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Abstract 

Employing a suitable scaling rule in gas–liquid flow can produce dynamically comparable results, 
which helps in the development of flow models applicable to a wide range of flow conditions 
and reduces the carbon footprint; however, matching all dimensionless numbers in gas–liquid 

flow is a challenge. This study uses a computational fluid dynamics approach to identify key 
dimensionless numbers that can produce dimensionally equivalent results under a variety of 
flow conditions in the vertical Venturi of varied sizes. The performance of the scaling rule is 

evaluated and validated based on experimental measurements in terms of the phase fraction, 
the Venturi dimensionless pressure drop, and the two-phase discharge coefficient.  
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1 Introduction 

The difference in the scale of fluid properties and flow 
conditions between laboratory and field conditions has 
been highlighted by many researchers as a major challenge 
in validating flow models (Al-Sarkh et al., 2016; Farokhpoor 
et al., 2020). For example, different pipe diameters are used 
for different flow conditions. This can be seen in the design 
of a Venturi-based multiphase flowmeter (MPFM), where a 
selection of the different Venturi sizes is often available to 
suit the measurement needs of oil and gas wells with a wide 
range of production (Schlumberger, 2017). In addition, 
laboratory experiments are typically performed at close to 
atmospheric pressure with low gas densities compared to 
field condition, whereas gas densities can be at least an 
order of magnitude higher under higher pressure. Because 
the Venturi-based MPFM uses the Venturi differential 
pressure and phase fraction (mixture density) measurements 
to calculate flow, a flow model based solely on laboratory 
conditions may lead to erroneous flow predictions. Hence, 
there is a need for flow models to be validated against field 
condition. Although studies (Al-Sarkh et al., 2016; Farokhpoor 
et al., 2020; Omebere-Iyari et al., 2007; Tayebi et al., 2000) 

have been conducted on gas–liquid flow under flow condition 
comparable to field condition, the fabrication cost and carbon 
footprint of extensive experiments under such conditions 
are high. Therefore, there is a need to develop a method to 
correlate and predict the flow property of gas–liquid flow at 
the different scales of flow conditions. 

Unlike single-phase flows where scaling studies based 
on dynamics similitude are common, scaling studies in 
gas–liquid flows are more challenging. Gas–liquid flow 
dynamics depends on many flow conditions and fluid 
properties, making the selection of meaningful dimensionless 
groups difficult; however, some recent progress has been 
made in multiphase-scale studies with promising results. 
Based on the segregation model (Lockhart and Martinelli, 
1949), a pressure escalation rule was developed to predict 
the pressure gradient and liquid holdup at elevated pressure 
(Al-Sarkh et al., 2016). The scaling rules are validated by 
experiments and simulations of stratified and annular flow 
in horizontal pipes. It is worth noting that the prediction 
results are more consistent with the simulation than the 
experiment, which is due to the more accurate matching of 
mass flow rate at the two pressure levels in the simulation.  
Scaling rules were also established based on the segregation  
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Nomenclature 

Acronyms 

CFD computational fluid dynamics 
GVF gas volume fraction 
MPFM multiphase flowmeter 
MT mid-throat 
RMSE root-mean-square error 
VI Venturi inlet 

Greek symbols 

α  phase holdup/fraction 
β  Venturi throat to Venturi inlet diameter ratio 
μ  dynamic viscosity (Pa·s) 
ρ  density (kg/m3) 
σ  surface tension (N/m) 

Roman symbols 

A area (m2) 
C force coefficient 
D Venturi inlet diameter (m) 
d Venturi throat diameter (m) 
Eo  Eötvös number 
Eo  modified Eötvös number 
F


 force (N) 
Fr Froude number 
g gravitational constant (m/s2) 

H height (m) 
KE kinetic energy (J) 
k  direction of gravity 
l length (m) 
n number of phases or number of cells 
P pressure (Pa) 
Re Reynolds number 
r ratio 
SL slippage number 
UE gravitational potential energy (J) 
V  flow velocity (m/s) 
W work done (J) 

Subscripts 

D drag (force/coefficient) 
g gas phase 
gamma (evaluated/measured) over gamma ray 
HU (evaluated) using phase holdup/fraction 
in horizontal inlet 
L lift (force/coefficient) 
l liquid phase 
m mixture 
operating operating condition 
s superficial velocity 
VF (evaluated) using volume fraction 
WL wall lubrication (force)  

  
 
model of stratified and annular flow in horizontal or 
near-horizontal pipes (Farokhpoor et al., 2020; Shu, 2003a, 
2003b; Shu et al., 1997). The agreement between the 
available experimental data (Hedne, 1988, 1996; Linga and 
Hedne, 1987; Linga and Østvang, 1985) and the experimental 
measurements of their respective scaled counterparts 
provides a good validation of the scaling rule; however, 
discrepancies were observed in flows with higher gas 
superficial velocities. 

It is observed that scaling rules derived from dynamics 
similitude can deliver promising solutions in stratified and 
annular gas–liquid flow; however, current scaling rules 
have some limitations. First, some approaches involve 
assumptions that do not hold in certain circumstances. For 
example, scaling rules (Al-Sarkh et al., 2016; Farokhpoor  
et al., 2020) are based on segregation models and do not 
consider the effects of gas–liquid interaction. This may be 
the reason that scaling rules are not applicable to dispersed 
(and intermittent) flows, where gas–liquid interaction, such 
as drag, lift, and turbulent dispersion, can be important. 
Second, scaling rules are validated in steady-state, developed, 

horizontal, or near-horizontal pipe flows. The development 
process is often encountered in engineering application.  
Depending on the application, the flow can also take on 
different pipe inclinations/geometries. For example, in a 
Venturi-based MPFM, a concurrent upward (or in some 
cases downward) gas–liquid flow goes through a vertical 
Venturi. In addition, a Venturi-based MPFM rarely has a 
sufficient length of flow development leading to the position 
where the measurements are taken due to constraints on 
piping and flowmeter placement (Rammohan et al., 2013). 
Overall, to make scaling rules applicable to a wider range of 
applications, the application of scaling rules for gas–liquid 
flow needs to be extended to different flow conditions 
such as dispersed and intermittent flows, developing flows, 
and flows with different pipe geometries. This study 
investigates the effect of matching different dimensionless 
numbers, including quantities related to gas–liquid 
interactions, on the phase fraction, dimensionless Venturi 
differential pressure, and two-phase discharge coefficient 
in a vertical Venturi in an MPFM downstream of the 
horizontal entrance length. 
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2 Methodologies 

2.1 Scaling principle 

There are many dimensionless numbers available associated 
with gas–liquid flow. To select the relevant ones, we start 
by writing the governing equations for the gas–liquid  
flow in dimensionless form. Several assumptions were 
made about the governing equations, including (1) a  
steady framework is used instead of a transient one (Zhan 
et al., 2022), and (2) the gas–liquid flow is considered  

incompressible if the criterion 
line

Δ 5%P
P

<  is met, where  

ΔP  and lineP  are the Venturi differential pressure and the 
line pressure, respectively. In this study, nitrogen gas is 
used as the gas phase. According to the Aungier–Redlich– 
Kwong equation of state (Aungier, 1995), the nitrogen density 
difference between the flow inlet and the throat is less than  

5%, relative to the throat density, if Δ 5%P
P

<  is satisfied at 

line pressure 20 barP »  and temperature 30 CT »  . The 
simplified governing equations are as Eqs. (1)‒(3): 
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where s in,

| |
q

q
q

v
α

V
=  , sg ,inv , qV


, and qρ  are the fraction  

(holdup), the superficial velocity at the horizontal inlet, the 
flow velocity, and the density of the phase q, respectively, 
and P, g, k


, pqF


, qμ , and tμ  are the pressure shared by all 
phases, the gravitational constant, the direction of gravity, 
the phase interaction force acting on the phase q, the 
shear dynamic viscosity of the phase q, and the turbulent 
dynamic viscosity, respectively. For a gas–liquid two-phase 
flow, the number of phases is 2n = . 

Equation (1) is already in dimensionless form. To obtain 
the dimensionless forms of Eqs. (2) and (3), we multiply both  

sides of Eqs. (2) and (3) by 
g in sg in

2
, ,

D
ρ v

, where D is the Venturi  

inlet diameter (see Fig. 1) and g in,ρ  is the gas density at 
the horizontal inlet. The dimensionless form of the mass 
continuity and momentum equations for gas and liquid 
can be written as 
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s in
s

,q
q

v
gD

=Fr  are the horizontal inlet density ratio, the  

superficial velocity ratio, the Reynolds number based on 
the superficial velocity of the phase q, and the Froude 
number based on the superficial velocity of the phase q, 
respectively. Note that tμ  is the turbulent dynamic viscosity, 
which varies with the different turbulence models selected 
for prediction because turbulence is related to the superficial 

Reynolds number of the phase q, in s in
s

, ,q q
q

q

ρ v D
μ

=Re , in the  

scaling study. Table 1 gives the expressions for dimensionless 
coordinates and variables. 

To obtain the same solution to the dimensionless 
governing Eq. (1), Eqs. (4) and (5) for the different sets of 
problems, the scaling coordinates, the coefficients of the  

 
Fig. 1 Geometry of vertical Venturi downstream of horizontal 
pipe with blind tee. 

Table 1 Dimensionless variables in governing equations 

Symbols for dimensionless variable Dimensional variable 

  D  

q
v  

sg in,

1
qv


V  

p  
in n

2
g, sg,i

P
ρ v

 


f  2

g,in sg,in

D
ρ v


F  
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dimensionless variables, and the corresponding boundary 
conditions of the dimensionless governing equations need 
to be held constant. For the scaled coordinates to be the 
same, the flow domains must be geometrically similar. For 
a vertical Venturi downstream of a horizontal pipe as shown 
in Fig. 1, this involves maintaining the same geometric 
similarity of the following length to Venturi inlet diameter  

ratios: dβ
D

= , HEL
D

, HBD
D

, VEL
D

, cl
D

, tl
D

, d1l
D

, d2l
D

, 

ol
D

, and VBD
D

, where d, HEL, HBD, VEL, cl , tl , d1l , d2l , 

o ,l  and VBD are the Venturi throat diameter, the horizontal 
entrance length, the horizontal blind-tee depth, the vertical 
entrance length, the convergence length, the throat length, 
the first divergence length, the second divergence length, 
the outlet pipe length, and the vertical blind-tee depth, 
respectively. 

From the dimensionless governing Eq. (5), the coefficients 
for the dimensionless variables that need to remain 
unchanged include the horizontal inlet density ratio, ,qr  , 
the superficial velocity ratio, sv,qr , and the Reynolds number, 

sqRe , based on superficial velocity, and the Froude number, 
sqFr , based on superficial velocity. In addition, there are some 

dimensionless numbers related to the gas–liquid interaction 
force gl


F . There are many types of gas–liquid interaction 

forces, such as virtual mass, drag, lift, wall lubrication, and 
turbulent dispersion forces. Our study identifies drag 
force D


F , lift force L


F , and wall lubrication force WL


F  as 

the dominant phase interaction forces when simulating 
gas–liquid flow with negligible compressibility. In order to 
determine the dimensionless number related to gl


F , after  

multiplying both sides of D


F , L


F , and WL


F  by 2

g,in sg,in

D
ρ v

, 

the dimensionless form of the gas–liquid interaction 
force gl


f , including the dimensionless drag force D


f , the 

dimensionless lift force L


f , and the dimensionless wall 

lubrication force WL


f , which is given by 

 ( )D D l l g lg , g
g

3
4

DC α r v v v v
d

= - -
    

f    (6) 

 ( ) ( )L L lg , g l lf ρC α r v v v=- - ´ ´
      (7) 

 WL
2

WL g l, g l Wˆf ρC Dα r v v n=- -
    (8) 

where DC , LC , and WLC  are the interphase drag, interphase 
lift, and wall lubrication force coefficients, respectively.  

gd  is the Sauter mean diameter (Sauter, 1926) of gas bubble, 
and Wn̂  is the normal component pointing away from the 
wall. The Tomiyama’s drag model (Tomiyama et al., 1998), 
the Tomiyama’s lift model (Tomiyama et al., 2002), and the 
Frank’s wall lubrication model (Frank et al., 2008) are used 

to compute DC , LC , and WLC , respectively. From the 
models, all three coefficients depend on the Eötvös number,  

( ) 2
l g gg ρ ρ d

σ
-

=Eo , where σ  is the surface tension. The  

Tomiyama’s lift model also relies on a modified Eötvös  

number, 
( ) 2

l g hg ρ ρ d
σ
-

=Eo , based on the length of the  

longest axis of the deformable bubble, dh , while the Frank’s 
wall lubrication model relies on the absolute distance from 
the wall, which makes the wall lubrication force difficult 
to scale. In general, in order to keep the dimensionless 
gas–liquid interaction force gl


f  identical, the ratio of the 

Sauter mean diameter to the Venturi inlet diameter,  
g

d
d

r
D

= , the horizontal inlet liquid-to-gas density ratio, l,ρr ,  

the Eötvös number, oE , and the modified Eötvös number, 
oE  (see Table 2), need to be maintained constant. 

For the dimensionless variables to be the same, the 
dimensionless velocity at the inlet and the pressure at the 
outlet need to be the same in 

 l ,sv
l,in

g,in1
v r

α
=

-
     (9) 

 g,in
g,in

1
α

=
v   (10) 

     operating
operating 2

g,in sg,in

P
p

ρ v
=  (11) 

In view of the assumption of incompressibility, the effect 
of pressure changes on the fluid property is negligible. 
Also, we are interested in the Venturi differential pressure 
rather than the absolute pressure. Hence, the choice of 

operatingp  is arbitrary. Overall, under different flow conditions, 
a constant dimensionless number is required to obtain the 
same dynamic solutions as governing Eq. (1), Eqs. (4) and 
(5) under different flow conditions, are summarized in 
Table 2. 

2.2 Computational fluid dynamics model 

In this study, a computational fluid dynamics (CFD) 
approach is used to investigate gas–liquid scaling rules. 
Unlike experiments, which are subject to system instabilities 
and measurement uncertainties, the advantage of CFD 
simulation is that precise flow condition and fluid property 
can be specified. In addition, a CFD approach can monitor 
the scaling performance of developing flows as fluid 
property changes, which is challenging in experiments as 
measurements need to be made at multiple positions. 
Furthermore, a CFD approach allows monitoring of  
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Table 2 Gas–liquid dimensionless numbers in the governing 
equations 

Name of dimensionless number Symbol Expression 

Horizontal inlet density ratio 
,qr   

g,in

qρ
ρ  

Horizontal inlet superficial velocity 
ratio 

sv,qr  s ,in

s ,in

q

g

v
v  

Reynolds number based on the 
superficial velocity of the phase q 

sqRe  ,in s ,inq q

q

ρ v D
μ  

Froude number based on the 
superficial velocity of the phase q 

sqFr  s ,inqv
gD  

Eötvös number Eo  ( ) 2
l g gg ρ ρ d

σ
-

 

Modified Eötvös number based on 
the length of the longest axis of the 
deformable bubble dh  

Eo  ( ) 2
l g hg ρ ρ d

σ
-

 

Ratio of Sauter mean diameter to 
Venturi inlet diameter 

dr  gd
D  

β  d
D  

 HEL
D  

 HBD
D  

 VEL
D  

 cl
D  

 tl
D  

 d1l
D  

 d2l
D  

 ol
D  

Geometric similarity:  
length to Venturi inlet diameter 
ratios 

 VBD
D  

 
dimensionless numbers associated with phase interaction, 
which is rarely possible experimentally. The Eulerian–Eulerian 
model is the most comprehensive and widely implemented 
by many researchers (Acharya and Casimiro, 2020; Chahed 
et al., 2003; Reyes-Gutiérrez et al., 2006; Shu and Wilks, 
1995; Yamoah et al., 2015; Zhang et al., 2019) for solving 
the governing Eqs. (1)–(3), is used for this study. The mixture 
shear stress transport k ω-  turbulence model (Menter, 
1994) is used in the study. Enhanced wall functions are used 
for near-wall treatment. CFD simulations are performed in a 
full three-dimensional computational model (see Fig. 2) with 
a polyhedral mesh. 

 
Fig. 2 Front view (left) and cross-sectional view (right) of a 
polyhedral mesh. 

This study focuses on the liquid-continuous flow with 
gas as the dispersed phase. The phase fraction of the 
dispersed phase is specified at the horizontal inlet, together 
with the homogeneous inlet velocity. The pressure is 
specified at the outlet. Sensitivity studies are performed 
to determine the appropriate size of the Sauter mean 
diameter, gd , for water–nitrogen and oil–nitrogen flows, 
respectively. CFD software Ansys Fluent 2021 R1 is used in 
the study. The phase coupled semi-implicit method for 
pressure linked equations scheme and the first-order 
upwind scheme are used for spatial discretization. Interested 
readers can refer to our earlier work (Zhan et al., 2022, 
2023) for more details. 

CFD simulation results are validated by experimental 
measurements before being used to study the scaling rules.  
Mesh-independent results are used in the analysis. Two 
physical quantities, the Venturi differential pressure, ΔP , 
and the gamma ray equivalent gas fraction, g,gammaα , are 
used as criteria for validating the simulation results since 
they are key multiphase measurements for the calculation 
of multiphase flows. Mesh independence is said to be 
achieved when g,gammaα  changes by less than 0.5% absolute 
and ΔP  changes by less than 1% relative for an increment 
of 0.5 million cells in an observed converging trend. Five 
test points for water–nitrogen and oil–nitrogen evaluated in a 
multiphase flow facility are simulated in two Venturi-based 
vertical MPFMs of sizes S1 and S2 with the Venturi inlet 
diameters of two inches and three inches, respectively. 
The line pressure at the test points is about ~20 bar.    
The inlet gas volume fraction (GVF) and homogeneous 
inlet velocity at the horizontal inlet range from 26% to 84%, 
and 1.46 to 6.29 m/s. Figures 3(a) and 3(b) show the 
agreement between the predicted and measured values  
for the chord-averaged gas fraction, g,gammaα , and PD , 
respectively. 
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(a) 

 
(b) 

Fig. 3 Computational fluid dynamics-predicted (a) g,gammaα  at 
throat against gamma ray measurement and (b) PD  against 
measurement. 

For all test points, the absolute difference of g,gammaα  
and PD  obtained from the measurements and CFD 
simulations are smaller than the 2.5% absolute and 5% relative 
differences, respectively. This shows that the simulated 
results agree well with the experimental measurements. 

2.3 Computational fluid dynamics evaluation matrix 

The CFD test matrix with six sets of test points is designed 
for two purposes: (i) by comparing different sets of test 
points, the performance of different scaling rules can be 
evaluated; (ii) the test matrix should cover a range of flow 
condition and fluid property. It was found that there is  
an empirical power-law correlation between the slippage 
number, pSL , and the mixture Froude number, mFr , as well 
as the flow patterns such as slender bubbly, slug, slug-annular, 
churning, wavy-annular, pseudo-slug, and stratified wavy 

flows clustered along the power-law fitted line (Abdelsalam 
et al., 2016). The mixture Froude number, mFr , and the 
slippage number, pSL , are given by 

 sl ,in sg,in l
m

g

v v ρFr
ρ ρgD

+
=

-l
   (12) 

( )HU VF
p

g,in sg,in

gD ρ ρ
SL

ρ v
-

=  (13) 

where HUρ  and VFρ  are the mixture density evaluated  
by phase holdup and (flow rate-based) volume fraction, 
respectively. In this study, the slippage number pSL  is 
evaluated using the pipe-averaged phase holdup, and gammaSL  
is evaluated using the gamma ray equivalent gas fraction. 

The flow condition of the test matrix is designed such 
that the test points cover a range of the Froude number, 

mFr , which may correspond to different flow regimes 
indicted by the correlation. In this study, the range of the 
mixture Froude number at the throat, m,thFr , is designed 
to vary from 15 to 25 with a step size of 5 for low- and 
medium-inlet GVFs 30% and 50% (note that GVF = 

Q
Q Q+

g

g l


  , where Qg

  and Ql
  are the gas and liquid volumetric  

flow rates, respectively).  For higher inlet GVF 70%, 
m,thFr  is designed to vary from 30 to 40 at a step of 5. For 

each test point with a given m,thFr  and inlet GVF, four sets 
(sets 1 to 4) of gas–liquid (oil–nitrogen or water–nitrogen) 
flows are simulated using three different gas densities in 
the computational geometry of the Venturi inlet diameter 
size S1. Two sets (sets 5 and 6) of water-nitrogen flows 
with the same liquid property as set 1 are simulated in 
computational geometry of the Venturi inlet diameter 
size S2. Whereas sets 1–5 share the same m,thFr , set 6 is 
obtained by equalizing the l,thRe  of set 6 to that of set 1.  
This is to study whether the Froude number ( mFr  or sqFr ) 
is critical for achieving desirable scaling results. The fluid 
property and flow condition of the CFD test points are 
shown in Tables 3 and 4, respectively. 

Table 3 Liquid and gas properties for sets 1–6 of test points 

Set 
Liquid 
density 
(kg/m3)

Gas (nitrogen) 
density (kg/m3)

Liquid dynamic 
viscosity 
(mPa·s) 

Gas dynamic 
viscosity 
(mPa·s) 

Surface 
tension 
(N/m)

1, 5, 6 1008.50
(water)

24.30  1.0  21.66 10-´ 0.073

2 799.72  
(oil) 

24.30  1.6  21.66 10-´ 0.026

3 799.72  
(oil) 

19.27  1.6  21.66 10-´ 0.026

4 1008.50
(water)

30.64  1.0  21.66 10-´ 0.073
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Figure 4 shows the relative magnitudes of the dimensionless 
numbers of sets 1–6 using normalized dimensionless numbers 
against set 1. Table 5 shows the range of the dimensionless 
numbers of test points. 

 
Fig. 4 Normalized dimensionless numbers (against set 1) from 
sets 1–6. 

3 Results and discussion 

3.1 Phase fraction 

3.1.1 Cross-sectional phase fraction 

To investigate the effect of scaling rules on the evolution 
of gas fractions in a vertical Venturi, the simulated cross- 
sectional gas fractions at the Venturi inlet (VI), g,VIα , and 
mid-throat (MT), g,MTα , from sets 1–6 at inlet GVFs 30%, 
50%, and 70% are shown in Fig. 5. 

From Fig. 5, it can be seen that the pair of sets 1 and 4, 

together with sets 2 and 3, have the best matches, with a 
difference in g,VIα  of less than 0.17% and a difference in 

g,MTα  of less than 0.13% for all groups and inlet GVFs. 
Both pairs share the same slRe , sgFr , l,svr , and dr . The Eo  
and Eo  within the pair of sets 1 and 4 and the pair of sets 2 
and 3 are also relatively close, with a percentage difference 
of 0.7% (of set 1) and 0.6% (of set 3), respectively, which is less 
than the percentage difference with the other sets (~2%). 

Simulations for sets 5 and 6 are performed in S2. By 
comparing sets 5 and 6 with the other sets simulated in S1, 
the meaningful dimensionless numbers for upscaling can 
be investigated. It can be observed that at VI, g,VIα  from set 
6 with a sgFr  that is lower than the other sets has a 
significantly lower value with a maximum difference of 7.28% 
(GVF 50%, Group 1) with respect to set 1, which shares 
the same slRe , sgRe , l,svr , l ,ρr , Eo , and Eo . This may be 
because set 6 belongs to a different flow regime. The 
difference in g,MTα  decreases with sgFr  and increases with 
inlet GVF. At MT, agreement in g,MTα  between set 6 and 
the other sets improves from VI, with a maximum difference 
of 0.52% (GVF 50%, Group 1) compared to set 1. At MT, 

sgFr  is about ~4 times that at VI; it is possible that set 6 
shares the same flow regime as the other sets at the Venturi 
throat section. 

3.1.2.  Correlation between slippage number pSL  and 
mixture Froude number mFr  

To gain a deeper understanding of gas–liquid slippage in a 
vertical Venturi, Fig. 6 shows slippage number pSL  versus the 
local mFr  at VI and MT. pSL  is evaluated with density HUρ  
calculated from the cross-sectional gas fraction (via Eq. (13)). 

Since each set of test points with different sgFr , slRe , 
sgRe , l,svr  collapses into the same line, the differences in 

gradient a and offset b are likely due to dimensionless numbers  

Table 4 Flow condition for sets 1–6 of test points 
 

m,thFr  m,inv  (m/s) 
Group GVF (%) 

Sets 1–5 Set 6 Set 1 Set 2 Set 3 Set 4 Set 5 Set 6  
1 30 , 50  15  9  1.98  1.98  1.98  1.98  2.32  1.45  

2 30 , 50  20  12  2.65  2.64  2.65  2.64  3.09  1.93  

3 30 , 50  25  16  3.31  3.30  3.31  3.30  3.87  2.42  

4 70  30  19  3.97  3.96  3.97  3.96  4.64  2.90  

5 70  35  22  4.63  4.62  4.63  4.62  5.41  3.39  

6 70  40  25  5.29  5.27  5.29  5.27  6.19  3.87  
 

Table 5 Range of dimensionless numbers of all test points 

 slRe  sgRe  sgFr  l ,r sv  ,rl ρ  Eo  Eo  rd  

Minimum 34 485，  41 079，  0.49  0.43  (GVF 70% ) 32.91  4.63  6.11  0.07  

Maximum 215 913，  129 469，  4.89  2.33  (GVF 30% ) 41.51  4.76  6.33  0.10  
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Fig. 5 g,VIα  at the Venturi inlet (left) and g,MTα  at the Venturi mid-throat (right) from sets 1–6 at inlet gas volume fraction 30% (top 
row), 50% (mid row), and 70% (bottom row) obtained from computational fluid dynamics simulations. 

 
Fig. 6 pln( )SL  against mln( )Fr  in the Venturi mid-throat at inlet gas volume fraction 30%, 50%, and 70%. Set 1 is used as a reference 
and compared to set 2 (first row), set 3 (second row), set 4 (third row), set 5, and set 6 (fourth row). 
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related to fluid property and gas–liquid interaction, such as 
l,ρr , Eo , Eo , and dr . It can be seen that at VI, sets 1 and 3 

that share the same l,ρr , Eo , and Eo  within the same scale 
of the flow domain have the best agreement in pln( )SL ,  

with the largest difference of 0.13 ( p,set1

p,set3
1.1

SL
SL

= ). Sets 1 and 2,  

which do not share any dimensionless numbers related to 
gas–liquid phase interaction, have the worst agreement, with  

the largest difference in pln( )SL  of 0.39 ( p,set1

p,set 2
1.5=

SL

SL
). In  

MT, the variance in pln( )SL  between different sets increases. 
Overall, sets 1 and 3 sharing the same l,ρr , Eo , and Eo , and 
sets 1 and 4 sharing the same dr  within the same scale of 
the flow domains have better agreement in pln( )SL , with  

the largest difference in pln( )SL  of 0.35 ( p,set1

p,set3
1.4

SL
SL

= ) and  

0.25 ( p,set1

p,set 4
1.3

SL
SL

= ), respectively. The maximum difference 

in pln( )SL  between sets 1 and 2, which does not share any 
dimensionless numbers related to gas–liquid phase interaction, 
and sets 1, 5, and 6, which are different dimensions, are  

0.58 ( p,set1

p,set5
1.8

SL
SL

= ) and 0.76 ( p,set1

p,set6
2.1

SL
SL

= ), respectively. 

The effect of matching different dimensionless numbers 
on the coefficients a and b of the best-fit model pln( )SL = 

mln( )a Fr b+  is also investigated. Table 6 shows the coefficients 
a and b of the best-fit model pln( )SL = mln( )a Fr b+  
obtained for each set at VI and MT, respectively. The 
indicators for the goodness of fit including the R-squared 
value and root-mean-square error (RMSE) of each line-of- 
best-fit are also shown in Table 6.   

As can be seen from Table 6, the linear fit between 
pln( )SL  and mln( )Fr  for all sets at VI and MT is good with 

the R-squared value 0.98³  for VI and 0.92³  for MT. 
RMSEs for all sets are 0.21£  for VI and 0.30£  for MT. 
At VI, the value of the gradient a of the best-fit at VI is 
similar for sets 1–4, with the greatest relative difference 
between sets 1 and 2 of 1.48% (of set 1). For scaling between 

dimensions S1 and S2, sets 5 and 6 have a 2.96% higher 
gradient than set 1, which shares the same l,ρr , Eo , and Eo . 
Within the same dimension S1, pair of sets 1 and 4 and pair 
of sets 2 and 3 that share the same dr  and similar Eo  and 
Eo  have a better match in the gradient a between them, 
compared to the other sets. Within the same dimension S1, 
the offsets b of the pair of sets 1 and 3 and the pair of sets 2 
and 4, which share the same l,ρr , are similar. Note that the 
average offset b of the sets 1 and 3 is 5.8% higher than that 
of sets 2 and 4. This may be because that sets 1 and 3 have a 
25% higher density ratio l,ρr  than sets 2 and 4, which results 
in a higher slippage number at any given mFr , given the 
same gradient a. For scaling between S1 and S2, sets 5 and 
6 have a 1.78% higher offset b than set 1. At MT, it can also 
be observed that the value of the gradient a of the best-fit 
for sets 1–4 remains similar (with a maximum 2.17% (of set 
4) difference between sets 2 and 4), and the pair with the 
same l,ρr  has similar offset b are still valid among sets 1–4 
test points in S1. For scaling between different dimensions 
S1 and S2, the best-fit gradient a and offset b for sets 5 and 
6 are 16.01% (gradient a) and 32.9% (offset b) smaller than 
those for set 1. This indicates that there is a small decrease 
in slip in S2 than that in S1 for a given increase of Frm at MT. 
Sets 5 and 6 share the same l,ρr , Eo , and Eo  as set 1. Hence, 
while upscaling rule by matching l,r ρ , Eo , and Eo  may 
yield a similar p mln( ) ln( )SL Fr-  correlation for straight 
pipe sections with a certain developing length (e.g., a VI 
with a ~6D vertical upstream developing length), the 
upscaling rule performs less well for a MT with a short 
developing length (0.5D). Hence, the same pipe sizes must 
be used to establish the p mln( ) ln( )SL Fr-  correlation for 
slip prediction in MT. With a longer developing length, the 
greater gas–liquid drag force due to the greater magnitude of 
the phase velocity difference may reduce the slip (Shu et al., 
2016, 2017, 2018). 

Since the phase fraction is measured by a gamma ray 
sensor at the throat in the studied Venturi-based MPFM, it 
is useful to study the slippage number gammaSL  evaluated 
with HUρ  calculated from the gamma ray equivalent 
phase fraction from CFD. Figure 7 shows the comparative 
changes of gammaln( )SL  against mln( )Fr  for different sets.  

Table 6 For computational fluid dynamics sets 1–6: coefficients a and b of the lines-of-best-fit p mln( ) ln( )SL a Fr b= +  at the Venturi 
inlet and mid-throat, and the respective fitted R-squared value and root-mean-square error (RMSE) 

 
Venturi inlet Venturi mid-throat 

Set 
a  b  R-squared RMSE a  b  R-squared RMSE  

1 3.38-  3.93  0.98  0.17  2.81-  4.62  0.94  0.24  
2 3.43-  3.71  0.98  0.21  2.83-  4.26  0.92  0.30  
3 3.42-  3.91  0.98  0.20  2.81-  4.42  0.93  0.30  
4 3.40-  3.70  0.98  0.18  2.77-  4.29  0.93  0.29  

5 and 6 3.48-  4.00  0.99  0.12  2.36-  3.10  0.95  0.24  
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Table 7 shows the coefficients a and b of the best-fit model 
gamma mln( ) ln( )SL a Fr b= +  obtained for each set. 

From Fig. 7 and Table 7, it can be seen that the test 
points in the gammaln( )SL  versus mln( )Fr  correlation are 
more dispersed than those in the pln( )SL  versus mln( )Fr  
correlation, as evidenced by the lower R-squared and 
higher RMSE values in the gammaln( )SL  versus mln( )Fr  
correlation for all CFD sets. This may be due to the greater 
dependence of the directional (z-direction) chord-averaged 
gas fraction on the phase distribution. The flow with 
identical pSL  at MT may not have the same gammaSL  if the 
phase distribution is different; however, the agreement 
in gammaln( )SL  between different sets is similar to that in  

Table 7 For computational fluid dynamics sets 1–6: coefficients 
a and b of the lines-of-best-fit gamma mln( ) ln( )SL a Fr b= + , and the 
respective R-squared and root-mean-square error (RMSE) for 
each set 

Set a b R-squared RMSE 

1 3.42-  6.38  0.86  0.84  

2 3.48-  6.14  0.85  0.54  

3 3.48-  6.34  0.85  0.54  

4 3.44-  6.17  0.86  0.51  

5 and 6 3.00-  4.78  0.87  0.49   

pln( )SL . The pair of sets 1 and 3 that shares the same l,ρr , 
Eo , and Eo , and the pair of sets 1 and 4 that shares the 
same dr  within the same scale of the flow domains have 
better agreement than the pair of sets 1 and 2 that does not 
share any dimensionless numbers related to gas–liquid phase 
interaction, and sets 1, 2, and 5 that are of different dimensions. 
In addition, similar to pln( )SL  versus mln( )Fr  in MT, the set 
pair with the same dr  and similar Eo  and Eo  has similar 
gradient a (sets 1 and 4; sets 2 and 3), and the pair with the 
same l,ρr  has similar offset b (sets 1 and 3; sets 2 and 4) in 
the dimension S1. For upscaling from S1 to S2, the gradient 
a and offset b of sets 5 and 6 are 12.28% and 25.08% lower 
than that in set 1 that shares the same l,ρr , Eo , and Eo . 
Hence, the coefficient of gammaln( )SL  versus mln( )Fr  
correlation must be identified separately in different 
dimensions of the flow domains. 

3.2 Dimensionless Venturi differential pressure 

In the previous straight pipe scaling study, the pressure 
drop in the straight pipe was due to friction losses, while 
the pressure drops across VI and MT was due to the energy 
conversion of work done by pressure into kinetic energy 
and gravitational potential energy, as described by the 
Bernoulli equation (14): 

 
Fig. 7 gammaln( )SL  against mln( )Fr  in the Venturi mid-throat at inlet gas volume fraction 30%, 50%, and 70%. Set 1 is used as a 
reference and compared to set 2 (first row), set 3 (second row), set 4 (third row), set 5, and set 6 (fourth row). 
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where H is the height. Under the assumption of incompressible 
flow, no slip, and no friction loss, the dimensionless 
Venturi differential pressure gradient can be described as 
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Fr

k

 

(15) 

by understanding the dimensionless numbers, sgFr , l ,ρr , 
and l,svr , at the horizontal inlet, as well as the dimensionless  

geometric properties, β , cl
D , and tl

D . 

3.3 Two-phase discharge coefficient 

In practice, the Venturi differential pressure is usually 
larger than that estimated by the Bernoulli equation as 

additional energy is required to account for the energy loss  
in the Venturi. Hence, the single-phase discharge coefficient, 

dC , is introduced to account for the loss. For single-phase 
flow, dC  increases with slRe  in a converging trend. To 
investigate whether the observation hold for two-phase flow, 
two-phase discharge coefficient, d,tpC , is evaluated from 
CFD simulation results. d,tpC  is defined here as 

 ( ) ( )MT VI MT VI
d,tp

MT VI

KE KE UE UEC W W
- + -

=
-

    (16) 

where KE, UE, and W are the kinetic energy, the gravitational 
potential energy, and the work done, respectively. Figure 8 
shows the variation of the two-phase discharge coefficient, 

d,tpC , with slRe . 
A few observations can be made from Fig. 8. First, there 

are six clusters of data in the d,tpC  versus slRe  plot. Sets 2 
and 3, which share close Eo  and Eo , form three clusters, 
with the cluster from inlet GVF 30% having the highest 

d,tpC , followed by the clusters with inlet GVF 50% and GVF 
70%. Similarly, sets 1, 4–6, which share close oE  and oE , 
form three clusters of inlet GVF 30%, 50%, and 70%, 
respectively. Within each cluster, d,tpC  increases with slRe  
in a converging trend. 

Within each cluster, set 2 with lower density contrast 
l,ρr  has a smaller loss or a higher d,tpC  than set 3. The 

difference increases as inlet GVF increases. Similarly, set 4 
with lower l,ρr  also has a smaller loss or a higher d,tpC  than 
set 1. In addition to friction loss between the fluid and the 
pipe wall, loss may also occur due to gas–liquid interaction.  

 
Fig. 8 Variation of d,tpC  with slRe . Circle, triangle, and square represent Groups 1–3 at inlet gas volume fraction (GVF) 30% and 50%, 
and Groups 4–6 at inlet GVF 70%, respectively. 
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Given dynamically similar flow condition and flow domain 
S1, lower l,ρr  is likely to result in a more uniform flow, as  
can be seen from sets 2 and 4 having smaller slip than sets 1 
and 3, respectively. Hence, loss due to gas–liquid interaction 
in sets 2 and 4 is lower than in sets 1 and 3, given the 
same slRe . 

4 Experimental validations 

As discussed in Section 2.2, experimental studies of scaling 
rules often face challenges, including, for example, imperfect 
matches in flow condition such as inlet GVF and flow Zthe 
magnitude of the difference in gas fractions can be as low 
as a few percent, which is easily within the range of an 
imperfect match of flow conditions. As a result, it is more 
meaningful to experimentally verify the correlation (or 
trend) of the dimensionless number with the gas fraction, 
the dimensionless Venturi differential pressure, and the 
two-phase discharge coefficient. 

Experiments are performed at SLB (formerly Schlumberger) 
multiphase flow facility connected to a Venturi-based MPFM 
and a three-phase separation system. A table referring to 
the raw experimental data, including line pressure, inlet 
GVF, velocities, and fluid properties, can be found in 
Appendix. The phase fraction g,gammaα  at MT is measured 
by a gamma ray sensor, and PD  across VI and MT is 
measured by a Venturi differential pressure sensor installed 
in the Venturi-based MPFM. 

Five sets with six test points each are chosen from two 
flow loops (sets 1, 2, 4, and 5 in flow loop 1 and set 3 in 
flow loop 2), such that the fluid properties follow those of 
sets 1–5, respectively. We do not distinguish between sets 5 
and 6 because set 6 with the CFD simulations shares the same 
fluid property as set 5, but takes into account different 

slRe , sgRe , and sgFr , in the correlation. The minimum 
and maximum values of the dimensionless numbers for 
sets 1–5 test points used in the experimental validation 
normalized against the set 1 maximum are shown in Fig. 9. 
Note that because information on the Sauter mean diameter 

gd  is not available, gd  used in the CFD simulation is used 
to compute Eo , Eo , and dr . All dimensionless numbers 
are evaluated at the horizontal inlet. The range of the 
dimensionless numbers used in the experimental validation 
is shown in Table 8. 

 
Fig. 9 Normalized range of dimensionless numbers from 
sets 1–5. 

4.1 Phase fraction 

In this Section, the gamma ray equivalent gas fraction, 
g,gammaα , predicted by the gammaln( )SL  versus mln( )Fr  

correlation (with correlation coefficients a and b obtained 
in Table 7) is compared with the value measured by the 
gamma ray sensor as Eq. (17): 

 

( ) ( )

( )
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g VF l
VF MT
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g l

ea b q
ρ gD ρ ρρ A

α
gD ρ ρ

+
æ ö÷ç + -÷ç ÷÷çè ø

=
-


Fr

 (17) 

where gq  is the gas mass flow rate and MTA  is the area  
of MT. Sets 1, 2, and 5 are predicted by their respective 
coefficients. Sets 3 and 4 are predicted by the correlation 
coefficients of sets 1 and 2. This is to validate the observation 
that (i) the pairs that share the same dr , Eo , Eo  have similar 
gradient, a, and (ii) the pairs that share the same l,ρr  have 
similar offset, b. Figure 10 shows the agreement between 
predicted and measured g,gammaα . 

As can be seen from Fig. 10, there is a good agreement 
between the g,gammaα  predicted by gammaln( )SL  versus 

mln( )Fr  correlation and the measured g,gammaα , with a 
maximum difference of 2.5%£  absolute. Note that the 
largest difference between the CFD-predicted g,gammaα  and 
that measured by the gamma ray sensor is also 2.5% absolute.  

Table 8 Range of dimensionless numbers for all experimental test points 

Dimensionless number slRe  sgRe  sgFr  l ,svr  l ,ρr  Eo  Eo  dr  

Minimum 29 888，  36 595，  0.50  0.33  (GVF 75% ) 30.74  4.61  6.09  0.07  

Maximum 288 199，  640 271，  8.48  2.83  (GVF 26% ) 45.83  4.75  6.31  0.10  
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Fig. 10 Consistency between predicted and measured g,gammaα . 

Since the gammaln( )SL  versus mln( )Fr  correlation is obtained 
from CFD simulations, the difference in g,gammaα  predicted 
by gammaln( )SL  versus mln( )Fr  correlation cannot be lower 
than 2.5% absolute. The results also show that good 
consistency in g,gammaα  can be achieved (sets 3 and 4 
predictions) using a scaling rule in which the flows with the 
same dr , Eo , and Eo  have similar gradient, a, and the 
flows that share the same l,ρr  have similar offset, b, in the 

gammaln( )SL  versus mln( )Fr  correlation. 

4.2 Dimensionless Venturi differential pressure 

ΔP  can be obtained from 

 
( )2

g,in sg,in MT VIΔ
ρ v H H

P pD
-

= ⋅

k   (18) 

Figure 11 shows the agreement between predicted and 
measured Δ .P  

 
Fig. 11 Consistency between predicted and measured Δ .P  

From Fig. 11, it can be seen that ΔP  predicted by Eq. (18) 
is lower than the measured ΔP , as most of the test points 
lie below the 1:1 line. This is expected since the energy loss 
in the Venturi was not fully accounted for; however, four 
points were observed to have higher predicted ΔP  than the 
experimental measurements. This may be because in some 
cases the uncertainty in the ΔP  measurement is greater 
than the neglected loss. Overall, the agreement between 
predicted and measured ΔP  is reasonably good, with a 
difference of 7%£  relative to the measured Δ .P  Note 
that ΔP  is used for mesh independence studies. Since Eq. 
(18) shows good prediction of ΔP , the Venturi differential 
pressure gradient | |P⋅


k  can potentially be used as a 

criterion indicating mesh independence. 

4.3 Two-phase discharge coefficient 

Since only the gamma ray phase fraction (hence mρ ) and 
ΔP  are measured in our experiments, Eq. (16) cannot  
be applied to obtain d,tpC  experimentally. Hence, d,tpC  is 
defined by 

 
( )[ ]d

4
m

,tp 2
m m MT VI

4 1
π 2 Δ

q βC
D ρ P ρ g H H

-
=

- -


 (19) 

as the two-phase coefficient used to correct the mass flow 
rate calculated from the measured ΔP  to the reference mass 
flow rate mq . Figure 12 shows the variation of d,tpC  with 

slRe  from experimental measurements. 
Note that set 3 test points collected in the second flow 

loop are omitted in Fig. 12 because the pipe characteristics 
related to friction loss may be different from the other sets. 
As can be seen from Fig. 12, the d,tpC  versus slRe  values are 
clustered according to the inlet GVFs, with lower inlet 
GVFs having a larger d,tpC , which is consistent with the 
results of the CFD simulation discussed in Section 3.3. 
However, set 2, which is likely to have different Eo , Eo , 
and dr  as sets 1, 4, and 5, appears to belong to the same 
cluster as sets 1, 4, and 5, which are likely to share the same 
Eo  and Eo . Note that there are a few outliers with slRe  
larger than 52 10´  that have lower d,tpC  than expected. It is 
possible that at higher slRe  (which also indicates higher 

mFr , given the same inlet GVF, fluid property, and pipe 
size), there may be a change of flow regime where increased 
gas–liquid interaction may cause greater loss, resulting in 
lower d,tpC . 

5 Conclusions 

In this study, a CFD approach is used to evaluate the 
performance of scaling rules in gas–liquid two-phase flow 
in a vertical Venturi in MPFM downstream of a horizontal 
pipe length. The dimensionless numbers studied, including  
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those associated with flow condition, fluid property, and 
gas–liquid interaction, are derived from the governing 
equations, boundary condition for gas–liquid flow, and the 
dimension of the flow domain. The performance of the 
scaling rule is evaluated in terms of the phase fraction,  
the dimensionless Venturi differential pressure, and the 
two-phase discharge coefficient. The results are validated 
against the experimental measurements in the flow loop. 

Overall, the significance of this work includes: (i) a 
scaled study of gas–liquid two-phase flow within a vertical 
Venturi, in which the flow development has never been 
studied before; (ii) a scaled study of the effect of phase 
interaction, which is different from previous studies that 
focused on separated flow. The dimensionless numbers 
associated with the phase interaction term are found to be 
related to the phase fraction in the Venturi; (iii) a useful 

scaling rule has been developed to obtain the coefficient for 
pln( )SL  versus mln( )Fr  correlation, which is in good 

agreement with the measured phase fraction. The analytical 
equation for the dimensionless Venturi differential pressure 
derived from a set of dimensionless numbers and the d,tpC  
versus slRe  relationship can also be used to predict the 
Venturi differential pressure and friction losses that need 
to be taken into account for accurate mass flow rate. Once 
the pln( )SL  versus mln( )Fr  correlation and the d,tpC  versus 

slRe  relationship are calibrated against the key dimensionless 
numbers identified, they can be used to potentially reduce 
the cost and carbon footprint required to perform 
experiments and CFD simulations, such as the phase 
fraction, the Venturi differential pressure, and the two-phase 
discharge coefficient can be predicted by the correlation, 
given the dimensionless numbers of the gas–liquid flow. 

 
Fig. 12 Variation of d ,tpC  with slRe  obtained from flow loop experiments. Lines-of best-fit are shown for the inlet gas volume fraction 
ranges [25%, 35%), [35%, 45%), [45%, 65%), [65%, 70%). 

Appendix 

Set Test 
point 

Line pressure 
(bar) 

Inlet GVF 
(%) 

Homogeneous inlet 
velocity (m/s) 

Superficial inlet gas 
velocity (m/s) 

Superficial inlet 
liquid velocity (m/s)

Liquid viscosity 
(mPa·s) 

Gas density 
(kg/m3) 

Liquid density 
(kg/m3) 

1 21.85  29.21  1.68  0.49  1.19  1.03  24.30  1005.20  

2 22.66  27.13  2.83  0.77  2.06  1.02  24.85  1006.70  

3 21.83  43.90  1.84  0.81  1.03  1.03  24.28  1005.30  

4 23.73  38.87  3.88  1.51  2.37  1.03  25.75  1005.40  

5 21.51  56.50  1.02  0.58  0.44  1.03  25.23  1005.50  

1 

6 21.89  74.08  2.79  2.07  0.72  1.06  24.34  1002.80  

1 21.64  29.42  1.46  0.43  1.03  1.62  24.10   800.31  

2 23.06  26.06  3.63  0.95  2.68  1.61  25.10   800.42  

3 23.00  41.54  3.54  1.47  2.07  1.59  25.14   799.88  

4 22.04  58.70  2.50  1.47  1.03  1.60  24.39   799.97  

5 23.95  54.94  4.59  2.52  2.07  1.57  25.99   798.95  

2 

6 22.50  73.40  3.88  2.85  1.03  1.56  24.69   799.09  
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(Continued) 

Set Test 
point 

Line pressure 
(bar) 

Inlet GVF 
(%) 

Homogeneous inlet 
velocity (m/s) 

Superficial inlet gas 
velocity (m/s) 

Superficial inlet 
liquid velocity (m/s)

Liquid viscosity 
(mPa·s) 

Gas density 
(kg/m3) 

Liquid density 
(kg/m3) 

1 19.10  58.90  10.91  6.43  4.48  1.60  18.34   801.82  

2 19.20  51.40  10.68  5.49  5.19  1.58  17.90   801.08  

3 18.96  36.10   9.52  3.44  6.08  1.56  17.46   800.37  

4 18.11  42.90   5.91  2.54  3.37  1.53  19.23   800.26  

5 18.44  63.10   8.13  5.13  3.00  1.52  19.27   799.79  
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6 18.21  73.30   8.24  6.04  2.20  1.49  19.44   798.15  

1 29.18  29.92   2.06  0.62  1.44  1.03  32.20  1005.10  

2 30.07  30.00   6.88  2.06  4.82  1.02  30.50  1005.80  

3 29.69  45.00   4.38  1.97  2.41  1.05  32.10  1003.40  
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1 23.27  27.60   2.23  0.62  1.61  1.02  25.00  1005.30  

2 24.34  40.38   3.14  1.27  1.87  1.04  25.84  1003.20  
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5 21.81  30.02   1.66  0.50  1.16  1.04  23.91  1002.40  
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