J. EDUCATIONAL COMPUTING RESEARCH, Vol. 38(4) 469-509, 2008

HUMAN-IN-THE-LOOP: A FEEDBACK-DRIVEN
MODEL FOR AUTHORING KNOWLEDGE-BASED
INTERACTIVE LEARNING ENVIRONMENTS*

LIN QiU
State University of New York at Oswego

CHRISTOPHER K. RIESBECK
Northwestern University

ABSTRACT

While computer-based interactive learning environments can provide authen-
tic and supportive settings for problem-based learning, they are very difficult
to build. The traditional development model requires significant upfront
development and results in systems that are hard to deploy and customize.
In this article, we describe a feedback-driven authoring model that aims to
reduce the development difficulty by including teachers in the feedback loop
to complement system feedback and incrementally author the content in
the learning environment during real use. We discuss the design of INDIE,
a learning environment authoring toolkit, for supporting the incremental
authoring model. We present empirical results obtained from the development
and use of Corrosion Investigator, a learning environment delivered by
INDIE, as an example to show how the incremental authoring model is
implemented in educational settings.

*This work was supported primarily by the Engineering Research Centers Program of the
National Science Foundation under Award Number EEC-9876363.

469

© 2008, Baywood Publishing Co., Inc.
doi: 10.2190/EC.38.4.e
http://baywood.com



470 / QIU AND RIESBECK
INTRODUCTION

Problem-based learning (Barrows, 2000; Bransford, Brown, & Cocking, 1999;
Hmelo-Silver & Barrows, 2006; Mergendoller, Maxwell, & Bellisimo, 2006)
is a pedagogical paradigm that centers learning around the investigation and
development of solutions to complex and ill-structured authentic problems.
In problem-based learning, students learn content knowledge and problem-
solving skills through collaborative and self-directed learning. Instructors
work as facilitators providing resources and coaching to students. Research
indicates that with problem-based learning, students gain improvement in
skills such as self-direction, critical thinking and reasoning, data gathering,
and self-evaluation (e.g., Derry, Hmelo-Silver, Nagarajan, Chernobilsky, &
Beitzel, 2006; Dochy, Segers, Van den Bossche, & Gijbels, 2003; Hmelo-
Silver, Duncan, & Chinn, 2007; Koh, Khoo, Wong, & Koh, 2008; Torp & Sage,
2000). While problem-based learning offers an effective approach to improve
teaching and learning, it has a number of drawbacks (Hoffman & Ritchie,
1997). For example, activities in solving realistic problems can be expen-
sive and even dangerous. Students may easily lose their focus on the tar-
geted subject matter. It is time consuming for teachers to deliver open-ended
instruction.

To solve the above problems, interactive learn-by-doing environments have
been built to support problem-based learning. For example, Alien Rescue (Liu,
Williams, & Pedersen, 2002) is a learning environment where students need
to find a new home in the solar system for aliens to survive. BioWorld (Lajoie,
Lavigne, Guerrera, & Munsie, 2001) is a learning environment where students
need to diagnose patients in a simulated hospital setting. Sickle Cell Counselor
(Bell, Bareiss, & Beckwith, 1994) is a learning environment where students
work as reproductive counselors advising couples on the health of their children.
These learning environments engage students in authentic simulated scenarios
and provide tools such as data portfolios to help students solve the challenges.
They allow students to carry out activities that are not feasible in classrooms and
receive just-in-time individualized feedback. They also reduce the instructor’s
effort in supporting student learning.

While interactive learning environments can facilitate problem-based learning,
they are difficult to build and customize. In order to support computer-based
feedback, educators and domain experts have to work with developers to imple-
ment all learning content and feedback in advance. This requires significant
upfront development effort. After the system is deployed, it is very difficult for
teachers to add or remove content.

To solve the above problems, we proposed an alternative model: feedback-
driven incremental authoring model. This model includes the teacher in the
feedback loop to complement system feedback and author content in the learning
environment on demand to meet students’ needs. This way, the system does not



A FEEDBACK-DRIVEN AUTHORING MODEL / 471

need to be completely implemented before deployment. Instead, it gradually
migrates into a complete system at runtime.

In the following, we discuss the differences between the traditional develop-
ment model and the incremental development model, the advantages of the
incremental development model, and a learning environment authoring toolkit
that we designed called Investigate-and-Decide (INDIE) to support the incre-
mental development model. (We use Investigate-and-Decide to refer to a type
of learning environment where the major activity is to investigate a problem
and decide the cause of the problem.) We present empirical results at the end
on the development and use of Corrosion Investigator, a learning environment
delivered by INDIE, to show how the incremental authoring model can be
implemented in educational settings.

TRADITIONAL DEVELOPMENT MODEL

Almost all existing development methods and authoring strategies for knowledge-
based educational systems are based on the traditional waterfall software development
model (Royce, 1970) or the Analyze, Design, Develop, Implement, and Evaluate
(ADDIE) instructional system development model (Molenda, Pershing, & Reigeluth,
1996). Under these models, an interactive learning environment is created by software
developers and educators working together to generate the learning content, determine
the learning activity, form the assessment strategy, create the feedback, and develop
the software. Sometimes, with appropriate authoring tools, teachers can create the
learning environment without software developers (Murray, Blessing, & Ainsworth,
2003). After a learning environment is built, it is put into use. Feedback will be
collected and returned to the developers. However, due to the delay in communication
and the reduction of development effort, update to the learning environment is often
difficult. Figure 1 shows the traditional development model of interactive learning
environments.

Interactive learning environments created using the traditional model are
usually static. Their contents do not change after deployment. The system is
expected to handle all the interactions and feedback generation by itself. Students
mainly interact with the learning environment. Instructors can provide supple-
mental materials, but have no control over the interaction between the students
and the learning environment.

There are a number of problems in the traditional development model:

Authoring problems:

« It is difficult to anticipate and implement all the resources, actions, and
feedback in advance. Problem-based learning encourages free exploration
and open-ended inquiry. There are many paths to the solutions and multiple
answers to the problem. To support such open-ended activities and implement
all the materials upfront, it requires significant design, implementation, and



‘[epow Juswdojaasap [euoniped; 8yl "} ainbi4

472 |/ QIU AND RIESBECK

awy uopdNsUl | ywiy 3urioyyne

ndur

I2UBISA(]

o3parmouy
JU2U0d

«  UWJISAS
i
s QUWUNUNI

[00]
Suuoyiny

indino |




A FEEDBACK-DRIVEN AUTHORING MODEL / 473

piloting of the system as well as expertise in the problem domain and

experience with students. Even with such effort and experience, it is still

likely to miss important resources and actions that students need and spend
efforts on the ones that students rarely use.

Systems that provide automatic feedback such as coaching and critiquing

are very difficult to author. They must provide highly accurate feedback.

Otherwise, they can easily lose credibility. Reeves and Nass (1996) shows that

when users notice inappropriate feedback, they pay little attention to the

feedback that is appropriate. The requirement of high accuracy significantly
increases the difficulty of system development. For example, intelligent
tutoring systems often require 200 to 300 hours of authoring for 1 hour

of instruction (Anderson, 1993; Murray, 2003; Woolf & Cunningham, 1987).

While a recent study of an authoring tool, the Cognitive Tutor Authoring

Tool (CTAT), developed at the Pittsburgh Science of Learning Center, has

shown to speed up the development process by 1.4 to 2 times (Aleven,

McLaren, Sewall, & Koedinger, 20006), the authoring process is still con-

siderably time-consuming.

* Systems developed using the traditional development model assume that all
the necessary materials and actions have been implemented. They rarely
provide tools for non-programmers to modify the learning content at instruc-
tion time. This makes it difficult for instructors to incorporate new knowledge
into the system and adjust existing content for their own use.

* In the traditional development model, the benefit of using the system can only
be obtained after the system is put into use. The risk of investing considerable
effort at early design stages with benefits being uncertain makes instructors
hesitant to participate in the system development.

Educational problems:

* Systems that are built to fully operate by themselves only allow students
to do what the system has been prepared to support. Students are limited
to choose existing options or paths in the system. This inevitably restricts
the open-ended inquiry and free exploration encouraged by problem-based
learning.

* When the learning environment handles all the feedback generation, it rarely
provides interfaces for instructors to access student work in the system. Issues
such as common mistakes that students make, operations that students want
but cannot find, choices that students fail to investigate, and inaccurate
coaching and critiquing, are hard to discover. Without knowing how students
perform in the learning environment, instructors can hardly interact effec-
tively with the students.

To solve the above problems, we proposed an alternative model: feedback-
driven incremental authoring model.



474 |/ QIU AND RIESBECK

FEEDBACK-DRIVEN INCREMENTAL
AUTHORING MODEL

From our observations and experience, we found that the development of
problem-based learning modules is an incremental process. Educators often
start by choosing target content and skills, creating motivating and authentic
problems, designing possible student activities, determining supporting resources,
and developing evaluation strategies. Then the design is put into practice with
students. Although the design was created by designers with their best knowledge,
unanticipated situations often occur during practice. By handling those situa-
tions, the instructor improves his/her understanding of how students approach
the problem, and continuously incorporates new materials into the teaching
module. Finally, the module contains enough materials to handle most student
requests and can be shared with other educators.

Based on the above analysis, we developed a feedback-driven incremental
authoring model (see Figure 2) that observes the natural development process
of problem-based learning modules. In this model, a learning environment
is initially built with a challenge statement, relevant background information,
common actions that students will take, and feedback for those actions. It does not
need to have all the possible resources and feedback, but is sufficient for students
to start working in the learning environment. When student inputs can be handled
by the system, the system provides automatic feedback. The instructor can opt to
verify and improve the feedback before it is delivered to students. When student
inputs cannot be handled by the system, they are sent to the instructor. The
instructor provides feedback to these inputs and, more importantly, incorporates
new materials into the system, and improves the system performance on demand.
This model allows the instructor to have the benefits provided by computer-based
environments, and at the same time lets the system be improved by the instructor.

In the incremental authoring model, the learning environment plays two roles.
On one hand, it serves as a supportive environment where students perform
authentic problem-solving tasks. One the other hand, it works as a vehicle for
accumulating materials for authoring. The instructor also plays two important
roles. The instructor is a user who uses the learning environment to help deliver
a problem-based learning module. The instructor is also an author who improves
the system on demand.

The incremental authoring model has the following advantages:

e In-context authoring: In the incremental authoring model, authoring is
done in the context of addressing students’ needs. The instructor can gather
materials such as students’ inquiries, common mistakes, and corresponding
critiques, and use them to augment the system. It is much easier than pre-
dicting what students might do beforehand.

* Authoring driven by real needs: In the incremental authoring model, author-
ing is done to meet real needs. For example, when students need more



‘lopow Bulloyine [eluswaioul UsALP-Yoeqpas) syl g ainbig

A FEEDBACK-DRIVEN AUTHORING MODEL / 475

W WORINIISUI = Jwil} JULIOyne

ndur

A

f sumunx a3pajmouy 1001
1U21000 SuLiogne

T




476 / QIU AND RIESBECK

background information, the instructor adds new materials into the system.
When students need a new test, the instructor adds the new test into the
system. No authoring effort will be wasted.

* Amortizing authoring effort: In the incremental authoring model, materials

can be added into the system gradually during use time. There is no need

to anticipate and implement all possible situations upfront. Expensive
knowledge engineering is not done upfront, but gradually on demand, where
it is needed.

Early deployment: Because there is a human in the feedback loop to com-

plement automatic feedback, there is no need to have complete and extremely

accurate system feedback. The system can be put into use when system
feedback is not yet mature and reliable.

o Extensible content: In the incremental authoring model, issues not anticipated
during system design can be explored and incorporated into the system later.
This implies content repair, refinement, adaptation, and customization to
different scenarios and student bodies. Such capability keeps the system from
depending on predefined content after deployment.

o In-context and real-time assessment: Working in the feedback loop allows
the instructor to have access to student learning in the system. This can
provide important information for assessing how well students learn in the
problem-solving process (Wiggins, 1992). The instructor can work alongside
with the students to provide ongoing formative coaching and critiquing.
This is considered an effective way to foster learning in the cognitive appren-
ticeship model (Collins, Brown, & Newman, 1989).

The incremental authoring model is similar to the Wizard of Oz approach
(Wilson & Rosenberg, 1988) for prototyping systems. In the Wizard of Oz
approach, a human “wizard” simulates the behavior of a system behind an
interface to interact with the user. Data collected during the interaction is used
to construct the system. While the incremental authoring model also has a human
work behind the system to provide feedback to students, the data collection
process does not occur at a separate prototyping stage but happens during the
use of the system. Furthermore, the instructor does not pretend to be a computer,
but works with the computer to provide feedback and perform authoring.

The incremental authoring model is an application of the agile software devel-
opment methodology (Beck, 2000; Cockburn, 2002) in developing interac-
tive learning environments. The agile software development methodology uses
methods such as rapid prototyping and iterative development (Larman, 2003).
It develops systems by first creating a working system and then gradually updat-
ing the system according to user needs. For example, seeding, evolutionary
growth, reseeding (SER) is a model of developing software through three evolu-
tionary stages (Fischer 1998; Fischer & Ostwald 2002). Seeding is the first
stage where a system is created with initial knowledge that enables the system to



A FEEDBACK-DRIVEN AUTHORING MODEL / 477

be used for practice. Evolutionary growth is the stage where the system supports
user work and collects information generated during use. Reseeding is the stage
where information collected during evolutionary growth is formalized and
organized to support the next cycle of development. While the incremental
authoring model also uses an evolutionary approach, it does not have an explicit
optimization stage. Content is incorporated into the system gradually during
use. Furthermore, the incremental authoring model allows teachers to directly
make changes to the learning content without the intervention of software
developers. This makes the update of the system much easier.

The incremental authoring model is also an instance of user-centered design
(Norman & Draper, 1986) and participatory design (Schuler & Namioka, 1993).
User-centered design and participatory design encourage user participation in
the development process to help developers create software that adequately
addresses user needs. Likewise, the incremental authoring model allows teachers
to improve the learning environment to meet students’ needs. Furthermore, it
makes needs collection easier by including teachers in the feedback loop to
receive requests from students and critique students’ work.

The incremental authoring model is similar to the design-based research
paradigm (Brown, 1992; Collins, Joseph, & Biclaczyc, 2004; Edelson, 2002;
Wang & Hannafin, 2005) in that they both underscore the importance of context in
developing technology-enhanced learning environments. Design-based research
emphasizes creating design through iterative analysis, implementation, and
revision in real-world settings. The incremental authoring model emphasizes
including teachers in the feedback loop to create learning content in the context
of supporting student learning. The difference is that design-based research
is a general framework that can be applied to the development of teaching
materials such as videos, but the incremental authoring model is a framework
specific for developing knowledge-based learning environments.

Like many other authoring tools such as the Cognitive Tutor Authoring Tools
(Aleven et al, 2006; Koedinger, Aleven, Heffernan, McLaren, & Hockenberry,
2004), we use the component design approach (Roschelle, Kaput, Stroup, & Kahn,
1998) to divide the authoring effort. The authoring toolkit in the incremental
authoring model will be built by software developers and the teachers will use
the authoring toolkit to build the learning content. While the initial develop-
ment of the authoring toolkit still requires considerable effort, the difficulty of
developing the learning content will be reduced. Furthermore, teachers are now
capable of creating learning content according to their own needs.

INDIE

INDIE is a software toolkit for authoring and delivering Web-based interactive
learning environments where students need to run experiments, interpret data,
generate hypotheses, and make arguments. It is based on the goal-based scenario



478 |/ QIU AND RIESBECK

(GBS) framework (Schank, Fano, Bell, & Jona, 1993) and is specifically designed
to create learning environments for scientific inquiry.

An old version of INDIE was developed in Lisp and only ran on Mac. Over
a dozen of interactive learning environments were built with the old INDIE
(Dobson, 1998). They include learning environments for diagnosing patients with
nutrition-related difficulties, investigating the likelihood of volcano eruption,
examining the authenticity of Rembrandtesque paintings, etc. The new INDIE
uses Web-based technology for better accessibility and deployability. It includes
a domain-independent runtime engine for delivering the learning environment,
and an authoring tool for specifying the content in the learning environment.

The new INDIE is different from other authoring tools in that it is for teachers
to use after the learning environment is in use by the students. Murray (2003)
described a number of authoring tools for learning environments. For example,
SimQuest (de Jong & van Joolingen, 1998; van Joolingen & de Jong, 1996)
is an authoring tool for building simulations for discovery learning. RIDES
(Munro et al., 1997) is an authoring tool for interactive graphical simulations
with integrated training tutorials. XAIDA (Hsieh, Halff, & Redfield, 1999) is an
authoring tool for learning environments teaching device operation and main-
tenance. LEAP (Sparks, Dooley, Meiskey, & Blumenthal, 1998) is an authoring
tool for learning environments training customer service employees how to
respond to customer requests. These authoring tools including the old INDIE
are all for use at design time before the learning environment is put into use.
Learning environments created by these authoring tools are all closed systems.
They do not allow the teacher to change the learning content. In contrast, the
new INDIE is for teachers to use after the learning environment is deployed.
It includes the teacher in the feedback loop to complement system feedback
and author the learning content to meet students’ needs.

In the following, we use Corrosion Investigator, an INDIE learning environ-
ment, as an example to show the kind of learning environments INDIE can
deliver. Then, we describe how INDIE is designed to support the incremental
authoring model.

Corrosion Investigator

Corrosion Investigator is a learning environment delivered by INDIE on
environmental engineering. In Corrosion Investigator, students take the role of
consultants helping a paper processing company find the cause of recurring
pipe corrosion.

When students enter Corrosion Investigator, a challenge screen (Figure 3)
tells students that they need to diagnose the cause of two corrosion problems
occurring in the pipeline in a paper processing company and create a report
with evidence supporting their diagnosis. After reading the challenge, students
can go to the reference screen (Figure 4). This screen contains background



A FEEDBACK-DRIVEN AUTHORING MODEL / 479

"

I+l

-101e611S8AU| UOISOLI0) Ul UsaIds abusgjeyo ay]l "¢ ainbi

e | ]| @

=

ST noqe oF 01 fem Juo MRt 330W S MY IATLIII pUR FUMENC 3T

sosuradns mok £q pIstes sINSST I SSAUPPE NOL IMS INEPY OM MoK BO STUIURBOD 8B
pUe mawal [ Jostauadns Y] Iseyd 33l01d Iy moyBnonp ‘Tru aary nok JeR 51531 F 3 ‘p3033s Sunpoa Mok 553308 URD W mod jo Josasadns Iy

majqozd Ay 19355 puUw 1Y) Mop Sumooyssqnon e dojaasp 01 FuuasuBus pue LFojo1qoIIRL Jo
28papmomny| Mok 35(] I[QEFRAR 3q U 51533 qe] € J0] UM PUE 1500 PIRUNST UNS I3 JIpUN 1531 K343 15p30 LU0 WA 2 Luow pue Jum ‘sfemfe 5y

saggqesod snouea st jsueSe pue 10] BIPD FTRASTII e IPOIW noL IMS INPPY ST 3UIPLAS Mok pros moy 39 [us Bodas i o) EIguD Kqeniadsy

5133UIPLI I RYM .
st m3qold A WU nok eYm e

Fwmquassp podaz e Jugns of pIAU RO X

sjqissod se Laandage-1502 pre Apjamb se wajqoid 1 JO INTEY IR ISULANIP 03 PN L
Swdid 301323 01 PIsy I 2INPI IO PIOAE [ JET UORN{OS IqISER] € aplacid o3 29pio W waqosd I JO 2IMOS AR 2ACINP Of UM Mok pImy sey oue g

urede 3 o1 FwwuBaq s sadd s

®q uogepw Apres we Aensn st s wasds R JO WINER P W IS0 PORoU AJusdas sy URwalo] weid AT Uamop § WASAS 3 I $5O[ [EIIURUY 313435
@ symsas Yo Budid 1 sowdas Levogrpen L3y sed o W wasks mp W sadid gRa pATEII0OSSE SWI(Qoid UOISOL0) AI3As PRY 2avY £3U] VoD
Bwss3701d saded o m Fmdid uonnquIsp Jtea B G Buaey axe £ waqosd € aneBusaAm 01 02 EIRBIYD) J0wged £q PSR GIIQ SEY WRS) MO L

aduajjey) swiyorg

IPUIIIU] YOO - IDUIPEY) J0J0DSIAU] UK




480 / QIU AND RIESBECK

*10)eB11SOAU| UOISOLI0D) Ul US8IdsS 8ouslofel 8yl ‘f 8inbi4

S el § 5 TH TV aEp AR oo
S ST ——— =
U J2A0 paARsse OS[e A uLIo[yd pue ‘Hd
‘spunodios mjns pue snous3oniN pasqo ar DO pu DOL JO SUNOWR 3IB1],
'SUOTRINSAT Y 4 $193U1 IZMPSIP J3Jea JUIN|LA S TMOUNUN 1 13jes SUTR[NINIAL )
— o uonisoduiod ALY 34 JBAIMOY ‘S[RINLSYD Sulssasold Jo uonanponul 4q patjipow
st Jajem Buissasold 2y ST uUBN[IUT 3y JO uonNIsodiLos [BIMLAYD I JeYMm 3INS JOU AT IAN
GAnpenb Jogem SunfuLp Ue3[d,, 1t ST IO (A1em A Ul juesasd o S[EIURY BYM t
RRWRIp ul I ¢ Inoqe st Futdid Juan[jui/Jemol J3jem Yl A[Iym SR
“RPURIP Ul | 7 Noge s1 Suidid uan|yg Rpurip ui paj §° 1 01 | wouy a3uel Suissadold Sainyoid UOISOL03
pue wsAs Sunenoal ayy ut sadid ayp Ama wsis s ut suorsusup adid sy, e
s IS
H(adoys pue ‘wpumrp pBus|) suotsuaunp adid ay 3w YA, € .

noke| oneuIsyds
13918 Ssa[UIR)S 28 WR)sAs Suissadoad ay ut sadid 2 Jo 1sopy

sbusjEyd

&Jo apews sadid atpame jleypy

we)sks ay Guisn

quepd yuaunean Lrewnud oy jo umansdn £panp 3uidid Jo uonaas 3] pUB NOARSII BEM
Bussasoud aip Jo umansdn sadid Bunenoadal 3 Ul PaAISSQO ST UOISOLIO) ISIOM Y.
SusAs ) un sadid papood ayy am apyYp | |adualisjay
[Temgewerey LiAeQ 009G11§ 380 efold
[Pty [Swmmeu | oapsel | wodew | wewned3 JojeBiseAul uoiSoLIoD
e

500] sqoafy wed ¥ e

100X L] PYOSODR - J0JODS:



A FEEDBACK-DRIVEN AUTHORING MODEL / 481

information about the company, their pipe layout, and the location and condition
of the pipe corrosion. Students can ask questions to four characters in the scenario:
the plant foreman, the plant manager, the scientific consultant, and the supervisor.
Questions directed to these characters are forwarded to the instructor. The
instructor provides answers by taking the role of these characters. For example,
when students ask the plant foreman if he smells anything from the pipe, the
instructor can answer “I sometimes smell rotten-eggs.”

To run tests to diagnose the corrosion problem, students go to the experiment
screen (Figure 5). The left side of the screen has the notebook and result area.
The notebook automatically collects all the test results that students receive
from the system and splits them into single items with labels indicating their
test names and conditions. It helps students keep track of all the test results
received from the system. Test results in the notebook are clickable items.
Students can select them to use as evidence in their reports. The result area
displays test results in a readable form, typically a table with labeled columns
and rows.

The right side of the experiment screen allows students to look for tests by
entering test names into a textbox. Tests matching the name will be shown.
Students can view the description of the tests and possible variable values for
the tests. When students decide to run a test, they can specify the parameters
for the test on a separate screen (Figure 6). For example, there are two parameters
for the water chemistry test, Location of Sample and Test Variable, one with 12
options and one with 9 options. Tests in Corrosion Investigator often have
complex test options so that students have to think hard about which tests to run.

The cost and delay field on the parameter selection screen displays the simu-
lated amount of money and the days the test takes. These values are dynamically
calculated and displayed based on the parameter selection. They will be added
to the value of the project cost and day field on the top of the screen. These
fields simulate that tests in real-life cost time and money. They prompt students
to solve the challenge using minimum cost and allow the teacher to evaluate
student learning based on how much time and money they spend.

In addition to selecting values for test parameters, students also need to enter
reasons for ordering the test. This allows teachers to evaluate students’ under-
standing of tests and their problem-solving strategy.

To receive test results, students need to press the advance date button at the
top of the screen to advance the simulated project date to the time when the
most recent test results are available. Newly available test results will appear
in both the notebook and result area on the experiment screen.

When students feel they have gathered enough information, they can go to
the report screen (Figure 7) to use test results in the notebook as evidence to
support their claims. Students can pick a corrosion location and enter their
diagnosis. When they select a result in the notebook, a window will pop up
allowing them to enter the reason for using the test result as evidence. The report



482 / QIU AND RIESBECK

-101e611S8AU| UOISOLI0) Ul UBaIds Juswiadxe 8yl G ainbi4

empn g | || =@
ﬂﬂwhﬂﬂ _ wau _ snownaid
= uvyd 2y usop Swmnmys sof 38/ 00 ¢ © asmbai o
graod yoayd yEnouyy z1utod yoayd 10 paiiofiad s152] e S
0§ SIS02 81qDLIDA 1587 YoOT * N 3REpIo 34
21 1wod ¥23y2 ‘sjdureg jo vogelo]
1300 SLINSTY 3904
"] S2UOTDICQD] TI0QQY IIpald . : - Synsey
Lep sEws e paunopad 3q Ued B 5153 RS ; :
smawuo(ed jduns Ay Afesaual s 53531 353y, sUNsUed eIy BT T L0y =SS SRy e = TN TSI
sgurads Jo 3ouasard gy 107 1sanbar v qua pajdnod aq wed (amgessduzy CINIAARR CLE ¢ iamp azegms{ mod yaayd HSIA |
2'3) JUIWWORANS 13584 31 JO Sskfete Jtseq Y s33mos sy Jo TWHTR? 0617 $339npas eI g wod 39342 HSIA |
f3orea v wox s3pduses J3rea JO UOTRTUIIIRIRYD T Mofe sIsKeUe 5oL, TuR/g]33 ( 9y ‘$130npas yegms[(] wmod 23y HSLT |
spueq g 's339npas avegns|p 3mod Y352 IO |
d yoagd ]
Anspiyy nye spueq op s1anpas siegns(g wmod yoagd TOOQ
~ g SpURq g¢ $330npas atexns[g 1wed 2342 IOOJ |
spueq 7 s1aqun g wmod 39> IO )
(s 18] SR INOqY. spireq |7 399031 ategns(0( wmod 34> I50] |
—a o %_sm._ spueq p s1agang] wwmod §33yd DO |
: : . 3 IS8 .
: ok ek " Jj00qeioN

. [ omaewmey  14AeQ 0095113 iouﬁ%\:._u 3 i 55 KT
[wBn [Temmen | mewpess | weosy [ wewsem . JojebpseAul uojsoLion

KIBTT = g sas0pd3 JPus



-101e611S8AU| UOISOLI0D Ul UBaIOS UOI109|8s anjeA Jaleweled ay] "9 ainbi4

L ey || ] soa (@

= 158} 18piQ _ |32us)

74
‘orXoUs ST
w31e4s SYI IIIYa puw 1IYAIYa XOYD 01 0g ‘auIsIad
€,gdS JT uOT3IONP31 33WIINS FO 2onpoad-pus
sv gzH ‘@3dusesid TEIISIOEQ BUIONPII-SISFINE FO
Hﬂ 102WDTPUT 2EITI €% IIWITNE FO DUISIId 103 XIIYD

1S3} ) SWLIIRIO 10J WOSTIY

(s)kop m_ Kepaq oom_ $ 50 el
wHN _| WON_| €ON_J
v0S 2 STH o R |
vOd _| us84x0 paajossp A Hd A

eI

_ depy asy

A FEEDBACK-DRIVEN AUTHORING MODEL / 483

Z1mmod yoayd )
6 1mod a9y 1
9 1nod Y23y o |

:_csn_quuL
gunedxooys )
g1modpany |

ormed yasyd )
pzuo.._xu:ﬂl_
v.d-omuuusuL

¢ wnod g2ayd | zwmod 1) A [mmed (eyd |
apdureg jo wogese]

F ‘ Ansiway)) Jajep

[ emasmey | aAeQ g0oslisasedweford -

‘._\Somo._ — aoualejey ﬂﬁnnu.mw.._ _ cmnmm —Eoczonxm

101BBASOAU| UOISOLIOD

O sl woss weR ®3 o3

KIBT= s St e 12.40j(x] J9UIAU] YOSODN. - 10I6NSIAUT U0KS0110) I



484 / QIU AND RIESBECK

"101e611S8AU| UOISOLI0D) Ul UBBIdS podas ay] "/ ainbi4

"~ udoy wlans |

| :ssauppy ewry

| souspzazenay

- @ouapmw3asn

“| PoU ¥C &—CE&C-E;V uﬂ-cc JCL—.—Q Adsiugy; ) LG-&B .—

13w 196°€6 :pOS[p utod a3y Lystway) sorep |

-] e 4 g aalaiie s ghe ek uider - assdctindat o ue,  Reatcie dal s
% 18w p0Z TY :STHIE 1urod ¥oays Agsiway) sapepm ] 13w ZH1°6¥ :STH[p Jurod payd Lnsuuay) soem |
(“Surdid [293s u1 uoisoiod 18w $01 'y :0q[p mrod yoayd Ansmuasy)) e |
ISNBY 0] UMOWY 208 S "BLIAORq Sutonpal ageyms 7979 ‘Hd[p murod yoayo Ansrway) Jerepy ]
JO 3AT/RIIPUI UOWRNUIINOS Jfejns YSIH ‘uosesy) o)
AW L10°6L *pOS[€ uiod y2ay> Agstway) sarep | 96L°67 :oamgesadwai[ urod yoayo Ansnuay) Jamep |
('ss9201d reonway> £[aand v sem TAw £10°6L :pOS[€ wrod sp3yd Anstwsyp) sarep ]
w3[qoad uotso.L10d J1 {d o1p1oe 310Ul 103dXs PO TAw po7 zp :STH[E Jwod yosyd Anstway) saep ]
Eouuozv NuN o ‘Hd[p yurod v_uoau Ansnmay) sajep ] 18w 122 :0a[g wrod yoayo Ansnuay) omp |
© (oo reorways - 8L£'9 "HA[€ 1010d %03y0 Anustway) IaEM |
B .o: baaao.a 2 ﬁooo.& wuaaoﬂs ‘Hd ?ﬂoz = "
uoseay)) 8.9 :HA[E utod Yooy Anstuiay) 3ore | §69°67 :a.mye
- VW LILL IE5HED
upd au epa1oeg bujonpay aeyng| .m.no.hwlm T qpwmget 3 oy
= sadid Bunejnanoai| gawus n 7/3w 891 =
toaom v 20U manono““cwaamwwuo.“u“
E Buzaedtputr ‘Hd TeIINSN
‘uoseay
_emqeowspy | 6Y ﬁn 8@85 13509 Joalosd 8°9 Hdlg wiod yoa> Knswwan) sama )
i 4 Unsayisal
¢ _ woboy [ @ouaiajey _ teuom _\«:oE:uuxw iC

10101dx ] |OUINY) YOS 08




A FEEDBACK-DRIVEN AUTHORING MODEL / 485

will be evaluated by the instructor in terms of the correctness of their diagnoses
and the relevance of the evidence to their diagnoses.

While students are working in the system, their work is under review by their
supervisor (role-played by the instructor). The supervisor can add comments to
the students’ work. Students can review these comments on the feedback screen
(Figure 8) and respond by clicking the respond link and enter their responses in
a pop-up window.

DESIGN FOR INCREMENTAL AUTHORING

Developing a learning environment like Corrosion Investigator requires sig-
nificant software development effort as well as considerable expertise in the
subject domain. After the learning environment is put into use, it is still likely
that important learning content may be missing. For example, students may want
to run a particular test that was not expected by the domain experts. To solve
this problem, we developed INDIE to support incremental authoring of the
content in learning environments like Corrosion Investigator. In the following,
we describe how INDIE is designed to support the four key elements in the
incremental authoring model:

1. allowing teachers to author learning content without programming;
2. allowing teachers to author learning content at runtime;

3. allowing teachers to complement system feedback; and

4. allowing teachers to collect materials for authoring.

General Interface Framework with an Authoring Tool

The incremental authoring model requires teachers to author content in the
learning environment at runtime. This requires the authoring task and involves
minimum programming. In INDIE, we use a general interface framework with
an authoring tool to allow teachers to author the learning content without pro-
gramming. The framework consists of a set of Web interfaces: the challenge
screen, the reference screen, the experiment screen, the report screen, and the
feedback screen (as shown in the Corrosion Investigator section). This framework
includes important learning tools such as the persistent structured portfolio
(the notebook) and the argument construction tool (the report). Teachers can
specify all contents using static data. They do not need to write rules or scripts
to handle student interactions.

Learning content in INDIE learning environments consists of scenario infor-
mation such as the challenge statement, and test information such as the cost
and delay of a test and test result generation methods. The scenario information
is described in Webpages which can be easily authored using any off-the-shelf
Webpage authoring tools and uploaded into the learning environment. Infor-
mation about tests can be authored through a form-based interface provided by the



486 / QIU AND RIESBECK

"101e611S8AU| UOISOLI0D) Ul UBBIOS Xoeqpas) 8yl 8 ainbi4

€

_ weneng | |

E ““puodsai
L2IDMA SUTIDIITIL102.4 PAYSTIS WO PIALIIP L2TDM

woLf pasLLap STH S1-paumidxa flam 10N

Wodf 1260 Y27 71 51 40 ‘UOTDIO] IOYI I ATIATIOD | B 3q KBw suoiso.uo)) ‘sadid Bune[noaroar ul se Y31y se JON :Uoseay

'$3883201d [RITUWISYD PUR OIq JO UOTJRUIQUIOD

18w 916 °T€ ‘STH[6 Wwrod 33y Anstusy) 2jem |

~puodssi
STIDI D 5D UOISOLL0D

onuayd Sun.coddns aouapina JON 51 STYL

2AT)OR
2q Aew s, S Sunearpur quasaad [[ns s13_JNS YIIH ‘uoseay
13w 80°€8 :+OS[6 Wwrod Yooy Ansnuay) em |

102.0402 A} OTIUASST

~puodsal AJrearuayd asow 2q Aeuw ssasoud Jetp 1983ns Hd J1p1dy (uosey

‘sadid Sunenaaraal 0] pareduwos pajjonuod

€4+ 'HA[6 1urod Y3y Ansnuay) 19em ]

“puodsal

sadid Suipnoaoal af; pun
numyd juaugpa. Lmwtida yy uaamgaq urdid fo
SDAD LAI0 JO PDIISUL 2431 ISIOM U] UOISOLIOD
S1AYM ;BULLNI20 3G PINod UOISOLIOD | A0S
Jo adA; oy uoisoLtod ayy fo aumu | NP )

aiyy 01 sp.w3as uy payddns aq pnoo fmpap | [11S
asopy sadid wpasumop ayy ul SurLmado 1
waqoud ay1 fo aouassa ayj saaydvo suyy|  Jo

SJUAUIIO)) ;

il

_ uﬁo aoueApy. L1 »-D ooom:w uuououo_.gm

| noday | EEyE— —ﬁ.o%m&;_ ..o%m .v_‘eo._._ivm_

4 i

cadyd
= BUTIBTNOITIII IY1 WOIZ PIYSNTJ I3lea Y3 woly €,31

:asuodsay

.:wn._.m_ Hapuag

42700
Bwuryopnoitoes paysmyf wioif peaLisp 4210M w0l 1240 3] 1 1 40 ,
‘UOTID0] 10T 10 KNALID WOL POALIBD ST St -pautv)dXa f1as 10
:03 puodsay |

i 19usayn yosoin - woporm ssuoss |




A FEEDBACK-DRIVEN AUTHORING MODEL / 487

INDIE authoring tool. We use the Naked Objects approach (Pawson & Mathews,
2002) to generate the interface. We use a generic engine to query the attributes
(i.e., data structures) of each test and create the corresponding authoring
interface. For example, for a primitive type (i.e., int, double, etc.) or String
type attribute (e.g., the cost of a test), a text field will be created. For a Boolean
type attribute, a menu with two options, true and false, will be created. For any
attribute whose value is a list of items, a list box will be created containing all
the items. For any attribute that does not belong to the above types, a hyperlink
will be created leading to another screen for editing the attribute. The above
mapping generates a uniform authoring interface that allows authors to easily
master the use of the interface after an initial learning process. For example,
Figure 9 shows the interface for authoring a test (the culturing test in Corrosion
Investigator). Values for primitive type attributes (e.g., the name and the cost)
can be specified in textboxes. Attributes that have a list of items as their values
(such as the parameters for the test) are displayed in a list box. Items in the list
can be selected and edited in another screen in the same format. For example,
Figure 10 shows the interface for authoring a new parameter for the culturing
test. Authors can specify the cost and delay of the parameter, and the test options
for the parameter.

The INDIE authoring tools further provides a list of features such as preview
of student interface, overview of learning content, type check, and completeness
check to facilitate authoring. For details, see Qiu (2005).

Web-Based Client-Server Architecture

The runtime incremental authoring model requires the teacher to receive
requests from students and constantly provide feedback and author learning
content. This was not possible when educational software needed to be installed
individually on each student’s machine. To update the learning content, the
teacher would have to update the software on each student’s machine.

Now, with the widespread use of Web technology, software no longer needs
to be installed on individual machines. It can be accessed anywhere anytime
from Web browsers. This makes the deployment and update of software sig-
nificantly easier.

We take advantage of the Web technology in INDIE to support runtime
incremental authoring. INDIE saves all the learning content on a centralized
server and provides a Web-based authoring tool for teachers to modify the content.
With the Web-based authoring tool, teachers can modify the learning content
anytime anywhere. INDIE further provides a Web interface for students to interact
with the learning environment. This enables any update of the learning content
immediately and reflects in the student’s learning environment. Students can
benefit from the most recent content authored by the teacher. The Web-based
architecture also saves students’ work on the server so that teachers can easily



488 / QIU AND RIESBECK

‘1881 e Buloyine Joj 8oepsiul 8yl 6 8inbi4

Lot ) | R S e N S LSS L]

3 suapeq azAeus

suapeq adwes

SUBDT] SRISWNUS

ouapeqg moib

ursys weub

SuapPeq A0S

spromAay

| =eea [ w3 [ “eev

Buunyn) / sisfeuy eaibojoydiow

Buunyn?) / umpayy ywmoin)

Buunyro / aungmiadws |
sppurrd

—ﬂ 2500 A_u_ juny uogRjoSs{@IMyN|

ag uondussap

E sny| [F asooup | of
(,SPT31N SARM[R SJNSAI 53] 1Y) JUIST ("s1s%]

sAem[e 159) ST je SARP JO JAQUINU PAXY Y1) (S4Bp)AePP

= asoowo | o) [F asoop| Guuryng)
('sys0d Pqe]

sARmE 159) SO JBt) S3U0UI JO UNOWR PAXI Y L) (§)1505 paxy

SIpUT WL 1aYI9Y) ULl OLIPUAIS MAIA UTBWOP MIIA S|00]

180 | BERTnD BPE < UWGOQ YOI WE < [PPONSHY] W3

1531 Buunynd up3

deR 50l =k Hel W3 9d

P TR ——



A FEEDBACK-DRIVEN AUTHORING MODEL / 489

"1s8] e 0] Jojoweled mau e Buippe 4o} adepaiul 8yl "0} 8inbi4

mempo @ ||| ea_w

(way e ppe 0} ,ppe,, Y1) PPWERd STy 10§ 3104 A JO SIST

—N aspE ..__ _N mwoow_ o
(21391 (epurrd snp 103 Yoid SJUIPIS SINEA BARYM 51500 SAEm[E
a1y Jo s;pured BPYO J0 1500 Y sandymu 3531 & FULIPI0  ppurred sy Ry SARP JO BQUINU PaxXY A1) (sAep)ARpPp paxy

w ppwerd suy JoJ s3dioyd sjdynum Suyssps M) AR

< asoow| o] [ asoop| 00|
(‘sjapms (puerd

ag ,mn aum 1Sy 3y 1B pajoaps s1 33101 ) Usym U«vsn— SAJ} JOJ 3S007) SPRPNIS SANEA PAIRYM SIS0 mhﬂ%
ST 10J 39104 Iea JO 1509 L) (§)onfea 1od 150 e sapuwresed SUy jey S5UOW JO JUNOUR PAXT YL (§)150 pIxy

= asoow| oo] [ asoop) |
('s1502 pPpwerd sup Pqe|

10J 231042 o83 jey L>uom Jo otk S L) (§)nea 13d 150>

PR MIN P

PRWERJ MU Y Oun [T Sugou| &do)

wiaERm g PPY < 153 L BURRGIN $PF < WW0 WO PPF < FROFIPU] I

SPUTULI JaPeUp UNI OURWSIS MAIA WRWIOP MSTA $00] Jeaweled ppy




490 / QIU AND RIESBECK

review it through Web interfaces. Teachers no longer need to collect student
records from individual machines. This makes it possible to include the teacher
in the feedback loop to provide feedback to students’ work in the learning
environment.

Human-in-the-Loop Hybrid Feedback
Generation Mechanism

In the incremental authoring model, a learning environment is put into use
while it does not have all the actions and feedback that students need. This
requires an infrastructure to allow the teacher to help the system meet students’
needs. (This actually also provides a great opportunity for the teachers to learn
what is needed by the students and what should be added into the learning
environment.)

We use a hybrid feedback generation mechanism in INDIE to include the
teacher in the feedback loop to complement the system feedback. In INDIE, the
system is responsible for generating feedback that is immediately required or
computational-intensive. For example, it generates the cost and time of a test
and complicated test results. The teacher is responsible for generating feed-
back that requires natural language understanding and expert knowledge. For
example, the teacher provides answers to questions about the scenario and
critiques students’ work.

To allow teachers to receive requests from students, INDIE forwards students’
requests to virtual characters in the scenario to the teacher. For example, in
Corrosion Investigator, students can ask questions to characters in the scenario
(e.g., the plant foreman and lab manager). Questions sent to these characters are
forwarded to the teacher. This allows the teacher to provide extra information
(such as background information and test results) to students in an authentic
problem context.

For critiquing, INDIE organizes and displays students’ work in the learning
environment in an interactive report (see Figure 11) for teachers to review. The
report includes the time and money that students have spent, tests that students
have scheduled and run, reasons for running those tests, and diagnoses and
supporting evidence that students have created. Items in the report are clickable
links. Teachers can click on any of them and a pop-window will allow the teacher
to enter critiques. These critiques will appear in the feedback screen in the learning
environment. The interactive report is automatically updated every time when
the students make a move in the learning environment so that the teacher always
sees the most recent student activity.

The above hybrid feedback generation mechanism provides a natural human-
computer integration where the system takes care of repetitive and well-defined
feedback generation, and the human takes care of the work that is open-ended
and requires human intelligence.



A FEEDBACK-DRIVEN AUTHORING MODEL / 491

blue

Project Cost /08600 0 Day 49

Claims

. DOWNSTRL\M PIPI"S Audlc pH and chemucal oxidation of pipes the man cause of corrosion i the downstream

I R R sion. Although SRB's are still present in relatively high numbers, we
lmg of the downstream pipes whuch dislodges some of the biofilm

Make Comment

claim > recirculating pipes > evidence 243
{ Water Ct VWMW"" 3pH: 6..}78 ;; &ammore chemically controlled compared to recirculating pipes
Rno(‘-:::mNua::ﬂo:eK Iieisiog procus s pokibly dicating SRE's may be active
32.546 mg/L
Comment g pipes. Cotrosions may be a combination of bio and chemucal processes
[Thete ace other possibiiities for chemical =] |}l 4495 1s0lates
[PEAESTISNIAS RIS U, ST st /t/t nutnient cultunng, probaby still play a role in the comrosion

36 bands
m pipes
597 cel¥/mm2
d to recirculating pipes, mndication that maybe process 1s chemucally

2 |humber caused by penodic flushing of the recirculating pipes

acteria the pnmary agent of corrosion in the recurculating pipes

_Sow | ﬁ' _;fg opulation far exceeds all others
.

4l

o
a
o [ Water Chenustry check pownt 4JpH 6 262
Reason Would expect more acidic pH of corrosion problem was a purely chemical process
o [Water Chenustry check point 3504 79017 mg/L
Reason: High sulfate concentration indicative of sulfate reducing bactena SRB are known to cause comosion
n stesl piping :j

Figure 11. The critiquing interface.

Open-Ended Interface Elements for
Collecting Authoring Materials

In the incremental authoring model, teachers need to find out what students
need in the learning environment so that new materials can be added. Besides the
student-teacher communication channel mentioned above, we use opened-ended
interface elements in INDIE to collect students’ inputs. Student inputs can reveal
materials and feedback that students expect in the system. Inputs that do not have
feedback returned indicate missing contents and provide directions for authoring.

For example, in INDIE we deliberately use a text box for students to select
tests. When students enter a test name that matches one of the keywords of a
test, the test will be selected. (Every test has a list of keywords because the same
test can be called in different ways. For example, the culturing test can be called
the gram stem test.) We do not use a menu because the text box approach lets
students brainstorm what tests they need. Test names entered by the students are



492 / QIU AND RIESBECK

reviewed by the instructor and reasonable ones can be added into the learning
environment. Test names can also tell the instructor what tests are needed and
should be added into the system. We describe empirical results of this approach
in the evaluation section.

The above discussed how we designed INDIE to make incremental authoring
feasible for teachers. We believe that these design choices are essential in pro-
viding an infrastructure and tool support for incremental authoring. In the
following, we describe our experience of using INDIE and the incremental
authoring model to develop Corrosion Investigator.

DEVELOPMENT PROCESS OF CORROSION INVESTIGATOR

Corrosion Investigator was developed in a project funded by NSF to improve
bioengineering education. We started by working with four faculty members
(one from environmental engineering, one from biomedical engineering, one
from learning sciences, and one from computer science and education) to
design the Corrosion Investigator scenario. We chose the concepts and skills that
students needed to learn, generated the corrosion challenge, explored background
resources about paper processing plants, created a pipe layout for the processing
plant, established the (hidden) causes of corrosion, and collected lab tests that
are commonly needed to diagnose corrosion problems. The Corrosion Inves-
tigator scenario was mainly based on a faculty member’s real experience in
industry. The initial scenario development took about 2 months.

After the initial Corrosion Investigator scenario was developed, it was used as
a course project in an environmental engineering course. At the beginning of
the project, students were given a challenge statement as shown in Figure 12. The
instructor acted as the liaison between the students, the paper processing company,
and any commercial lab. Students asked the liaison for background information
about the company and ordered lab tests. The liaison supplied information on
demand, including fairly complex test results. At the end, the students submitted
reports explaining their diagnoses. All communications were done via e-mail
except for bi-weekly presentations where the students reported their progress.

While the Corrosion Investigator scenario was authentic and challenging, it
was very labor intensive for the instructor to generate test data in response to
every test request from students. Test results needed to be generated repeatedly
and had to be different each time to resemble data from real labs. Furthermore,
the results needed to correctly indicate the underlying cause of the corrosion
problems. For students, it was time consuming to pursue the project because they
needed to wait for several days for the teacher to generate test data for them.

To solve the above problems, we decided to develop the computer-based
Corrosion Investigator learning environment. We also wanted to develop a
software tool that allows us to easily develop learning environments similar to
Corrosion Investigator.



A FEEDBACK-DRIVEN AUTHORING MODEL / 493

Your team has been hired by Patriot Chemical Co. to investigate a problem
they are having with their water distribution piping in their paper processing
division. They historically have had severe corrosion problems associated with
pipes in this system. They traditionally replace the piping—which results in
severe financial loss while the system is down. Patriot is hiring your team to
discover the source of the problem and provide a feasible solution that will
avoid future need to replace piping. The goal of this exercise is to determine
the nature of the problem and to come up with a solution as quickly and
cost-effectively as possible. The plant foreman has recently noticed rust in
the effluent of the system. This is usually an early indication that the pipes
are beginning to fail.

We have designed this exercise to simulate as close to a “real life” scenario
as possible.

Initially there will be very little information for you to work with. Using your
creativity and knowledge of microbiology/engineering your team can develop
a trouble shooting flow chart and dissect the problem. There is more than
one way to go about getting the right answer. | will act as your liaison between
Patriot and any commercial labs/services you will require to generate infor-
mation crucial to solving this problem. Depending upon the information/tests
you solicit, the response time will vary in accordance with the nature of
the information requested. Any costs associated with requested lab tests/
information will be given as estimates to your group prior to your requesting it.

Part I) What could be the cause the problem?
Part Il) How would you propose to fix it?

Background: As you investigate this challenge you need to consider multiple
factors. First, the company has indicated they would like an accurate as well
as cost-effective solution. In addition, they require a thorough justification of
your recommendation. This requires you to draw on the knowledge presented
in this class as well as information you obtain through research, data collection,
consultations, etc.

Figure 12. The challenge statement in Corrosion Investigator.



494 / QIU AND RIESBECK

We started by analyzing over 70 e-mails sent between the students and the
instructor to understand what learning content should be put in the learning
environment. The e-mails suggested the background information students needed,
the tests they wanted to run, and the mistakes they usually made. For example, a
list of questions that students asked and their corresponding answers were used
as the background information in the learning environment. Five major tests
that students requested became the tests in the learning environment. Additional
materials and features were added in to the learning environment to make learning
authentic. Random test result generation mechanism was developed to make
test results realistic. The simulated cost and time mechanism were implemented
to make students aware of real-life constraints.

We further designed the INDIE framework and authoring tool based on the
actions and content in Corrosion Investigator. Design choices discussed in the
above section were specially made to support the incremental authoring model
and make sure that the infrastructure and underlying data structures were general
enough so that similar learning environments can be built without changing
the framework.

EVALUATION RESULTS

We conducted two small-scale studies to test the feasibility of the incremental
authoring model. Both studies were conducted with students and professors at
Northwestern University in 2005.

The focus of the first study was to test whether the learning environment
software could sufficiently support student learning and incremental authoring.
We conducted the study in the environment engineering class where the instructor
was the professor who developed the initial Corrosion Investigator scenario
and had run the scenario without the software in his previous class. We asked
the instructor to teach his class exactly the same way as he did before except
using the software for the Corrosion Investigator challenge. This allowed us
to compare student learning outcomes between the two classes to evaluate the
impact of the software. There were six first-year graduate students in the class.
They worked in two groups of three on the Corrosion Investigator challenge as
their final course project. During the project, students worked with the software
learning environment to run tests, collect data, and construct reports. They con-
tacted characters in the challenge to request additional information. The instructor
role-played the characters and answered students’ requests. He provided coaching
through the critiquing interface in the learning environment. Furthermore, the
instructor identified missing test names and options by reviewing student activities
and added them into the learning environment using the authoring tool. The
project lasted 3 weeks. After the completion of the project, we gave the students
and the instructor a survey regarding their experience with the software. We
recorded what the instructor authored during the study.



A FEEDBACK-DRIVEN AUTHORING MODEL / 495

After the first study, we conducted the second study. The focus of the study was
to investigate whether instructors other than the original author of the scenario
could deliver the challenge and extend the learning content. Five second-year
graduate students and two professors (other than the one in the first study) in
the environmental engineering department volunteered to participate in our study.
Students were given 3 weeks to complete the challenge. They worked in two
groups. The two professors facilitated the project as the instructor did in the first
study by providing feedback to the students whenever needed. After 3 weeks,
students completed the challenge. We recorded what the two professors’ authored
during the study. We will present the authoring data in the following section
(together with the ones collected from the first study).

Evaluation results presented below are based on two studies with a total number
of 11 students and three professors. They are suggestive but by no means proven
because of the small sample size. The goals of our studies are to test whether the
incremental authoring model is feasible and to show how teachers can use it.
While the data that we obtained are limited, they do provide an example of how
INDIE can facilitate students learning and incremental authoring. Future work
will be conducted to verify the findings in the current studies with larger numbers
of students and teachers, and assess the generalizability and limitation of the
software and authoring model.

In the following, we present results regarding students’ evaluation, instructors’
evaluation, and incremental authoring of tests and critiques.

STUDENTS’ EVALUATION

In our first study, we obtained students’ evaluation of the Corrosion Investi-
gator learning environment through a survey. The survey asked students to rate
the performance of the learning environment in supporting their project.

Figure 13 shows the results from the survey. Overall, students agreed that the
learning environment was satisfying in delivering the challenge. They agreed
that the system provided enough support for them to successfully complete the
project. They would recommend the system to be used by other students.

Students largely benefited from the immediate feedback generation from the
system. The project time was reduced from 8 weeks (the time it took when the
challenge was delivered without the software and the instructor needed to generate
the test results manually) to 3 weeks. This was evident in students’ answers to the
question “What did you like the most about the system?””:

results are immediate. you can plan around time spent on each test.
automatically run tests and report time and cost.

the instant feedback on tests results. did not have to wait for a person to email
results back to me.

fast response time.



496 / QIU AND RIESBECK

Q1:

Q2:
Q3:
Q4:
Q5:
Q6:

Q7:

Student Opinions of Corrosion Investigator
Performance

Bteam 1
mteam 2

Degree of Dissatisfaction

Q1 Q2 Q3 Q4 Q5 Q6 Q7
Survey Questions

1 = strongly agree 5 = strongly disagree

Q1: | would like to use the system to construct a report rather than write it all
by myself.

Q2: Overall, the interface makes me feel comfortable.

Q3: The system has provided enough support for doing the project.

Q4: Overall, this is an excellent system for doing the project.

Q5: Overall, the project has been completed successfully.

Q6: | prefer to use this system to run the tests and get the results back,
instead of doing that via e-mail with a person.

Q7: | would recommend this system to be used in next year's class.

1 = strongly agree 5 = strongly disagree

I would like to use the system to construct a report rather than write it all
by myself.

Overall, the interface makes me feel comfortable.

The system has provided enough support for doing the project.

Overall, this is an excellent system for doing the project.

Overall, the project has been completed successfully.

| prefer to use this system to run the tests and get the results back,
instead of doing that via e-mail with a person.

| would recommend this system to be used in next year’s class.

Figure 13. Student evaluation of Corrosion Investigator performance.

The design goal of the learning environment was to facilitate students’
problem-solving by providing them with necessary information and tools to
reduce their project time. While there are still usability issues in the learning
environment (e.g., the interface for retrieving tests was not easy to use), the
response from the students suggest that the learning environment has met
the initial design goal. In the following, we further show that the instructor
considered students’ learning outcome remains the same when compared to the
one gained in the class when the software was not used.




A FEEDBACK-DRIVEN AUTHORING MODEL / 497

Instructor’s Evaluation

In our first study, we obtained instructor’s evaluation of the learning environ-
ment. We gave the instructor a survey asking him to compare his experience in
delivering the scenario using the software with his experience in delivering the
scenario without the software.

Figure 14 shows the responses from the instructor in the survey. The instructor
considered the effort in delivering the scenario and the time students needed to
complete the scenario were significantly less when using the software. The quality
of the data generated by the system was slightly better. For the instructor, the
use of the software reduced his workload from 24 total man-hours to 4. It
was most evident in reducing the work in generating test results. When asked
“What did you like the most of the system?” the instructor reported:

It was fairly self-sufficient, gave quick response, easy to view history of
system (what operations were ordered, etc).

Furthermore, the instructor considered the quality of students” work and their
learning of the target skills remained the same when compared to the ones in
the class where the challenge was delivered without the software.

The above data show that Corrosion Investigator greatly helped the instructor
deliver the problem-based learning module while maintaining the student learning
quality. This is consistent with our initial design goal.

Answer
Question (much less) 123456 7 (much more)
The effort involved in delivering the 1
scenario with the software
The time students needed to complete 1
the scenario using the software
Answer
Question (much better) 123 4 5 6 7 (much worse)
The quality of the simulated data 3
given to the students by the software
The quality of the students’ final 4
reports after using the software
The student learning of the target 4
skills after using the software

Figure 14. Instructor’s evaluation of Corrosion Investigator.



498 / QIU AND RIESBECK

Evaluation Results for Incremental Authoring

During both of our studies, we recorded the learning content authored by the
teachers. In the following, we present results obtained from the two studies
regarding test authoring and critique authoring.

Test Authoring

Corrosion investigator initially contained 39 test names to match student
inputs. During the two studies, teachers added 34 more test names into Corrosion
Investigator. This resulted in an increase of 87% of test names in the system.
Figure 15 shows the increase of test names for each test. (One test can have
multiple names.) Furthermore, in the second study, one professor found that
“dissolved Fe” should be added as a test option for the water chemistry after he
received students’ request for the test option. Figure 16 shows the test data added
into the system for the test option.

The addition of the large number of test names and an important test option
suggested that even with careful preparation, it is still difficult to make sure that
the learning environment contains all the necessary content. It is necessary to
allow teachers to add new content into the system during runtime.

keywords

Culturing  DGGE FISH Hydrology  Water

Chemistry

@initial design
| after first use

Figure 15. Keywords for the tests in Corrosion Investigator.



A FEEDBACK-DRIVEN AUTHORING MODEL / 499

Location of Sample Results for “dissolved Fe” (mg/L)

Checkpoint 1 0.01 ~2
Checkpoint11,Checkpoint12

Checkpoint 2, Checkpoint 3, 1~5
Checkpoint 4, Checkpoint 5,
Checkpoint 6, Checkpoint 7,
Checkpoint 8

Checkpoint 9, Checkpoint 10 0.01 ~2

Figure 16. Test results for “dissolved Fe” in the water chemistry test.

We further conducted a survey with the instructor in the first study regarding
his use of the authoring tool. Results show that it was not hard for the instructor
to understand the data structure of the learning content in the system and map
his knowledge to the data structure (see Figure 17). When asked “what did you
like least about the system? Would you have preferred more facilities in the
system?” The teacher responded:

(the interface is) not very intuitive. need some way of guiding user through
process.

We believe the above problem is caused by the lack of directions provided in
the authoring interface. Our future work would be to add a wizard or more
instructions on the authoring interface so that authors can be guided through
the authoring process.

When responding to “what you like the most about this system,” the instructor
reported:

Once I knew what I was doing, it was easy to manipulate system.

We believe this is caused by the consistent look-and-feel of the authoring
interface. After the initial learning stage, the instructor could easily use the
interface for authoring.

The survey also includes questions regarding the usefulness of specific features
in the authoring tool. Results show that these features were all considered very
helpful (see Figure 18).

The above results show that teachers are capable to use the INDIE authoring
tool to add missing content into the learning environment during runtime.

Critique Authoring

Critique authoring has always been a difficult part of learning environment
authoring because it is difficult to know what mistakes students commonly make



500 / QIU AND RIESBECK

Answer

Question (very easy) 1 2 3 4 5 (extremely hard)
How difficult is it for you to understand 3
the data structure in the system?
How difficult is it for you to transform 1
your knowledge to fit into the data
structure in the system?
How difficult is it for you to enter the 4
specification for a test?
How difficult is it for you to enter test 4
results?
How difficult is it for you to interact 3
with the system?

Figure 17. Survey results regarding the instructor’s
authoring experience.

Answer

Question (strongly agree) 1 2 3 4 5 (strongly disagree)
It is very helpful to have an 1
automatic checker to verify the
consistency of the knowledge in
the system.
It is very helpful to have a com- 1
plete view of the domain and
scenario knowledge in the system.
It is very helpful to check the 1
student view of a test.

Figure 18. Instructor’s evaluation of the INDIE authoring tool.

and what critiques to give for those mistakes. Our goal is to use incremental
authoring to first collect common critiques, and then based on theses critiques,
design an interface to help teachers apply or automate these critiques. The
following describe the results regarding the first step, which is to use incremental
authoring to collect critiques. During the two studies, a total number of 32
critiques were recorded in the system. Appendix A shows some examples of



A FEEDBACK-DRIVEN AUTHORING MODEL / 501

these critiques. We analyzed all the critiques and found that they could be
categorized into three types.
The first type confirms the correctness of the student’s work. For example,

That is correct- H2S a byproduct of SRB metabolism.
The second type points out that the student work is wrong. For example,
This is NOT evidence supporting chemical corrosion as a cause.

The third type asks for more data or explanation. It can directly ask for
explanations, for example,

More detail could be supplied in regards to the nature of the corrosion.

There are other possibilities for chemical corrosion at neutral pH’s—should
acknowledge this.

or can provide directions for further investigation, for example,

Why is corrosion the worst here instead of other areas of piping between
the primary treatment plant and the recirculating pipes?

or it can present data that challenge students’ understanding, for example,
SRB counts are very low compared to the other corrosion site.

The above critiques provided the basis for us to design the automatic critiquing
mechanism. Our next step is to develop tools for teachers to reuse these
critiques. We plan to use Latent Semantic Analysis (LSA) (Landauer & Dumais,
1997; Landauer, Foltz, & Laham, 1998) to compare students’ work against stored
examples of mistakes and suggest corresponding critiques. Teachers will be
able to review automatically generated critiques and send them to students.
We have successfully experimented incremental critiquing authoring in another
system called Java Critiquer (Qiu & Riesbeck, 2008). The Java Critiquer pro-
vides an environment where teachers can critique students’ Java code and
incrementally author critiques in the system for reuse. We aim to use similar
techniques to allow the system to automatically suggest critiques and allow the
teachers to review them.

DISCUSSION AND FUTURE WORK

The target audiences for INDIE learning environments are students in colleges.
In our studies, first and second year graduate students successfully accomplished
the main tasks of an INDIE-authored learning environment. K-12 students
may have difficulties in using such learning environments because compared to
students in our studies, they may not have strong interests in the subject area and
could easily lose interest in using the text-based learning environment. Interactive
learning environments built for K-12 students (e.g., Lajoie et al., 2001; Liu et al.,
2002) often use rich media such as videos and graphics to attract students’



502 / QIU AND RIESBECK

attention. However, INDIE learning environments are largely text-based because
we focus on the logical diagnostic reasoning aspects of the challenges and
want to keep authoring simple. While multimedia content can be embedded into
Webpages and uploaded into INDIE learning environments, creating them on the
fly would be difficult for teachers. Therefore, the Web-based INDIE learning
environments do not provide immersive multimedia to maintain students’
interests. Furthermore, K-12 students may not have strong self-learning capability
as students in our studies. They often need more guidance from their teachers
outside of the software learning environment. This would make the authoring of
the learning content difficult because the incremental authoring model relies on
having students and teachers communicate through the learning environment
so that teachers can save the feedback as new learning content. Given the above
issues, we believe that the incremental authoring model is most appropriate to
create learning environments for students in high school and college.

To use the incremental authoring model to create learning environments,
teachers need to have a deep understanding of the problem-based learning
pedagogy and know how to create a problem-based learning module. While
many teachers may be interested in delivering problem-based learning, not all of
them know how to develop a challenging scenario with proper learning activities
embedded. One way to use the incremental authoring model is to have domain
experts and learning scientists create a number of initial modules and have
teachers extend them during teaching. The initial modules will include the chal-
lenges that students need to solve and the major tasks that students need to
perform. A teacher can pick the module that he or she wants to use and extend
the module according to students’ needs. We believe that because the module is
initially created by subject-matter experts based on sound educational principles,
teachers will be less likely to fail to follow the problem-based learning pedagogy.
While this approach does not guarantee the quality of the learning content, we
believe that it is worthwhile to provide teachers the capability to create their own
learning environments.

INDIE learning environments are best used in situations where teachers actively
monitor and guide student learning. We have tested the INDIE learning environ-
ment in a course project and a volunteer project. In both projects, teachers
paid close attention to students’ progress and provided them with coaching and
critiquing. This is critical because the learning environment in the incremental
authoring model does not have all the necessary feedback for students. Teachers
need to identify missing feedback and provide it to students. We aim to create a
teacher-computer collaboration system where students can receive feedback from
both the computer and the teacher.

We believe the incremental authoring model could be extended to support the
development of other knowledge-based educational systems, especially text-
based educational systems, besides interactive learning environments. The key to
the success of the incremental authoring model is to establish a feedback loop



A FEEDBACK-DRIVEN AUTHORING MODEL / 503

where the teacher needs to provide feedback to students through the system.
We have experimented the incremental authoring model in a critiquing system
for software programming (Qiu & Riesbeck, 2008). The system allows teachers
to critique students’ programming code and add new critiques into the system. The
teacher can also refine existing critiques and create patterns to automate critiques.
We tested the system with two instructors using the system in university-level
introductory programming courses. After one-year’s use, a total number of 232
critiques were collected and remained relatively stable for over a year. In our
future work, we aim to experiment the incremental authoring model with other
types of learning systems in different educational settings to further evaluate its
feasibility and effectiveness.

CONCLUSION

In this article, we described an incremental authoring model for developing
interactive learning environments. This model includes an instructor in the
feedback loop to complement system feedback and incrementally author the
learning content in response to demands from actual students. We described
INDIE, a learning environment authoring toolkit, as an example to show how
to support the incremental authoring model. INDIE uses a Web-based client-
server architecture to allow teachers to author the learning environment anytime
anywhere. It provides a domain-independent interface framework with an author-
ing tool for teachers to perform authoring without programming. It uses a hybrid
feedback mechanism to allow teachers to receive requests from students and
complement system feedback. It uses open-ended interface elements to help
teachers collect students’ inputs and identify materials for authoring. These design
choices in INDIE enable the key components in the incremental authoring model
to ensure that teachers can perform authoring at runtime.

We presented our development experience of Corrosion Investigator, a learning
environment delivered by INDIE, to show how the incremental authoring model
can be implemented. Corrosion Investigator has been used twice, once in a class
and once in a volunteer project. Feedback from the students and instructor
suggests that Corrosion Investigator successfully facilitated the delivery of a
problem-based learning module. Results regarding test and critique authoring
show that INDIE is capable to support incremental authoring during runtime.

The incremental authoring model explores a vision of developing knowledge-
based educational systems with less upfront development effort. It avoids the
need to anticipate and implement all possible situations upfront and allows
the system to gradually evolve into a complete system after deployment. With the
widespread use of Web technology, we believe the model is feasible and
promising in facilitating the authoring and customization of knowledge-based
educational systems.



504 / QIU AND RIESBECK

APPENDIX A
Critiques entered by instructors in Corrosion Investigator

Student work

Critique

Claim: Acidic pH and chemical
oxidation of pipes the main cause of
corrosion in the downstream pipes.
pH level is acidic enough to cause
corrosion. Although SRB’s are still
present in relatively high numbers,
we feel that they are preset due to
periodic flushing of the downstream
pipes which dislodges some of the
biofilm population.

This captures the essence of the
problem occurring in the downstream
pipes. More detail could be supplied in
regards to the nature of the corrosion.
What type of corrosion could be
occurring? Why is corrosion the worst
here instead of other areas of piping
between the primary treatment plant
and the recirculating pipes?

Test Result: [Water Chemistry check
point 91S04: 83.08 mg/L

Reason: High sulfate is still present,
indicating SRB’s may be active.

This is NOT evidence supporting
chemical corrosion as a cause.

Test Result: [Water Chemistry check
point 3] pH: 6.378

Reason: Neutral pH, indicating process
is probably not a chemical one.

There are other possibilities for
chemical corrosion at neutral pH's—
should acknowledge this.

Test Result: [Water Chemistry check
point 3]H2S: 42.204 mg/L

Reason: Rotten egg-like odor indicative
of sulfate reduction. High H2S concen-
tration is indicative of SRB populations

That is correct—H2S a byproduct of
SRB metabolism.

Test Result: [Water Chemistry check
point 9]H2S: 32.546 mg/L

Reason: Not as high as in recirculating
pipes. Corrosions may be a combina-
tion of bio and chemical processes.

Not well explained—is H2S derived
from activity at that location, or is it left
over from water derived from flushed
recirculating water.

Test Result: [Culturing check point 9,
SRB,25C]
Total: 4,495 isolates

Reason: SRB have the most isolates
w/r/t nutrient culturing, probably still
play a role in the corrosion.

SRB counts are very low compared
to the other corrosion site.




A FEEDBACK-DRIVEN AUTHORING MODEL / 505

APPENDIX A (Cont’'d.)

Student work

Critique

Test Result: [Water Chemistry check
point 31S04: 79.017 mg/L

Reason: High sulfate concentration
indicative of sulfate reducing bacteria.
SRB are known to cause corrosion in
steel piping.

This is wrong—High SO4
concentration indicates that there are
substrates present for SRB growth.

Test Result: [Water Chemistry check
point 4] temperature: 29.796°C

Reason: Temperature is ideal for
SRB growth.

Why is it ideal? What is the temper-
ature optimal for most SRB’s? This is
not known . . .

Test Result: [Water Chemistry check
point 3]pH: 6.554

Reason: The pH at point 3 is neutral.

While pH of 6.6 is near neutral, this
does not by itself support that SRB
are active. SRB activity would
produce base and may increase the
pH. Do you have a pH comparison?

Test Result: [Water Chemistry check
point 10]pH: 3.946

Reason: pH is low, indicating that there
is acid production in the downstream

pipes.

Yes, a low pH implies acid
production, which is part of sulfide
oxidation. From where does the
oxygen come?

Test Result: [Water Chemistry check
point 9]S04: 77.228 mg/L

Reason: SO4 concentration is lower
comparing to the upstream.

This is lower than check point 3, and
it implies that sulfate was reduced
after checkpoint 3. This may be
evidence of sulfate reduction in the
recirculating loop, not evidence for
what is happening in the downstream

pipes.

Test Result: [Water Chemistry check
point 10]DO: 6.889 mg/L

Reason: DO is high.

A high D.O. supports that O2 can
be the electron acceptor for
corrosion, but it is counter to having
sulfide oxidized to SO42-, which is
strongly oxygen consuming. So,
from where does the oxygen come
to allow sulfide oxidation?




506 / QIU AND RIESBECK

APPENDIX A (Cont’'d.)

Student work

Critique

Claim: RECIRCULATING PIPES:
According to our test results, the
excessive corrosion in both the
recirculating and downstream pipes is
likely due to the presence of iron-
oxidizing bacteria. The livelihood of
these microbes, which use hydrogen
sulfide as an electron donor, is
probably supported by anaerobic
sulfate-reducing bacteria. In spite of
the ample amounts of oxygen
throughout the system. SRB’s can
create anoxic conditions within a

deep biofilm, where they can take
advantage of the abundance of
sulfate provided by the Biodex sticking
agent. It is our recommendation

that a new sticking agent that does not
contain sulfate, such as talc, be used
instead of Biodex.

You are suggesting that iron-reducing
bacteria is present at two checkpoints
(i.e., circulating and downstream
pipes). Isn’t the pH of the water
sample too high to maintain iron-
reducing bacteria in both check
points? What is the optimum pH
range for iron-reducing bacteria? You
also acknowledge that the dissolved
oxygen level is high especially in
checkpoint 9. What would this mean?
What is/are the substrate(s) for iron-
reducing bacteria? Are you elimin-
ating the possibility of SRBs? why or
why not? If the sticking agent does
not contain sulfate, how would this
help get rid of iron-reducing bacteria?
Any thoughts?

Test Request: DGGE

Scheduled Date: 25

Test Parameters:

Location of Sample: check point 5;
Primer Set: sulfate reducers;

Reason: Sulfate reducers may be the
producers of H2S in recirculating
pipes

This is a good point. How can you
make sure of this, any cheap way
of finding this out?

Test Request: Water Chemistry
Scheduled Date: 28

Test Parameters:

Test variable: Cl-; H2S; SO4; dissolved
oxygen; pH;

Location of Sample: check point 9;

Reason: Compare S concentrations
between recirculating and downstream

pipes

What is your conclusion based on
this piece of information? Would
temperature suggest anything? How
about DO and pH? Would they
suggest anything?




A FEEDBACK-DRIVEN AUTHORING MODEL / 507

REFERENCES

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. (2006). The cognitive tutor
authoring tools (CTAT): Preliminary evaluation of efficiency gains. In M. Ikeda,
K. D. Ashley, & T. W. Chan (Eds.), Proceedings of the 8th International Conference
on Intelligent Tutoring Systems (ITS 2006) (pp. 61-70). Berlin: Springer Verlag.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Erlbaum.

Barrows, H. S. (2000). Problem-based learning applied to medical education. Springfield,
IL: Southern Illinois University Press.

Beck, K. (2000) Extreme programming explained—Embrace change. White Plains, NY:
Addison-Wesley.

Bell, B. L., Bareiss, R., & Beckwith., R. (1994). Sickle cell counselor: A prototype
goal-based scenario for instruction in a museum environment. Journal of the Learning
Sciences, 3, 347-386.

Bransford, J. D., Brown, A. L., & Cocking, R. R. (Eds.). (1999). How people learn:
Brain, mind, experience, and school. Washington, DC: National Academy Press.
Brown, A. L. (1992). Design experiments: Theoretical and methodological challenges
in creating complex interventions in classroom settings. Journal of the Learning

Sciences, 2, 141-178.

Cockburn, A. (2002) Agile software development. White Plains, NY: Addison-Wesley.

Collins, A., Brown, J. S., & Newman, S. (1989). Cognitive apprenticeship: Teaching the
craft of reading, writing, and mathematics. In L. B. Resnick (Ed.), Knowing, learning,
and instruction: Essays in honor of Robert Glaser. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Collins, A., Joseph, D., & Bielaczyc, K. (2004). Design research: theoretical and methodo-
logical issues. Journal of the Learning Sciences, 13, 15-42.

de Jong, T., & W. R. van Joolingen. (1998). Scientific discovery learning with com-
puter simulations of conceptual domains. Review of Educational Research, 68,
179-201.

Derry, S. J., Hmelo-Silver, C. E., Nagarajan, A., Chernobilsky, E., & Beitzel, B. (20006).
Cognitive transfer revisited: Can we exploit new media to solve old problems on a
large scale? Journal of Educational Computing Research, 35, 145-162.

Dobson, W. D. (1998). Authoring tools for investigate and decide learning environments.
Unpublished manuscript, Northwestern University.

Dochy, F., Segers, M., Van den Bossche, P., & Gijbels, D. (2003). Effects of problem-based
learning: A meta-analysis. Learning and Instruction, 13, 533-568.

Edelson, D. C. (2002). Design research: What we learn when we engage in design.
Journal of the Learning Sciences, 11, 105-121.

Fischer, G. (1998). Seeding, evolutionary growth and reseeding: Constructing, captur-
ing and evolving knowledge in domain-oriented design environments. /nternational
Journal of Automated Software Engineering, 5, 447-464.

Fischer, G., & Ostwald, J. (2002). Seeding, evolutionary growth, and reseeding: Enriching
participatory design with informed participation. In T. Binder, J. Gregory, & 1. Wagner
(Eds.), Proceedings of the Participatory Design Conference (PDC’02) (pp. 135-143).
California: Malmé University.

Hmelo-Silver, C. E., & Barrows, H. S. (2006). Goals and strategies of a problem-
based learning facilitator. /nterdisciplinary Journal of Problem-Based Learning, 1,
21-39.



508 / QIU AND RIESBECK

Hmelo-Silver, C. E., Duncan, R. G., & Chinn, C. A. (2007). Scaffolding and achievement
in problem-based and inquiry learning: A response to Kirschner, Sweller, and Clark
(2006). Educational Psychologist, 42, 99-107.

Hoffman, B., & Ritchie, D. (1997). Using multimedia to overcome the problems with
problem based learning. Instructional Science, 25, 97-115.

Hsieh, P., Halff, H., & Redfield, C. (1999). Four easy pieces: Developing systems for
knowledge-based generative instruction. International Journal of Artificial Intelli-
gence in Education, 10, 1-45.

Koedinger, K., Aleven, V., Heffernan, N., McLaren, B., & Hockenberry, M. (2004).
Opening the door to nonprogrammers: Authoring intelligent tutor behavior by demon-
stration. In Proceedings ITS-2004 (pp. 162-174). Berlin: Springer.

Koh, G. C.,, Khoo, H. E., Wong, M. L., & Koh, D. (2008). The effects of problem-
based learning during medical school on physician competency: A systematic review.
Canadian Medical Association Journal (CMAJ), 178, 34-41.

Lajoie, S. P., Lavigne, N. C., Guerrera, C., & Munsie., S. (2001). Constructing knowledge
in the context of BioWorld. Instructional Science, 29, 155-186.

Landauer, T. K., & Dumais, S. T. (1997). A solution to Plato’s problem: The latent
semantic analysis theory of acquisition, induction, and representation of knowledge.
Psychological Review, 104, 211-240.

Landauer, T. K., Foltz, P. W., & Laham., D. (1998). An introduction to latent semantic
analysis. Discourse Processes, 25, 259-284.

Larman, C. (2003). Agile and iterative development: A manager’s guide. White Plains,
NY: Addison-Wesley Professional.

Liu, M, Williams, D., & Pedersen, S. (2002). Alien rescue: A problem-based hyper-
media learning environment for middle school science. Journal of Educational
Technology Systems, 30, 255-270.

Mergendoller, J. R., Maxwell, N. L., & Bellisimo, Y. (2006). The effectiveness of
problem-based instruction: A comparative study of instructional method and student
characteristics. Interdisciplinary Journal of Problem-Based Learning, 1, 49-69.

Molenda, M., Pershing, J. A., & Reigeluth, C. M. (1996). Designing instructional
systems. In R. L. Craig (Ed.), The ASTD training and development handbook (4th ed.,
pp. 266-293). New York: McGraw-Hill.

Munro, A., Johnson, M. C., Pizzini, Q. A., Surmon, D. S., Towne, D. M., & Wogulis,
J. L. (1997). Authoring simulation-centered tutors with RIDES. International
Journal of Artificial Intelligence in Education, 8(3-4), 284-316.

Murray, T. (2003). An overview of intelligent tutoring system authoring tools: Updated
analysis of the State of the art. In T. Murray, S. Blessing, & S. Ainsworth (Eds.),
Authoring tools for advanced technology learning environments (pp. 491-545).
Amsterdam: Kluwer Academic Publishers.

Murray, T., Blessing, S., & Ainsworth S. E. (2003). Authoring tools for advanced tech-
nology learning environments. Amsterdam: Kluwer Academic Publishers.

Norman, D. A., & Draper, S. W. (Eds.). (1986). User-centered system design: New perspectives
on human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Pawson, R., & Mathews, R. (2002). Naked objects. Chichester, England: Wiley.

Qiu, L. (2005). 4 web-based architecture and incremental authoring model for interactive
learning  environments for diagnostic reasoning. Unpublished manuscript,
Northwestern University.



A FEEDBACK-DRIVEN AUTHORING MODEL / 509

Qiu, L., & Riesbeck, C. K. (2008). An incremental model for developing educational
critiquing systems: Experiences with the Java Critiquer. Journal of Interactive
Learning Research, 19.

Reeves, B., & Nass, C. (1996). The media equation. Cambridge: SLI Publications,
Cambridge University Press.

Roschelle, J., Kaput, J., Stroup, W., & Kahn, T. (1998). Scalable integration of educational
software: Exploring the promise of component architectures. Journal of Interactive
Media in Education, 98(6), 1-31.

Royce, W. (1970, August). Managing the development of large software systems.
Proceedings of IEEE WESCON, 26, 1-9

Schank, R. C. (1982). Dynamic memory: A theory of reminding and learning in computers
and people. Cambridge: Cambridge University Press.

Schank, R., Fano, A., Bell, B., & Jona, M. (1993). The design of goal-based scenarios.
Journal of the Learning Sciences, 3, 305-345.

Schuler, D., & Namioka, A. (1993). Participatory design: Principles and practices.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Sparks, R., Dooley, S., Meiskey, L., & Blumenthal, R. (1998). The LEAP authoring
tool: Supporting complex courseware authoring through reuse, rapid prototyping,
and interactive visualizations. International Journal of Artificial Intelligence in
Education, 10, 75-97.

Torp, L., & Sage, S. (2000). Problems as possibilities: Problem-based learning for K-16
Education. (2nd ed.). Alexandria, VA: ASCD.

van Joolingen, & de Jong, T. (1996). Design and implementation of simulation-based
discovery environments: The SMISLE solution. International Journal of Artificial
Intelligence in Education, 7(3/4), 253-276.

Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced
learning environments. Educational Technology Research and Development, 53, 5-23.

Wiggins, G. (1992). Creating tests worth taking. Educational Leadership, 49, 26-33.

Wilson, J., & Rosenberg, D. (1988). Rapid prototyping for user interface design. In
M. Helander (Ed.), Handbook of human-computer interaction (pp. 859-875). New
York: North-Holland.

Woolf, B. P, & Cunningham, P. A. (1987). Multiple knowledge sources in intelligent
teaching systems. /[EEE Expert, 2, 41-54.

Direct reprint requests to:

Dr. Lin Qiu

Department of Computer Science

State University of New York at Oswego
Oswego, NY 13126

e-mail: Iqiu@oswego.edu



Copyright of Journal of Educational Computing Research is the property of Baywood Publishing
Company, Inc. and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print, download, or
email articles for individual use.



