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A B S T R A C T

The correct prediction of protein secondary structures is one of the key issues in predicting the correct protein folded
shape, which is used for determining gene function. Existing methods make use of amino acids properties as indices to
classify protein secondary structures, but are faced with a significant number of misclassifications. The paper presents
a technique for the classification of protein secondary structures based on protein “signal-plotting” and the use of the
Fourier technique for digital signal processing. New indices are proposed to classify protein secondary structures by an-
alyzing hydrophobicity profiles. The approach is simple and straightforward. Results show that the more types of protein
secondary structures can be classified by means of these newly-proposed indices.

© 2016 Published by Elsevier Ltd.

1. Introduction

X-Ray crystallography and nuclear magnetic resonance spec-
troscopy are two widely-used instrumental methods [1] to determine
protein secondary structures. Although these methods are powerful
techniques for the structural determinations and analysis of proteins,
they are resource-intensive and time-consuming. Because of these rea-
sons, a bottleneck is created in the analysis of protein secondary struc-
tures, as protein database is growing exponentially in recent years.
Hence computational methods are becoming useful in conjunction
with instrumental methods in the prediction of protein secondary
structures [2,3].

This paper deals with classifying protein secondary structures,
namely -helix and -strand, which are the building blocks of pro-
tein secondary structures. Several methods were proposed, including
neural network [4] and wavelet transform [5]. Although these methods
could predict the protein secondary structures with a reasonable level
of accuracy, the types of protein secondary structures to be predicted
were limited.

In this paper, a simple and effective novel method is developed
to classify protein secondary structures, by utilizing the Fourier tech-
nique for digital signal processing. Unlike the wavelet transform and
neural network techniques, this method does not require users to have
the competency to select optimal parameters for each classification.

A DNA sequence can be plotted as a signal by using a numeri-
cal representation of the four bases [6–9]. The same can be carried
out for a protein sequence containing twenty types of amino acids,
as shown in Fig. 1. Using this representation, DNA or protein se-
quences can be analyzed just like digital signal processing. There-
fore the significant regions within DNA sequence, such as coding and
non-coding regions [10,11], are expected to have different properties
[12]. Similarly for protein secondary structures, such as -helix and
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-strand, the different properties between them should be expected.
Using these properties to analyze DNA and protein sequences

opens up a novel field in sequence analysis in bioinformatics. In this
paper, the properties, such as hydrophobicity and frequency, are used
to classify protein secondary structures. A hypothesis based on the
characteristics of protein secondary structures is drawn and verified
based on existing experimental results.

2. Methods

The protein sequence of interest is obtained from GenBank in
FASTA format. -helix and -strand sequences are defined by twenty
amino acids. There are many ways to encode amino acids numerically.
For classifying protein secondary structures, hydrophobicity values
are most relevant [13]. The hydrophobicity value <Hf> is shown in
Table 1 [14].

From previous work [14], the profiles of protein secondary struc-
tures for exposed helical structure, exposed -structure, -turn and
buried -structure are produced and classified. In Fig. 2, exposed he-
lical and exposed -structures are easily distinguishable from -turn
and buried -structure. The former group has a shape that approxi-
mates a sine wave whereas the latter group composes of a U shape and
an inverted U shape curve respectively. By using the mean difference
values of each point from the critical hydrophobicity value of ,
-turns can be identified, because the amino acids of -structures have
the low affinity with water. For the classification of exposed helical
and exposed -structures, the hydrophobicity profiles are used.

http://dx.doi.org/10.1016/j.bbrc.2017.02.117
0006-291/© 2016 Published by Elsevier Ltd.
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Fig. 1. Protein sequence plot of Homo sapiens myogloblin.

Table 1
Bulk hydrophobic character and accessibility coefficients for amino acids.

Amino acid <Hf> <Br>

Ala 12.28 0.39
Arg 11.49 0.12
Asn 11.00 0.16
Asp 10.97 0.17
Cys 14.93 0.58
Gln 11.28 0.16
Glu 11.19 0.16
Gly 12.01 0.38
His 12.84 0.29
Ile 14.77 0.55
Leu 14.10 0.48
Lys 10.80 0.13
Met 14.33 0.46
Phe 13.43 0.35
Pro 11.19 0.22
Ser 11.26 0.25
Thr 11.65 0.26
Trp 12.95 0.23
Tyr 13.29 0.30
Val 15.07 0.63

3. Implementation

3.1. Classification of bovine phospholipase A2

The classification of protein secondary structures is implemented
on a set of known protein secondary structures shown in Table 2 [14].
The protein bovine phospholipase A2 is used for demonstration. Ac-
cording to experimental data, bovine phospholipase A2 contains
-helices, exposed -sheets and -turns. Here it is shown how the
groups are classified using a two-dimensional classification plot. The
bovine phospholipase A2 protein sequence is taken from GenBank un-
der the accession code of 1KVX. From there, the individual known
substrings are gathered. Convert protein sequence into a signal with
amplitude and time. The amplitude of each amino acid is assigned us-
ing the hydrophobicity value <Hf> from Table 1. Each unit of time
corresponds to one amino acid. A signal graph of Homo sapiens myo-
globin is shown in Fig. 1. Break up the signal into its frequency com-
ponents. This is done by using the Fourier transform as follows

where is the number of amino acids and each substring is numer-
ically represented. Amplitudes in the frequency domain are henceforth
called hydrophobicity value . Dominant frequency corresponds to
the one with the highest hydrophobicity value. The classification plots
of the protein sequence 1KVX are generated in Fig. 3.

4. Discussion

It is evident that from hydrophobicity value alone, -turns are clas-
sified in the negative -axis due to the majority of amino acids being
less hydrophobic (below critical hydrophobic value of ). The other
type of protein secondary structures has positive hydrophobicity value
and falls on the right side of the origin. This can be seen from Fig. 3. In
order to differentiate the remaining types of protein secondary struc-
tures – -helix and exposed -sheet – dominant frequency is used.
Since the amino acids of exposed -sheets alternates between positive
and negative hydrophobicity values at a greater frequency than that of

-helix structure, the plot of the former is expected to be higher in the
graph. This point could well be the buried helical structure of similar
shape to the buried -structure, which is not defined by Ref. [14] in
Fig. 2. From the above analysis, a hypothesis can be derived for the
family of the bovine phospholipase proteins as summarized in Table
3.

More tests on other bovine phospholipase proteins may be required
to prove the above hypothesis as well as the critical dominant fre-
quency value to distinguish between exposed -helix and -sheet. Ex-
perimental data on exposed and buried -helix are useful in the under-
standing of how amino acids fold under different scenarios. Besides
bovine phospholipase proteins, other proteins can be tested using these
indices in order to come up with a universal tool to distinguish protein
secondary structures.

A further test is carried out on selected three -helix structures
from adenylate kinase (GenBank 3ADK) and a total of four buried and
exposed -structures from concanavalin A (GenBank P81461) [14].
The result is shown in Fig. 4. From the hypothesis of Table 3, out of

-helix structures are correctly classified. Buried -sheets are gener-
ally plotted below exposed -sheets and on the left of -helices.
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Fig. 2. Basic hydrophobicity profiles; <Hf>, <Br> versus base positions [14].

Table 2
Set of protein sequences with known protein secondary structures [14].

Protein AAR
Resolution
(Å) Qα(%)b Qβ(%)c

Adenylate kinase 194 3.0 82.1 97.2
Alcohol dehydrogenasea 374 2.4 67.5 73.5
Carbonic anhydrase C 259 2.0 82.5 80.0
Carboxypeptidase A 307 2.0 67.0 80.4
Catalase 505 2.5 70.5 76.5
Concanavalin Aa 238 2.4 96.6 74.3
Cytochrome bs 93 2.8 75.6 82.3
Dihydrofolate reductase 189 2.9 86.4 76.6
Ferricytochrome c 128 2.5 76.5 95.0
Flavodoxin 138 1.8 93.4 88.5
Lamprey globin 148 2.0 71.3 85.8
Glutathione reductasea 478 2.0 69.8 69.9
D-Glyceraldchyde-3-phosphate
dehydrogenasea

334 2.9 79.7 77.3

Lactate dehydrogenase domain I 178 2.0 80.5 85.9
Lysozome 129 1.5 83.1 66.2
Phospholipase A2 122 1.7 90.5 89.0
Rhodanase domain Ia 137 2.5 89.6 88.2
Ribonuclease 124 2.0 79.4 75.2
Subtilisin 275 2.5 85.0 87.7
Cu, Zn Superoxide dismutase 151 3.0 91.4 80.7
Thermolysina 316 2.3 73.6 67.3
Thioredoxin-S2

a 108 2.8 70.5 86.2
Triose phosphate isomerase 248 2.5 70.5 86.6

a Some reported -structures have < 5 AAR and/or helices with <6 AAR.
b Average .
c Average .

It is worth noting that based on Fig. 4, buried -sheet, which can-
not be detected [14], is shown to be in a distinguishable group. The

-helix with a high hydrophobicity value of greater than sug-
gests that many of its amino acids are hydrophilic. Hence they can
fold in such a way that these amino acids do not come into contact

Fig. 3. Classification plot of hydrophobicity value versus dominant frequency for
1KVX.

Table 3
Hypothetical classifications of three protein secondary structures.

Dominant frequency

<400 >400

Hydrophobicity value <0 -turn
0~0.55 Buried -sheet Exposed -sheet
>0.55 -helix

with water under normal circumstances, thus preventing a reaction
from taking place. In order for that to happen, the amino acids need
to be buried within the protein. This means that the -helix can in
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Fig. 4. Classification plot of selected protein secondary structures from 3ADK and
P81461.

fact be buried in nature, giving rise to another protein secondary struc-
ture that is not classified [14] in Fig. 2. Evidently from Fig. 4 alone,
it shows that the more types of protein secondary structures can be
classified using this new set of indices, at least within the 3ADK and
P81461 class of protein sequences.

In order to verify the hypothesis set in Table 3, Figs. 3 and 4 are
combined into Fig. 5 which shows that all protein secondary struc-
tures are well classified. -turns are clearly situated in the nega-
tive hydrophobicity value region on the left hand side of the graph.
This implies that they are hydrophobic in nature. Both -helices and

-sheets are situated in the positive hydrophobicity value region.
-helices are generally situated in the region with a dominant fre

Fig. 5. Classification plot of 1KVX, 3ADK and P81461.

quency value of less than . This implies that there is less volatil-
ity or differences among the hydrophobicity values of amino acids
to form structures. As for -sheets, the majority of them are situated
above the line. The hypothesis is verified.

5. Conclusion

In this paper, new indices have been proposed to classify protein
secondary structures. It has been shown that using these indices – hy-
drophobicity value and dominant frequency – it is possible to classify
the more types of protein secondary structures. Ultimately, it is hope
that this research opens up a whole new concept for the analysis of
not only protein secondary structures, but also DNA and protein se-
quences [15–18].
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