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ABSTRACT
This paper presents DopEnc, an acoustic-based encounter
profiling system on smartphones. DopEnc can automati-
cally identify the persons that users interact with in the con-
text of encountering. DopEnc performs encounter profil-
ing in two major steps: (1) Doppler profiling to detect that
two persons approach and stop in front of each other via an
effective trajectory, and (2) voice profiling to confirm that
they are thereafter engaged in an interactive conversation.
DopEnc is further extended to support parallel acoustic ex-
ploration of many users by incorporating a unique multi-
ple access scheme within the limited inaudible acoustic fre-
quency band. All implementation of DopEnc is based on
commodity sensors like speakers, microphones and accelerom-
eters integrated on commercial-off-the-shelf smartphones. We
evaluate DopEnc with detailed experiments and a real use-
case study of 11 participants. Overall DopEnc achieves an
accuracy of 6.9% false positive and 9.7% false negative in
real usage.

Categories and Subject Descriptors
C.3.3 [Special Purpose and Application-based Systems]:
Real-time and embedded systems; C.5.3 [Computer Sys-
tem Implementation]: Portable devices

Keywords
Encounter profiling, Acoustic signals, Doppler effect, Voice
profiling, Multiple access.

1. INTRODUCTION
People often encounter and interact with many persons in

a day or during a social event or during the day. Encounter
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Figure 1: DopEnc identifies the persons that one has in-
teracted with in two steps. (1) Two persons approach
each other in an effective trajectory. (2) They are engaged
in an interactive conversation.

profiling aims at identifying the encountered persons and
recording the interaction context, e.g., the time and place
that a particular person is met, or detailed information of all
the persons that the user encountered and interacted with.
It is useful in life logging and memory assistance. Existing
solutions (e.g., Sony’s LifeLog [1] and Google’s Keep [2]),
however, require user involvement to manually record the
person, the time and place, etc., which introduces extra over-
head to the users.

It will be very convenient if a smartphone based system
can automatically identify the persons that one interacted
within a certain duration. For example, Alice encounters
Bob in a social event. After a short chat, they say good-
bye to each other. Beside Bob, Alice may encounter many
other persons. During each interaction, Alice does not need
to take any special actions to log the time and place of meet-
ing Bob. An app on her smartphone automatically identifies
the persons she meets. When she returns to her place or
when needed, Alice is able to retrieve the related informa-
tion from her smartphone about all the persons she has met
during the event. It is desirable for the system to not require
any customized devices or pre-deployed infrastructure. To
the best of our knowledge there are no proposed solutions to
this problem at this moment. Existing techniques for human
sensing can detect the handshaking with Skin Potential Level
(SPL) sensors [3], identify human groups through trajec-
tory tracking [4], or detect human proximity with short dis-
tance communication like Bluetooth Low Energy (BLE) [5]
or Near Field Communication (NFC) [6]. Those techniques
with their different design purposes cannot truthfully iden-
tify the persons that users met. Besides, they all have limita-
tions in usage, e.g., customized SPL devices worn on wrists,



infrastructure support for human tracking and detection, ex-
tra assumptions on human relationships, movements, ways
of interactions, etc.

This paper proposes DopEnc, which targets at identify-
ing the persons that users have interacted with by leveraging
acoustic signal transmission with common sensors on smart-
phones (i.e., speaker, microphone and accelerometer). In de-
signing DopEnc, we carefully analyze the normal procedure
of human interactions in the context of encountering, and
propose to identify the persons that one is interested to inter-
act with in two major steps, namely (1) trajectory analysis,
and (2) conversation confirmation. Figure 1 illustrates the
DopEnc procedure.

Trajectory analysis. Two persons who interact with each
other often approach in an effective trajectory and stop in
front of each other. Not all approaching trajectories are ef-
fective, e.g., the trajectory of two persons bypassing each
other does not constitute an effective trajectory. To distin-
guish the effective trajectories from the others, DopEnc does
not employ existing trajectory mapping/localization solutions
which often incur heavy computation and communication
overhead. Instead, DopEnc exploits the Doppler effect of
acoustic signals transmitted between the users’ smartphones
and derives concise Doppler profiles to tell effective trajec-
tories. DopEnc configures the smartphones to broadcast in-
audible acoustic signals and derives from the Doppler ef-
fect the relative velocities between two persons. According
to the estimated Doppler profile, DopEnc identifies differ-
ent types of user approach trajectories and finds the effective
ones. DopEnc applies a data cleaning technique to the rough
acoustic signals obtained in practice that exploits the unique
Doppler characteristics during human walkings and essen-
tially improves the accuracy in classifying the trajectories.

Conversation confirmation. An effective trajectory may
not always lead to conversations, e.g., when two persons
approach the same object (e.g., a poster or booth) but they
do not interact with each other. DopEnc therefore performs
voice profiling to confirm whether two persons are engaged
in conversations. Existing works on voice recognition [7,
8] often require a pre-established voice feature database of
all users and incur high processing overhead. They can-
not be applied to our scenario where no global voice feature
database exists and computation has to be performed on the
smartphones. DopEnc adopts a lightweight approach to con-
firm user conversations in a distributed manner. DopEnc lets
each user’s smartphone identify its owner’s voice only and
the smartphones of two approaching users exchange the rec-
ognized voice traces. DopEnc calculates the alternativeness
ratio and duty ratio of user speeches, and based on that infers
whether the two persons are likely engaged in conversations.

After confirming the encounter, DopEnc can thus record
the time and the place where the encounter happens. Based
on the users’ choices, DopEnc can be further configured to
assist exchanging some public personal information (e.g.,
electronic name card) between two users with conventional
data exchanging schemes, e.g., Bluetooth or cellular.

DopEnc is further extended to support parallel acoustic
exploration of many users with a specially designed multiple

access scheme. The inaudible acoustic frequency band is di-
vided into a limited number of channels with careful consid-
eration of channel capacity and possible Doppler offsets due
to human walk. Different users may perform Doppler profil-
ing and voice profiling simultaneously over different chan-
nels. The multiple access scheme considers the frequency
features of Doppler effect and interferences of acoustic sig-
nals, and adopts priority-based channel switching to coordi-
nate the channel access of multiple users, which essentially
reduces the collisions.

We implement and evaluate DopEnc on Commercial-Off-
The-Shelf (COTS) smartphones. To the best of our knowl-
edge, DopEnc is the first practical system of its kind that is
able to automatically identify people encounters. An exper-
iment with 11 participants in a real event demonstrates that
DopEnc can accurately identify the encounter events. The
false positive and false negative rates are 6.9% and 9.7% re-
spectively. Tunable trade-off can also be set in DopEnc to
control the false positives and false negatives so the user can
configure more conservative or aggressive schemes for en-
counter profiling.

2. DOPPLER PROFILING
In this section, we describe how DopEnc derives the Doppler

profiles of the acoustic signals transmitted between smart-
phones. Based on the concise Doppler profiles, DopEnc is
able to classify the approaching trajectories of people and
identify the effective ones that may lead to human inter-
actions. In particular, DopEnc considers the human walk-
ing characteristics and devises special techniques to remove
noises and errors in practical Doppler measurements.

2.1 Doppler Profiling on Smartphones
Doppler effect refers to the frequency change of a wave,

when an observer is moving relative to the source [9]. The
frequency offset is determined by the relative velocity be-
tween the source and the observer [9]:

∆f =
∆v

c
· fo, (1)

where frequency offset ∆f=f−fo is the received frequency
f subtracted by the emitted frequency fo; c is the speed of
waves. Both fo and c are known. If f is detected, we can
calculate the frequency offset and thus derive the relative ve-
locity by Doppler effect.

DopEnc uses inaudible acoustic signals (18kHz−20kHz1,
details in Section 4.1) to perform Doppler profiling. DopEnc
configures the smartphone speakers to broadcast acoustic
signals with fixed frequency. The other smartphone records
the received signals using its microphone and calculates the
frequency offset using Fast-Fourier-Fransform (FFT) analy-
sis. The relative velocities of the senders can thus be derived
1The sound frequency above 15kHz is already inaudible for
most adults. We set the signal frequency to be above 18kHz
to safeguard that it will not even affect the minority groups
like young kids and infants who are more sensitive to high
frequency sounds. The adopted frequency band has much
lower noise than audible bands in daily environment.
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Figure 2: The Doppler profile that records the relative
velocity between two smartphone users who walk to-
wards each other.

by the receivers using Equation (1). Figure 2 depicts an ex-
ample piece of Doppler profile which records the relative ve-
locity measured by two COTS smartphones when one person
walks towards the other. Initially, they remain stationary, of
zero relative velocity. The relative velocity becomes positive
when one walks towards the other and returns to zero when
he stops in front of the other.

Two parameters determine the quality of the obtained Doppler
profile: velocity resolution and temporal fidelity. Velocity
resolution (∆vres) represents the minimum difference of rel-
ative velocities that the measured Doppler effect can tell.
Temporal fidelity (∆tres) is the minimum time interval of
two consecutive measurements that the system can take. We
set the microphone sampling rate to 48kHz (supported by
most mainstream smartphones) and perform 4096-FFT (i.e.,
one FFT for 4096 samples, which can be afforded by main-
stream smartphone processing capability). The frequency
granularity ∆fres is 11.7Hz (48kHz/4096). The corre-
sponding velocity resolution is only 22.5cm/s (Equation (1))
which is inaccurate to capture human movements. DopEnc
adopts undersampling technique that translates high-frequency
bandpass signals to low-frequency lowpass signals without
frequency spectrum distortion. The resultant lowpass sig-
nals can be sampled with much lower undersampling rate.
The velocity resolution can be improved by n× (n is the un-
dersampling factor). Undersampling has been adopted by
other existing works like Spartacus [10] to improve audio
sensing precision. DopEnc adopts undersampling factor of
8 (the supported frequency band is illustrated in Section 4.1),
corresponding to a velocity resolution of 2.82cm/s, which
is sufficient to accurately capture slight human movement.

On the other hand, undersampling reduces temporal fi-
delity by n×, because the interval between two adjacent
samples for FFT has been enlarged. To provide high tem-
poral fidelity, DopEnc further utilizes overlapping technique
[11] which reuses the past sampling data and constitutes
a sliding window for FFT. Therefore, less waiting time is
needed before performing one FFT. With an overlapping ra-
tio of 87.5%, the temporal fidelity can be improved by 8×.
We also test higher ratios (e.g., 88.9% for 9×) but do not
observe obvious performance improvement. In summary,
by incorporating undersampling and overlapping techniques,
DopEnc achieves velocity resolution of 2.82cm/s and tem-
poral fidelity of 0.085s (i.e., 11.7Hz).

Acoustic Signals vs. Radio Signals. Radio signals, e.g.,
Wi-Fi and RFID, have been widely used to track human
movement [12, 13]. Compared to them, acoustic signals are
much more sensitive in sensing movement. Equation (1) rep-
resents the frequency offset due to the relative movement.
Assume that the relative velocity ∆v between two persons
is 1m/s. Consider two scenarios: 1) acoustic signal, sig-
nal frequency fo is 20kHz, speed of acoustic signal c is
346m/s, then frequency offset ∆f is 57.8Hz; 2) radio sig-
nal, signal frequency fo is 2.4GHz, speed of radio signal c
is 3 × 108m/s, then frequency offset ∆f is only 0.008Hz.
The frequency offset of acoustic signals is approximate 7225
(57.8/0.008) times that of radio signals.We release the An-
droid code at www.huanlezhang.com/project/doppler-detector.

2.2 Classifying Trajectories
A relative trajectory is effective if two persons approach

(directly or indirectly) and stop in front of each other. An
effective trajectory may lead to interactions. To identify ef-
fective trajectories, DopEnc classifies all relative trajectories
into five categories as illustrated in the first row in Figure
3. (1) Direct approach where two persons walk directly to-
wards each other (Figure 3(a)). Direct approach leads to an
effective trajectory, since the two persons approach and stop
in front of each other; (2) Roundabout approach where two
persons walk towards each other in a roundabout trajectory
(Figure 3(b)). Roundabout approach also gives an effective
trajectory. In some cases, the direct path between two per-
sons may be blocked, so they may need to bypass the obsta-
cle and eventually approach each other; (3) Slant approach
where two persons slantly walk closer but do not meet each
other (Figure 3(c)). Slant approach does not give an effective
trajectory, because the two persons do not eventually meet
each other; (4) Departing where two persons depart from
each other (Figure 3(d)), and (5) Passing by where two per-
sons pass by each other (Figure 3(e)). Departing and passing
by scenarios are obviously not effective, as the two persons
eventually get away from each other.

The second row in Figure 3 summarizes the theoretical
Doppler profiles for the above categories. The relative ve-
locity between two persons is determined by their absolute
walking speeds and their relative heading direction. When
people walk with targets in mind, their walking speeds re-
main steady [14, 15] and their relative velocity can thus in-
dicate the relative heading direction between them. Such in-
formation tells the effective trajectories. From Figure 3, we
see that each category has unique features in its relative ve-
locity trace. The relative velocity in direct approach (Figure
3(a)) remains steady all the time. In roundabout approach
(Figure 3(b)), after obstacles are bypassed, the two persons
are relatively heading closer to each other and their relative
velocity increases. In slant approach (Figure 3(c)), how-
ever, the relative heading direction between the two persons
keeps shifting away, which leads to gradually decreasing rel-
ative velocities. The relative velocities in departing (Figure
3(d)) and passing by (Figure 3(e)) drop below zero when the
two persons walk away from each other. To summarize, the
trace of relative velocity recorded in the Doppler profile in-



Figure 3: Five categories of relative trajectories (the upper row) and their corresponding Doppler profiles (the bottom
row). One person (in triangle) is fixed in the axis origin. The relative movement of the other person (in circle) is depicted
in a dashed line.

dicates the effective trajectory when it remains positive and
non-decreasing before the two persons stop walking.

2.3 Doppler Profiling in Practice
Trajectory classification illustrates the basic principle to

interpret the Doppler profile and derives the types of ap-
proaching trajectories. However, the practical Doppler pro-
file measured on smartphones differs from the ideal Doppler
profile shown in Figure 3. A typical Doppler profile mea-
sured on smartphones as shown in Figure 2 is obtained when
one person walks directly towards the other with normal
gaits. While we expect their relative velocity to be constant,
the measured trace in practice contains valleys of relative
velocities. Without cautious data cleaning on those profiles,
we may mistreat those valleys as the result of sudden shift
of heading directions and thus wrongly classify such an ef-
fective trajectory into other ineffective trajectories. In our
preliminary test, we measure 50 traces of Doppler profiles
in practice, and similar valleys of relative velocities occur in
more than 40 of them.

Another problem with the Doppler profile as demonstrated
in Figure 2 is that the measured relative velocity gradually
decreases in a period instead of immediately dropping to
zero when the person stops walking (time period from 9s
to 11s in Figure 2). The stop phase of human walking lasts
for some time and may mislead to detection of decreasing
velocity and thus misclassifying the trajectory into slant ap-
proach. From our preliminary 50 tests, all Doppler pro-
files contain non-negligible stop phases of human walkings.
DopEnc adopts the following three steps of data cleaning to
remove the above noises and errors contained in the Doppler
profile in practice.

Step 1: smoothing the velocity trace. We comparatively
study the measured velocity traces and the accelerometer
readings, and try to figure out the root cause of the valleys.
Figure 4 depicts the relative velocities between two persons
and the corresponding accelerometer readings measured by
the walker’s smartphone. The raw Three-Dimensional (3D)
accelerometer readings are summed up and smoothed by
low-pass filtering. A peak of acceleration occurs when the
walker’s foot strikes the ground [16]. We find that some of
those peaks of acceleration perfectly correspond to the val-
leys observed in the velocity trace, because the instantaneous
walking speed is disrupted by the body adjustment when the
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Figure 4: Valleys in the relative velocity trace occur at
3.8s, 5.4s, and 8.0s when the person’s foot strikes the
ground.

person’s foot strikes the ground. Not all the foot strikes cor-
respond to velocity valleys due to the limited sampling rate
used in DopEnc, i.e., DopEnc is able to sample the human
walking velocity at 11.7Hz and each human walking step
takes approximately 0.5s [17], so only about six samples are
measured during one walking step. As a result, a velocity
valley appears only when the sample is taken close to the
time of a foot strike.

Based on the above analysis, instead of using general smooth-
ing techniques like low-pass filtering, curve fitting, median
filtering or moving average, which cannot remove the deep
valley of velocity trace (e.g., the valley at 8.0s in Figure 2),
DopEnc uses a more suitable smoothing method, called mov-
ing maximum, to effectively filter the valleys in the relative
velocity traces. Moving maximum exploits the fact that the
human walking speed is steady most of the time except when
the foot strikes the ground. Moving maximum replaces the
relative velocity of each sample with the maximum veloc-
ity within a range of adjacent samples. Empirically, DopEnc
sets the window of moving maximum to one human walking
cycle of two steps. Because people take approximately 0.5s
to make a step [17], the number of velocity samples for one
walking cycle is 11.7 (2×0.5s×11.7Hz). Therefore, DopEnc
replaces the relative velocity of sample i with

vi = max(vi−5, vi−4, ..., vi, ..., vi+4, vi+5) (2)
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(a) Step 1: smoothing the velocity
trace.
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(b) Step 2: removing the stop phase of
human walking.
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(c) Step 3: linear fitting to derive the
slope of velocity.

Figure 5: Three steps of data cleaning to Doppler profile to remove noises and errors. Approaching trajectories are
classified based on the slopes of the fitting lines.

Figure 5(a) depicts the smoothing result of moving max-
imum on the velocity trace in Figure 4. Moving maximum
successfully eliminates most valleys including the deep val-
ley at 8s in the trace. Even when the mobile phone is not held
static in hand, moving maximum is still able to effectively
smooth the velocity trace because of the repetitive pattern of
human walking.

Step 2: removing the stop phase of human walking.
DopEnc removes the misleading stop phase of human walk-
ing in the velocity trace. The relative velocities before the
stop phase of human walking are sufficient for trajectory
classification. DopEnc removes the stop phase of human
walking by the walking steps. According to our empirical
experience and our preliminary 50 traces from five persons,
the stop phase of human walking normally contains three
walking steps. Each human step normally takes approxi-
mate 0.5s [17]. Conservatively, DopEnc removes last two
seconds’ data from the velocity trace. The end of the ve-
locity trace is detected if the measured frequency offsets are
zero. Figure 5(b) shows that the stop phase of human walk-
ing in the trajectory trace is successfully removed.

Step 3: linear fitting to derive the slope. After remov-
ing the valleys and the stop phase in the velocity traces,
DopEnc applies linear fitting on the traces and uses the slope
of the fitting line to classify the approaching trajectories.
Figure 5(c) shows the fitting line and the slope. The fitting
length in Figure 5(c) is set to 4s. In this example, the slope
of the fitting line is -0.03, very close to the ideal value of
direct approach, i.e., zero. Figure 6 presents the measured
relative velocity traces of different relative trajectory cate-
gories as well as the cleaned data. Based on the slopes of
fitting lines, DopEnc is able to clearly distinguish direct ap-
proach, roundabout approach and slant approach. The fit-
ting line in direct approach (Figure 6(a)) remains horizontal.
The fitting lines in roundabout approach (Figure 6(b)) and
slant approach (Figure 6(c)) are upwards and downwards re-
spectively. The departing (Figure 6(d)) and passing by (Fig-
ure 6(e)) cases are easy to identify, as their velocity traces
have a negative part before the persons stop walking.

After identifying the effective trajectories between two
persons, DopEnc ascertains whether the two persons stop in
proximity of each other. While there exists readily available
proximity detection approaches based on time-of-arrival (TOA)
[18, 19] or interferometry [20, 21], DopEnc utilizes voice
profiling to detect the user proximity. As the next section

will detail, voice profiling is able to further confirm user en-
gagement in conversations and thus firmly identifies the per-
sons that one is interested to interact with.

3. VOICE PROFILING
Following Doppler profiling, DopEnc is able to identify

the effective trajectory that may lead to human interactions.
The detection is based on the relative trajectory which how-
ever may misjudge the true intention of users in some cases.
For example, (1) the relative trajectory may appear to be di-
rect approach when two persons walk towards a same di-
rection, but the latter one walks faster (Figure 7(a)); (2) the
relative trajectory may appear to be roundabout approach
when two persons walk towards a same target, e.g., a poster
or booth in the conference (Figure 7(b)). In both cases,
the Doppler profiles indicate effective trajectories, whereas
the two persons normally do not interact with each other.
DopEnc further applies voice profiling to confirm that the
two persons are engaged in an interactive conversation.

The work in [22] suggests that the conversation between
two persons usually occurs within 0.5m−1.5m. In DopEnc,
voice profiling is performed to confirm the proximity and
interest between two persons.

Existing voice processing systems, however, normally re-
quire pre-constructed voice feature databases of all speakers
and complex machine learning based reasoning to recognize
the voice segments [7, 8]. Some recent smartphone based
systems reduce the processing overhead, but they still need
voice feature database [23], or require voice pattern recog-
nition across users [24, 25]. The computational overhead in-
troduced by those approaches does not fit in the encounter
based use cases in this application.

DopEnc leverages the result of Doppler profiling to trig-
ger voice profiling. The voice profiling only needs to detect
whether there is a conversation and does not purpose on rec-
ognizing speakers or their voices. Thus DopEnc employs
a light-weight detection scheme that does not require any
voice feature databases or complicated pattern recognition.

Figure 8 shows the voice waveform during a typical con-
versation between two persons. The conversation is of alter-
nativeness [24, 25]. When two persons are talking to each
other, they normally take turns to speak. Two persons thus
alternate in speaking. DopEnc divides one voice trace into
N time-slots. vi = 1 if the person has voice in time-slot i;
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Figure 6: Measured Doppler profiles of different categories of trajectories as well as the cleaned data.
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Figure 7: Doppler profiling misidentifies “interactions”
when (a) one person walks after the other, and (b) two
persons walk towards a same target.

otherwise vi =0. Alternativeness ratio is defined as

Alternativeness ratio = 1−
∑N

i=1(vai & vbi)

N
, (3)

where (vai & vbi) == 1 iff. vai = 1 and vbi = 1. The
conversation between person A and person B in Figure 8 is
of high alternativeness ratio.

DopEnc adopts another parameter, duty ratio, which mea-
sures the time ratio of the combined voice segments from
two speakers. The duty ratio is high when two persons are
interested in each other, because they have topics to commu-
nicate. Duty ratio is defined as

Duty ratio =

∑N
i=1(vai | vbi)

N
, (4)

where (vai | vbi)==0 iff. vai =0 and vbi =0. The duty ra-
tio is effective to characterize the conversation between two
persons when they start talking.

To confirm a conversation in DopEnc, each smartphone
first recognizes its owner’s voice, and then the sender trans-
mits the timestamps and durations of its owner’s voice pres-
ences to the receiver. The conversation detection is per-
formed at the receiver side by combining the trace of the
sender’s voice presence with the trace of the receiver’s own
voice presence.

Recognizing the phone owner’s voice. Voice recogni-
tion has two phases: training and assessment. The owner
trains her smartphone to recognize her voice features. Dur-
ing interactions with other people, the assessment phase ver-
ifies whether the recorded voice contains the owner’s voice.
DopEnc adopts similar techniques as in [23] to identify its
owner’s voice presence in the voice record. Since only the
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Figure 8: Typical voice waveform during a conversation
when two persons talk to each other. The conversation is
of high alternativeness ratio and high duty ratio.

phone owner’s voice needs to be recognized, DopEnc does
not require any voice feature databases of other users or
complicated reasoning and computation.

Exchanging the voice presence. The sender does not
know the ID of the receiver, and vice versa. The acoustic
signals transmitted by the sender for Doppler profiling can-
not embed the sender’s ID; otherwise, the Doppler offsets
calculated by the receiver will be incorrect. Due to the un-
known ID of the opposite side, existing networking mech-
anisms, e.g., Bluetooth [26] or Wi-Fi [27], cannot be di-
rectly applied. DopEnc first transmits the sender ID in the
same acoustic channel that was used for Doppler profiling.
The channel is available since the sender has stopped walk-
ing and the Doppler profiling phase completes. Afterwards,
when the sender’s smartphone detects its owner’s voice, it
sends out an acoustic signal with the same duration of its
voice presence. By measuring the start and end time points
of such signals, the receiver can identify the timestamps and
durations of the presence of the sender’s voice.

Overall workflow of DopEnc. Figure 9 depicts the work-
flow of DopEnc, including three phases: Doppler profiling,
voice profiling, and personal information exchanging.

DopEnc leverages the accelerometer on the smartphone
to detect when a person starts walking. When the person
is walking, her smartphone (the sender) transmits acoustic
signals with a fixed frequency. When the sender stops walk-
ing, her ID is transmitted in the same acoustic channel using
Frequency-Shift Keying (FSK) modulation. In our current
implementation, we assign each smartphone with a unique
two-digit number as the ID, whereas in practical usage, the
sender and the receiver can consult with each other in the
type of ID they use, such as phone number or Bluetooth
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Figure 9: Overall workflow of DopEnc and interactions
between the sender and the receiver. The signals are de-
picted in frequency domain as detected by the receiver.

ID. On the receiver’s side, if no senders are present, the de-
tected frequency of the recorded signals jitters dramatically
as shown in Figure 9. Upon the detection of the sender’s
signals, the receiver extracts the frequency offsets and per-
forms Doppler profiling. If the relative trajectory is detected
effective, the receiver starts to receive the sender’s ID. The
security issue of binding devices is out scope of this paper.

Voice profiling is performed after the sender stops walk-
ing (which is inferred by the receiver by detecting zero fre-
quency offset). If the conversation is confirmed, based on
the choice of the users, the receiver may further transmit a
connection request to the sender in order to initiate data ex-
change of related identity information. Both the connection
request and the following data exchange can be performed
with other higher data rate communication schemes, e.g.,
Bluetooth or cellular.

4. COORDINATING MULTIPLE USERS
In previous sections, we explore the interaction between

one pair of sender and receiver. This section presents the
interactions among multiple users. In DopEnc, only smart-
phones of the moving persons transmit acoustic signals. DopEnc
divides the acoustic frequency band into several channels
and each walker’s smartphone transmits on one channel. The
smartphone is the sender as to the channel on which it trans-
mits signals and meanwhile it is the receiver to other chan-
nels. The interactions among multiple users can be divided
into the following categories:

• One sender to one receiver. The interaction between
one sender and one receiver is exhaustively discussed
in the previous sections.

• One sender to multiple receivers. Since receivers do
not transmit acoustic signals, the workflow of one sender
to multiple receivers is the same as the workflow of one
sender to one receiver.

• Multiple senders to one receiver. The signals from
multiple senders will collide at the receiver side, which
disrupts the receiver’s Doppler profiling. Meanwhile,
multiple moving persons whose smartphones transmit
signals on the same channel cannot perform Doppler
profiling with each other.

• Multiple senders to multiple receivers. The case of
multiple senders to multiple receivers is the same as
the case of multiple senders to one receiver.

Table 1: Possible frequency bands supported when un-
dersampling factor n is used. The inaudible frequency
bands are underlined.

n F ∗
s (kHz) Frequency band (kHz) ∆v (cm/s)

6 8.0 (8.0, 12.0), (16.0, 20.0) 3.6
7 6.9 (13.8, 17.25), (20.7, 24.15) 3.0
8 6.0 (12.0, 15.0), (18.0, 21.0) 2.7 *
9 5.3 (15.9, 18.6), (21.2, 23.9) 2.5

Because receivers do not transmit acoustic signals, DopEnc
only needs to coordinate senders to avoid collisions. DopEnc
uses CSMA (carrier sense multiple access)-like multiple ac-
cess to find a proper channel for each sender to transmit the
acoustic signal. Collisions can be detected based on the root
mean square (RMS) of the FFT signal on the channel. A col-
lision occurs if the RMS is detected higher than a threshold.
When a collision is detected, the sender switches to another
channel after a random backoff interval. Since DopEnc per-
forms FFT on the whole inaudible acoustic frequency band,
the sender can obtain the RMSs for all channels with one
time measurement. To reduce the probability of collisions
in next channel access, DopEnc uses a special prioritization
scheme for channel selection.

4.1 Channel Design
The number of channels that can be used in DopEnc is

determined by the entire frequency bandwidth and the band-
width of each channel. According to the undersampling the-
orem [10], the supported frequency band (fL, fH ) follows
the relationship:

2 · fH
n
≤ Fs

n
≤ 2 · fL
n− 1

,∀n : 1 ≤ n ≤ b fH
fH − fL

c, (5)

where n is the undersampling factor, Fs is the original sam-
pling rate and b·c is the flooring operation. Table 1 summa-
rizes the possible frequency bands supported in our system
when different undersampling factors are used. DopEnc ap-
plies undersampling factor of 8 for the optimal setting of
velocity resolution and temporal fidelity (Section 2.1), cor-
responding to an undersampling sampling rate F ∗

s of 6kHz.
Since current smartphone speakers and microphones are tai-
lored for acoustic signals lower than 20kHz [28], DopEnc
adopts a frequency band from 18kHz to 20kHz, with a total
bandwidth of 2kHz.

The bandwidth of each channel is determined by the max-
imum frequency offset caused by human walking. People
normally walk at 1.4m/s [29], corresponding to a frequency
offset of 80Hz. If two persons both walk, the relative veloc-
ity can be two times of each person’s walking speed and thus
the bandwidth is doubled to 160Hz. Considering the posi-
tive Doppler offset (two persons walk closer) and the nega-
tive Doppler offset (two persons walk away), the bandwidth
used of each channel should be further doubled to 320Hz.
DopEnc finally sets each channel with bandwidth of 400Hz
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Figure 10: For receiver R, the frequency offset for the ap-
proaching sender S1 is positive and the frequency offset
for the departing sender S2 is negative.
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Figure 11: For receiver R, the far sender’s signals are
“overwhelmed” by near sender’s signals. The attenua-
tion rate of acoustic signals is as high as 6.6dB/m.

to accommodate practical abnormality (e.g., extra frequency
offsets introduced in some instant movements) and to be di-
vidable of 2kHz frequency band. DopEnc evenly divides
the entire frequency band into 5 (2kHz/400Hz) channels.

4.2 Channel Prioritization
When many DopEnc users densely coexist, the limited

number of channels may result in frequent collisions of Doppler
profiling. Once a collision is detected, the collided senders
switch to other “clean” channels. Since the Doppler profil-
ing of DopEnc only needs to measure the relative velocities
of a few seconds before the users stop walking, sufficient
data can still be obtained after the channel switch. Random
switch to another channel, however, causes high probabil-
ity of new collisions. DopEnc minimizes the probability of
making new collisions with a channel prioritization scheme.
DopEnc classifies all available channels into the following
three priority categories and switch the collided sender to
the highest available one.

Free channels: A channel is free if the FFT RMS over the
channel is detected lower than a threshold. A free channel
has the highest priority.

Channels of empty positive sector: Each channel is com-
posed of two sectors, a positive sector and a negative sec-
tor, corresponding to positive frequency offsets and negative
frequency offsets in Doppler profiling. Figure 10 illustrates
the measured signals by a stationary receiver (R) from two
senders (S1 and S2). S1 and S2 are transmitting on a same
channel. For the receiver R, the frequency offset for the ap-
proaching sender S1 is positive and the frequency offset for
the departing sender S2 is negative.

In practical usage, DopEnc only concerns positive fre-
quency offsets as they provide the information on how the
approaching persons walk closer, i.e., direct approach, round-

Algorithm 1: Channel Coordination
Data:

currentCh - Current channel
switchCh - Channel to switch
ttimer - Timer for delay switching
V ar(·) - Calculate variance
Interf(·) - Calculate the interference on channel’s positive
area
GetBestCh(·) - Get one highest-priority channel
SetT imer(·) - Set timer to a random value
Tacce - Threshold for human walking
Tinterf - Threshold for collided channels

Result: Switch to a highest-priority channel when collision occurs
1 while V ar(acceleration) > Tacce do
2 // Sender is walking;
3 if Interf(currentCh) > Tinterf then
4 // Collision occurs
5 if GetBestCh(&switchCh)
6 && Interf(switchCh) < Tinterf then
7 SetT imer(&ttimer);
8 // Avoid simultaneous switching
9 while ttimer > 0 do

10 if Interf(switchCh) > Tinterf then
11 // Channel is seized by others
12 Cancel the switching task;
13 Break;
14 end
15 ttimer ← ttimer − 1;
16 if ttimer == 0 then
17 Switch to switchCh channel;
18 Return success;
19 end
20 end
21 // Cannot switch to a non-collided

channel
22 // Repeat the algorithm immediately
23 Continue;
24 end
25 end
26 end

about approach or slant approach. Therefore, the noises on
the negative sector will not affect the detection of effective
trajectories for Doppler profiling. Therefore, in DopEnc, a
sender can switch to a busy channel as long as the positive
sector contains no interferences.

Channels of low interference: Even if multiple senders
walk towards the same receiver and use the same channel as
shown in Figure 11(a), it is still possible to perform Doppler
profiling for one of them. The attenuation of acoustic sig-
nals is approximate 6.6dB/m as measured in Figure 11(b)
(consistent with the estimation provided in [30]). As a re-
sult, the received signal strengths of two senders merely 2m
apart may differ 20× at the receiver side. Since DopEnc
adopts FFT-based detection to locate the frequency offset
with maximum amplitude, the signal of the closest sender
may easily “overwhelm” the signals of far senders. There-
fore, in DopEnc, a sender at last can switch to a busy chan-
nel as long as the FFT RMS over the positive sector of that
channel is lower than a threshold.

4.3 Channel Coordination
Algorithm 1 describes the procedure of channel coordina-

tion in DopEnc. A collided sender switches to a channel of
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Figure 12: CDF of the slopes for the Doppler profiling
traces of the three different categories of approaching
trajectories.

the highest priority (line 3-6). The sender waits for a random
backoff time before switching to the new channel to avoid
repeated collisions caused by the simultaneous switching of
multiple senders (line 7-20). If there is no available chan-
nel detected or during the backoff interval the target chan-
nel has been occupied by other senders, the sender cancels
the pending switching and re-executes the algorithm imme-
diately (line 21-23).

5. EVALUATION
We implement and test DopEnc with different use cases

and on different smartphone models including Motorola Nexus
6, LG Nexus 5, LG Nexus 4, Huawei P7, LG G3, HTC
Verizon, etc. In this section, we first present the perfor-
mance of the three key components in DopEnc separately,
i.e., Doppler profiling, voice profiling and multiple access.
We further examine the end-to-end performance of DopEnc
in controlled experiments as well as a real world use case.
We also measure the power profile of DopEnc in different
use conditions.

5.1 Doppler Profiling
Since DopEnc can easily identify the departing and passing-

by trajectories by detecting their negative relative velocities,
our experiments mainly focus on the three different types
of approaching trajectories for evaluating Doppler profiling.
We collect 100 traces for each category of the approaching
trajectories (i.e., direct approach, roundabout approach and
slant approach, whereby the previous two constitute effec-
tive trajectories and the last one does not). The volunteers
stand 6m away and walk towards each other with their nor-
mal gaits. For direct approach, the volunteers walk directly
towards each other. For roundabout approach, three scenar-
ios are tested where the paths between the volunteers are
obstructed by objects with sizes of 1m×1m, 2m×2m and
3m×3m. For slant approach, the volunteers’ walking direc-
tions shift from each other with an angle of θ, which varies
from 30◦ to 60◦ in our experiments. Since the angles of 10◦

and 20◦ are hard to be classified into direct approach or slant
approach, we skip the experiments of these angles.

The classification of approaching trajectories is based on

Table 2: Mean, max, and min slopes for slant approach
trajectories (θ = 30◦− 60◦) in comparison with direct
approach trajectories (θ=0◦).

θ 0◦ 30◦ 40◦ 50◦ 60◦

Mean −0.0128 −0.0613 −0.0803 −0.1037 −0.1010
Max 0.0282 −0.0257 −0.0382 −0.0727 −0.0736
Min -0.0428 −0.0967 −0.1110 −0.1276 −0.1322
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Figure 13: Rate of misclassifying slant approach trajec-
tories to effective trajectories versus different linear fit-
ting lengths.

the slope of the fitted Doppler profiling. Figure 12 shows
the Cumulative Distribution Function (CDF) of the slopes of
Doppler profiling traces of the three types of trajectories ob-
tained in our experiments. The slope difference between the
slant approach trajectories and the other two types of effec-
tive approaching trajectories is obvious.

Table 2 further breaks down the measured slopes of slant
approach trajectories according to different direction shift θ.
The table summarizes the mean, max, and min slopes for
slant approach trajectories of different θ (θ=30◦−60◦) and
compares with those of direct approach (i.e., θ= 0◦). As θ
increases, the mean, max, and min slopes of slant approach
trajectories dramatically decrease. The difference between
the mean slopes of the direct approach trajectories (i.e., -
0.0128) and the slant approach trajectories (i.e., -0.0613 for
θ = 30◦, -0.0803 for θ = 40◦, -0.1037 for θ = 50◦, and
-0.1010 for θ= 60◦) is large, which enables easy threshold-
ing to distinguish these two approach cases. A threshold set
to the smallest slope of direct approach trajectories, i.e., -
0.0428, results in as low as 5% rate of misclassifying slant
approach trajectories into effective ones. Since voice profil-
ing is performed after the Doppler profiling, the effect of the
low misclassification rate can be further mitigated.

In DopEnc implementation, another parameter affects the
accuracy of trajectory classification, namely the length of the
linear fitting to derive the slope. Figure 13 depicts the rate of
misclassification when different fitting lengths are applied
to the Doppler profiles. As DopEnc applies longer fitting
length, the misclassification rate decreases because longer
time of samples provide more stable observations on the rel-
ative velocity. Having too long fitting lengths, however, does
not help in accuracy but reduces the flexibility of Doppler
profiling since more data are required. According to our ex-
perimental observation we set the fitting length to 4s, which
brings approximately 5% misclassification rate.



Table 3: Performance of one-on-one conversation confir-
mation with and without duty ratio.

Location hall corridor street mall

alternative false negative 8.8% 7.0% 5.7% 9.2%
false positive 15.4% 13.8% 18.3% 14.6%

alternative false negative 9.4% 8.1% 6.7% 10.7%
+ duty ratio false positive 5.2% 4.7% 9.6% 8.7%

5.2 Voice Profiling
We evaluate the performance of voice profiling in DopEnc

with three volunteers. They stand within a square of 1m×
1m. Two volunteers have one-on-one conversation with each
other, while the third volunteer speaks to his phone as an
interferer. Each volunteer’s mobile phone records the time-
stamps and durations of its owner’s voice presences as the
ground truth. We perform the experiment at four types of
places, i.e., conference hall, corridor, street and shopping
mall. The corridor is the quietest place and the shopping
mall has the strongest background noise. Separate test traces
combined to a total length of one hour are collected for each
place. The voice processing parameters of each smartphone
to identify its owner’s voice is similar to [23]. The accuracy
of voice profiling is evaluated off-line.

Table 3 summarizes the accuracy of voice profiling in two
different versions of DopEnc. In the first version, DopEnc
only uses alternativeness ratio to confirm conversation. In
the other version, both alternativeness ratio and duty ratio
are used. False negative measures the ratio that no conver-
sation is indicated when two volunteers actually talk with
each other. False positive measures the ratio that a con-
versation is confirmed when two volunteers are not talking
with each other. From the experiment results in Table 3,
we see that only using alternativeness ratio, the false posi-
tives are high (the average false positive of the four places
is 15.5%). When both alternativeness ratio and duty ratio
are applied, the average false positive is reduced by approx-
imate 8.5% and the increase of false negative is negligi-
ble (i.e., 1.0%). We want to emphasize that DopEnc pro-
poses a new framework of conversation confirmation with-
out voice database and can be implemented on COTS smart-
phones. Other related works, such as SeapkerSense [23]
and Sociophone [24], presents detailed performance anal-
ysis of voice recognition under different levels of noises.
Compared with purely voice processing based conversation
confirmation works, DopEnc provides better performance,
since DopEnc leverages Doppler profiling to filter persons
with ineffective trajectories, resulting in smaller number of
candidates for conversation confirmation.

5.3 Multiple Access
We evaluate the performance of the priority-based channel

coordination scheme of DopEnc at our office (15m×10m).
We compare DopEnc’s priority-based switching scheme with
random switch and backoff scheme which is a natural gener-
alization of the existing CSMA based method. During the
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Figure 14: Success rate of channel access vs. average
number of senders per channel.

experiment, we evaluate whether two volunteers can suc-
cessfully avoid collisions and perform Doppler profiling. We
put other smartphones on site and configure them to imitate
DopEnc senders and transmit acoustic signals on different
channels. We test the success rate of channel access when
the number of DopEnc senders varies. Since channel access
is the premise to the following operations in DopEnc (e.g.,
Doppler profiling and voice profiling), its success rate must
be high (e.g., higher than 90%).

Figure 14 presents the experiment results for different num-
bers of senders per channel. When there is only one sender
on each channel, the success rates of both channel switch
schemes are 100%. When the average number of senders
per channel becomes two, the success rate of random chan-
nel switch drops to 79%. DopEnc’s priority-based channel
switch still achieves a success rate of 92%, since it selects
the best channels (i.e., no or low interference in the posi-
tive Doppler sector). For the case of three senders per chan-
nel, the performance of both schemes drops to below 60%.
However, DopEnc is still better than the random channel
switch as DopEnc considers the low interference in the pos-
itive Doppler sector.

5.4 End-to-End Performance
Controlled lab experiment: We first evaluate the end-to-

end performance of DopEnc with a pair of users at four dif-
ferent types of places, including conference hall, corridor,
street and shopping mall. 80 traces are collected for each
place. In the collected 80 traces, 40 traces have interactions
(i.e., need to exchange identity information) and the other 40
traces do not. Among the 80 traces, 50 traces are effective
trajectories and the other 30 traces are not. For the traces
with effective trajectories, 40 traces have conversation and
the other 10 traces do not. Figure 15(a) summarizes the ac-
curacy of DopEnc, where the false negative and false posi-
tive are shown. The false positive corresponds to the cases
where two users do not have interactions, but DopEnc de-
tects an encountering. The false negative corresponds to the
missed identification of encountering. On average, DopEnc
achieves false negative of 7.5%, and false positive as low as
of 3.8%. False positive is small because Doppler profiling
has filtered a majority of non-interested persons with inef-
fective relative trajectories. The results suggest that DopEnc
has high confidence on the identified persons (96.2% of them
are accurate) but may miss some events (7.5% are missed).
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Figure 15: End-to-end performance of DopEnc.

Real world use case: We further test DopEnc in a real
event with 11 participants. We host the school mentor-meets-
mentee session for the lab students (including senior and ju-
nior postgraduates as well as final year undergraduates). The
session takes place at the university bistro corner and lasts
for approximate 1 hour. The participants include 2 female
students/staff and 9 male students/staff. To facilitate the ex-
periment, the participants record and submit a list of the peo-
ple they have interacted with in sequence. Their records are
used as groundtruth to verify the DopEnc results.

Figure 15(b) depicts the CDF of the number of users ver-
sus the false negative rate and the false positive rate during
the event. From the results in Figure 15(b), we see that the
majority of users (6 out of 11) have no false positive or false
negative, and most of the rest users (3 out of 5) achieve low
false positive (< 15.0%) or false negative (< 17.0%). On
average, the false negative is only 9.7% and false positive is
only 6.9%, which are consistent with what we observed in
the above controlled experiments with a pair of users.

5.5 Power Profile
The power profiles of DopEnc on different smartphone

models are similar, and we show the measurement result on
HTC Verizon using Monsoon power monitor [31]. Figure 16
presents the smartphone’s working current (mA). The work-
ing voltage is 3.7V . Multiplying the current with the volt-
age, we obtain the power of consumption. The total energy
consumption can be got by multiplying the power with the
considered time duration. The measurement result in Figure
16 is smoothed in one second. When the smartphone is ini-
tially turned on and the screen is off, the working current is
fluctuating around 210mA. When the screen is turned on at
the 60s, the working current rises to 340mA. Doppler pro-
filing of DopEnc is performed from 120s to 180s with the
screen on and from 180s to 240s with the screen off. The
working current maintains at around 500mA and 360mA
respectively. At the 240s, voice profiling is enabled and
the working current becomes around 390mA. Compared
with the original working current of 210mA, only 180mA
(390mA−210mA) additional current is incurred by DopEnc.

The power consumption of DopEnc can be further reduced.
In DopEnc, FFT computation drains the largest portion of
energy, because 11.7 times 4096-FFT per second are per-
formed to track relative trajectories. A simple optimization
would be when no senders are present, DopEnc goes to idle
mode, i.e., only to execute 1.5 times FFT per second by ad-
justing the overlapping ratio to zero (Section 2.1). As shown
in Figure 16, in such a way the working current of idle mode
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Figure 16: Power profile of DopEnc.

(300s onward) is reduced to 50mA (260mA−210mA), cor-
responding to a working lifetime of 29 hours on the smart-
phone with 1450mAh battery capacity.

6. DISCUSSION
Accuracy. DopEnc is not 100% accurate. Small false

negative and false positive exist, which however is tolerable,
since the encounter profile from DopEnc is usually used for
non-critical applications, e.g., life logging, name card ex-
change, etc. The configurable settings in DopEnc help to
adapt the system according to the user preference, making
the system more conservative or aggressive. Three param-
eters including the slope threshold of Doppler profiling, al-
ternativeness ratio and duty ratio of voice profiling can be
adjusted to achieve different trade-offs in false positives and
false negatives.

Scalability. Although our real world case study only test
with 11 persons (mainly due to the limited number of avail-
able smartphones), we believe that DopEnc is scalable to
support many more in big events. Firstly, DopEnc can sup-
port any number of stationary persons since only the smart-
phones of moving persons need to transmit acoustic signals.
Secondly, the acoustic signal attenuates very fast in the air.
Our measurement study shows that the maximum propaga-
tion distance is proximate 11m before the signal can make
any detectable energy after FFT (tested with Nexus series
and Huawei P7 with the largest sound volume setting). Such
phenomenon means that the same acoustic channel can be
comfortably reused every 11m away. The traditional hidden
terminal problem in CSMA will not be an issue in DopEnc,
as the Doppler profiling process focuses more on the signal
trace when the sender moves close to the receiver where the
strong near-far effect of acoustics makes it unlikely inter-
fered by other unaware senders.

Phone positions. Doppler profiling is robust against phone
positions (e.g., in a bag, in a pocket), because it bases on the
tendency of relative velocity trace to classify the walking
trajectory. The performance of voice processing is affected
by different phone positions, making conversation confirma-
tion systems based totally on voice processing frequently fail
to work in different and harsh settings. Instead, DopEnc
leverages the context information of human interactions, i.e.,
the relative trajectories of people walking, to filter majority
of non-interest speakers, and thus conversation confirmation



in DopEnc is more robust than the purely voice processing
based systems.

Alternatives. There are a few human sensing techniques
which might be adapted to address the encounter profiling,
but with their own limits. High5 [3] is able to detect hu-
man hand-to-hand touch which might be extended to de-
tect handshake as an indicator for identity exchange. The
adapted solution, however, requires everyone wears the spe-
cial device on the wrist. It will also be difficult for the de-
vices of the two handshaking users mutually discover and
pair up with each other. Human tracking and localization
approaches can be applied to detect the encounters of peo-
ple [4, 18, 32]. Existing approaches, however, mostly rely
on infrastructure support. Human proximity detection based
schemes like BLE or NFC [5, 6] give another indicator. The
detection of encounters or proximity without contextual un-
derstanding, however, results in high false positives.

7. RELATED WORKS
Many intelligent mobile systems have been proposed to

sense and monitor contexts and human activities in order to
facilitate human daily lives [33–44]. Unlike previous works,
DopEnc targets at a new application of encounter profiling.
This section summarizes existing works related to the three
key components of DopEnc, i.e., Doppler profiling, voice
profiling, and audio networking.

Doppler effect. Doppler effect has been explored in many
HCI systems, such as connecting multiple devices [45], in-
ferring user gestures [46], and imitating remote controllers
[47]. Doppler effect has also been leveraged by some track-
ing systems to locate or navigate users [48, 49]. None of
existing works study the construction or analysis of human
walking trajectories. Although most of the above works [45–
48] work on acoustic signals to measure Doppler effect, they
all focus on single-link measurements and do not address the
multiple access problem.

Voice processing. Most existing voice processing sys-
tems, like [7,8], aim at detecting conversations or identifying
speakers in the conversation. SpeakerSense [23] can auto-
matically recognize the person the user is talking with based
on the processing of collected voice data and training data on
smartphones. The previous works normally require a voice
feature database of all potential speakers. SocioPhone [24]
and SocialWeaver [25] group people based on conversation
sessions and do not require voice databases. However, they
involve complicated pattern recognition and comparison al-
gorithms of high computational overhead and cannot be di-
rectly used for our application due to long processing time
and high energy consumption. None of these works leverage
the context information of human behavior, e.g., the trajec-
tory of people walking as in DopEnc, to facilitate conversa-
tion confirmation.

Audio networking. Some works have been done to en-
able acoustic communications between devices that are equipped
with microphones and speakers. U-Wear [50] enables data
dissemination between ultrasonic wearable devices. Jiang
et al. [51] utilize audible sound for near filed communica-

tions between smartphones, using OFDM and FSK modula-
tions. All these works focus on high data rate and through-
put for communication. Conventional CSMA based multiple
access methods of Radio Frequency (RF) communications
are used for coordinating multiple users on a single channel.
No existing works consider coordinating multiple access for
Doppler effect measurement as DopEnc does.

8. CONCLUSION
DopEnc is the first smartphone system that facilitates au-

tomatic identification of persons that users interacted with.
The encounter profiling in DopEnc incorporates Doppler ef-
fect of acoustic signals to identify the effective trajectories
when people approach each other and voice profiling to iden-
tify their interactive conversations. Our experiment and user
study demonstrate that with above techniques DopEnc can
effectively to identify the persons in encounter-based human
interactions.
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