some cities may

design dedicated lanes for a few special buses, e.g., bus rapid
transit, there still are many ordinary buses traveling on the
roads. To guarantee the correctness of our estimations, our
system can filter out the trip reports from the special buses by
comparing the mapped bus trajectory with special bus routes.

For each road segment, it may be simultaneously cov-
ered by multiple bus routes, which leads to several speed
estimations as our system collects trip reports from massive
mobile phones on various buses. Thus our system adopts
a Bayesian method [23] to continuously update the traffic
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estimation by carefully combining previous estimation and
current estimation from new data input. With the variance
of previous average speed v̄0 as σ 2

0 and the variance of new
average speed v̄ as σ 2, the updated speed estimation is normal
with average speed v̄new and variance σ 2

new as

v̄new =
v̄0
σ 2

0
+ v̄

σ 2

1
σ 2

0
+ 1

σ 2

, σ 2
new = 1

1
σ 2

0
+ 1

σ 2

, (4)

which uses the inverse of estimation variance to weigh pre-
vious estimation and new estimation. The updating proce-
dure produces sequential travel speed estimations with newly
received traffic samplings from bus riders.

We combine the traffic estimations of all road segments
to derive a complete traffic map. In particular we weight the
overlapping road segments in combining their estimations. Say
two road segments, AC and BC, share the common part IC
where I is the intersection point of the two segments. When
combining the traffic conditions of AC and BC, we divide
them into AI, BI and IC. We weight v̄AC and v̄BC based on
the position of I to derive the speed estimation v̄ I C , i.e.,

v̄ I C = α × v̄AC + β × v̄BC

α + β
,

where α = dI C
dAC

, β = dI C
dBC

and di j is the road length between
i and j . Meanwhile the travel speed on AI and BI, v̄AI

and v̄B I , can be calculated as

v̄AI = dAI
dAC
v̄AC

− dI C
v̄ I C

, v̄B I = dB I
dBC
v̄BC

− dI C
v̄ I C

.

The system will update the travel speed estimations on all
road segments with a period of T = 15 mins, which is a
sufficiently fine-grained and adopted by many previous works
for traffic estimation [35], [36], [40].

V. ONLINE DATABASE CONSTRUCTION

Till now we assume there exists a cellular fingerprint
database for all bus stops, which is supposed built offline with
burdensome war-driving. In this section, we show that we can
online construct the database from participatory sensing data.

As a matter of fact, the bus movement is always constrained
by its bus route and meanwhile each bus route can be sparsely
represented by only a few of its all bus stops. If we pre-
know the fingerprints of such a small initial set of bus stops,
we can map some uploaded sequences of cellular samples to
certain bus routes, and then automatically label the unknown
bus stops. This idea is feasible due to following observations.
First, according to our measurement study result in Fig. 2(c),
different bus stops are usually highly distinguishable on their
cellular fingerprints, i.e., the chance of matching a sequence
of cellular samples to one particular bus route is fairly large.
Second, each bus route has its own unique road segments (e.g.,
in Fig. 2(a)) and a few (2 or 3) representative bus stops on the
segments can uniquely identify the entire route.

Incorporating this idea, we can bootstrap the database from
a small set of bus stops for which we manually collect their
cellular fingerprints and grow the database with each received
sequence of cellular samples from bus riders. Considering

Fig. 9. An example of the construction process. The cellular fingerprints of
the unlabeled bus stop u1, u2, u3, u4 are inferred from the cluster sequence.
The pre-known bootstrap bus stop b1, b2, b3 are used as references during
the construction.

that more than one cellular samples can be detected at a bus
stop, we classify an uploaded sequence of n cellular samples
E = {e1, e2, . . . , en} into different clusters based on Eq. (1)
in Section IV-B.2, while we weigh the relationship between
two cellular samples ei and e j as L(ei , e j ) = Ma(ei ,e j )

s0
, where

Ma(ei , e j ) is their matching score calculated using the mod-
ified Smith-Waterman algorithm [39] and s0 is the maximum
possible similarity score. Each cluster finally corresponds to an
actual bus stop. Then a set of clusters C = {C1, C2, . . . , Cm}
is generated. We denote a total of Ek cellular samples in
cluster Ck as {ek(1), ek(2), . . . , ek(Ek)}. Assume we know
the cellular fingerprints of N pre-known bootstrap bus stops
R = {b1, b2, . . . , bN }. We denote cluster Ck is matched with
bus stop bi if

(∀ ek( j) ∈ Ck) Ma(ek( j), bi) > ε, (5)

where ε is a parameter to guarantee the rigid matching between
cellular sample and bus stop fingerprint.

We then follow two steps to find the correspondence
between the clusters and the unlabeled bus stops. First,
we match all the clusters of C to the bootstrap bus stops R
to find a total of h matched clusters {Cx1, Cx2 , . . . , Cxh } ⊆ C .
As an example depicted in Fig. 9, {C1, C4, C7} are 3 matched
clusters. Then we find the bus route B that passes all the
matched bus stops RX = {bx1, bx2, . . . , bxh } ({b1, b4, b7} in
Fig. 9) and correspond the unlabeled bus stops {u1, u2, u3, u4}
to the sample clusters {C2, C3, C5, C6} respectively. Although
not usual cases, there could be more than one bus routes
that contain the matched bus stops (e.g., route 1-3 in Fig. 9).
In such a case, we match the most possible bus route according
to the number of unlabeled bus stops {u1, u2, . . . , ul} between
every pair of matched bus stops (e.g., b1 ∼ b4 and b4 ∼ b7
in Fig. 9). We denote the number of bus stops on bus route B
between stop bi and stop b j as NB (bi , b j ). In the candidate
bus routes {B1, B2, . . . , Bw} sharing the matched bus stops
RX , the most possible bus route is estimated as

B∗ = arg min
B j :1∼w

W (B j )

= arg min
B j :1∼w

h−1∑

i=1

| NB j (bxi+1 , bxi ) − (xi+1 − xi )

xi+1 − xi
|, (6)

where we weigh a candidate bus route using the difference
between its number of unlabeled bus stops and the number of
clusters of the uploaded data. If an unlabeled bus stop u is
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corresponded to a cluster Ck , we set the fingerprint of u as
the cellular sample e∗

k which has the highest matching score
with the rest samples in Ck .

e∗
k = arg max

ek ( j :1∼Ek)

∑Ek
i=1 Ma(ek(i), ek(i))

Ek
. (7)

This online database construction method exploits the essen-
tial information redundancy of bus stops included in each
bus route. In Section IV-B.3, we utilize such information
redundancy to filter the noises in mapping the cellular sample
clusters to bus stops. Here because we are building the cellular
fingerprint database that will serve as a basis for following
trajectory mapping, we set much stricter criteria to ensure
we only make use of the data sources with “good” quality.
In particular, we rely on the following three rules to filter
“bad” data sources. (I) Cluster Ck is determined as a “bad”
cluster if (∃ek(i), ek( j) ∈ Ck), Ma(ek(i), ek( j)) < 3, i.e.,
the samples in the cluster are not very similar to each other.
(II) We set ε = 3 in Eq. (5) to guarantee the matching accuracy
of cluster Ck and bus stop bi . (III) Unlike in Section IV-B.3,
we strictly match the cellular sequences to individual bus route
but not the combinations of bus stops to ensure the data quality.
We do not use the best matching route B∗ derived in Eq. (6)
if (∃1 ≤ j ≤ w, B j �= B∗) W (B j )

W (B∗) < 2, i.e., B∗ must be an
obvious match to be included.

This online database construction process is performed for
several rounds. The bus stops labeled in previous rounds are
treated as bootstrap stops for the next round. The growing
process ends until there is no new bus stops labeled in a
new round. The initial bootstrap bus stops can be selected as
those most distinguishable ones of different bus routes from
an online bus route map. For one particular bus route, the bus
stop that is not shared by other bus routes can be considered
as a bootstrap bus stop. For the initial set of bus stops, we
manually measure their cellular signatures and label them.

VI. IMPLEMENTATION AND EVALUATION

In this section, we evaluate the performance of our system
based on a prototype implementation on Android platform.
We first introduce the implementation details and experimental
settings. Then we present the evaluation results of the bus stop
detection and identification methods, and analyze the traffic
estimation results. Finally, we evaluate the online database
construction method and investigate system overhead.

A. Experiment Settings
We have implemented the bus trip data collection App on

Android platform (with Android version 4.0.3). Controlled
experiments are conducted with three types of mobile phones,
i.e., HTC Sensation XE, HTC Desire S, and Google Nexus
One. These mobile phones are common phones equipped
with accelerometer sensors and support 16-bit 44.1 k H z audio
signal sampling from microphones. Their memory and CPU
capacity are powerful enough for the light computation and bus
trip sensing involved in our application. The phone types of the
participants are more diverse. The HTC and Samsung phones
dominate. As our system requires no particular hardwares, thus
the proposed method could be easily implemented on other

Fig. 10. 8 concerned bus routes in the ∼28 km2 testing area in our
experiments.

OS and hardware platforms, e.g., Apple iPhones and Windows
Phones. In the future, we will implement our systems in iOS
system due to the large market share of iPhones. We believe
at that time more participants can join in the traffic sensing
with our App, and provide better traffic condition estimations.
We also implement the backend bus trip data processing and
analysis services in Java executing on a server, i.e., the DELL
Precision WorkStation T3500, for our experiments.

In Singapore, the public bus transit system serves millions
of citizens every day and covers most parts of the road
network [39]. The bus services are primarily provided by SBS
Transit5 and SMRT Corporation,6 both of which are commer-
cial transit companies in Singapore. Fig. 10 demonstrates our
experiment area with a size of about 7 km ×4 km, which owns
more than 20 bus routes with periodically transit bus services
covering most of the roads in this area. Our experiments
concern on 8 bus routes, including bus route 179, 182, 199,
241, 243, 252, 257 and partial part of route 30, as shown
in Fig. 10. The selected bus routes cover a great portion of
the roads in the area and thus can provide fine-grained traffic
estimation results. In the testing area, we conduct various
experiments to evaluate our system and methods. All the
experiments lasted for more than 2 months.

1) Data Collection: The input of our system includes the
cellular fingerprints of bus stops and the real-time bus trip
sensing data collected from mobile phones of bus riders. The
experiments involve the following two kinds of data resources:

a) Manual collection: For the 8 experimental bus routes,
we manually collect the cellular fingerprints for their bus
stops. Specifically, multiple cellular samples are primitively
collected for each bus stop and we only keep the sample
with the highest similarity score with the others as the bus
stop cellular fingerprint stored in the database. We use these
cellular samples with high-quality for the feasibility study
of system design in Section III and for the performance
evaluation of bus stop detection and identification methods
in this section.

5SBS Transit in Singapore. http://www.sbstransit.com.sg/.
6SMRT Corporation in Singapore. https://www.smrt.com.sg/.
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TABLE II

BEEP DETECTION RATIO

TABLE III

BUS STOP IDENTIFICATION ERROR

b) Participatory collection: We have 122 participants in
total, mainly undergraduate students and volunteers, involved
in our experiments to contribute their real-time bus trip
information to our system. The participants installed our data
collection App7 on their mobile phones to collect bus trip data
and periodically upload the sensory data through WiFi or 3G
to our backend server. Due to the small number of participants
in the first month, we have received limited bus trip data from
bus riders. The initially collected data mainly come from the
popular bus routes. Therefore, we encouraged the participants
with vouchers to intensively take buses from the 8 selected
bus routes for 9 days, which provides richer sensory data for a
comprehensive performance evaluation of our system. We also
investigate the performance of our system in both sparse and
intensive data collection scenarios (measured with number of
bus stops) in Section VI-C.

B. Bus Stop Detection and Identification Performance
Bus stops are detected according to the beeps and identi-

fied by fingerprint matching. The length of a typical bus in
Singapore is 10 ∼ 12 m and the width is about 2.5 m. There
are 4 card readers placed at two sides of the front and back
doors. We do experiments at different locations on the bus
to test the beep detection accuracy. Some of the public transit
buses are double-decker so we also conduct the audio detection
experiments on the second floor. For all scenarios, we consider
that mobile phones may be placed inside bags or held in hand.

We test the audio detection method more than 40 times
at each scenario and summarize the average detection ratio
in Table II. The detection ratio is above 90% when the distance
to card readers is within 4 m, even when the mobile phones
are placed inside bags. As the distance increases, the detection
ratio decreases. For the passengers seated at the second floor
of the double-decker bus, the average detection ratio are about
78% in hand and 69% in bags, respectively. Notice that our
approach essentially tolerates some beeping missing events.

To understand the accuracy of our bus stop identification
algorithm, we collect massive cellular samples at the bus stops
for 8 rounds for all bus routes. For a specific bus route, we take
the cellular signals collected in one of the 8 rounds as bus stop
fingerprints (which should be stored in database), and view the
cellular signals of the rest 7 rounds as testing data to identify
the bus stops. We calculate the bus stop identification error

7Now it has been put up on Google Play (Jurong Bus Traffic).

and present the statistical results for 4 bus routes in Table III.
We omit the other 4 bus routes in Table III as they have similar
results. For all the 4 bus routes, the bus identification error
is quite small, i.e., <8%. Among the 4 bus routes, we find
that our algorithm performs the worst on bus route 241 with
the largest identification error as 7.50%. We carefully analyze
80 cellular signal sets of bus route 241 and find that there are
6 mis-identified cases, among which 5 cases are 1 bus stop
away from the actual bus stop and only 1 case with 2 bus stop
error. In general, our bus identification algorithm works well
with rare mis-identification cases.

C. Traffic Estimation Performance

In this subsection, we evaluate our traffic estimation method
with sensory data collected from participants’ mobile phones.
Although we rely on traffic data collected from buses, we have
transformed the bus travel information to the general travel
speeds according to the method in Section IV-C. The following
analysis is based on the finally transformed travel speeds.

We run our traffic estimation method with the sensory data
of one day when the most participants are encouraged to
intensively take buses and demonstrate 3 snapshots of the
traffic maps for 8:30AM, 15:00PM and 19:00PM of that day,
respectively, in Fig. 11 (top). We classify the travel speeds
of automobiles into 5 levels as shown in Fig. 11(a). From
Fig. 11 (top), we find that the traffic speeds of most roads
in the studied area fall in level of 30 − 50 km/h. In general,
the traffic conditions of roads vary considerably. Taking the
traffic map for 8:30AM shown in Fig. 11(a) as an example,
we find that road segments of the left and bottom area have the
best traffic conditions with traffic speeds higher than 50 km/h,
while road segments in the middle area have the worst traffic
condition with traffic speeds about 20km/h. In addition, we
find the traffic conditions also temporally vary as shown by
the traffic maps of the 3 time points. In general, road segments
in the studied area are in good traffic conditions at 15:00PM
(Fig. 11(b)) while their traffic conditions become worse at
19:00PM (Fig. 11(c)) which belongs to the evening peak
hours in Singapore. However, we still find few road segments
at 15:00PM are in poor traffic conditions with traffic speed
<20 km/h. For the traffic maps at 8:30AM and 19:00PM,
although there are many low-speed road segments, their speed
distributions are very different from each other. For the low-
speed road segments at 8:30AM as shown in Fig. 11(a), we
find they are close to each other in 2 main roads which lead
heavy traffics to the highway in the early peak. In contrary,
the congested road segments at 19:00PM are more dispersed.
The results in Fig. 11 (top) prove that the bus network indeed
provides high road coverage for fine-grained traffic map. Even
only 8 bus routes can cover >50% major roads of the studied
area. Compared with Google traffic map for the area, i.e.,
Fig. 11(d), our system provides much higher road coverage
ratio. With traffic data collected by participants from more bus
routes, our system will derive more complete traffic conditions.

We further test the system performance with the 19:00PM
data of the same day using only 70% and 50% bus stop
references and plot the results in Fig. 11(e) and (f),
respectively. The bus stop references are randomly selected.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LIU et al.: PARTICIPATORY URBAN TRAFFIC MONITORING SYSTEM: THE POWER OF BUS RIDERS 11

Fig. 11. Traffic map at different time of a day (a)-(c); Google traffic map (d); generated with partial bus stop references (e)-(f).

When we use 70% bus stop references, the estimated traffic
conditions do not degrade much and we can see that the overall
traffic fidelity is similar to that referencing all bus stops in
Fig. 11(c). When the fraction of used bus stops drops to 50%,
the estimated traffic map shown in Fig. 11(f) becomes rougher.
With fewer bus stops as landmarks, the roads are segmented in
a more coarse-grained manner, i.e., longer road segments. As a
result, the traffic conditions in Fig. 11(f) are not as fine-grained
as in Fig. 11(c). Even that, both Fig. 11(d) and Fig. 11(f) still
provide us the general traffic information.

We compare our estimated traffic speeds with official traffic
speeds acquired from the Land Transport Authority (LTA)
of Singapore.8 The LTA accumulates traffic data from traffic
reports of more than 10,000 roving taxis and other data sources
including traffic cameras and inductive loop detectors within
a time slot of 15 mins and derives the real-time average
traffic speeds. The obtained official traffic speeds fully cover
the experiment days and the testing area. We also compare
our results with Google Maps’ traffic data. Google Maps
provide the live traffic visualization on the maps but they only
give 4 coarse traffic levels (i.e., very slow, slow, normal,
and fast) instead of providing detailed road traffic speed to
the end users. In addition to that, there is no interface9 for
public access of Google Maps’ real-time traffic speed data.
Therefore, we manually obtain the coarse congestion indicator
data from Google Maps that cover the experiment days and
testing roads, and then compare them with our estimation

8LTA of Singapore. http://www.lta.gov.sg.
9Although Google Maps Directions APIs enable the users to query the travel

routes and travel durations, these APIs do not provide the detailed traffic speed
of any specific road segment.

Fig. 12. Traffic estimation compared with official traffic data and Google
Maps’ indicator.

results. We pick 2 typical road segments (A and B as depicted
in Fig. 11(d)) and plot their corresponding traffic speeds for
the time period from 9:30AM to 17:30PM on one experiment
day from three sources for comparison in Fig. 12. Specifically,
we compare our estimated traffic speed of automobiles (vA),
traffic speed (vT ) from LTA, and the Google Maps’ indicators
on the two road segments. For vA and vT , we plot their average
speeds with a time window of 15 mins. Fig. 12 shows that
Google Maps only provide rough traffic levels while both vA

and vT can provide more fine-grained information.
By comparing vA and vT in Fig. 12, we find some inter-

esting relationships between them. We categorize the traffic
speeds of vA into 3 levels, i.e., low-speed (<45 km/h),
medium-speed (40 ∼ 50 km/h) and high-speed (>50 km/h),
for the following comparison between vA and vT . When vA

falls in the low speed level, we can see vA matches vT well.
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Fig. 13. Statistics of speed difference �v between vA and vT .

When vA is in the high speed level, a gap exists between
vA and vT . The reason could be that vA and vT are derived
from bus travel data and taxi travel data, which behave quite
differently. Buses are normally slower while taxis travel more
aggressively. Though we have transformed bus information to
general automobile speed vA , the taxi speed vT is still much
higher in light traffic scenario. However, both vA and vT have
the similar variation pattern as shown in Fig. 12.

We further explore the relationship between vA and vT

with all the 2-month experiment data. We calculate the speed
difference �v between vT and vA for all time durations
and road segments of the studied area when both values are
available. We still categorize the traffic speeds into 3 levels
according to vA and plot the statistics separately in Fig. 13.
The results show that �v is the smallest (about 3 ∼ 5) for low-
speed level and the largest (about 8 ∼ 12) for high-speed level.
For medium-speed level, �v is more disperse in the range of
0 ∼ 12. Fig. 13 suggests that vA is an effective measure for
traffic conditions, especially indicative for heavy traffics and
congestions which generally result in low traffic speeds.

D. Online Database Construction Performance
We evaluate the crowdsourcing online construction method

for cellular fingerprint database by randomly setting different
fractions of bus stops as bootstrap stops and growing up other
bus stop fingerprints. The measured bus stop fingerprints of
the 8 experimental bus routes are used as ground truths. The
uploaded data from participants during the 2-month experi-
ment period are used to feed our online database construction
algorithm. Every discovered bus stop is compared with the
ground truth bus stop and if the similarity of their fingerprints
are larger than threshold 3 we treat it correct. For each setting,
we run 100 independent experiments and report the statistical
result of discovery ratios. For each run, a set of initial bootstrap
bus stops is randomly selected. The algorithm terminates when
there is no new discovered bus stops. We record the running
rounds and report the average running rounds for each setting.

Fig. 14 plots the average discovery ratio, which is calculated
as the ratio between the number of correctly fingerprinted bus
stops and the total number of bus stops, and the number of
running rounds to achieve the converged discovery ratio. We
vary the fraction of bootstrap bus stops from 2% to 60%.
We can see from Fig. 14 that when the fraction of bootstrap
bus stops is small, the discovery ratio increases significantly
with the growth of the fraction. The fingerprints of 71% bus
stops are discovered from the participatory sensing data with
20% bootstrap bus stops. When the fraction of bootstrap bus

Fig. 14. Database construction performance.

Fig. 15. Discovery accuracy of the online database construction and an
instance distribution of the bootstrap bus stops. (a) Discovery accuracy for
different factions of bootstrap bus stops. (b) An instance distribution for the
online database construction.

stops further increases, the increase of discovery ratio becomes
slow. Besides, we find that when the fraction is 10%-20%,
the algorithm runs for the most rounds to be converged (see
the “# of rounds” in Fig. 14). In other cases, however, the
algorithm terminates earlier, which implies a small number
of bus stops are the representative ones. We can discover the
fingerprints of a majority of the bus stops with more than
25% bootstrap bus stops. Since the participatory data used
for the online database construction process in our system is
limited due to the small number of participants, we believe
that our system can achieve much better performance if more
participants are involved.

The discovery accuracy is summarized in Fig. 15(a), where
we find that the overall accuracy is higher than 80%. If the
bootstrap bus stops are properly chosen, we can achieve higher
discovery ratio and accuracy even with much lower fraction
of bootstrap bus stops. When the bootstrap fraction is 20%,
we show an empirically optimal bus stop distribution case in
Fig. 15(b), where the red cross are the bootstrap bus stops. We
get 87% discovery ratio and 91% accuracy grown up database
from those bootstrap bus stops. This bus stop distribution is
more dispersed compared with other cases, and contributes
to making better use of the participatory sensing data. This
observation can help us to determine the appropriate bootstrap
bus stops which are exclusive bus stops of certain bus routes
and are dispersedly distributed in space.

E. System Overhead

The Goertzel algorithm [5] dominates the computation over-
head on mobile phones. In principle, the Goertzel algorithm is
computationally efficient than the FFT algorithm for frequency
extraction. The complexity of Goertzel algorithm and FFT is
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TABLE IV

POWER CONSUMPTION COMPARISON (IN mW)

O(Kg N M) and O(K f N log N), respectively, where Kg and
K f are the “cost of operation per unit”, M is the number of
measured frequencies, and N is the sampling values. In gen-
eral, the factor K f is often much larger than Kg [5]. Thus
when M is smaller than log N , Goertzel algorithm significantly
outperforms FFT. By setting the sampling rate of microphone
as 8 k H z for bus detection, the Goertzel algorithm saves more
than 60 mW power than FFT for data collection.

We measure the power consumption of two types of mobile
phones (i.e., HTC Sensation and Nexus One) under different
sensor settings using the Monsoon power monitor. For each
setting, we switch off the mobile phone screen, and record
the consumed energy over a period of 10 mins and calcu-
late the average power consumption as energy

t ime . Both average
power consumption and relative standard deviation (in the
parentheses) are reported in Table IV. We take the power
consumption when no sensors are activated as the baseline.
We can see that sampling cellular signals consume negligible
power when compared to the baseline, e.g., 72 mW and
71 mW for HTC phone, respectively. Since mobile phones
always maintain connections to nearby cell towers to support
telephone calls and SMS service and thus sample the cellular
signals at a high frequency, i.e., 1 H z. As a result, our system
takes the almost free lunch and actually introduces marginal
energy consumption. The average power consumption for GPS
tracking at a sampling rate of 0.05 H z is as high as 304 mW
for HTC and 333 mW for Nexus One. Sampling one GPS
signal every 20 seconds is already very low for the vehicle
tracking [28]. The trip data collection via cellular signals
only consumes 182 mW for HTC and 196 mW for Nexus
One in total. The power consumption, however, is as high
as ∼450 mW if we replace cellular signal with GPS signal
for the bus trip tracking. Notice that the microphone on the
mobile phone has to be kept always on for bus detection no
matter the cellular signal or GPS signal is used for vehicle
tracking. As our system uses accelerometer on mobile phones
to continuously filter out noisy data, we also include the power
consumption of accelerometer. The overall power consumption
of data collection using our App becomes 191 mW for HTC
and 203 mW for Nexus One, with slight increase.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents the design, implementation and eval-
uation of a participatory urban traffic monitoring system,
which leverages public buses to probe traffic conditions. The
system decomposes the traffic sensing tasks to participatory
bus riders by utilizing lightweight sensing resources from
their mobile phones, and exploits bus route constraints and
bus stop references to derive the traffic map. We implement

our system and conduct comprehensive evaluation of 2-month
period in Singapore. The results demonstrate the effectiveness
and feasibility of our system for urban traffic monitoring.

As future works, we plan to derive the complete traffic of
a region from traffic conditions of road segments covered by
bus routes. In addition, we would like to design an appro-
priate incentive mechanism to encourage more bus riders’
participation for consistent and good performance. The bus
drivers could be encouraged as the initial users to bootstrap
our system. Besides, we have published our App on Google
Play and we expect more experimental studies in other areas.
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