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Abstract-An accurate numerical method which is applicable to systems of differentio-integral equations 
with quite general boundary conditions has been developed. The method is a useful extension of the Keller 
box scheme designed to facilitate the solution of differential systems involving integral operators which 
naturally arise in multiphase flows. A combination of merging and reduction procedures is introduced to 
handle the multilayer and integral operator features of such problems. The development of the method 
is demonstrakd in the context of laminar film condensation in the presence of both external forcing and 
body forces. 

1. INTRODUCTION 

The Keller box scheme [l-3] for the solution of parabolic boundary layer equations is both accurate 
and robust. As a consequence it has been used extensively in solving a broad class of problems 
including convection flows [4], jet flows [5,6], turbulent boundary layers [3,7] as well as separating 
flows [8]. These problems have typically involved a single shear layer, each described only by 
governing differential equations and differential boundary conditions. The method has been 
particularly useful in tackling that class of problem, which although non-similar, may be 
formulated as a progression between known limiting similarity states which are inherent in the 
physical configuration under examination. Mixed convection about a heated, vertical, semi-infinite 
plate is just such an example when it may be argued physically that the flow will be predominantly 
Blasius flow at the leading edge but that downstream the flow will increasingly be dominated by 
free convection effects, see [9, lo]. The underlying growth rates of fundamental variables may be 
incorporated in the associated similarity transformation and by judicious combination or continu- 
ous transformation, [ 11, 121, the overall non-similarity may be incorporated in a differential system 
which remains O(1) throughout the computational domain. Lin and co-workers e.g. [13, 141 
particularly have exploited this form of solution. 

In the work that follows it is demonstrated that the Keller box method can successfully be 
adapted to multi!layer problems which, typically in a multi-phase setting, are more naturally 
described by differentio-integral systems. The simultaneous presence of condensate films and 
vapour shear layers in laminar film condensation is an example of such a multilayer parabolic 
system. Here them are special circumstances in which self-similarity prevails namely the cases of 
pure forced convection condensation or pure body force laminar condensation. In each of these 
separate cases the similarity system has been solved successfully using a guessing strategy based 
upon a specified location of the phase interface. Coupled with an iterative process based on single 
layer methods it has then been possible to converge onto a solution satisfying the interfacial 
boundary conditions for an associated set of physical parameter values e.g. [15]. However in other 
general circumstances for which a similarity simplification is not available the difficulties associated 
with the presence of a variable film thickness and the mass transfer at the phase transition have 
precluded detailed solutions. To obviate such difficulties authors have resorted to momentum 
integral and perturbation techniques as in [ 16201. These are currently the only solutions available. 
In the work thal: follows a comprehensive numerical scheme is outlined which successfully 
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accommodates these difficulties and accordingly deals with the respective features of an unknown 
film thickness, multiphase and non-similarity. 

It is natural, in the first instance, to envisage a non-similar multiphase, multilayer configuration 
which is an extension of the class of non-similar single layer problems typified by the mixed 
convection flow mentioned earlier. Further the configuration should provide the framework for the 
possible exploitation of the powerful Keller box scheme. The setting chosen is that involving 
combined gravity body force and forced convection laminar film condensation accompanying the 
flow of a saturated vapour along a cooled semi-infinite vertical wall. This configuration accordingly 
can be examined as a transition between well-established limiting similarity states. Moreover 
detailed solutions for each limiting situation are available for comparison and over the non-similar 
range comparisons can be made with the only available results of Jacobs [19] and Fujii and Uehara 
[I81 who each used momentum integral methods and thin film approximations. 

Although the numerical scheme is developed in this particular context the problem is regarded 
as a prototype of a genera1 class of problems and it is understood that the essential numerical 
features of the formulation and solution algorithm may readily be adapted by any alternative 
example. 

2. MODEL CONFIGURATION AND GOVERNING EQUATIONS 

The prototype physical configuration is illustrated in Fig. 1. A steady stream of pure, saturated 
vapour aligned with the background gravitational field, flows with uniform velocity U, over a 
semi-infinite plate. The surface of the plate is maintained at a uniform temperature T,,, which is 
below the saturation temperature T* of the external vapour stream. A thin film flow of condensate 
within a vapour shear layer will result. The overall flow is modelled as two dimensional and 
incompressible. 

The velocity components (u, v) are associated with increasing x and y measured along and 
normal to the plate respectively. T is used to denote the temperature of the condensate and y = 6 (x) 
denotes the interface separating the condensate and vapour phases of the flow. For the vapour 
phase a set of intrinsic coordinates (x*, y*) attached to the interface are chosen. x* measures the 
distance along the interface, y * the distance normal to it and (u *, v *) are the velocity components 
in the directions of increasing (x*, y*). 

If it is assumed that the thickness of the condensate film is small compared with a typical 
dimension of the surface then x = x* is a valid approximation. Furthermore, on the assumption 
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Fig. I. Prototype physical configuration and co-ordinate system. 
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that all changes in physical quantities normal to the surface or the interface are large compared 
with changes in the x-direction, it is appropriate to invoke the boundary layer approximation. The 
governing boundary layer equations describing conservation of mass and momentum in both 
phases and thermal energy in the condensate phase are, in the usual notation, as follows 

Condensate pha:;e (x 2 0,O < y < 6 (x)) 

Vapour phase (x 2 0, y * > 0, T = T*) 

g+!c~o 
aY* 

au* au* ah* 
P*u*x +p*v*ay*=p*ay*2 

(1) 

Boundary conditions: 

For x > 0, y = 0, 

u = 0, v = 0, T = T, (6) 

and at the interfa’ce, 

x20, y =6(x), y*=O, T=T* (7) 

Continuity in the interface mass flow requires 

p*(v*-u*;)=,o(v-t$)= -&(I;pudy) 

and for continuity in the tangential component of the 

u*=u. 

The continuity in interface shear stress components is 

au* au 
P*ay*=Py’ P 

interfacial velocity 

assured if 

(9) 

* =p . (10) 

In the vapour phase x 2 0, y*-+ + co, the velocity must approach that of the external stream i.e. 

u*+tJ,. (11) 

The overall energy balance is given by 

Here p, p, C,, k, h, and v = ,u/p denote density, dynamic viscosity, specific heat, thermal 
conductivity, latent heat and kinematic viscosity respectively and an asterisk * is employed to 
signify a vapour quantity. 

A significant stlep in formulating the problem for comprehensive solutions is the introduction 
of the characteristic non-dimensional co-ordinate 5 = l/Fr, = gx/U$ . This co-ordinate provides 
the basis for a unified framework within which the features of dominant forced convection 
condensation and dominant body force condensation may be associated with small and large r 
respectively, in other words, large and small Froude numbers respectively. 
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3. CONTINUOUS TRANSFORMATION FORMULATION 

Hunt and Wilks [l 1 J have demonstrated the advantages of introducing a continuous transform- 
ation in the characteristic coordinate. It is this method which is adapted to the present problem 
to yield a set of equations which adequately accommodate the essential features of each of the 
extremes of forced convection and body force condensation. 

The following transformations are introduced 

4+ = q5za!f~5, ?I, 
Jum Y 

? = y--t(t), 
J 

(13) 

** = ~zG&*(5)f*(~, q*), JvY* r]* =z $-&i72 t*(t)3 (14) 

T - T* = (T, - T*)s(4)@5, r) (15) 

where r(T), t(t), r*(r), t*(t) and s(5) are to be chosen to effect a smooth transition between the 
two extreme regimes. Under these transformations the governing equations (l)-(5) and boundary 
conditions (6)-( 11) become 

(16) 

(17) >3 =o 
a’f” + (tr*‘)‘/* ay - _ 
aq*3 rat* 

--“(::r*)‘(~~+~(~~-~~)=o (18) 
aYI *= 

where P, = V/K and K is the thermometric conductivity k/PC,. The boundary conditions are: 

at the wall rl = 0, 

f=O, $0, se = 1; 

and at the interface PI = ad([), q* = 0, 

e = 0, 

af* af ay* 
r*f*=iwrf, ret*---=;12rt--, r*t*2_ 

2aZf 

a?* aq atj *= 
=130rt a’12 

where 

112 

In the vapour as n*-++co, 

r*t* C+l 
ay* . 

Equation (12) becomes 

(19) 

(20) 

(21) 

where Ho = C,AT/P,h,, with AT = T* - T,. In the (5, q)-plane the thickness of the condensate 
layer is v] = ~~(5) when y = 6(x). With 

r(O)=s(O)= t(O)=r*(O)= t*(O)= 1 (23) 
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the forced convection condensation formulation of [ 171 is recovered. The prescriptions of 

r(5) = (1 + 165)“4, s(C) = 1, t(r) = (1 + 5)“4, 

r*(t) = (1 + 165)“4, t*(r) = (1 + 5)“” (24) 

retain the forced convection required at small r but now incorporate the Koh et al. [15] pure body 
force formulation at large 5. The resulting unified basis of computation is now the system of 
equations 

w 
all)+ 

1 t- 245 azf 5(17+325) @- ’ 

(1 + 5)““(1 + 165)3’4 ‘, - 2(1 + t)5’4(1 + 165)3’4 & aq 0 

25 25(1 + 165)“4 
+ (1 + 5)3/“(1 + I@)‘/~+ (1 +t)“” 

afa’f af azf 
~~-&a& -1 =’ (25) 

1 + 24{ ae 

(1 + <)“4(1 + 165)3’4s& + 25 

afae __-__ 
aq at II =. (26) 

a'f 
au*3+ 

1 + 24r 
(1 + ~)“~(l + 165)3i4f 

*?f 5(17+325) a! 2 
- --2(1 + r)5’4(l + 1603j4 a’l* ay]*2 H 

+ 25(1 + 16r)“4 af* ay* -- 
(l + 5)“” at; ap 

1 + 245 
+" (1 + t)""(i + l60”” s 

‘I~ (0 af 
-e dq 

0 au 

1 + 245 
+ (1 + <)‘j”(l + 165)3’4 ‘I SOCO 

= 

+ 25: (1 + 165)‘:4 af 
(1 + 0”” 0 

drls(t) o 
ayI ?‘=‘1,$(<) d5 = 

to be solved subject to boundary conditions 

f(<,O)= 0, y =o, e(u8= 1, e(h,(r))=o, 

we, 0) am, tm 
av *2 

= lb30 
a+ ’ 

(28) 

(29) 

(30) 

(31) 
af*(t, +a) 1 

aq* = (1 + t)““(l + 165)“4 
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Equation (28) can be simplified, using equations (26) and (29) to 

I + 245 

(1 + ()‘:“(I + 1603i4 0, = %)(<I 

+ 25 (1 + 165)“4 8f 

(1 + r)“” 0 2 ‘I =r1,,(5) 

+ 2t (1 + 165)“4 af C-J dva(t) = o 

(1 + r)‘;” aYI ,,=qn(5)d5 . (32) 

The general class of differentio-integral systems under examination may therefore be abbreviated 
as 

$+M!f$+B(5) [Y (J]=W)[&&-$$I <V <Q(t) (33) to- df 

(34) 

q*>o (35) 

d?,o=() (36) 

a 
where a(c), j?(r), y(5) and p(5) may be particular to a given physical configuration. The most 
general boundary conditions are of the forms 

j-(&O) = 0, F =o, 0(5,0)= 1, Q(LYa(5))=0, 

v-*(57 + @J) = u (i’) 
ay* c (37) 

where Co, Cl and C, are physical constants and U,(S) is the external velocity field. The last 
boundary conditions which ensure unique solutions of the equations are 

Using these, it is easily shown from the equations that 

(38) 
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Therefore U,(t) is a solution of the above first order equation within at most an arbitrary constant 
of integration. This constant may be determined by the value U,(O). When 5 > 0, U,(g) is a function 
determined by both the coefficients of the equations and the value of U,(O) rather than an arbitrary 
function. For this reason, we may rewrite the last boundary condition as 

v*to, + 00) 
= U,(O) and 

?f*(4, + 00) 

au* ap 
=o t>o. (40) 

Notice that the Ifirst, second and third of the governing equations are differential equations, whilst 
the fourth equation is a differentio-integral equation. We shall examine separately the differencing 
scheme for the purely differential systems before examining a scheme for the differentio-integral 
system. 

4. MERGING, AND A DIFFERENCE SCHEME FOR DIFFERENTIAL EQUATIONS 
AND DIFFERENTIAL BOUNDARY CONDITIONS 

In designing a solution algorithm it is important to recognise that for a fixed physical 
configuration, in particular for a specified H,,, ~(5) is an evolving element of the solution. In earlier 
self-similar solution strategies Q (0) and qs( + co) have been prescribed and an associated value of 
Ho identified from correlations involving simultaneously stream function and temperature bound- 
ary data obtained by imposing matching conditions at the liquid-vapour interface. This approach 
is not feasible in a non-similar setting where a prescribed, common Ho has to apply over 
0 < 5 < + co. This consideration is fundamental to the subsequent formulation of the solution 
algorithm. In particular the equations are recast in terms of a coordinate normalised with respect 
to the local film thickness ~~(5). As a consequence, in the algorithm, Q(S) can be identified as the 
solution of an indsependent unknown at each 5 station of a marching scheme. Specifically we define 
the new variables 

F(L$) =S(C V)? @(L 4) = O(57 r)9 4 = V/%(0> 

F*(L $J *> =f*(5, ‘1*>, 4 * = 1 + YI *l%(t). (41) 

The differential equations and all boundary conditions transform to the following systems of 
equations 

a 'F* a2F* 
p+WW*-- a4** 

1 4*>1 w 
with boundary conditions 

FCC, 0) = 0, 
dF(L 0) 
p-0, O(<,O)=l, O(<,l)=O, 

a4 

GJ*(L 1) = F(5, l), C, 
aF*(L 1) aF(5, 1) 

a4* = ~ 
a4 

c a2F*tt;, 1) = a2er, 1) 
2 a4** a$* 1 

a,vyo, + CO) 
= U,(O)Q(O) and 

a*F*(<, + co) - 
a4* a+ *2 

=o t>o. (45) 
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A direct approach to the solution of equations (42)-(45) would involve separate solution schemes 
for the condensate and vapour phase elements of the problem. Iterating backward and forward 
between the two schemes would be necessitated in order to reconcile the boundary conditions at 
the interface. As an alternative, in the present formulation, the stream function and temperature 
distribution in both phases, or across both layers, are amalgamated into unified functions 
incorporating possible discontinuities which accommodate the interfacial boundary conditions. A 
single coupled momentum and energy system results to which a Keller box methodology can be 
readily applied. The result is a single scheme in which iterations to satisfy the boundary conditions 
are inherently imbedded and for which the rate of convergence will mirror that of the overall 
scheme. We merge F({, 4) and F*(<, $*) into a unitary function and introduce a continuation of 
the definition domain of O(<, 4) to the infinite region as follows 

(46) 

It is obvious that g(<, #) and (~(5, (b) are not defined at Cp = 1, but there are left and right limits 
at C$ = 1, providing the values for each of the functions at C/I = 1. In other words, they may be 
thought to be multivalued functions at C#J = 1. - and + mean the left limit and the right limit 
respectively. In terms of the new variables the transformed equations in the domain < 2 0, 4 3 0 
are 

a2g ab7 
+f&)dd’@ 1 (47) 

1 (48) 

with boundary conditions 

g(c$,O)=O, y =o, dtf,O)= 1, cptr, 1 -O)=O, cp(5, 1 +O)=O, (49) 

C&(5, 1 + 0) = g(5, 1 -O), c, wr, 1 + 0) = ag(r, I - 0) 

a+ a4 9 

c 
2 
am, 1 + 0) = azg(5, I - 0) 

a42 a42 3 
(50) 

am +4 
= V,(0)t/li(O) and 

azg(r, +CO) 

84 842 
=o <>O, 

cptr, +a> = 0 (51) 

where two new conditions for cp(<, 4) are added to maintain consistency between the unknown 
functions and conditions and H(x) is the unit-step function, also known as the Heaviside function 
or Heaviside’s step function, which is usually defined by 

i 

0 x<o 
H(x)= l/2 x=0. 

1 x>o 

Using the same idea, one may also merge the three functions, F(5, c$), F*(t, c#J*) and O(& 4), into 
a unitary function, but it is not helpful in solving the resulting difference equations hereafter 
because the differential equation for O(C& 4) involves the unknown function F(<, 4). 
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The above is the main preparatory stage for introducing a merging procedure for the differential 
equations and conditions. Its principal requirements are based on the five following points: 

(i) all unknown functions appear explicitly in both the equations and the boundary conditions; 
(ii) unknown functions which represent the same physical property and are independent of each 

other in their differential equations are merged. These may only include one which is defined over 
a finite domain; 

(iii) all unknown functions with finite domain-those newly merged and the unmerged remain- 
der-are continued into new unknown functions over an infinite domain. In a broad case, that a 
function with finite domain is continued into another new function with infinite domain is the same 
as having the function with finite domain merge with a known solution of an auxiliary equation 
over an infinite domain; 

(iv) the necessary and appropriate conditions to maintain consistency are added; 
(v) boundary conditions at + co may be replaced by asymptotic representations or alternatively 

a sufficiently large finite domain may be chosen, at the outer edge of which, the boundary 
conditions are understood to be satisfied. For simplicity we have adopted the latter approach in 
the present work. 

Now we write the equations as a first order system by introducing the new dependent variables 

~(5, +), ~(5~4) and ~(5~4) as follows: 

ag 
%=” 
au 
%=” 

(52) 

(53) 

acp 
G=W (55) 

(56) 

The boundary conditions now become 

g(5,O) = 0, U(4,O) = 0, cp(L 0) = 1, (P(5, 1 - 0) = 0, PC<, 1 + 0) = 0, (57) 

C,g(t, 1 + 0) =g(t, 1 - Oh C,u(t, 1 + 0) = 45, 1 - O>, CAt, 1 + 0) = ~(5, 1 - Oh (58) 

u&44,) = U,(OhdO) and 45,4,) = 0 t: > 0, (~(5~4,) = 0. (59) 

We place an arbitrary rectangular net of points (c,,, #j) on 5 2 0, 0 G 4 < 4, and use the 
notation: 

&=O, 5,,=5,-,+k,, n=1,2 ,...; 

$o=O, 4,=$j-]+hj, j=l,2,...,JI,...,J*; (60) 

where 4J, = 1, c#J~? = 4,. As a result of the discontinuity for g(<, 4). and non-differentiality of 
(~(4, #) at 4 = 1, the point (p = 1 must be included as a mesh-point. No additional restrictions need 
be placed on the meshwidths hj and k, except this requirement. Because g(t, 4) and (~(5, I$) have 
two values at C$ == 1, there are two ways to construct the scheme. One is that the function has two 
values at the same point C$ = 1, that is, the left limit and the right limit. The other is that the point 
4 = 1 is thought to be two points with zero distance between them, that is, h!, +, = 0, and the 
function values at the left point and the right point are the left limit and the right limit respectively. 
Here we implement the former. Note that, for any function z(t, 4), z’j, represents the left limit or 
the right limit hereafter. 
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If (g;, u;, a;, ‘p;, w;) are to approximate (g, u, u, p, W) at (r&,, cpj), the difference approximations 
are defined, for 1 <j d Jz, by 

(61) 

cpj’ - cp;- I _ 

hj 
- w;- l/2 

(62) 

(63) 

(64) 

(65) 

where 5, l,2 = (t,, + 5, - I K-G CI,, I!2, P,? I ;Z T Y,, - ll2 and pn_ ,,2 are the values of IX(~), b(5), y(5) and 

~(5) at &- 1,2 respectively and for any function z(<,4) we have introduced a notation for averages 
and intermediate values as 

z;~,:*=(z;+z;~,)/2 

z:‘m I*2 = (z; + zI’-‘)/2 

Z ;_,‘;:=(z:+z:‘~,+zg-‘+z:l_,l)/4. (66) 

Note that equations (61) (62) (64) are centered at (<,,, 4, I,2) while equations (63) (65) are centered 

at (5,mI/29 &,- li2), ‘. I e. when a 5 derivative is absent equations can be differenced about the point 
(c,, 4ji ,,2). It was found in practice that this damps high frequency Fourier error components 
better than differencing about (t,,_ ,,2, 4j_ ,,2). 

The boundary conditions become simply 

g’d=o, z&=0, cpg=1, fp;,_o=o, (p[;,+o=o, 

cog~,+~=g;,_o, c,~l;,+,=~;,-o? Cz~l;,+o=“LI,-o~ 

Gz = ~,ml,(0) and u”=O n=1,2 Jz ,..., (pL;2 = 0. (67) 

5. REDUCTION, AND A DIFFERENCE SCHEME FOR 
DIFFERENTIO-INTEGRAL EQUATIONS 

Using the same transformation as in the merging procedure for the differential equations and 
the differential boundary conditions, the differentio-integral equation transforms to the following 
equation 
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or 

+ ~t5hs(5k)~=I + XP(ola(5) 0 f$ =O. (69) 
4 1 
= 

The main preparatory stage for developing a difference scheme for the differentio-integral 
equation is a reduction procedure. Its principal requirements are based on the two following points: 

(i) the transformations used for the differentio-integral equations are the same as those for the 
differential equaf.ons and conditions; 

(ii) the formulation should always ensure that all limits of integration are constants. The 
differences approximations are defined by 

(70) 

Note that the equation is centered at the line 5 = {,_ ,,2. 

6. SOLUTION OF THE DIFFERENCE EQUATIONS 

The nonlinear difference equations may now be solved recursively starting with n = 0 (on 
5 = co = 0). In the case of n = 0 we retain equations (61), (62) and (64) with n = 0 and simply alter 
equations (63), (65) and (70) by setting 5,_ ,,2 = 0 and using superscripts n = 0 rather than n - l/2 
in the remaining terms. The resulting difference equations, are then solved by the scheme below 
and accurate approximations to the solution of the systems of the ordinary differential equations 
are obtained. 

In general when the solution is known on 5 = 5, ~, the solution on the line 5 = 5, can be obtained. 
In detail suppose {gyp’, u;-‘, z$-‘, cp;-‘, , wn-’ J2 are known. To simplify notation we now write: Jo 

{g~,“~,v~,rP~, wJ} E { g u v j, j, 13 'pj, w,}. With this notation we multiply equations (61), (62) and (64) 
by h,, equation (63) by 2hj, (65) by 2P,hj and (70) by 2 to get 1 <j < J2: 

g,-gjm,-hjUj_,,~=O 

uj - uj_ , - hjvj_ ,,* = 0 

vj - vj- 1 + K- l/2hjYla(5n>kv)j- 112 

+P,-,,2h,YIs(r,)[Y,-l,Z~~(5,)H(JI -j + 1/2)-(~~)j~,pl 

-~f~~-~,2hj[rla(e~)(~j-~,2)2-('16(5.)-rla(4,,-~))(u:'_,l?u,-,,2+ Cu'>j-1/2) 
n 

-1l~tr,~~~2~~-,:2-YI~~5,~~5,~~,-l/2-~~-,I:2~~,-l/2-~8~5~-I~~:-I:2~,-,,2l=~:~,:2 

(71) 
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HO 
i 

wO+Prcrn-l/2'lb(5n) 2 (U'P)j-112h,+ 
,=I 

v prP,~p l/2 2 [2vlj(5n>(P,- l/Z"j- l/2 
n j=l 

-(VcS(t;n)- rlS(5n-l)("I'-I:2~,-l/2+ cP~~ll/2"j-l~2)lhj +an-1/2Ylb(5nkJ, 

I 

x- l/2 
+~P~-l,2Mr,)cg,, -g[l,-‘)+~6(5n-l)g,,l=R~-’ 

” 

Abbreviations S;1:,,,2, T~‘I,,,~, R;- ‘, together with a number of subsequent abbreviations introduced 
for clarity, appear in expanded form in the Appendix. 

That is if all the variables are known at location n - 1 then the difference equations resulting 
from equations (71) and (67) give a set of 5J, + 11 nonlinear equations for the 5J2 + 11 unknowns 
g;, ~7, u;, cp;, w;,j=O, l,..., J,-0, J,+O ,..., J2 and qs(&,) which we compute by means of 
Newton’s method. The iterates are denoted by {gj”, uj’), VI’), cpj’,, wj’), qy)(&,)}. They are determined 
by first writing 

‘C + ‘) 
= gj,) + hgji), U;+ ,I = Uji, + &j,i), Uj,+ ,, = Pj.;) + &g0, 

q!‘+ ,) = cpl”’ + 6#‘, 
J 

wl’+ ,) = w;‘, + dwj”, 

rl!+‘Ytn) = VY’(5”) + &Y(L) 

and then inserting these expressions in place of (g,, uj, uj, q,, wj, q6(&,)} in equation (71). Quadratic 
and cubic terms in {6gj’), 6u)“, 6uj’,, 6qj’), 6wj’,, @y)(t,)) are neglected. The resulting linear systems 
of equations can be written in vector-matrix form as: 

Rji’Sj.i’ - Lj”Sj!, + Hj”tiq~)(&,) = rj’l ,,2, for j = 1, 2, . . . , J, (72) 

and 

Here we have introduced the (column) vectors (see the Appendix) 

,:i, C @g$“, &,$“, &j”, &pJ”, &#))T, 

$2 ,,2 = (/3j!! ,,2, 7ji) ,,2, cxj! ,,2, $2 ,,2 + S;1/,2, aj? ,,2 + T;I,:2)T 

and 

Yy’Edb”+R;-, 

wg” + P,a,_ ,,2y11()(&,) % (z.+“‘)~_ ,,2hj 
j=l 

+ y P,p,, _ ,,2 % [2r#(r,)uji’ ,,2 cpj” ,,2 
n j=l 

- (']$'(<,a)- rtS(tn- l))("~~ll/2(P~~l/2 + rP7~,:2"~"l/2)lhj 

I 

xn- l/2 
-%- l,2yIYwgy -- k P,-l,*~Yl~~(S”)(~~~-~gS:-‘~)-~6(5n~I)~~~l 

I, 
(74) 

cl6 -(') = a,_ ,,2qf)(5,) + 
25, - l/2 
-P,,-l,2E~IE’)(5”)+~8(r,,-l)l k (75) 

n 
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I$‘= H,,P, CI,,_,,~ % (u’“~p”‘)~_,,~h~+ 2&l - l/2 
JI 

-Pn- l/2 c [2ul” l/2#~ l/2 
/=I 

k 
" j=l 

n-l (0 
- uj- I/2(Pj- l/Z - 'Py-1:2"li) l/2 lh,) +%l,,d:+ 

zf"- l/2 
-in - l,z (d; - g;,- ‘) k (76) 

n 

8:” = 1/2H,,P, IX,_ l,2ql;l(< 
i 

)&“(h-+ h. n I I I+1 
) + 25n-“2 7 Pn - l/2[21Y(tn)(cP~l l/2hj 

n 

+cP(i!l/2hj+l)-(~~'(5~)-~6~~~-~>~<~~~~~2hj+~,"~~~2hj+l)l (77) 

1 

Sj"= 1/2H,,P 
i 

~!,,_~,~r#(t ) !“(h.+h- 
nUJ I 

)+ 25” - l/2 
r I+1 _Pp.-1/2[2t1~~(9,)(uIRl,2hj 

n 

+ ~~~1/2~j+l)-(~~~<r,>-s,(e,-l>><~~-,’,2~j+~~;~/2~j+I)l * 
I 

(78) 

hO=hJ,+l= 0 applies only in the last two expressions for B;!” and $) rather than in others appearing 
in this paper. The 5 x 5 matrices are: 

R !i) = 
I 

0 1 -hj/2 0 0 

0 0 0 1 - hj/2 

1 -hj/2 0 0 0 (79) 
a<‘1 

J 
b!‘, &’ 0 0 

e !‘I 
I 

j) 

; pl” q:” 

r 0 1 hj/2 0 
0 1 

0 1 hi/2 
L (0 = 

J 

and 

H!” = 
I (‘31) 

Again the abbreviations for matrix and vector elements are expanded in the appendix. The 
boundary conditions (67) yield for our iteration scheme 

6uy;_o - C,6u~~+, = c,ul;‘;+o- dj_,, 

6vy_, - c2Bvy;+o = C2vf+, - d&o, 

sdj - u e (0)&#(O) = u (O)?#(O) - t4y; e n =O, (82) 
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and 

6v~j=-v~~ n=l,2,..., 

“cp$; = -cpf. (83) 

Clearly the right hand sides in each of these equations will vanish if the initial iterated variables 
satisfy the correct boundary conditions. Assuming this to be the case the entire linear system (72), 
(73) and (82) can be written in the block arrow-like matrix form. 

A”‘A”‘=q”’ i ~0, I,&. . . . (84) 

where 

qci) E (0, 0, 0, r(f);, . . . , I-?:_ ,,2, 0, 0, 0, 0, 0, r(f+ ,,2, . . . , r$c ,,z, 0, 0, y B, 0, 0, 0, O)T. (86) 

The matrix A(‘) can be expanded by four extra rows and columns to form a block arrow-like matrix 
with 5 x 5 blocks if we include four extra unknowns S, , S,, S, and S, and four extra equations 
S, = 0, S, = 0, Sj = 0 and S, = 0. The ordering of equations is (i) the three boundary conditions 
(82) at C#I = 0, (ii) equation (72) at the centred location j = l/2, . . . , J, - l/2, (iii) the five boundary 
conditions (82) at C$ = 1, (iv) equation (72) at the centred location j = J, + l/2, . . . , J2 - l/2, (v) 
the two equations (82) at 4 = 4, , (vi) equation (73) and (vii) the four dummy variable equations. 
We now have 5J, + 15 equations and unknowns and the matrix A(‘) has the form 

A(i) = 

Eo 4 4 . 

BN-, A,-, Cc, DN-, 
B, AN DN 

E N-l EN AN+, 

(87) 

7. DIRECT FACTORIZATION METHOD OF BLOCK ARROW-LIKE MATRIX 

The matrix A(‘) is called a block arrow-like matrix here due to its shape. Now we seek a 
factorization of the form 

BN-, FN-I 

BN FN 

Go G, G . ’ ’ GN-, GN FN+I 
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X 

where 

10 Ro PO 
11 R, p, 

4 & p2 
* . 

IN-, RN-, PN-, 

ZN PN 

L 
Z N+I 

where the Z,, are identity matrices of order 5 and N = J, + 1. Then we find that 

Eb=Ao, P,,=F,‘D,, G,=E,; 

R,=F;‘C’, j=O,1,2 ,..., N-l; 

Gj=Ej-Gi_,R,p,, j=1,2 ,.,., N; 

4.=Ai-B,R,_,, j=1,2 ,..., N; 

P,= F,-‘(Dj- BjPj_,), j = 1,2,. . . , N; 

F N+I - -AN+, - K($O Gif’s. (89) 

The system (84) is now equivalent to 

Lz,C = q(0, UA’“=z”’ i=O,1,2 ,.... (90) 

and the intermediate vectors z,‘, = (zpjT, . . , zsi,‘:, )T, where z!, are 5-component column vectors, are 
computed from: 

z&i’ = F, ,,$ 7 

zy) = F-‘(q!‘) _ B,z!‘L ) j = 1 2 
J I II, , ,.*a, Jz+ 1; 

c 

(88) 

(91) 

q{’ = (0, 0, 0, py:,, Tj$),>’ (92) 

d” = (c$ ,,Z) yI” ,,z + S”I ’ J ,,2,b~~,,2+T,“~,~2,~~~,,2,~ji~,,z)T j=l,2 ,..., J,-1 (93) 

qy; = (c$ ,,2, yy:_ ,,z + s;,-_‘,,,, gy/- ,,* + z-;,:I,,,, 0, o)T (94) 

(g, ,+1=(0~0~0~8~;+,,zrr$;+,,~)~ (95) 

#’ = (Cr~!.,I1, $1 3,2 + syI&2, a!) 312 + T~I~,z, /?I’! ,,z~j? ,,2)T j = J, + 2, J, + 3, . . . , J2 (96) 

q(O 
Jz+ I = cay;- I/Z, Y!$ ,,2 + %2:‘,12T oyj- ,,z + T:2:‘,jzT 0, OjT (97) 

qy; + 1 = (y y, 0, 0, 0, oy. (98) 

Finally the solution components Aj!, are obtained as: 

Ayif2 = z& 

A(‘) 
J +, =z(j+, -p 

2 Jz+,A!&2 

A,!) = z!‘) _ R&i , _ p.A(i) 
I I J J2+2 j=J,,J,-l,...,O (99) 
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A(f) = &“’ 
I 

, j=o,1,2 ,..., J, 

Aj’)=sj!, j=J,+l,J,+2 ,..., J,+l 

A& = (~vl8’(5,)~ 6S, 2 a, G, smT. (100) 

Note again that the matrix A(‘) is not block diagonal as is usual with the Keller box method and 
consequently the solution of equation (84) needs to be modified to take account of the column of 
Ds and the row of Es. A suitable algorithm for solving the matrix equation in (84) is 

Q+Ao 

A ,m~+Qc,-,> 

<II” c Q (q:” - Bjq:” , ), 

‘, qt’+QqX”, b+Q&l, 

E,+E,- Ej_,AI_, 

Q-(A,-&$,)- j=1,2 ,..., .&+l 

Di-QQ(D,- B,D,p,) I 

/ Jz+ I 1-1 

Q+- AJ?+> - 1 EkDk 
k=O 

A(” q”’ _ A,&” _ D.A(i) 
I+- / J /+I J J2+2 j=J,,J,-l,...,O (101) 

where + denotes replacement. Algorithmically this is simply a modification of the usual solution 
of a block tridagonal system to include the Dj and E,. The algorithm can be made efficient by taking 
account of the zeros appearing in matrices. 

8. EXTRAPOLATING THE RESULTS 

Since central differences are used the exact numerical solution of our difference equations 
(61)<65), (67) and (70) is a second order accurate approximation. The local truncation errors of 
this difference scheme can be written as a Taylor series in powers of h* and k* where k = max, k, 
and h = max,h,. It is therefore possible, as pointed out by Keller, by solving the problem on 
different sized grids and using Richardson’s extrapolation, to produce results of high accuracy 
provided the truncation errors are larger than the iteration errors. For example each cell of the 
net (60) is divided into m subintervals both in the r direction and in the 4 direction where m is 
an integer. The problem is solved numerically for m = 1,2,3 and 4. If z, denotes the results of 
any actual variable function z(t,4) at a common grid point then the z, has accuracy O(k* + h’). 
Since the truncation error is proportional to the square of k and h then 

212 = f(% - Z, >, 223 = i(9z, - 4z,), zj4 = f( 162, - 9z,) 

have errors O(k4 + h4) and 

zi23 = $(9z23 - zl2)T z234 = h(16z34 - 4z23) 

will be in error by O(k6 + h6) and finally 

Z 1234 = &(16~234 - z123). 

(10.3 

The results quoted are z,234 and error is estimated by maximum of the difference I21234 - z2341, which 
being a global error estimate measures the actual error in z. 

9. RESULTS FOR THE PROTOTYPE PROBLEM-MIXED CONDENSATION 

The numerical scheme described in previous sections was introduced in the context of combined 
body force and forced convection laminar condensation. To demonstrate the scheme a detailed 
examination of this problem has been performed. 
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Table I. Exact numerical characteristics for various Prandtl numbers for 5 = 0, H,=0.008191 and w = IO 

PC 46(O) F4m(0,0) @,(O.O) Nu,R,"~ C,R,” GR:“/X 

I .o 0.66184 0.02460 -1.00068 1.06430 0.07870 0.94022 
2.0 0.66144 0.02456 -1.00136 1.06566 0.07868 0.93966 
3.0 0.66104 0.02453 -1.00204 1.06702 0.07866 0.93910 
4.0 0.66364 0.02449 -1.00271 1.06838 0.07864 0.93853 
5.0 0.66325 0.02446 -1.00338 1.06973 0.07863 0.93797 
6.0 0.66285 0.02442 -1.00404 I.07108 0.07861 0.93741 
7.0 0.66246 0.02439 -1.00471 1.07243 0.07859 0.93686 
8.0 0.66206 0.02435 -1.00537 1.07377 0.07858 0.93630 
9.0 0.66167 0.02432 -1.00603 I.07511 0.07856 0.93575 
10.0 0.66129 0.02429 - 1.00668 1.07644 0.07854 0.93520 

The appropriate t-dependent parameters of the general scheme must be chosen as 

1 + 245 
‘(‘) = (1 + t)“4(l + 165)3’4 ’ 

((17 + 328 
‘(” = 2(1 + t)5’4(l + 165)3’4’ 

r(5) = 
4(1 + 5)“2(1 + 165>“* 

17+325 ’ 

P(5) = (1 + 165P4 
(1 + 5P4 ’ 

(103) 

and the constants are prescribed as C, = l/lo, Cl = l/1’, C, = l/L30, where II, o are two physical 
constants whose values depend on the flow under examination. In fact a very good approximation 
to ;1 is just unity and accordingly L = 1 has been adopted in all that follows. With U,(O) = 1 
equation (39) leads to 

1 
U,(t) = (1 + 5)“4(1 + 1@)“4. 

The non-dimensional characteristics of any given flow are 

(i) the skin friction coeficient 

C,R:‘2 = ,/$l + 16r)“4(1 + 5)“‘$,(5,0) = 
$(l + 165)“4(1 + 5)“2F,&, 0) 

U;(5) 

where C,= ,u(aU/~y),=o/fpU~ 

(ii) the heat tra.rzsfer coefficient 

(iii) the dimensionless jilm thickness 

6Rk’*lx = (1 + 5> ‘,4 rla(O. 

(105) 

(107) 

A detailed solution should also identify velocity and temperature profiles as well as the interfacial 
free surface velocity of the condensate film. Once values have been specified for the physical 
constants H,,, P, a.nd o as they relate to a given physical configuration a complete solution can 
be obtained from the scheme which supplies any such information as desired. 

HI 
o.ooOQ2 
0.00019 
0.00066 

Table 2. Exact numerical characteristics for various Ho for 5 = 0, P,= IO and w = IO 

G(O) Fmm(O,O) @,@I 0) Nu, R,= CrR!’ c 

0.1 0.00047 -1.00002 7.07121 0.06658 
0.2 0.00191 -1.00016 3.53610 0.06736 
0.3 0.00437 

0.00160 0.4 0.00796 
0.00325 0.5 0.01288 
0.00589 0.6 0.01937 
0.00998 0.7 0.02783 
0.01614 0.8 0.03883 
0.02545 0.9 0.05329 
0.03975 1.0 0.07625 

-1.00055 
-1.00133 
-1.00268 
-1.00484 
-1.00811 
-1.01292 
-1.01992 
-1.03013 

2.35831 0.06859 
I.77011 0.07040 
I.41801 0.07285 
1.18421 0.07609 
1.01834 0.08031 
0.89530 0.08581 
0.80133 0.09305 
0.72841 0.10275 

6R121X 

0.14142 
0.28284 
0.42426 
0.56569 
0.70711 
0.84853 
0.98995 
I.13137 
1.27279 
I.41421 
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Table 3. Exact numerical characteristics for various w for 5 =O, f,= IO and Ho = 0.008191 

w Q(O) F+,(O, 0) @,(O,O) Nu, R; I” C, R;” 6R:‘z/% 

10 0.66128 0.02429 -1.00668 1.07644 0.07854 0.93519 
100 1.16768 0.01375 -1.00668 0.60962 0.01427 1.65134 
150 1.24507 0.01290 -1.00668 0.57172 0.01177 1.76080 
500 1.38315 0.01161 -1.00668 0.51465 0.00858 I.95607 
600 1.39237 0.01153 -1.00668 0.51124 0.00841 I.96911 

Table 4. Comparison of Nu, Rcm”2 from exact results and thecorrelation of Fujii 
and Uehara 1181. Nu. RI”* = 0.450 (1.20+ l/wH n )I" 

WH” Shu and Wilks Fuiii and Uehara 

IO-* 2.05545 2.09704 
~0.‘.‘2 1.42379 1.44080 
10-1 1.00591 1.00682 

~0..1’2 0.73967 0.73528 

,bs:~ 0.58704 0.52113 0.58527 0.51697 
10' 0.50622 0.49113 

Note that the solution at 5 = 0 recovers the solutions of pure forced convection condensation 
and results at this station may be expected simply to be more accurate solutions of the associated 
similarity equations. Table 1 presents exact numerical data at 5 = 0 for a range of Prandtl numbers 
with H, and w held at constant representative values. There is clearly relatively little formal 
dependence on P,. By way of contrast Table 2 presents data at 5 = 0 for a prescribed Prandtl 
number and the same w as before. Here however initial film thicknesses over the range 
qs (0) = 0. l(O.1) 1 .O have been prescribed and the associated values of the parameter H,, have been 
established. Table 3 again relates to < = 0 and indicates the effect of variations in the interfacial 
shear stress parameter w on the various flow characteristics. A valuable correlation of initial data 

Table 5. Exact numerical characteristics for various Prandtl numbers as t++co, H,,= 0.008191 and w = IO 

1.0 0.30164 
2.0 0.30147 
3.0 0.30130 
4.0 0.30113 
5.0 0.30096 
6.0 0.30079 
7.0 0.30063 
8.0 0.30046 
9.0 0.30029 
10.0 0.30013 

0.02721 
0.02716 
0.02712 
0.02707 
0.02703 
0.02698 
0.02694 
0.02689 
0.02685 

-1.00082 2.34615 0.42289 0.42658 
-1.00163 2.34938 0.42266 0.42634 
-1.00245 2.35261 0.42243 0.42610 
-1.00325 2.35582 0.42219 0.42586 
-1.00406 2.35903 0.42197 0.42562 
-1.00486 2.36222 0.42173 0.42539 
-1.00565 2.36541 0.42151 0.42515 
-1.00645 2.36858 0.42128 0.42492 
-1.00724 2.37175 0.42106 0.42468 
-1.00802 2.37489 0.42083 0.42445 

Table 6. Exact numerical characteristics for various Ho as t++m, P,= IO and w = IO 

HO Id+ k) F+,(f,O) @,Jm,O) 
Nu R -‘I* 
-ST 

C, R:12 6R,&‘” 
123’4 

0.00818 0.3 0.02677 -1.00801 2.37590 0.42065 0.42426 
0.02660 0.4 0.06270 -1.02489 I.81177 0.55418 0.56569 
0.06920 0.5 0.11983 -1.05893 1.49756 0.67786 0.70711 
0.16089 0.6 0.20022 -1.11632 1.31559 0.78653 0.84853 
0.35828 0.7 0.30388 -1.20092 I.21311 0.87705 0.98995 
0.80248 0.8 0.42969 -1.31327 I.16078 0.94948 I.13137 
1.87632 0.9 0.57642 -1.45054 1.13965 1.00640 1.27279 
4.71390 1.0 0.74337 -1.60749 1.13666 1.05128 I.41421 

Table 7. Exact numerical characteristics for various o as ~-+a~, P,= IO and Ho= 0.008191 

w %(+a) F@(‘a 0) Qm(m. 0) 
Nu R-“2 
+iik 

C,R:” SR:!2t’ * 
lr34 

IO 0.30013 0.02680 -1.00802 2.37489 0.42083 0.42445 
100 0.29977 0.02679 -1.00802 2.37772 0.42167 0.42394 
150 0.29977 0.02679 -1.00802 2.37774 0.42167 0.42394 
500 0.29977 0.02679 -1.00802 2.37777 0.42168 0.42393 
600 0.29977 0.02679 -1.00802 2.37777 0.42168 0.42393 
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Fig. 2. Dimensionless film thickness profiles ~~(5) 

obtained by earlier workers is provided by Fujii and Uehara [18] who suggest that over the various 
parameter ranges on o and Ho 

Nu,R.t12=0.450(1.20+~)lii at 5 =O. (108) 

Notice that this is independent of the Prandtl number except for its role in the definition of H,,. 

Our results have in essence substantiated the independence. As an indicator of the precision of (108) 
Table 4 draws a comparison between its predictions and the exact numerical results. For the most 
part agreement is very good. As expected the greatest variations occur in the transition range from 
small to large o/f0 i.e. between 0.1 < wH,, < 4. 

As a further test of the effectiveness of the numerical scheme special consideration can also be 
given to large <. ‘With computations extending to 5 = 1O24 equations (105) can also be interpreted 
as asymptotes to the pure body force convection condensation data. Associated values are 
presented in Tables 5-7. In Table 5 the Prandtl number has been varied and the values for heat 
transfer and skin friction coefficients and film thickness identified. As in Table 1 the dependence 

Table 8. Dimensionless film thickness profile for the uarameter H, = 0.008191. P.= IO and w = IO 

0.0 0.661 0.3 0.414 15 0.305 

10-h 0.661 0.4 0.396 20 0.303 

10-S 0.661 0.6 0.374 30 0.302 

10-4 0.661 0.8 0.360 60 0.301 
5 x 10-d 0.659 I.0 0.351 100 0.301 

10-A 0.657 1.3 0.341 250 0.301 

4x 10~1 0.645 I.6 0.335 IO' 0.301 

0.01 0.624 2.0 0.329 I04 0.301 
0.025 0.585 2.5 0.324 10s 0.301 

0.05 0.542 3.2 0.319 106 0.301 

0.075 0.513 4.0 0.316 IO" 0.301 

0.1 0.492 5.0 0.312 10'0 0.301 
0.15 0.462 7.0 0.309 10'6 0.301 

0.2 0.441 IO 0.306 1024 0.301 
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Fig. 3. Development of interfacial velocity. 
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Fig. 4. Development of skin friction coefficient. 
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Fig. 5. Development of heat transfer coefficient. 

on P, for fixed H,, is seen to be remarkably slight. By far the most significant influence of the Prandtl 
number is again its role in the definition of H,, . This feature may be expected to persist throughout 
the full mixed condensation range. In Table 6 further information in the limit t + + co has been 
extracted from numerical solutions. The values of Ho associated with qa = 0.3(O.l)i.O have been 
obtained together with values for the physical characteristics. Table 7, in contrast to Table 2, 
indicates the minkmal role of w in pure body force condensation. 

It is clear that the numerical scheme captures entirely satisfactorily the correct details of the flow 
characteristics at the extremes 5 = 0 and < + + co. Of greater significance however is the 
opportunity to obtain exact information over the full range of <. For three representative values 
of H, = 0.001, 0.01, 0.1 the precise values of the film thickness ~(5) have been obtained. The 
Prandtl number has been nominally taken as the single value 10. From earlier remarks no 
significant dependence on Prandtl number is expected. In view of the dependence on o at small 
5 two representative values of o = 10, 100 have also been used. The results are illustrated in Fig. 
2 using the convenient ordinate variable (r/l + c)‘14 to cover the range 0 < 5 < + co. For each set 
of fixed parameters the accelerating flow of the condensate under gravity together with the 
accompanying relative film thinning is apparent. Numerical data for a typical parameter set as 

Table 9. Heat transfer coefficient comparison between exact results and approximate correlation (109) 

Nu, R, “’ 
co= 10,,4,=0.008191 w = IW, Ho = 0.02468 

Shu and Wilks Fujii and Uebara Shu and Wilks Fujii and Uehara 
5 

HO 
Exact Equation (109) Exact Equation (109) 

10-Z 1.077 1.070 0.531 0.53 I 
10.’ 1.083 1.074 0.577 0.565 
100 I.133 I.117 0.778 0.756 
IO’ I.432 I.397 1.281 I.267 
102 2.305 2.265 2.244 2.238 
IO’ 4.022 3.982 3.928 3.977 
IO4 7.137 7.072 6.999 7.071 
105 12.682 12.575 II.156 12.574 
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Fig. 7. Dimensionless velocity profile at E, = 0.2, P, = I, w = 100 and H,, = 0.02468. 
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Fig. 8. Dimensionless velocity profile at 5 = 250, P, = 1, o = 100 and H, = 0.02468. 

quoted in [15] is included for additional information in Table 8. The asymptote as ( + + co is in 
exact agreement with the similarity solution of [15]. The specific development of the free surface 
velocity for various cases is presented in Fig. 3. Here log-log plots more readily capture the 

lo’+1 

0.8 

0.6 

0 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 

Fig. 9. Developing velocity profiles over ( at P, = 1, o = 100 and H,, = 0.02468. 



648 Jian-Jun Shu and Graham Wilks 

transition between similarity states. The acceleration of the free surface under gravity naturally 
implies that its velocity will go through a transition from < U, to > U, . This feature is notable 
in all plots in Fig. 3. Similarly skin friction and heat transfer coefficients are plotted for the given 
range of parameter values in Figs 4 and 5. Fujii and Uehara [IS] have proposed an estimate of 
the heat transfer coefficient based on an approximate solution. In the present notation this 
correlation reads 

Nu,.R;“* = K(wH,) 
1 5 I:4 

4K4(oH,J H, > 
(109) 

Table 9 presents comparisons between estimates from (109) and exact numerical solutions for 
representative small and moderate values of OH,. For a typical thin film setting e.g. w = 10 and 
Ho = 0.008191, the correlation is seen to be a valuable close approximation to the exact results. 
Its success is related to the validity of a linear temperature profile approximation across the film. 
This feature for small OH, is confirmed in Fig. 6 where temperature profiles in the mixed 
condensation range for w = 10 are presented. The thin film approximation deteriorates however 
as OH, increases. There is a corresponding deterioration in heat transfer estimates from (109). This 
is noticeable in Table 9 where exact results for w = 100, H,, = 0.02468 are compared with (109). 

Finally velocity profiles have been considered. Again representative 5 stations have been chosen 
for comparison with approximate results. At 4 = 0.2 Fig. 7 displays a wide discrepancy between 
the actual velocity in the vapour boundary layer and that predicted by Jacobs approximate method. 
At large 5, Fig. 8, Jacobs’ results are remarkably good with discrepancies again mostly associated 
with details in the vapour boundary layer. A display of progressively developing profiles as 4 
increases is presented in Fig. 9. The transition of interfacial velocity from less than to greater than 
U, is clearly accommodated by the numerical scheme. 

10. CONCLUSION 

In this paper we have presented an extension of the Keller box numerical scheme for a single 
boundary layer to a multilayer setting. The extended scheme has been successfully developed in 
a multiphase, non-similar boundary layer context. As has been displayed in a prototype 
configuration the scheme retains the accuracy and robustness of the original Keller box scheme. 
The scheme may be applied to a wide variety of non-similar physical configurations governed by 
differentio-integral systems reflecting inherent multiphase, multilayer features. 
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APPENDIX 

Details of Abbreviations Used in the Difference Equations of Section 6 

(a) Inhomogeneous terms 

Sj’:,‘,,= -v~-‘+~~~~-a.-,,~h~~~(5.-,)(~)~~~,~ 

-8,-,,,hjn,(5,-,)[Yy,-,,2~:(5.-I)H(JI -i+ I/2)-(u2)T1,:21 

25” - I,2 
-kPm-l/~hjns(T.- l)[(u41&)* -(u*)~~~,2 -g;1_I:2u~~&I (Al) 

n 
xt - i/2 

T~~~,2=-~~-‘~~w~~~-P,a,_~,zhj~t(~,-1)~~)~~~,2-~P,p,_,,~hj~s(~._~)[~~~~,~(~~~~,~-g~~~~2~~~~,21 642) 
” 

K-’ = -4, W’+ P,a._,,,M,_,) i (ucp);:,‘,,h, 
{ ,=I 

-~P~P,-~/~~s(L-I) i u;-I$(P;Zl’/2hj 
4L - I,2 

4 ,=I 

X” - 112 
-P"-l,* &K-I)&- k 

n > 
(A3) 

(6) Column vector elements 

a$! ,,* = -gf’ + gj’? , + h,u)‘l,,2 

,‘j:” 1,2 = -_u!” + $1, + h.v!” I I I 112 
ry, ,,* = --‘PI (‘) + cp:” , + h,wj” ,,z 

vj’? ,I* = -v)n + vj? , -a,_ ,,2h,nY(t;.)(g”W”)I_ ,,* 

-fi,- loh,nY(L)[Y”- 1,2qf(tti)H(J1 -j + l/2) - (Uca2)j- 1121 

X” - 112 

(A4) 

-q&,_ )v”r’ )v?:’ g? I J 112 , I/2 I 112 ] 

c$‘I ,,* = -WY + wj’l , - P,a,_ ,,zhjsB(g”)(g(ow(~)j_ ,,2 

2L 112 

+ h, 
~ PrPn- 1/2hj[tlY(Sn)((Pj’L 112 - CP;~&)UFL 1,~ 

+ %(L I)u;:,;*cp;! ,,2 - nY(L)G$! 112 -g;:,:2)$! ,,* - %(L ,)w:~,:*g:i) ,,*I 

(c) Matrix elements of (79), (80) and (81) 

5.- 112 
a!” = 1/2a,_ ,,2hjr$(~,)v(~ + - / I k Pn- 1/2hj[nY(L)vj’L 1,~ + ns(<.- I bj’r1\2I 

” b!“= -,3._,,,h,n(# ) !a- / n U/ 
r.- 112 
kPn- 1/2hj[hY)(tn) u'- 1,2 -Mw - %(t._,M2~:"+ q-&2)1 I" 

n 

vshjn!+“(5,)(#L ia -gr1,!2) 

(A3 

(‘46) 

(47) 

W) 

(A9) 

(A101 

(Al I) 
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6412) 

(A13) 

(A14) 

(Al5) 

(A17) 

(Al@ 

(A19) 

(A20) 

1:” = P,a,_ ,,2hj(g(‘)w(i’)._ 
25” - I,2 

, Ii2 
4 

prPn - l/Zhj[((Py? 112 - cP”_+ ’ )U’? , 112 , 112 - (g:” 112 - &?;::,,)wy ,,21. 6422) 

(d) Block matrices of A”’ 

A, = 

AI= I 
1 

e 

C’ 
0 

0 

A,, = 

10 0 0 0 

010 0 0 

00 0 10 

0 -1 -h,/2 0 0 

00 0 -1 -h,/2 1 
-h,/2 0 0 0 

b!” c!” 0 

;i, I, p:” 

0 

11 

q!” 

-h,+,/2 0 ; 

0 0 -1 -h,,,/2 

forj=l,2 ,..., J,-1 

1 -h,,/2 0 0 0 

a(j) by,’ CY/ 0 0 

ey/ A’ 0 py qy 

0 0 0 I’ 0’ 

0 1000 

-c, 0 0 0 0 

0 0 -c, 0 0 

A ,,+I = 0 0 0 1 0 

0 -1 -h,,+,/2 0 0 

lo 0 0 -1 -+,+,I2 I 

(~23) 

(~24) 

6425) 

(A261 
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A, + ;! = 

cj = 

Ai= 

1 -hi_,/2 0 0 0 
0) aj-1 

el’l , 

0 -1 -hi/2 0 0 

0 0 0 -1 -hi/2 
, 

for j = J, + 2, J, + 3, . . , J2 

A ,?+I = 

: 4: 0 0 1 

es? 7 

H(l-2n) -h,/2 by! 0 7 H(2n C$ 0 0 - 

w 0 P!$ 4y 

1) 0 0 0 1 0 0 0 0 I 
forn=0,1,2 ,...... 

6y 0 0 0 0 

0 1000 

0 0100 

0 0010 

0 0001 J 

B, = 

0 0 

0 0 

0 0 

0 I 

0 0 

forj=1,2 ,..., J, 

1 0 0 0 0 

0 0 1 0 0 

B ),+I= 0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

r 
-1 -h,_,/2 0 0 0 

--a,-, -01 -@ I 1 - E’!? I , 0 0 

--e,-l -(iI -7. ‘1 
I 1 

0 yip, -01 -4j- I 
0 0 0 0 0 

c 0 0 0 0 0 

for j = J, + 2, J, + 3, . J2 + 1 , 

0 0 0 0 0 00 1 

0 0 0 

1 

0 0 00 1 

0 0 0 c,, = 0 0 00 1 

-h,+,/2 0 0 I 0 0 00 I 

0 1 -hj+,/2 0 -c, 0 0 1 

forj=O,l,..., J,-I 

c, = 

Dj= 

-00 0 0 0 

00 0 0 0 

00 0 0 0 Do=0 

0 1 -hj/2 0 0 

00 0 1 -hj/2 1 
for j = J, + I, J, + 2, . . . , J2 

-0 

s!” 
I 

0 0 0 0 

ty) 0 0 0 0 

0000 1 

D,,+,=O 

0 0000 

_o 0000 

forj=1,2 ,..., J, 
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(~27) 

6428) 

(~29) 

(A30) 

C431) 

(~32) 

(A33) 

(A34) 
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forj=J,+2,J,+3 ,..., J2 forn=0,1,2 ,..... 

+;[T;] Ej-[!!iT; 

forj=1,2 ,..., J,-I 

0 0 0 0 

0 0 0 0 E;=O forj=J,+l,J,+2 ,..., J,+l. 

0 0 0 0 

0 0 0 0 

(A351 

(A361 

6437) 


