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A new set of DNA base-nucleic acid codes and their hypercomplex number rep-
resentation have been introduced for taking the probability of each nucleotide into
full account. A new scoring system has been proposed to suit the hypercomplex
number representation of the DNA base-nucleic acid codes and incorporated with
the method of dot matrix analysis and various algorithms of sequence alignment.
The problem of DNA sequence alignment can be processed in a rather similar way
to pairwise alignment of theprotein sequence.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

Deoxyribonucleic acid, DNA, is the molecule of life. DNA is a double helix
comprising two DNA strands running antiparallel to each other and is made of
many units of nucleotides, which each consist of a sugar, a phosphate and a base.
The four types of nucleotide (A, T, G and C) are linked in different orders in the
extremely long DNA molecules, thus allowing a unique DNA sequence for each of
the infinite number of living organisms.

With more DNA sequences becoming available (Lim and Shu, 2001, 2002), com-
puter programs have been developed to analyze these sequences in various ways.
The dot matrix method, which is used to detect similarities between sequences,
was discovered first (Mount, 2001). In this method of comparing two sequences,
a graph is drawn with one sequence written across a page from left to right and
another sequence down the page on the left-hand side. A dot is placed where the
corresponding nucleotide in the two sequences is the same. The graph is then
scanned for diagonals of dots, which reveal similarities. Unless the sequences are
known to be very much alike, the dot matrix method was used first as this method
displayed any possible sequence alignments as diagonals on the matrix. The dot
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matrix analysis reveals the presence of insertions/deletions, and direct/inverted
repeats that are more difficult to find by other methods. The major limitation of
the dot matrix analysis is that most dot matrix computer programs do not show an
actual alignment.

As the dot matrix method does not identify similarities that are interrupted, the
method of sequence alignment was devised (Durbin et al., 1998). Sequence align-
ment is a procedure of comparing two sequences by searching for a series of
individual characters that are in the same order. An alignment is generated, start-
ing at the ends of the two sequences, by attempting to match all possible pairs
of characters between the sequences, following a certain algorithm for matches,
mismatches and gaps. This procedure generates a matrix of numbers that represent
all possible alignments between the sequences. The optimal alignment between the
two sequences is one that gives a highest score. The dynamic programming method
is guaranteed in a mathematical sense to provide the optimal alignment for a given
set of user-defined variables, including the choice of scoring matrix and gap penal-
ties. There are two types of sequence alignment: global alignment (Needleman and
Wunsch, 1970) and local alignment (Smith and Waterman, 1981). In global align-
ment, the entire sequences are aligned from beginning to end. It is better to use
global alignment for aligning sequences that are similar and have approximately
the same length. In local alignment, parts of the sequences with the most matches
are aligned, giving rise to a number of subalignments in the aligned sequences.
Thus local alignments are more suitable for aligning sequences that are similar
only along some of their lengths, sequences that differ in length and sequences that
share a conserved region or domain. These two methods of sequence comparison
are sometimes used hand in hand, for more efficient sequence analysis of DNA.
In this paper, the hypercomplex number system has been explored for its possible
application in DNA sequencing.

2. DNA BASE-NUCLEIC ACIDS IN HYPERCOMPLEX NUMBER

REPRESENTATION

By permutation and combination, the total number of possible mixed DNA base-
nucleic acid codes is 24 = 16. Since there are four types of nucleotide, a four-
dimensional space is essential to represent the DNA codes fully. The hypercom-
plex number system required here is a third-order system of the formZ = PA +
PT + PG + PC = (PA, PT, PG, PC). To assign the values forPA, PT, PG andPC,
the probability of each DNA base appearing in the DNA base-nucleic acid codes
is taken into consideration. The values ofPA, PT, PG and PC indicate the proba-
bilities of the bases A, T, G and C respectively, satisfying the basic principle that
PA + PT + PG + PC = 1.

Based on the principle in the previous section, the hypercomplex number repre-
sentations of the DNA base-nucleic acid codes were derived and these are listed in
Table 1.
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Table 1. DNA base-nucleic acid codes and their hypercomplex number representation.

Symbol Meaning Explanation Hypercomplex number
representation

O No base No base (0,0, 0, 0)
A A Adenine (1, 0, 0, 0)
T T Thymine (0, 1, 0, 0)
G G Guanine (0, 0, 1, 0)
C C Cytosine (0, 0, 0, 1)
W A or T Weak interactions 2 h bonds (1/2, 1/2, 0, 0)
R A or G puRine (1/2, 0, 1/2, 0)
M A or C aMino (1/2, 0, 0, 1/2)
K G or T Keto (0, 1/2, 1/2, 0)
Y C or T pYrimidine (0, 1/2, 0, 1/2)
S Cor G Strong interactions 3 h bonds (0, 0, 1/2, 1/2)
D A, G or T not C D follows C in alphabet (1/3, 1/3, 1/3, 0)
H A, C or T not G H follows G in alphabet (1/3, 1/3, 0, 1/3)
V A, C or G not T V follows U in alphabet (1/3, 0, 1/3, 1/3)
B C, G or Tnot A B follows A in alphabet (0, 1/3, 1/3, 1/3)
N Any base Any base (1/4, 1/4, 1/4, 1/4)

3. DOT MATRIX WITH HYPERCOMPLEX NUMBER REPRESENTATION

The dot matrix sequence analysis is a method used primarily for comparing
two sequences to look for possible alignment of characters between the sequences
(Mount, 2001). It could also be used to find direct or inverted repeats in DNA
sequences. The major advantage of the dot matrix method is that all possible
matches of residues between the two sequences are found and significant ones are
easily identifiable.

In the comparison of two sequences using the dot matrix method, one sequence
(X1, X2, . . . , Xn) is listed across the top from the left to the right and the other
sequence(Y1, Y2, . . . , Ym) is listed on the left-hand side starting from the top.
Beginning with the first symbolY1 in the sequence(Y1, Y2, . . . , Ym), adot is placed
in the column when the symbolXi is the same asY1, keeping to the first row. Then
the second symbolY2 is compared to the entire sequence(X1, X2, . . . , Xn), placing
a dot in the second row when there is a match betweenXi andY2. This continues
until the whole sequence(Y1, Y2, . . . , Ym) is compared to(X1, X2, . . . , Xn).

Isolated dots throughout the matrix merely represent random matches, which are
not related to any significant alignment. Such random matches might be too many,
making the dot matrix too noisy for identifying aligning sequence regions easily.
Filtering of the random matches to reduce the noise can be done by using a sliding
window to compare the sequences. Instead of comparing each single sequence
position, a window of adjacent positions in the two sequences are compared at
the same time, placing a dot only if a minimal number of matches occurs in that
window, meaning that a dot is placed only when the stringency condition is met.
The window starts at the positions inX andY to be compared and includes symbols
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in a diagonal line going down and to the right, comparing each pair in turn, as in
making an alignment.

With the many diagonals, it is difficult to identify sequence alignments by the dot
matrix method. By performing a count of dots in all possible diagonal lines through
the matrix to determine statistically which diagonals have the most matches, and by
comparing these match scores with the results of random sequence comparisons,
identification of the alignments is aided.

The dots matrix analysis is used to find direct and inverted repeats within
sequences. Hence repeated regions in whole chromosomes are often detected by
means of dot matrix analysis.

Sometimes a dot matrix analysis reveals the repeats of a sequence character when
comparing a sequence against itself on a dot matrix; these repeats appear as hori-
zontal or vertical rows of dots which sometimes merge into a rectangular pattern.
The occurrence of such repeats of the same sequence symbol greatly increases
the difficulty of aligning sequences as they create alignments with artificially high
scores. Another situation that poses a similar problem occurs in low complexity
regions. In such regions, only a few sequence characters are found, thus making it
difficult to find alignments with other sequences.

In the dot matrix analysis using hypercomplex number representation of DNA
bases, whether a dot is placed in a comparison of two DNA sequences is deter-
mined by the dot product of the hypercomplex number representation of the DNA
base-nucleic acids and a truncation value set. The probability of finding a match
between the sequences is implied in the dot product since the hypercomplex num-
ber representation assigned to each of the DNA base acids is based on the prob-
ability that each base appeared inTable 1. For instance, in a comparison of two
sequences, an alignment between residues H and S, having the hypercomplex num-
ber representation(1

3,
1
3, 0, 1

3) and(0, 0, 1
2,

1
2) respectively, the dot product value is

derived asZ H · ZS = (1
3,

1
3, 0, 1

3) · (0, 0, 1
2,

1
2) = 0.17. In other words, based on

the dot product value (between 0 and 1) of the hypercomplex number representa-
tion of the residues in each sequence being compared, the truncation is set at the
value of 1(i.e., any value less than 1 will be truncated to 0) for the conventional
dot matrix analysis (Mount, 2001). Unlike in the conventional dot matrix (Mount,
2001), it is now a choice to set the truncation value for a desired stringency in find-
ing a possible match: a higher value for higher stringency. For example, regions
of short matching alignment may not be necessary. In order to prevent short diag-
onals from appearing too frequently and making the matrix too noisy to identify
actual required aligned regions, a higher truncation value may be selected so as to
reduce the number of dots between the two sequences. To illustrate the influence
of various factors on the outcome of a dot matrix diagram, the following pair of
sequences is selected as an example:

T G R B W B H K M W C Y
S Y A G M W D S H V R K
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Figure 1. The dot product values of the hypercomplex number representation per aligned
residue pair of the example sequences.

The varying parameters in the illustrations include the truncation value, the window
size and the stringency (the minimum requirement on the number of dots to be
present in the window before a dot is placed between the alignment of the residues).
Using the above calculation, the dot product of the alignment between each of the
residues of the example sequences is obtained and this is shown in a matrix in
Fig. 1.

3.1. Effect of truncation value on dot matrix analysis. Based on the dot product
value per aligned residue of the example sequences, a comparison between the
dot matrix diagram was made and this is shown inFig. 2, wherethe truncation
valuesare at 0.3 and 0.5 respectively. The sequences are compared on a one-
to-one residue basis. The dots are placed where the dot product values of the
corresponding residues meet the designed truncation value.

Varying the truncation value changes the number of dots appearing on the dot
matrix diagram. For the case ofFig. 2(a), many dots are present, as the truncation
value isset relatively low. The high concentration of dots on the diagram makes
it deceive one into thinking that there are many matched regions. However, after
inserting diagonals, it is obvious that many dots are not collinear. They are only
random matches all over the matrix. In addition, the number of aligned regions is
also higher inFig. 2(a) than inFig. 2(b) as the truncation value indicates stringency
in finding matches. With a lower truncation value inFig. 2(a), we are actually
looking for a higher number of possible matches, even with a smaller probability
than a more certain alignment as inFig. 2(b), which has a higher truncation value.
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Figure 2. Dot matrices of example sequences with truncation values of (a) 0.3 and (b) 0.5.

Figure 3. Dot matrices of example sequences with sliding window sizes of (a) 2 by 2 and
(b) 3by 3.

3.2. Effect of window size on dot matrix analysis. Using atruncation value of
0.3 and a stringency of 2 in each window for the dot matrix analysis for the example
sequences, the influence of the sliding window size on the dot matrix diagram is
investigated.

In Fig. 3(a), a window size of 2 by 2 is used. With a small window, the number
of dots that can be present in each window is very small. The stringency of 3 is
relatively high for a window size like that inFig. 3(a); thus few dots are placed in
the matrix. No diagonals are located with this combination of parameters on the
example sequences as the dots are sparse and randomly located across the matrix.

For a larger window size, as inFig. 3(b), the stringency of 3 now becomes a
lower stringency relative to the window size. More regions meet the requirement
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Figure 4. Dot matrices of example sequences of the same window size of 2 by 2 with
stringency (a) 2 and (b) 3.

and more dots can been seen appearing even through the same pair of sequences is
being used.

3.3. Effect of stringency on dot matrix analysis. As discussed earlier, the influ-
ence of the stringency desired in each dot matrix analysis will greatly determine the
outcome of the dot matrix diagram. As illustrated inFig. 4, two slightly different
stringencies are used and a great difference is detected in the diagrams.

Using thesame truncation value and window size, the stringency is set at 2 for
Fig. 4(a) and 3 forFig. 4(b). In Fig. 4(a), a relatively high number of dots are
present with two regions of matches whereas inFig. 4(b) the dots are so sparsely
and randomly located that no matched regions can be detected.

Despite the small difference in the stringency, the two diagrams obtained are very
different. This is because the level of stringency is not only determined by its value
but also coupled with the window size. If the window size is larger, a slight change
in the stringency will not contribute to a big difference in the dot matrix diagram.
However, when the window size is very small, the difference in stringency becomes
relatively important.

4. SCORING MODEL FOR HYPERCOMPLEX NUMBER REPRESENTATION

In sequence analysis by a scoring matrix, the factors to consider include the type
of alignment, the scoring system used to rank alignments, the algorithm used to
find optimal scoring alignments and the statistical methods used to evaluate the
significance of an alignment score (Durbin et al., 1998). When the two sequences
being compared have diverged from a common ancestor, evidence of mutation
and selection could be detected. The basis mutational processes are substitutions,
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Figure 5. The new scoring matrix derived from the dot product of the hypercomplex num-
ber representation of DNA bases.

which change the residues in a sequence, and insertions and deletions, which add
or remove residues. Insertions and deletions are referred to as gaps. The total score
assigned to an alignment is a sum of terms for each aligned pair of residues, plus
terms for each gap.

An algorithm for finding an optimal alignment for a pair of sequences using an
additive scoring system and gap penalties is called dynamic programming. Such
algorithms are central to computational sequence analysis and are guaranteed to
find theoptimal scoring alignment. Better alignments have higher scores. Thus
scores are maximized to find the optimal alignment.

A newscoring system is introduced by initially taking the dot product of the DNA
base hypercomplex number representation shown inTable 1, X · Y = (P X

A , P X
T ,

P X
G , P X

C ) · (PY
A , PY

T , PY
G , PY

C ) = P X
A PY

A + P X
T PY

T + P X
G PY

G + P X
C PY

C . The new

score values are then calculated usings(X, Y ) = X ·Y ×20−5, where the highest
aligned score is 15 and the lowest one is−5, with a gap penalty ofd = 8 for
computational efficiency. After scaling the dot product value and rounding off to
the nearest integer, the new scoring matrix is as shown inFig. 5.

The conventional alignment algorithms (Durbin et al., 1998) are used together
with the hypercomplex number representation of the base pairs and the new scoring
model introduced here. A pair of DNA sequences is used throughout the rest of this
paper as a demonstration of the feasibility of using this new scoring model:

H T A G A W M H R Y
T A W H C A M B H R
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Figure 6. Derivation options for theF(i, j) value.

5. GLOBAL ALIGNMENT USING HYPERCOMPLEX NUMBER

REPRESENTATION

A matrix F indexed byi and j , one index for each sequence, is constructed,
where the value ofF(i, j) is the score of the best alignment between the initial
segmentX1, X2, . . . , Xi and the initial segmentY1, Y2, . . . , Y j .

F(i, j) are calculated with the knownsF(i − 1, j − 1), F(i − 1, j), F(i, j − 1).
The best score of an alignment is obtained in three ways: alignment ofXi with Y j ;
or alignment ofXi with a gap; or alignment ofY j with a gap. The best score
up to (i, j) giving the optimal alignment is the highest of these three options.
Hence,

F(i, j) = max




F(i − 1, j − 1) + s(Xi , Y j ),

F(i − 1, j) − d,

F(i, j − 1) − d.

The matrix of F(i, j) values is built recursively by initializingF(0, 0) = 0, then
filling the matrix from top left to bottom right using the other three values, as
illustrated inFig. 6. For boundary conditions along the top row wherej = 0 and
the leftmost column wherei = 0, the values ofF(i, 0) andF(0, j) are defined as
F(i, 0) = −id andF(0, j) = − jd. As theF(i, j) value is filled, a pointer is kept
in each cell back to the cell from which the value is derived.

The value in the final cell of the matrix is by definition the best score for an
alignment ofX and Y , which is the score of the best global alignment ofX to
Y . A traceback is done to find this global alignment by building the alignment in
reverse, starting from the final cell and following the pointers kept when building
the matrix. A pair of symbols is added onto the front of the current alignment with
each step moved in the traceback process:Xi andY j if the step was to(i −1, j −1),
or Xi and the gap character ‘-’ if the step was to(i − 1, j), or ‘-’ and Y j if the step
was to(i, j − 1). This traceback procedure finds only one alignment with the
optimal score. Thus an arbitrary choice is made between the two options if the
derivations at any point are equal.
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Figure 7. The global dynamic programming matrix for hypercomplex number representa-
tion of DNA sequences.

Because the score is a sum over independent pieces, this algorithm is feasible.
This best score up to some point in the alignment is the best score up to the point
one step before, plus the increment score of the new step.

Using the new scoring matrix inFig. 7, the following global dynamic program-
ming matrix is set up using the example DNA sequence pair.

From the above matrix, the corresponding optimal alignment of the two
sequences with a total score of 14 is obtained as follows:

H T A G A W M H R – Y –
– T A – W H C A M B H R

5.1. Local alignment using hypercomplex number representation. Compared
to the case of a global alignment, a more common situation occurs when the best
alignment between subsequences ofX andY is required. An example of such is
a comparison between extended sections of genomic DNA sequences. This align-
ment most sensitively detects similarity between two highly diverged sequences
that might have a common evolutionary origin along their entire length. The high-
est scoring alignment of such subsequences is the best local alignment.

The difference lies in the feature that for local alignment, an extra possible value
for F(i, j) is added such that if all other options have a value of less than 0,F(i, j)
takes the value of 0:

F(i, j) = max




0,

F(i − 1, j − 1) + s(Xi , Y j ),

F(i − 1, j) − d,

F(i, j − 1) − d.
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Figure 8. The local dynamic programming matrix for hypercomplex number representation
of DNA sequences.

Once the value of F(i, j) takes the option value of 0, a new alignment is started.
The new option of 0 results in the top row and leftmost column taking the value of
0 instead of−id and− jd as in the case of global alignment.

In addition to the first difference, now in local alignment, an alignment could
end anywhere in the matrix. The best score need not be in the bottom right corner.
Instead, the traceback starts at the highest value ofF(i, j) over the whole matrix
and ends when it reaches a cell with value 0 which corresponds to the start of the
alignment.

The basis for this local alignment algorithm working is that the expected score for
a random match must be negative, otherwise the scores for long matches between
entirely unrelated sequences will be high on the basis of their lengths. As a result,
the maximal scoring alignments would be global or nearly global although the
algorithm is local. Similarly, there must be some score values higher then 0; if not,
the algorithm cannot find any alignment at all.

Using the same pair of DNA sequences with hypercomplex number representa-
tion, the local dynamic programming algorithm is implemented to give the matrix
in Fig. 8.

In the local dynamic programming matrix, it is not necessary to start the align-
ment at thebottom right cell. Instead, the alignment starts at the cell with the
highest score so that the optimal local alignment can be found. In this case, the
highest score is 38. Thus the traceback starts from there and ends when it reaches
a score of 0. The optimal local alignment of this pair of example sequences has a
score of 38 and is found to be
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T A G A W M H R Y
T A – W H C A M B

5.2. Repeated matches using hypercomplex number representation. The best
single local match between two sequences is easy to locate when the sequences are
short. However, if one or both of them are long, it is probable that one will find
many different local alignments with a significant score. None of these alignments
should not neglected, as they are all evidence of a relation between the sequences.
An example of such presence of many local alignments is provided by the many
copies of repeated domains in a sequence.

Since there are always short local alignments with small positive scores even
between entirely unrelated sequences, it is assumed that only matches with scoring
higher than a threshold score,T , are considered.

Letting Y be the sequence containing the domain andX the sequence in which
multiple matches are looked for, the same matrix is used as a demonstration, but
the recurrence is now different. The value ofF(i, j) is derived differently. In
the final alignment,X is separated into regions that match parts ofY in gapped
alignments, and regions that are unmatched. The score of the completed match
region is its standard gapped alignment score minus the threshold score,T . These
matchscores are positive.F(i, j) for j ≥ 1 is thebest sum of match scores to
(X1, X2, . . . , Xi), assuming thatXi is in a matched region, and the corresponding
match ends in Xi and Y j . Then, for the assumption thatXi is in an unmatched
region, F(i, 0) is the best sum of completed match scores to the subsequence
(X1, X2, . . . , Xi).

As usual, F(i, j) is initialized asF(0, 0) = 0. The matrix is then filled using the
following recurrence relations:

F(i, 0) = max

{
F(i − 1, 0),

F(i − 1, j) − T where j = 1, 2, . . . , m,

and

F(i, j) = max




F(i, 0),

F(i − 1, j − 1) + s(Xi , Y j ),

F(i − 1, j) − d,

F(i, j − 1) − d.

The F(i, 0) value iscarefully derived to handle unmatched regions and ends of
matches, allowing matches to end only when they have a score of at leastT . The
F(i, j) value handles starts of matches and extensions. The total score hasT sub-
tracted for each match. When there are no matches of score greater thanT , the
total score is 0, as obtained by the repeated application of theF(i − 1, 0) option in
the value ofF(i, 0).

The individual match alignments are then obtained by tracing back from cell
(n, 0) to (0,0), following the pointers kept. This traceback procedure is a global
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Figure 9. The repeat dynamic programming matrix for hypercomplex number representa-
tion of DNA sequences with threshold scores ofT = 20.

procedure showing which residue in sequenceY is aligned with each residue in
sequenceX . The resultant global alignment contains sections of more conventional
gapped global alignments of subsequences ofX with subsequences ofY .

Likewise, by applying the algorithm for repeated matches with the new scoring
model to the example sequences, the same DNA sequences demonstrate the out-
come shown inFig. 9.

For a threshold value of 20, the optimal alignment is

H T A G A W M H R Y
– T A T A W H C A •

When the threshold value is increased significantly, a large portion of the sequence
is excluded from the matched region. In other words, a larger threshold score
implies a higher stringency.

5.3. Overlap matches using hypercomplex number representation. Occasions
arise when one sequence contains the other, or they overlap. This occurs often
when fragments of genomic DNA sequences are compared to each other, or to
longer chromosomal sequences. Thus another algorithm for such searches is
required.

The algorithm for overlap matches is similar to that of global alignment, except
that overhanging ends are not penalized. Hence the matching sequence starts on
the top or left border of the matrix and ends on the right or bottom border.

The initialization is F(0, 0) = 0. The recurrence relations within the matrix
are the same as those for global alignment. The highest score of the matching
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Figure 10. The overlap dynamic programming matrix for hypercomplex number represen-
tation DNA sequences with threshold of 20.

sequence is set on the right border(n, j) where j = 1, 2, . . . , m, and thebottom
border(i, m) wherei = 1, 2, . . . , n. The traceback starts from the point with the
highest score and ends at the top or left edge of the matrix. Hence the governing
algorithms for overlap matches are

F(i, 0) = max

{
F(i − 1, 0),

F(i − 1, m) − T,

and

F(i, j) = max




F(i − 1, j − 1) + s(Xi , Y j ),

F(i − 1, j) − d,

F(i, j − 1) − d.

The recursion forF(i, 0) here is concerned only with the complete matches to
(Y1, Y2, . . . , Ym) instead of all possible subsequences ofY .

To find out whether the example hypercomplex DNA sequences show traces of
overlapping in Fig. 10, they are subjected to the same overlapping dynamic pro-
gramming. A threshold of 20 is pre-specified.

The possible overlap matching sequence is shown below. The optimal overlap-
ping alignment has a score of 38. The resultant alignment is the same as that
obtained for local alignment in the earlier section but this is not always true for
other sequences.

T A G A W M H R Y
T A – W H C A M B
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6. CONCLUDING REMARKS

To represent fully the DNA base-nucleic acid codes in hypercomplex numbers,
a four-dimensional space is required. The representation number assigned to each
base code takes the probability of each nucleotide in the DNA code into consid-
eration. The conditions assumed in the assignment of the representation are that
the probabilities for the occurrences of A, T, G and C are equal and the sum of the
individual probabilities is 1.

The implementation of hypercomplex numbers in the dot matrix method brings
forth an improvement to the conventional method (Mount, 2001) of placing a dot
when there is a match between the corresponding residues of two sequences. As the
hypercomplex number representation of DNA base-nucleic acid codes is in num-
bers instead of alphabetical characters, the significance of probabilistic sequenc-
ing is emphasized. To determine whether a dot should be placed between the
aligned residues, the dot product of the hypercomplex number representation of
the bases is taken and truncated. With the introduction of ‘value’ instead of ‘dots’
as in the conventional method (Mount, 2001), the truncation value can be var-
ied and hence a greater control over the degree of alignment desired, besides the
current control of window size and stringency, is possible. A higher truncation
value corresponds to a higher stringency for longer matching regions between the
sequences. With the addition of a new factor contributing to the outcome of the
dot matrix diagram, more combinations of the three parameters can be selected to
more aptly produce a more accurate dot matrix analysis for the desired condition of
matches.

In addition, an implied advantage of the variable truncation value using the
hypercomplex representation is that the sequences may not need to be further ana-
lyzed for actual matching regions using dynamic programming. The method of
imaging may be used to overlap dot matrices of a similar pair of sequences but
of increasing truncation value. As the truncation value increases, the number of
dots is reduced. When the new matrix of higher truncation value is imposed on the
previous matrix, a clearer picture of the location of the actual matching regions is
superimposed on the screen.

To use the hypercomplex number representation of DNA sequences, a new scor-
ing model has been derived. The new model, with the consideration of probability
of each nucleotide presented in the DNA base-nucleic acid codes, uses the dot
product arithmetic of the residues of the sequences to be matched. The dot product
value is scaled and rounded off to an integer. The various algorithms have been
applied to the sample sequence in hypercomplex number representation and the
feasibility of using the hypercomplex number representation and scoring model has
been verified. As most of the DNA codes consist of mixed bases, the alignments
obtained for the various algorithms are very high. This is because the algorithms
can detect a possible alignment with small possibility of a match between the two
sequences.
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