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a b s t r a c t

A statistical study of cis-regulatory modules (CRMs) is presented based on the estimation of similar-

word set distribution. It is observed that CRMs tend to have a fat-tail distribution. A new statistical fat-

tail test with two kurtosis-based fatness coefficients is proposed to distinguish CRMs from non-CRMs.

As compared with the existing fluffy-tail test, the first fatness coefficient is designed to reduce

computational time, making the novel fat-tail test very suitable for long sequences and large database

analysis in the post-genome time and the second one to improve separation accuracy between CRMs

and non-CRMs. These two fatness coefficients may serve as valuable filtering indexes to predict CRMs

experimentally.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

The identification of transcription factor binding sites (TFBS’s)
and cis-regulatory modules (CRMs) is a crucial step in studying gene
regulation. Computational methods of predicting CRMs can be
classified into three types: (1) TFBS-based methods; (2) homology-
based methods and (3) content-based methods. TFBS-based meth-
ods, such as ClusterBuster [12] and MCAST [2], use information
about known TFBS’s to identify potential CRMs. Methods of this type
are generally unable to be applied to genes for which TFBS’s have
not yet been studied experimentally. Homology-based methods use
information contained in the pattern of conservation among related
sequences. The related sequences can come from single species [23],
two species [14] and multiple species [8]. Methods of this type using
the pattern of conservation alone are limited in their performance
because TFBS conservation necessary to maintain regulatory func-
tion in binding sequences may not be significantly higher than in
non-binding sequences [11]. In addition, it still remains an open
question that how many genomes are sufficient to the reliable
extraction of regulatory regions. Content-based methods assume
that different genome regions (CRMs, exons and NCNRs) have
different rates of evolutionary micro changes; therefore, they exhibit
different statistical properties in nucleotide composition. TFBS’s
often occur together in clusters as CRMs [7,15]. The binding site
cluster causes a biased word distribution within CRMs, and this bias
leaves a distinct ‘‘signature’’ in nucleotide composition. Content-
based methods detect this signature by statistical techniques [16,1]
or machine learning techniques [9], in order to distinguish CRMs
ll rights reserved.
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from non-CRMs. Methods of this type may be used to predict the
CRMs which have not yet been observed experimentally. A large
number of CRM search tools have been reported in the literature,
but the computational method attempting to identify CRMs still
remains a challenging problem due to the limited knowledge of
specific interactions involved [22].

The fluffy-tail test [1] is one of content-based methods. It is a
bootstrapping procedure to identify CRMs by checking the statistical
difference between the size distribution of the largest group of
similar-words obtained for the randomized shuffled sequences and
the corresponding size distribution for the original input nucleotide
sequence. If there are no statistical differences, it is concluded that
the original input nucleotide sequence probably is a coding (exon)
region or a non-coding non-regulatory (NCNR) region.

In the work that follows, the fluffy-tail test is re-examined by
considering the following two issues: (1) Due to its bootstrapping
procedure, the computational time of calculating the fluffiness
coefficient is determined by the number of randomization.
In order to get reliable results statistically, the number of rando-
mization is usually set very large in the fluffy-tail test, so the
computational time is expensive, especially for long sequences.
This limits the use of the fluffy-tail test under the situation when
more and more DNA sequences need to be analyzed in the post-
genome time. (2) The fluffy-tail test looks only at the subsequence
with the highest incidence in the CRMs. Therefore, the fluffy-tail
test may not capture the statistical features caused by heterotypic
TFBS clusters in the regulatory regions. It is an interest to address
these two issues of the fluffy-tail test and to develop a more
efficient and effective CRM prediction method.

This paper is to explore some statistical properties of DNA
composition due to the multiple occurrences of TFBS’s of the same
or different types in CRMs. For an enumeration purpose, a consensus

www.elsevier.com/locate/cbm
www.elsevier.com/locate/cbm
dx.doi.org/10.1016/j.compbiomed.2012.07.007
dx.doi.org/10.1016/j.compbiomed.2012.07.007
dx.doi.org/10.1016/j.compbiomed.2012.07.007
mailto:mjjshu@ntu.edu.sg
dx.doi.org/10.1016/j.compbiomed.2012.07.007


J.-J. Shu, Y. Li / Computers in Biology and Medicine 42 (2012) 935–941936
sequence is used as a motif representation, i.e., using a similar-word
set to represent a motif. The main concern is to explore specific
properties in similar-word set distribution for CRMs, and to identify
suitable parameters in order to distinguish CRMs from non-CRMs.
2. Materials and methods

2.1. Training datasets

To explore statistical parameters to distinguish CRMs from
non-CRMs, three training datasets are used in this paper. The
positive training set is a collection of 60 experimentally-verified
functional Drosophila melanogaster regulatory regions [17,16].
This set consists of CRMs located far from gene coding regions
and transcription start sites. It contains many binding sites and
site clusters, including abdominal-b, bicoid, caudal, deformed,
distal-less, engrailed, even-skipped, fushi tarazu, giant, hairy, huck-

ebein, hunchback, knirps, krüppel, odd-paired, pleiohomeotic, runt,
tailless, tramtrack, twist, wingless and zeste. The total size of
positive training sets comprises about 99 kilobase (kb) sequences.
The two negative training sets are (1) 60 randomly-picked
D. melanogaster exons; and (2) 60 randomly-picked D. melanogaster

NCNRs: the exons and NCNRs of length 1 kb upstream and down-
stream of genes are excluded by using the Ensembl genome browser.
The exon training set contains 85 kb sequences, and the NCNR
training set contains 90 kb sequences. All sequences with tandem
repeats in the three training datasets are masked by using a tandem
repeats finder program [6] before processing.

2.2. Formulation of the fat-tail test

The fat-tail test is based on the assumption that each word
(binding site) recognized by a given transcription factor belongs
ACGAC 

ACGACGCCGACT 

CGACG

ACGACGCCGACT 

CGACT 

         ACGACGCCGACT 

Fig. 1. A flow chart o
to its own family of similar-word sets (binding site motifs) found
in the same enhancer sequence and the redundancy of binding
sites within CRMs leaves distinct ‘‘signatures’’ in similar-word set
distribution. For a given m-letter segment Wm as a seed-word, all
m-letter words that differ from Wm by no more than j substitution
comprise a corresponding similar-word set Nj(Wm). Because the
core of TFBS’s is relatively short [24], a five-letter seed-word is
selected, allowing for one mismatch, that is, m¼5 and j¼1. The
fat-tail test is adopted to study the similar-word set distribution
and to predict the probable function of the original input
sequence. A flow chart of the fat-tail test is shown in Fig. 1.

Step 1: Number of similar-words with the same seed-word (n)
As an example, consider a stretch of DNA: ACGACGCCGACT.
For m¼5 and j¼1, all five-letter segment W5 is selected as a
seed-word, that is, ACGAC, CGACG,y,CGACT. For each seed-
word Wm, all m-letter words with no more than j substitution
comprise a corresponding similar-word set Nj(Wm). In this
example, the first seed-word W5, ACGAC, has three similar-
words with no more than one mismatch: ACGAC, ACGCC,
CCGAC; n is the cardinality, n¼9Nj(Wm)9¼9N1(ACGAC)9¼3,
and forms the X-axis in Figs. 2–7.
Step 2: Number of seed-words with the same number of similar-

words (f)
f(n) is the number of seed-words containing n similar-words
and forms the Y-axis in Figs. 2–9.
Step 3: Kurtosis (k)

The kurtosis k of similar-word set distribution f(n) is evaluated
as

k¼

PN
n ¼ 1 ½f ðnÞ�m�

4

ðN�1Þs4
�3 ð1Þ

where m and s are the mean and standard deviation
respectively.
Step 1: 
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Two fatness coefficients ( D  and rS )

f the fat-tail test.



Fig. 2. Histogram of Drosophila CRMs (m¼5, j¼1, k¼4.19, m¼24.4, s¼11.7).

Fig. 3. Histogram of Drosophila CRMs (m¼5, j¼1, k¼0.19, m¼23.9, s¼7.7)

after randomly-shuffling.

Fig. 4. Histogram of Drosophila exons (m¼5, j¼1, k¼�0.28, m¼21.73, s¼7.33).

Fig. 5. Histogram of Drosophila exons (m¼5, j¼1, k¼0.35, m¼21.4, s¼7.19) after

randomly-shuffling.

Fig. 6. Histogram of Drosophila NCNRs (m¼5, j¼1, k¼0.09, m¼24.66, s¼6.82).
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Step 4: Two fatness coefficients (D and Sr)
The first fatness coefficient D is defined as

D¼
k0þ2e

4e
ð2Þ

Here k0 denotes the kurtosis k of the original input sequence
without randomly-shuffling and e is the standard error
calculated by

e¼ 2

ffiffiffiffi
6

N

r
ð3Þ

D is used to measure how strong the similar-word set
distribution of CRMs deviates from normal distribution. The
95% confidence interval is set between �2e and 2e.
To measure how strong the similar-word set distribution of
CRMs deviate from randomness, the second fatness coefficient
Sr is computed by comparing with all randomized r-time
shuffled sequence versions of the original input sequence:

Sr ¼
k0�kr

sr
ð4Þ



Fig. 7. Histogram of Drosophila NCNRs (m¼5, j¼1, k¼0.25, m¼24.32, s¼6.59)

after randomly-shuffling.

Fig. 8. Histogram for CRMs, exons and NCNRs classified by D (m¼5, j¼1).

(a) CRMs vs. exons and (b) CRMs vs. NCNRs.

Fig. 9. Histogram for CRMs, exons and NCNRs classified by S50 (m¼5, j¼1).

(a) CRMs vs. exons and (b) CRMs vs. NCNRs.
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Here a sequence is called ‘‘random’’ if it is obtained from the
original input sequence by shuffling it, preserving its single
nucleotide composition. Sr can be regarded as measuring
the degree of difference between signal and noise, where the
signal is regarded as the original input sequence, and the noise
is regarded as randomized sequences.
In the fluffy-tail test [1], the fluffiness coefficient Fr is
defined as

Fr ¼
L0�Lr

sr
ð5Þ

where Lr is the number of seed-words with the maximal similar-
words for r-time shuffled sequences. Here it is worth to mention
to this end that CRMs tend to have a fat-tail distribution in Fig. 2,
as compared with that of the randomized sequence in Fig. 3. Since
kurtosis measures the tail heaviness of a distribution relative to
that of normal distribution, the second fatness coefficient Sr based
on the kurtosis kr should be a more reasonable index than the
fluffiness coefficient Fr based on the maximal number Lr in order
to predict CRMs.

3. Results

3.1. Distribution for CRMs

For the training datasets of CRMs, Fig. 2 shows a similar-word
set distribution for a region of D. melanogaster hunchback CRMs.



Table 1
Classification of 180 sequences.

Functional type D42 Do2 Positive rate (%) Negative rate (%)

(a) The fat-tail test with D

CRMs 45 15 75 25

Exons 11 49 18.3 81.7

NCNRs 32 28 53.3 46.7

Functional type S5042 S50o2 Positive rate (%) Negative rate (%)

(b) The fat-tail test with S50

CRMs 46 14 76.7 23.3

Exons 7 53 11.7 88.3

NCNRs 22 38 36.7 63.3

Functional type F5042 F50o2 Positive rate (%) Negative rate (%)

(c) The fluffy-tail test

CRMs 42 18 70 30

Exons 8 52 13.3 86.7

NCNRs 21 39 35 65
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It can be seen that the most frequent similar-word set occurs 10–
40 times and some similar-word sets occur about 95 times. If the
original input sequence is characterized by the presence of an
unusually-high number of over-represented similar-words, the
similar-word set distribution is expected to have a long right tail
in comparison with that of a random sequence, in view of that
(k0¼4.19) is far greater than (k¼0) for the normal distribution.

To obtain a random distribution, the original input sequence is
shuffled 50 times by using the Fisher–Yates shuffle algorithm.
Fig. 3 shows a typical example of similar-word set distribution
after randomly-shuffling. As compared with the original input
sequence in Fig. 2, the randomized sequence in Fig. 3 lacks a long
right tail, and is nearly the normal distribution, in view of
(kr¼0.19) around 0.

3.2. Distribution for exons

For the training datasets of randomly-picked D. melanogaster

exons, Fig. 4 shows a similar-word set distribution for a region of D.

melanogaster CG8229 exons. The absence of long right tail is noted in
Fig. 4 in view of that (k0¼�0.28) is around 0. Fig. 5 shows a typical
example of similar-word set distribution after randomly-shuffling
with (kr¼0.35) around 0. The kurtosis k0 of similar-word set
distribution for the original input sequence does not differ signifi-
cantly from kr of the randomized version (k0¼�0.28) vs. (kr¼0.35).

3.3. Distribution for NCNRs

For the training datasets of randomly-picked D. melanogaster

NCNRs, Fig. 6 shows a similar-word set distribution for a region of D.

melanogaster NCNRs. The presence of short right tail is noted in
Fig. 6 in view of that (k0¼0.09) is around 0. Fig. 7 shows a typical
example of similar-word set distribution after randomly-shuffling
with (kr¼0.25) around 0. The kurtosis k0 of similar-word set
distribution for the original input sequence does not differ signifi-
cantly from kr of the randomized version (k0¼0.09) vs. (kr¼0.25).

3.4. The fat-tail test

In order to distinguish CRMs from non-CRMs, D and Sr are
calculated for 180 sequences in three training datasets. Fig. 8
shows that CRMs tend to have a greater D than exons and NCNRs.
Table 1(a) lists functional classification based on D. Nearly 75%
CRMs have D42, while only 18.3% exons have D42, and 53.3%
NCNRs have D42. Fig. 9 shows S50 for CRMs, exons and NCNRs.
For each sequence, its (r¼50)-time shuffled versions are gener-
ated to calculate S50. It can be seen that CRMs intend to have
greater S50 than exons and NCNRs. Table 1(b) lists functional
classification based on S50. Nearly 76.7% CRMs have S5042, while
only 11.7% exons have S5042, and 36.7% NCNRs have S5042.

3.5. Large CRM datasets

The fat-tail algorithm has been tested on the current version 3 of
REDfly database [13], which contains 894 experimentally-verified
CRMs from Drosophila. Results show that 63.1% CRMs have D42
and 59.5% CRMs have S5042 passing the fat-tail test. The low pass
rate may be due to the stringent threshold value. Another possible
reason is that some CRMs do not contain binding site cluster.
This directs future study: (1) to check if the binding site clustering
is the common feature of all CRMs; (2) to optimize the threshold to
get more reliable results. It is worth to mention to the point that
the fluffy-tail algorithm has never been tested on the large CRM
datasets.
4. Discussion

Some statistical properties of similar-word set distribution in
three training datasets have been explored. Results show that
CRMs have a fat-tail distribution, i.e., tend to have high fatness
coefficients (D42,Sr42), while exons lack a fat-tail distribution,
i.e., tend to have low fatness coefficients. However, NCNRs tend to
have median fatness coefficients. Thus, D and Sr can be used to
distinguish between CRMs and exons effectively. CRMs are pre-
dominant if (D42, Sr42), while exons are prevailing if (Do2,
Sro2). Thus, the regions with (D42,Sr42) are CRMs and those
with (Do2,Sro2) are exons.

4.1. Comparison with the fluffy-tail test

The fat-tail test is evaluated by comparison with the fluffy-tail
test [1]. The performance of three parameters is assessed: (1) the
first fatness coefficient D; (2) the second fatness coefficient Sr; and
(3) the fluffiness coefficient Fr based on separation between CRMs
and exons, and between CRMs and NCNRs.

The training datasets are employed to evaluate the above three
parameters. For comparison, the original input sequence is
shuffled 50 times to calculate S50 and F50. The thresholds of D,
S50 and F50 are all set as two. For the fat-tail test, the original input
DNA sequence is considered with D42 predicted as CRMs, Do2
as predicted exons, and S5042 as predicted CRMs, S50o2 as
predicted exons. For the fluffy-tail test, the original input DNA
sequence is considered with F5042 as predicted CRMs, F50o2 as
predicted exons. The classification result of 180 sequences in the
training datasets by F50 is listed in Table 1(c). The fluffy-tail test
F50 identified 42 out of 60 CRMs in the positive training datasets,
while the fat-tail test identified 45 and 46 CRMs with D and S50

respectively (see Table 1). For each parameter, sensitivity (SN)
(number of true positive/number of positive), specificity (SP)
(number of true negative/number of negative) and accuracy
(number of true positiveþnumber of true negative)/(number of
positiveþnumber of negative) are calculated to distinguish CRMs
from exons and NCNRs (Table 2).

For distinguishing CRMs from exons, the fat-tail test with S50

has the best accuracy (82.5%), as compared with the other two
parameters (D: 78.3%; F50: 78.3%). Thus, the fat-tail test with S50

can effectively distinguish between CRMs and exons. Moreover,
S50 (SN¼76.7%) can more efficiently identify CRMs than D

(SN¼75%) and F50 (SN¼70%), as well as S50 (SP¼88.3%) can more
efficiently identify exons than F50 (SP¼86.7%) and D (SP¼81.7%).
The fat-tail test with D has the same accuracy as the fluffy-tail



Table 2
Evaluation of D, S50 and F50.

The fat-tail test The fluffy-tail test

D (%) S50 (%) F50 (%)

(a) Distinguishing CRMs from exons

SN 75 76.7 70

SP 81.7 88.3 86.7

Accuracy 78.3 82.5 78.3

The fat-tail test The fluffy-tail test

D (%) S50 (%) F50 (%)

(b) Distinguishing CRMs from NCNRs

SN 75 76.6 70

SP 46.7 63.3 65

Accuracy 60.8 70 67.5

The fat-tail test The fluffy-tail test

D (s) S50 (s) F50 (s)

(c) CPU time for a sequence length of 1000

CPU time 6.2 310 310

Table 3
Sensitivity of Sr to choice of r for CRMs (k¼4.19).

r Sr kr sr

50 3.63 0.26 0.67

100 5.31 0.2 0.47

500 4.28 0.2 0.58
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test. However, the computational time (CPU time) of calculating D

for an original input DNA sequence length of 1000 is 50 times
faster than those of calculating F50 and S50 for the same original
input sequence, because of no 50-time randomly-shuffling is
required for calculating D. Thus, the fat-tail test with D is very
suitable for long sequences and large database. For distinguishing
CRMs from NCNRs, the results show that the accuracy (67.5%) of
the fluffy-tail test with F50 is worse than (70%) of the fat-tail test
with S50, but better than (60.8%) of the fat-tail test with D.

4.2. Time complexity

Table 3 shows that the value of the fat-tail kurtosis coefficient
Sr is affected by the number of randomization r. In order to get
more reliable estimation of Sr, a large r is needed, so that high
computational time is expected. For reliable result within reason-
able computational time, the original input sequence is shuffled
by 50 times to calculate Sr.

The algorithm used for shuffling is the Fisher–Yates shuffle
algorithm, which is linear on the sequence length N, so that the
time complexity of calculating D is O(N) and the time complexity
of calculating Sr and Fr is O(Nr). In Table 2(c), the computational
time (CPU time) of calculating D is 50 times faster than those of
calculating F50 and S50 due to no sequence shuffling. All computa-
tions are run on a 3.2 GHz Pentium IV processor with 1 G physical
memory.

4.3. Tandem repeat region

The results show that the most frequent similar-word set usually
corresponds to the word of ‘‘TTTTT’’ or ‘‘AAAAA’’ for CRMs and
NCNRs. These phenomena are due to the poly N (such as TTTy)
occurrence in CRMs and NCNRs and affect greatly the maximal
number Lr. Thus, true CRMs cannot be distinguished from NCNRs
effectively in the fluffy-tail test. The motifs corresponding to
experimentally-verified TFBS’s usually occur more than the mean
value of similar-word set distribution and locate around the right
tail, so that the prediction accuracy using the kurtosis-based fatness
coefficient Sr is improved. It is worth to mention to this end that the
phenomenon of motif fat-tail distribution can be also observed in
protein sequences [3–5,10,18,19,21].
5. Conclusion

The redundancy of binding sites within CRMs causes the bias
base composition and leaves distinct ‘‘signatures’’ in similar-word
set distribution. The fluffy-tail test captured this characteristic by
searching the most frequent similar-word. However, the real
binding site motif may be the moderate similar-word sets. In this
paper, the fat-tail test is proposed to distinguish CRMs from non-
CRMs. In the fat-tail test, characteristics are investigated by
examining distribution pattern, using datasets of 180 DNA
sequences (60 for CRMs, 60 for exons and 60 for NCNRs). Results
show that the similar-word set distribution of CRMs tends to be a
fat-tail distribution as compared with those of exons and NCNRs.
Based on this observation, two kurtosis-based fatness coefficients
D and Sr are introduced here. The fat-tail test with D has
comparable accuracy to, but r times faster than the fluffy-tail
test, because of no r-time randomly-shuffling required. The fat-
tail test with Sr has better accuracy of distinguishing CRMs from
exons and NCNRs than the fluffy-tail test. Thus, the novel fat-tail
test greatly simplifies the functional prediction of an original
input DNA sequence and can guide future experiments aimed at
finding new CRMs in the post-genome time [20].
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