
Automatic Correction of Idiomatic Usage in English Using Web Search

Ting Qian
Department of Brain and Cognitive Sciences

University of Rochester
Rochester, NY 14627, USA
tqian@mail.rochester.edu

Lin Qiu
Department of Computer Science

State University of New York at Oswego
109 Snygg Hall, Oswego, NY 13126, USA

lqiu@cs.oswego.edu

Abstract

Non-native English speakers often have problems de-
termining the exact form of an idiomatic expression
while they have some vague idea about the key words
in them. In this paper, we describe a system called
Webtionary that allows users to consult idiomatic us-
age by entering a questionable expression. Webtionary
uses web search to find candidate corrections and sug-
gests expressions that are commonly used in writing and
semantically-related to the user query. Evaluation re-
sults show that Webtionary significantly outperforms di-
rect web search in providing useful suggestions.

1. Introduction

Due to the widespread use of personal webpages,
blogs and wikis, the web has become an enormous col-
lection of writings created by people all over the world.
Recent studies have shown that the web has the same
properties as those of a traditional corpus [4].

In this paper, we describe a system that uses the web
as a language source to help non-native English speakers
with idiomatic usage. Idiomatic usage involves the use
of specific particles (a category of words including “the
articles, most prepositions and conjunctions, and some
interjections and adverbs” [5]) with nouns, verbs, or ad-
jectives. From our own experiences and the user study
described below, non-native English speakers often have
problems determining the exact form of an idiomatic ex-
pression, while they have some vague ideas about the key
words that they want to use. For example, a non-native
speaker may remember there is an expression about get-
ting in a car that uses the word “hop,” but he or she does
not know whether it is “hop on a car,” “hop in a car,”
or “hop a car.” As there are no grammatical rules about
how to use them in general, it is very difficult for non-
native speakers to correctly memorize idiomatic expres-
sions that are perfectly natural to native speakers.

While traditional dictionaries can help users with
word definitions and examples, it is impossible for a dic-
tionary to list the idiomatic usage of a word in all possi-
ble contexts. If a non-native speaker is unsure of which
preposition he or she should use in the above example,
and looks up “hop” in Oxford Advanced Learner’s Dic-
tionary (one of the most comprehensive and popular dic-
tionaries used by English learners), he or she will find
“hop. 4. [VN] (AmE) to get on a plane, bus, etc” as
the most relevant information. However, this offers little
help to the user.

To solve the problem, we developed Webtionary, a
tool that provides a natural and flexible interface for
users to consult idiomatic usage in English. Our premise
is that the correct usage of an expression should appear
way more often than the incorrect ones on the Web. Even
though the web may contain many incorrect writings, its
large amount of data should outweigh its noisiness [4].
In the remaining of this paper, we will briefly overview
related work and describe the system in detail.

2. Related Work

A number of applications have been built using the
web as a corpus to solve linguistic problems [4]. For ex-
ample, Cilibrasi and Vitanyi [1] created a method that
determines how closely two words are semantically re-
lated to each other based on the frequency of their ap-
pearance on the same webpage. Shamma et. al. [6]
show that a word’s web frequency highly correlates with
people’s familiarity with that word.

However, finding the right usage of an expression on
the web requires advanced search skills from forming the
right queries to analyzing search results. GoogleFight
[2] is a tool that allows users to enter several expres-
sions and rank them based on their web frequencies (i.e.
the number returned by a search engine that indicates
how many webpages contain the search query). While
GoogleFight helps users determine which expression is
more popular on the web, it requires the user to enter all

2007 IEEE/WIC/ACM International Conference on Web Intelligence

0-7695-3026-5/07 $25.00 © 2007 IEEE
DOI 10.1109/WI.2007.142

283

2007 IEEE/WIC/ACM International Conference on Web Intelligence

0-7695-3026-5/07 $25.00 © 2007 IEEE
DOI 10.1109/WI.2007.142

283

2007 IEEE/WIC/ACM International Conference on Web Intelligence

0-7695-3026-5/07 $25.00 © 2007 IEEE
DOI 10.1109/WI.2007.142

283

2007 IEEE/WIC/ACM International Conference on Web Intelligence

0-7695-3026-5/07 $25.00 © 2007 IEEE
DOI 10.1109/WI.2007.142

283

possible forms of the expression to find the most popular
one. This approach is not only tedious, but also imprac-
tical because non-native speakers often miss the correct
form (e.g., “hop in a car”) in their candidate list. Kiwi
[7] allows users to use patterns to perform linguistically
useful searches. Users can use wildcards to find popular
phrases on the web that match a specific pattern. Such
tools can be used to consult idiomatic usage if a wild-
card is placed to indicate the questionable part. How-
ever, this requires the user to understand how to form
patterns correctly. This is very difficult for non-native
speakers because they often only know some key words
in an expression but not the exact structure.

3. Webtionary

Our system, Webtionary, does not require an enumer-
ation of possible expressions or the use of patterns. For
example, users can simply enter “hop car” and get the
correct expression “hop in a car.” Webtionary provides a
web-based interface where the user can enter an expres-
sion in question and receive corrections with examples
showing how each one is used in sentences.

User query Correction
help English writing help with English writing
fed by with the noise fed up with the noise
look forward to see you look forward to seeing you

Figure 1. Corrections generated by Web-
tionary for user queries.

User queries entered into Webtionary are sent to
Google. Upon receiving the search results, Webtionary
extracts candidate corrections from the search results
and use the two metrics to rank the candidates. Fig-
ure 1 shows examples of corrections generated by Web-
tionary for real user queries collected during our eval-
uation study. In the following, we describe the meth-
ods that we use to extract candidate corrections and rank
them, an evaluation study, and future research directions.

3.1. Candidate correction generation

When a user query is sent to Google, Google returns
a list of snippets. The keywords of the user query are
formatted in bold by the “” and “” HTML
tags. As a result, we extract candidate corrections that
start with the first word of the user query, in bold by the
HTML tag, and end with the last word of the user query,
which must be in bold as well, as shown in Figure 2.

Because Google automatically removes stop words
such as a, the, as, on from a search query, the snippets
returned from Google will contain expressions that have

Snippet Candidate
...Deputy Judge Advocatefor
Warcrimes, European com-
mand . . .

Advocate
for War

...office of the Judge
AdvocateGeneral
(War)

Advocate
general
war

Figure 2. Candidate corrections extracted
from snippets returned from Google.

the “important” words in the user query but with differ-
ent particles. The query normalization techniques em-
ployed by Google help us find exactly what we need:
expressions that are similar to the user query but not ex-
actly the same.

The more snippets that we retrieve from Google, the
more candidate corrections we can get. However, it will
increase the response time as well as the chance of find-
ing the right correction. To balance the speed and the
quality of corrections, we experimented with 50 and 80
snippets for a user query, and found that 80 snippets pro-
duced better results (see the Evaluation section for fur-
ther discussion).

3.2. Ranking Algorithm

We rank candidate corrections using the product of
two metrics. The semantic similarity metric assesses
how semantically close a candidate correction is to
the user query. The probability metric assesses the
likelihood of a candidate correction being the one that
the user wants to write. The combination of these two
metrics allows us to find the expressions that are not
only popular but also express the meaning as close to
the user query as possible.

Semantic similarity metric. We use the Vector
Space model and the tf · idf method [3] to compute
this metric. We first construct a term index table that
includes all the words in the user query and candidate
corrections. The table is constructed dynamically every
time a user enters a query. Then, we represent the user
query q and a candidate correction di as vectors:

~q = (w1,q, w2,q, w3,q, . . . , wn,q)

~dj = (w1,j , w2,j , w3,j , . . . , wn,j)

In the above vectors, n is the total number of unique
terms (t1, . . . tn) in the index table. wi,j is the weight
for term ti in a candidate correction dj , and wi,q is the
weight for the term in the user query q.

Because our user query and candidate corrections
have an average length of five words, we use the formula
suggested by Salton and Buckley [3] for small texts to

284284284284

calculate wi,u, the weight for a term ti in an expression
u:

wi,u = (0.5 +
0.5 · tfi,u

maxk tfk,u
) · idfi (1)

In the above formula, tfi,u is the number of times a
term ti occurs in the expression u, called term frequency.
maxk tfk,u is the frequency of the most frequent term k
in the expression u. idfi is the inverse document fre-
quency for a term i. Its value indicates the idea that if a
candidate correction and the user query share terms that
infrequently appear in the whole expression collection,
then it is very likely that the two are semantically-related.
idfi is defined as follows:

idfi = log
|{d1, d2, . . . , dm}|
|{dj , ti ∈ dj}|

(2)

Once we obtain each wi,u in the user query q and can-
didate correction dj , we assess semantic similarity by
computing the cosine of the angle between the vectors:

sim(dj , q) =
∑n

i=1 wi,j × wi,q√∑n
i=1 w2

i,j ×
√∑n

i=1 w2
i,q

(3)

The value of (3) indicates how semantically close a
candidate correction is to the user query.

Probability metric. The probability metric ranks
the candidate corrections by p(dj |q) , the probability
of a candidate correction dj being the one that the user
wants to write given the user query q. We compute the
probability according to Bayes rule [3]:

p(dj |q) =
p(q|dj) · p(dj)

p(q)
(4)

We use a method modeled after the Levenshtein dis-
tance [3] to approximate p(q|dj), the probability of the
user wanting to write dj but writing q instead. Leven-
shtein distance is a method for calculating the minimum
number of editing operations needed to transform one
string into another. It assigns a cost of 1 to any insertion
or deletion operation, and a cost of 2 to a substitution
operation. Our approach to calculate the minimum edit
distance between a candidate correction and a miswritten
idiomatic expression is similarly based on the weighting
scheme shown in Figure 3.

Corrections with smaller distances are more likely to
be the right ones. Therefore, we use Equation (5) to link
the probability p(q|dj) with distance(q, dj):

p(q|dj) = e−distance(q,dj) (5)

We use the web frequency of an expression dj to ap-
proximate p(dj). We calculate the web frequency F (dj)
by sending dj with double quotes around it as a query

Weight(e) Editing Operation Type
1 an insertion or a deletion
2 a substitution between two particles, or a

substitution between two non-particles
4 a substitution between a particle and a non-

particle

Figure 3. The weighting scheme for differ-
ent editing operations.

to Google and retrieving the number of web pages con-
taining dj . We normalize it using the maximum web
frequency of all candidate corrections. Thus:

p(dj) =
F (dj)

maxk F (dj)
(6)

Given (5), (6), Equation (4) becomes:

p(dj |q) =
e−distance(q,dj) · F (dj)

maxk F (dj)

p(q)
(7)

In the above formula, p(q) remains the same for a
given user query q. Thus, the numerator is the only ef-
fective part.

The semantic similarity metric and probability met-
ric each generates a value between 0 and 1. We use the
product of these values to rank the candidate corrections
in descending order.

4. Evaluation

We conducted a formative evaluation of Webtionary.
We invited 20 students who are non-native English
speakers to use Webtionary whenever they have ques-
tions on idiomatic usage. After a month, students en-
tered a total of 145 queries. We use these queries as our
test cases.

During the evaluation, it took 4 seconds for Web-
tionary to respond to a user query on average. In ad-
dition, over 74% of the user queries received one to ten
corrections. 8% of the user queries did not receive any
suggestion. This is because these queries contain un-
common words that are hard to find in online examples.
We believe the percentage of these cases will remain low
because the chances of using uncommon words by non-
native speakers would also be low.

To evaluate correction generation and ranking algo-
rithm, we compared the quality of the corrections gen-
erated by Webtionary using 50 and 80 snippets, with re-
sults from sending user queries to Google and using the
relevant expressions contained in the snippets as correc-
tions.

We evaluated the probability of having a good correc-
tion listed in the top five. Figure 4 shows that when Web-
tionary processed 80 snippets, it outperformed the other

285285285285

Figure 4. The percentage of test cases that
have at least one good suggestion ranked
among the top n.

two cases with 71% of the time having the top correction
as a good one and 88% of the time having at least one
good suggestion in the top 5. This means that for 88%
of the time users can scan through the top 5 suggestions
and find a usable correction. This is much better than
the results obtained directly from Google search where
only 26% of the time the top correction is a good cor-
rection and 62% of the time there will be at least a good
correction in the top five.

Figure 5. The percentage of test cases that
have at least n good suggestions among
the top 5.

We also evaluated how many good corrections user
could find in the top five. Figure 5 shows that when Web-
tionary processed 80 snippets, it again outperformed the
other two cases with 13% of the time having all five cor-
rections as good suggestions (which is about 13 times
better than direct Google search), and 88% of the time
having only one good suggestion in the top five (which
is about 1.5 times better than direct Google search).

The above results show that Webtionary significantly
outperformed direct Google search.

5. Discussion and future work

Webtionary has no control over search options, rank-
ing algorithms, and other technologies used in Google. It
would be ideal to build a search engine tailored for lin-
guistic analysis. However, the development of a search
engine containing over 1010 webpages (the number of
webpages currently indexed by Google) requires enor-
mous computational resources and sophisticated exper-
tise that are rarely available. Therefore, building sys-
tems over existing search engines remains an endeavor
of practical importance.

One direction of future work is to integrate Web-
tionary into a word processor to provide users with
proofread for idiomatic usage. We are currently experi-
menting with automatic term recognition techniques to
extract idiomatic expressions from users writings and
verify them using Webtionary.

6. Conclusion

In summary, we have described an approach of using
the web to correct idiomatic usage in English. We de-
scribed Webtionary, a system that provides corrections to
questionable idiomatic expressions. While there is still
room for improvement, results from the evaluation study
show that Webtionary is suitable for practical use. Meth-
ods used in Webtionary demonstrate an important step
towards using the web to verify English writing without
complex linguistic analysis.

References

[1] R. Cilibrasi and P. M. B. Vitanyi. Automatic meaning dis-
covery using google, December 2004.

[2] Googlefight, 2007. http://www.googlefight.com.
[3] D. Jurafsky and J. H. Martin. Speech And Language Pro-

cessing: An Introduction to Natural Language Process-
ing, Computational Linguistics, and Speech Recognition.
Prentice Hall, Upper Saddle River, New Jersey, 1 edition,
2000.

[4] A. Kilgarriff and G. Grefenstette. Introduction to the spe-
cial issue on the web as corpus. Computational Linguis-
tics, 29(3):333–347, 2003.

[5] Merriam-webster online dictionary, 2007.
http://www.webster.com/dictionary/particle.

[6] D. A. Shamma, S. Owsley, K. J. Hammond, S. Bradshaw,
and J. Budzik. Network arts: exposing cultural reality.
In Proceedings of WWW Conference, pages 41–47. ACM,
May 2004.

[7] K. Tanaka-Ishii and H. Nakagawa. A multilingual usage
consultation tool based on internet searching: more than
a search engine, less than qa. In WWW ’05: Proceedings
of the 14th international conference on World Wide Web,
pages 363–371, New York, NY, USA, 2005. ACM Press.

286286286286

